
Sensors 2011, 11, 3177-3204; doi:10.3390/s110303177

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Ontological Problem-Solving Framework for Dynamically

Configuring Sensor Systems and Algorithms

Joseph Qualls
1,

* and David J. Russomanno
2

1
 Department of Electrical and Computer Engineering, Herff College of Engineering, University of

Memphis, 3720 Alumni Avenue, Memphis, TN 38152, USA
2
 Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology,

Indiana University-Purdue University Indianapolis (IUPUI), 799 W. Michigan St., Indianapolis,

IN 46202, USA; E-Mail: drussoma@iupui.edu

* Author to whom correspondence should be addressed; E-Mail: jqualls@rendermatrix.com;

Tel.: +1-901-490-3717.

Received: 7 January 2011; in revised form: 4 February 2011 / Accepted: 11 March 2011 /

Published: 15 March 2011

Abstract: The deployment of ubiquitous sensor systems and algorithms has led to many

challenges, such as matching sensor systems to compatible algorithms which are capable of

satisfying a task. Compounding the challenges is the lack of the requisite knowledge

models needed to discover sensors and algorithms and to subsequently integrate their

capabilities to satisfy a specific task. A novel ontological problem-solving framework has

been designed to match sensors to compatible algorithms to form synthesized systems,

which are capable of satisfying a task and then assigning the synthesized systems to

high-level missions. The approach designed for the ontological problem-solving

framework has been instantiated in the context of a persistence surveillance prototype

environment, which includes profiling sensor systems and algorithms to demonstrate

proof-of-concept principles. Even though the problem-solving approach was instantiated

with profiling sensor systems and algorithms, the ontological framework may be useful

with other heterogeneous sensing-system environments.

Keywords: sensor networks; sensor ontology; profiling sensors; ontological framework

OPEN ACCESS

Sensors 2011, 11

3178

1. Introduction

Dynamically matching sensor systems to algorithms to satisfy a task poses a significant challenge in

sensor networks. The challenge is made even more difficult because sensor systems and algorithms are

not typically designed independently, which often limits their reuse in tasks that may not have been

anticipated when the sensors and algorithms were first deployed. Compounding the challenge is the

lack of knowledge and data models, which describe sensor and algorithm capabilities, properties, and

relationships [1-6]. The focus of this paper is on the reasoning process used in a novel ontological

problem-solving framework, which can be leveraged by software agents on sensor networks, to

opportunistically match sensor systems to independently designed algorithms to form synthesized

systems capable of satisfying a task.

1.1. Ontological Problem-Solving Framework

The ontological problem-solving framework (Figure 1) has the overall goal to discover and match

sensor systems to compatible algorithms to form a synthesized system, which is capable of satisfying a

given subtask. The synthesized systems and other algorithms may then be matched to form more

complex synthesized systems, which may then be assigned to tasks of high-level missions (Figure 2).

The ontological problem-solving framework will then coordinate all matched and synthesized sensor

systems and algorithms to complete the missions. The problem-solving approach could have been

developed with standard database technologies and SQL queries. However, one of the issues that

makes discovering and matching sensors to algorithms problematic is the lack of knowledge models

used to describe those systems.

Figure 1. Overview of ontological problem-solving framework.

Ontology

Rules

Procedural

Attachment

ToBraid

Inference

System

...

Instance

Database

...
Instance

Database

Ontological Problem-

Solving Framework

Advanced

Functions

Advanced

Functions

Advanced

Functions

Sensors 2011, 11

3179

Figure 2. Creation of synthesized systems which are then assigned to subtasks of

high-level missions via the ontological problem-solving framework.

...

Synthesized Systems

capable of completing a task

Synthesized Systems

capable of completing a task

Synthesized Systems

capable of completing a task

...
...

Sensor Systems

Sensor Systems

Sensor Systems

Algorithms

Algorithms

...
Algorithms

Synthesized System matched

 to a Mission

Synthesized System matched

 to a Mission

The knowledge models also need to leverage well-defined semantics in a machine-interpretable

format so other agents may interact with the described systems. The requirement to opportunistically

match sensors to algorithms increased the need to use ontologies (which specify the semantics) and

rules based on description logic to infer which components may be used to form synthesized systems.

The knowledge models used by the ontological problem-solving framework may then be leveraged by

other systems for more complex inference if needed. The ontological problem-solving framework was

developed using the TopBraid Maestro software by TopQuardrant [7], which uses the web ontology

language (OWL) [1-6] for knowledge capture, SPARQL [8] for specifying rules, and the TopSpin

inference engine for interpreting the rules. Other systems, such as Protégé, which uses JESS and

SWRL [1-6], could have also been used to develop the ontological problem-solving framework. The

main focus of this paper is to detail the reasoning process the ontological problem-solving framework

uses to match sensor systems to compatible algorithms to form synthesized systems, which are capable

of satisfying a given task.

1.2. Matching Sensors to Algorithms

Engineers often design an algorithm for a specific sensor system. This dependence makes the

algorithm difficult to use with other sensors opportunistically based on ever-changing persistence

surveillance goals. If sensors and algorithms are designed independently, then, a problem-solving

approach must enable the matching of a sensor to a compatible algorithm to achieve a task, such as

formatting the sensor data for a specific purpose or extracting pixels from an imaging sensor for

subsequent processing. The composition of matched sensor systems and compatible algorithms to

achieve a task can be made even more difficult if an algorithm requires multiple data sources

(Figure 3(a)), or if a chain of multiple sensors and algorithms must be composed to achieve subtasks

supporting an overall task (Figure 3(b)). The problem-solving approach must describe the relationship

between the preconditions and post conditions of the algorithms, as well as descriptions of the raw

data, and possibly features generated by the sensor systems [9-12].

Sensors 2011, 11

3180

Figure 3. (a) Algorithm, which requires data from two sensor systems, matched to two

compatible sensor systems. (b) Algorithm matched to a compatible algorithm, which is

also matched to a compatible sensor system.

Algorithm

Process: Fuses visible and MWIR images

Input: One visible and one MWIR image

Output: Fused image

Sensor

Output: Visible image

Sensor

Output: MWIR image

Compatibility

Matching

(a) Algorithm matched to two sensors

Sensor

Output: 800 x 600 image

Algorithm

Process: Process image for classification

Input: One 640 x 480 image

Output: Classification

Compatibility

Matching

Compatibility

Matching

(b) Algorithm matched to another algorithm

which is matched to a sensor

Algorithm

Process: Format image

Input: Any size image

Output: 640 x 480 image

1.3. Related Work

There have been several approaches and tools developed to address in part the challenge of

matching sensors to compatible algorithms. These techniques and tools include, but are not limited to,

Sensor Fabric [9,13-15], Sensor OASiS [16], Agilla [17-19], Semantic Streams and SONGS [20,21],

and CIEDETS [22,23]. Other research efforts focused on the development of ontologies that describe

sensors and their respective capabilities, such as OntoSensor [2-6], Sensor Network Data Ontology [24],

Sensor and Data Wrapping Ontology [25], Stimulus-Sensor-Observation Ontology [26], Sensor

Observation and Measurement Ontology [27], Semantic Sensor Network Ontology [28], Disaster

Management Sensor Ontology [29], and a survey of sensor ontologies [30] are also efforts relevant to

our work. Other work promotes a logical model to follow while developing a problem-solving

approach. For example, Sensor Modeling Language (SensorML) [31] describes high-level conceptual

models using Unified Modeling Language (UML) of sensors, algorithms, and supporting notions to

facilitate interoperability. The Open Geospatial Consortium (OGC) specify draft interoperability

interface standards and metadata encodings that integrate sensor systems into information

infrastructures, such as Observations and Measurements (O&M) [32,33], SensorML [34], Transducer

Model Language (TML) [35], Sensor Observation Service (SOS) [36], Sensor Planning Service

(SPS) [37], Sensor Alert Service (SAS) [38], and Web Notification Services (WNS) [39]. Semantic

Sensors 2011, 11

3181

Streams and OntoSensor are two important efforts because of their use of semantics and ontologies.

Semantic Streams and the follow up SONGS effort were developed by Microsoft to facilitate queries

to determine capabilities and subsequent tasking of sensors and algorithms. Semantic Streams uses

event streams, which are collected raw data from sensor systems with meta information attached, and

inference units, which operate on event streams by creating semantic information about the event

streams. Queries posted to Semantic Streams are broken down into one or more of the inference units

(Figure 4). SONGS adds the use of an ontology to describe the inference units. Instead of queries being

directly mapped to inference units, the approach can infer which inference units may satisfy a given

query [20,21]. OntoSensor is a semantic-web-compatible ontology that captures knowledge about

sensor systems (Figure 5(a)). OntoSensor can be used to create relationships to other sensor instances

and to derive properties about sensor systems. Software agents can query the sensor instance data to

determine the capabilities of connected sensor systems. Once the capabilities of the sensor systems

have been determined, other agents may task the sensor systems, for example, retrieving humidity data

for a specified time period (Figure 5(b)) [2-6].

Figure 4. Semantic Streams query.

Query: Detect weight of cars

Inference Unit: Determine weight

Inference Unit: Detect vehicles

Sensor: Weight plateSensor: Video

Event Streams Event Streams

Event Streams

Event Streams

Event Streams

Figure 5. (a) Excerpt of the OntoSensor ontology. (b) Problem-solving for discovering and

tasking sensor systems using OntoSensor.

Load

OntoSensor(a)

Sensor

Chemical Mechanical Acoustic

is a

Point_AirPassive_StandoffActive_StandoffRadiantMagnetic

Electro_Magnetic

is a

Passive_Radiant_SensorActive_Radiant_Sensor

is a is a

Thermal_DetectorPhoton_DetectorMicrowaveRadarLadar

is a

Photo_Conductive

Longwave_IR Visible_Near_IR SWIRMidwave_IR

Visible_ExtendedSB_UV Near_IR VisibleUltraviolet

is a

THz

is a

Photo_EmmissivePhoto_Voltaic

is a

is a

is a

Knowledge

Base

Inference

Engine

Sensor Matchmaker

UDDI Sensor

Service Interface

Query Processor

(Prolog)

UDDI

Publish API Inquiry API

Insert Update

registered services

Registry

Sensor Service Broker
(b)

Task & Query

Publish

Task & Query

Exact Match

-Yes:Return sensors

-No: a: Envoke sensor service

matchmaker for

specialization or

generalization of sensor

capabilites

b: Insert Update Delete

ontological schema from

UDDI tModel

Agent

(Prolog Query)
Sensor Service

Provider

Sensors 2011, 11

3182

1.4. Profiling Sensor Systems and Algorithms

To show how an ontological problem-solving framework can address the challenge of matching

sensor systems to compatible algorithms for a specific task, a family of unattended ground profiling

sensors (denoted as PFx, in which PF1, PF2, …, PFn are different types of profiling sensors) and

algorithms were deployed in a prototype environment. PFx sensor systems provide unique

opportunities for dynamic feature extraction through extendable algorithms and subsequent tasking.

The main purpose of PFx sensors is to capture profiles of objects, which can be subsequently classified

by algorithms using a variety of techniques, such as Naive Bayes algorithms, neural networks, or

support vector machines. A common theme of all PFx sensors is that they are intended to be low cost

and provide a profile that can be reliably classified. There are many different types of PFx sensors,

which exploit various technologies, including a family of PFx imaging sensors, which use a sparse

detector array. PFx sensors include, but are not limited to, novel imaging sensors in the visible, near

infrared, short-wave infrared, mid-wave infrared, and long-wave infrared bands. One of the initial and

simplest approaches to a PFx sensor was a prototype that used a sparse, vertical array of detectors. One

configuration was on a vertical pole, as shown in Figure 6(a), while other configurations may include a

horizontal displacement among the detectors as shown in Figures 7(a) and 8. Other algorithms may

format or compress the raw sensor data produced by PFx sensors, as shown in Figure 6(b), or generate

profiles into formats such that other algorithms can subsequently process the data, as shown in

Figure 7(b). One example is a visualization algorithm, which may generate a silhouette of an object for

presentation to a human evaluator for classification. Other algorithms that process PFx data may

classify silhouettes as humans, animals, or vehicles [12,40-46].

Figure 6. (a) Near-IR PFx sensor with detectors vertically deployed. (b) Output from an

algorithm that formats PFx sensor data. (c) Output from an algorithm that produces a

silhouette from formatted PFx data.

(a) (b) (c)

00000000000111111111111100000000

00000000000111111111100000000000

00000000000011111110000000000000

......

0[11];1[13];0[8]

0[11];1[10];0[11]

0[12];1[8];0[13]

Raw sensor data

Compressed

data

run-length

encoding

Final profile

Sensors 2011, 11

3183

Figure 7. (a) PFx sensor with detectors deployed vertically with a horizontal displacement.

(b) PFx raw data formatted by an algorithm as a profile.

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Raw sensor data as object

passes sparse detector

(a) Sparse detector with horizontal and vertical displacement

(b) Algorithm which produces silhouette

of raw data

Figure 8. (a) PFx sensor with detectors deployed vertically with a specific horizontal

displacement. (b) PFx sparse detector with random detector displacement. (c) PFx sparse

detector with only horizontal displacement.

Detector

Detector

Detector
Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector

Detector Detector Detector Detector Detector Detector Detector

(a) (b)

(c)

The PFx systems, with their various capabilities and relationships, represented a unique opportunity

for integration onto the ontological problem-solving framework (Figure 9). The following section

describes in detail the novel ontological problem-solving framework using PFx sensors and algorithms

to illustrate the matching of sensor systems to independently designed algorithms for a task. The

problem-solving approach will illustrate how PFx sensors are matched to compatible algorithms for

pixel extraction, profile generation, visualization, and various other tasks. Even though the PFx sensors

and algorithms are used for proof-of-principle aspects of the ontological problem-solving framework,

the same approach may be extended for use by other types of sensors and algorithms to achieve

different tasks.

Sensors 2011, 11

3184

Figure 9. (a) Representative algorithm types, including classifiers, visualizers, and silhouette

generators. (b) Representative PFx sensor types, including sparse detectors and imagers.

Algorithm: Pixel extractor

Operates on: Raw sensor data

Operation: Determines which

pixels in an image

contain a potential

profile

Algorithm: Profile Generator

Operates on: Raw sensor data

Operation: Generates a profile for

vertical and horizontal

sparse detectors

Algorithm: Profile Compressor

Operates on: Raw sensor data

Operation: Encodes a profile with

run-length encoding

PFx Sensor: Sparse detector

Configuration: 8 vertical thermopile

PFx Sensor: Sparse detector

Configuration: 16 vertical NIR

PFx Sensor: Sparse detector

Configuration: 4 vertical widespread

MWIR

PFx Sensor: Sparse detector

Configuration: 20 vertical and

horizontal NIR

PFx Sensor: Image sensor

Configuration: 360 degree LWIR

PFx Sensor: Image sensor

Configuration: Cone 360 degree LWIR

PFx Sensor: Image sensor

Configuration: Image MWIR

PFx Sensor: Video sensor

Configuration: Video MWIR

PFx Sensor: Video sensor

Configuration: Cone 360 degree LWIR

PFx Sensor: Video sensor

Configuration: Cone 360 degree SWIR

Algorithm: Visualization comparison

Operates on: Raw sensor data

Operation: Generates a visual

comparison of two

profiles

(a) (b)

Algorithm: Classifier

Operates on: Raw data

Operation: Classifies as human

or animal

Algorithm: Classifier

Operates on: Raw sensor data

Operation: Classifies as human

Algorithm: Classifier

Operates on: Formatted profile

data

Operation: Classifies as human

with backpack

Ontological

Problem-

Solving

Framework

2. Reasoning Process to Match Sensor Systems to Algorithms

The ontological problem-solving framework uses a reasoning process that leverages knowledge

management techniques, such as semantic data modeling with ontologies, to address the challenge of

matching sensors to compatible algorithms to form synthesized systems capable of satisfying a task.

For this paper, the following definitions are used to describe sensors and algorithms. A sensor is a

device that produces raw data while an algorithm uses the raw data for further processing These

definitions are similar to ones put forth by the Open Geospatial Consortium, such as defining sensors

as processes and defining sensors and algorithms as services in SensorML [34]. Of note is that

low-level algorithms, which may reside on the sensor hardware, are now considered as algorithms,

which are not part of the physical sensor. The low-level algorithms may be device drivers or software

to process the raw sensor data into a specific format. Separating the low-level algorithms from the

Sensors 2011, 11

3185

specific sensor systems facilitates a more flexible knowledge representation of the sensor systems and

algorithms. With these definitions, meta-data, such as sensor and algorithm properties, network

communications, data formats, etc., must be captured to explicitly represent the relationships among

sensors and algorithms. The use of models to capture knowledge about sensors and algorithms

facilitates inference with rules based on description logic. The knowledge models, rules, and inference

engine may then allow other agents using the reasoning process of the ontological problem-solving

framework to determine the capabilities of sensors and algorithms to opportunistically discover and

form synthesized systems capable of satisfying a task.

2.1. Ontological Relationship Structure

In this work, the descriptions of algorithms and sensors are represented in an ontology similar to the

approach taken with OntoSensor and CIEDETS, which were developed by knowledge engineers with

input from subject sensor matter experts. Using OntoSensor and CIEDETS ontologies as a baseline for

the ontological reasoning process, the ontology needed to be extended to allow for the matching of

sensors to algorithms to form synthesized systems capable of satisfying a task. The baseline ontology

was extended with the following: (1) a class hierarchy for describing algorithms with descriptive

properties; (2) additional properties in the sensor class for describing PFx sensors; (3) an additional

class hierarchy for matching sensors to compatible algorithms; and (4) additional declarative rules.

The challenge is to match sensor systems to algorithms to form synthesized systems capable of

satisfying a task and then reusing those systems for other tasks. The baseline ontologies already

describe sensor systems and various properties of those systems. Since the focus of the ontological

problem-solving framework was to use a persistence surveillance sensing environment, properties

were added to the sensor classes that describe PFx sensor systems. Generally these systems have

properties, such as image resolution, geo-locations of detectors that make up a sparse detector array,

and network communications. In order for a PFx sensor system to be described and represented by the

ontology, these properties and others were added to various subclasses of the Sensor class. Algorithms

were not represented by the baseline ontologies so a complete class hierarchy was added along with

various attributes, such as data input/output requirements, process capabilities and purposes,

descriptions of data, and network communications mapped into many different properties.

If sensor systems and algorithms are matched to perform a task, the ontology must have a way to

describe this possible interoperability. This combination is not merely just a sensor and a compatible

algorithm, but a combination of systems that may satisfy a given task. To describe this possible

combination of systems, the concept of a synthesized system was developed and integrated into the

ontology. A synthesized system is a possible combination of a sensor and compatible algorithm that

may satisfy a task. When looking at various types of sensor and algorithm combinations in a

persistence surveillance environment, generally, a sensor creates raw data of a passing object, a profile

of the passing object is created from the raw data, and then the profile has a process applied to it, such

as a classification or visualization. This is a two-step process of first generating a profile and second to

process this profile. This two-step process can be represented by two different synthesized systems.

The first synthesized system matches a sensor to an algorithm for the task of generating profiles, while

the second synthesized system is a matching of the first synthesized system to another algorithm,

Sensors 2011, 11

3186

which has the task of processing the profile for some purpose. To represent the two types of

synthesized systems in the ontology, two new classes were created that have object type properties that

establish relationships back to established classes and properties. Figure 10 shows the core ontology for

matching sensors to compatible algorithms to form synthesized systems, which are capable of satisfying

a task, which is made up of four main classes: Matched_Sensor_System, Profiling_Sensor_System,

Sensor and Algorithm. A bottom-up approach will be used to explain the purpose of each of the

classes, their corresponding relationships, and the following section will describe the rules used to

query the ontology instance data for possible synthesized systems.

Figure 10. Core ontology of the ontological problem-solving framework that describes

the relations of the classes: Matched_Sensor_System, Profiling_Sensor_System, Sensor

and Algorithm.

Matched_Sensor_System

Profiling_Sensor_System

Sensor Algorithm

has_Profiling_Sensor_System 1 .. *

has_Algorithm 1 .. *

has_Sensor 1 .. *

has_Algorithm 1 .. *

The Sensor class describes a sensing device, which generates raw data. The Algorithm class

describes a process, which requires raw sensor data or data provided by another algorithm as input and

then generates output. The Algorithm class can include, but is not limited to, PFx data formatters, PFx

classifiers, and PFx visualizers. The Profiling_Sensor_System class is the first synthesized system

concept that describes a possible combination of a Sensor instance and Algorithm instance, which

produces a profile of an object in the sensor’s field of view. The Sensor and Algorithm instances are

linked to a Profiling_Sensor_System instance through the two object type properties called has_Sensor

and has_Algorithm. A Profiling_Sensor_System may have many Algorithm instances processing the

sensor data. For example, one algorithm may extract specific pixels from a raw image while another

algorithm generates a profile of the extracted pixels, thus, a chain of algorithms and sensors may be

matched in a Profiling_Sensor_System. The Matched_Sensor_System class is the second synthesized

system concept that describes a possible combination of a Profiling_Sensor_System instance and

Algorithm instance, which produces a result, such as a visualization or classification of the profile. The

instances Profiling_Sensor_System and Algorithm are linked to a Matched_Sensor_System instance

through the object type property has_Profiling_Sensor_System and has_Algorithm. A

Matched_Sensor_System may have many algorithms processing the profile from the

Profiling_Sensor_System instance. For example, one algorithm may convert the profile to a new

format, while another algorithm operates on the new profile to generate a classification.

Sensors 2011, 11

3187

Figure 11. Extended class hierarchy of the ontological problem-solving framework for the

Sensor and Algorithm classes.

MechanicalChemical

Magnetic Radiant

is a

Active_Standoff Passive_Standoff Point_Air

Active_Radiant_Sensor Passive_Radiant_Sensor

is a

Thermal_DetectorPhoton_Detector

is a

Photo_VoltaicPhoto_ConductivePhoto_Emmissive

...

THzSWIRVisible_Near_IRMidwave_IR...

SB_UV Ultraviolet Near_IR Visible

is a

is a

MicrowaveLadarRadar

is a

Pulse_Doppler Planar_Array Monopulse Continous_Wave

is a

Bistatic DopplerFM_CWSAR

...

......

C KA KU L S UHF W X

Sensor

is a

Hidden_Markov_Model

Quadratic

Learning_Vector_Quantization

Bayesian_Network

Boosting

Linear

Fisher_Linear_Discriminant

Logistic_Regression

Naive_Bayes_Classifier

Perceptron

Neural_Network

Network_Structure Learning

Feed_Forward Recurrent
Supervised

Unsupervised

Reinforcement

is a

has_Learninghas_Network_Structure

Kernel_Estimation

K_Nearest_Neighbor

Support_Vector_Machine

Least_Square

Decision_Tree

Random_Forest

Algorithm

Profile_Generator

Pixel_Extractor

Matrix_Extractor

Convertor

Image_Convertor

Visualizer

Video_Visualization

Static_Visualization

Visualize_Single_Target

Visualize_Multiple_Target

Matrix_Convertor

is a

is a

is a

is a

is a

is a

is a

is a

is a

is a

...

...

...

...

... ...

Classifier

Electro_Magnetic

Sensors 2011, 11

3188

Figure 12. Excerpt of the properties for representative classes and subclasses for the

reasoning process in the ontological problem-solving framework.

Class: Photo_Conductive

Properties:

has_Horizontal_Pixel_Resolution

has_Vertical_Pixel_Resolution

has_Horizontal_Detector_Displacement

has_Vertical_Detector_Displacement

Class: Algorithm

Properties:

has_Algorithm_Type

has_Network_Communication

Subclass

Class: Sensor

Properties:

has_Network_Communication

Class: Profiling_Sensor_System

Properties:

has_Sensor

has_Algorithm

Subclass

Subclass

is a

is a

has_Algorithm

has_Algorithm
has_Sensor

has_Profiling_Sensor_System

Class: Pixel_Extractor

Properties:

has_Output_Data_Type

has_Input_Horizontal_Resolution

has_Input_Vertical_Resolution

Class: Matched_Sensor_System

Properties:

has_Profiling_Sensor_System

has_Algorithm

Class: Naive_Bayes_Classifier

Properties:

has_Classification_Target

has_Input_Data_Type

Figure 11 shows the class hierarchy of the Sensor and Algorithm classes. Each of these classes may

have many properties, which are used to describe the instances. Figure 12 shows several of the

properties used to describe some of the classes within the ontology. For example, the subclass

Photo_Conductive of the Sensor class has specific properties describing a sensor's pixel resolution:

has_Horizontal_Pixel_Resolution and has_Vertical_Pixel_Resolution while also inheriting the Sensor

class property has_Network_Communication. The subclass Pixel_Extractor of class Algorithm has

properties describing the resolution of a generated profile: has_Input_Horizontal_Resolution and

has_Input_Vertical_Resolution while also inheriting the property has_Network_Communication from

the Algorithm class. Similar in nature is the subclass Naive_Bayes_Classifier which inherits from the

same Algorithm class but also adds its own unique properties such as has_Classification_Target. The

Profiling_Sensor_System and Matched_Sensor_System classes also have properties, which are derived

from the Sensor and Algorithm classes through rules executed during the inference process. These

object and data type properties are only a few of the many describe in the ontology.

Sensors 2011, 11

3189

2.2. Ontological Rules

The graph-matching query language SPARQL [8] was used to create declarative rules for the

ontological problem-solving framework. The SPARQL query language has internal functions that will

allow for the querying of possible synthesized systems through an inference engine. Once the

synthesized systems are returned back from the inference engine the systems can be formed into new

instance data to be leveraged by other systems on the ontological problem-solving framework. The

rules contain statements that consist of logical constraints among instance data and properties that must

be true for subsequent instances and properties to be derived and returned as results back to the

ontology. The rules are made up of two components, referred to as the WHERE and CONSTRUCT

clauses. The CONSTRUCT (Figure 13(a)) clause is used to return possible object instances and

properties based on instance data and properties that satisfy the WHERE clause of the SPARQL rule.

The returned instances may include links to established instances (Figure 13(b,c)), as well as links to

derived attributes of the returned instances. The WHERE clause contains the logical constraint

statements that queried existing instances must satisfy before the CONSTRUCT clause returns the

possible instances and establishes links to the pre-existing instances and properties (Figure 14). The

WHERE clause constraint statements include preconditions (properties that must exist), and the other

descriptive logical constraints, such as FILTER and OPTIONAL statements, that existing queried

instances must satisfy before possible instances and properties are returned by the CONSTRUCT

clause. Each rule can be regarded as a Horn clause in that each condition is specified in the rule via

logical conjunction (logical AND). If all the properties hold true then the specified instance is returned

by the rule. Logical disjunction (i.e., logical OR) can be regarded as a collection of rules that create a

similar instance, for example, a collection of rules that each bind on different properties which return

instances of a Profiling_Sensor_System.

Figure 13. SPARQL CONSTRUCT clause (a) Returned Matched_Sensor_System

instance, Instance_Matched_Sensor_System, linked to Sensor and Algorithm instances.

(b) Instance_Sensor and (c) Instance_Algorithm variables instantiated to specific Sensor

and Algorithm instances in the WHERE clause, thereby establishing a link between a

matched Sensor instance and an Algorithm instance. (d) Instance diagram.

has_Sensor has_Algorithm

(d)

(b) Instance_Sensor (c) Instance_Algorithm

(a) Instance_Matched_Sensor_System

CONSTRUCT{
Instance_Matched_Sensor_System a Matched_Sensor_System (a)

Instance_Matched_Sensor_System has_Sensor ?Instance_Sensor (b)

Instance_Matched_Sensor_System has_Algorithm ?Instance_Algorithm (c)

}

Sensors 2011, 11

3190

Figure 14. SPARQL WHERE clause (a) The variable Instance_Sensor instantiated to an

instance of the class Sensor with the data property (b) has_Type established to the variable

Type_Sensor. (c) The variable Instance_Algorithm instantiated to an instance of the class

Algorithm with the data property (d) has_Type established to the variable Type_Algorithm.

(e) FILTER command comparing Type_Sensor and Type_Algorithm variables for

compatibility. (f) Instance diagram.

has_Type has_Type

(a) Instance_Sensor (c) Instance_Algorithm

(b) ?Type_Sensor (d) ?Type_Algorithm

(e) Types are compatible

WHERE{
?Instance_Sensor a Sensor (a)

?Instance_Sensor has_Type ?Type_Sensor (b)

?Instance_Algorithm a Algorithm (c)

?Instance_Algorithm has_Type ?Type_Algorithm (d)

FILTER(

?Type_Sensor == ?Type_Algorithm (e)

)

}

(f)

The inference engine will process the SPARQL rules for all combinations of pre-existing instances.

For example, in Figure 14(a,c), these two statements result in the WHERE clause cycling through all

Sensor and Algorithm instances. The statements in Figure 14(b,d) bind the property has_Type value for

the instances. The FILTER statement in Figure 14(e) compares the value of has_Type for the Sensor

and Algorithm instances. If the FILTER statement is satisfied, then, the CONSTRUCT clause is

subsequently executed to return the specified instance and associated properties. For a simple example,

the instance data in Figure 15 will be queried with a complete SPARQL rule with the CONSTRUCT

and WHERE clauses in Figures 13 and 14. The Photo_Conductive sensor instance and Pixel_Extractor

algorithm instance each have the property has_Type with a value of “Image” (Figure 15(a)). When the

complete SPARQL rule of Figures 13 and 14 is executed by the inference engine the WHERE clause

will query for a possible Sensor and Algorithm instances whose property has_Type are the same

(Figure 15(b)). Once a possible combination has been found (Photo_Conductive and Pixel_Extractor

in this case), the CONSTRUCT clause will be execute by the inference engine to return the possible

Matched_Sensor_System instance with links back to the original Photo_Conductive and

Pixel_Extractor instances (Figure 15(c)). The returned Matched_Sensor_System instance will then be

placed into the ontology for further inference and use by other systems. Even though this is a simple

example with SPARQL, with additional constructs, such as the FILTER or OPTIONAL commands,

far more complex rules may be built.

Sensors 2011, 11

3191

Figure 15. Instance diagram of a SPARQL query binding on specific instance data and

returning possible instances (a) Existing Sensor and Algorithm instances that have

has_Type values equal to “Image” (b) WHERE clause binding and checking the has_Type

property (c) CONSTRUCT clause returning a possible Matched_Sensor_System with

established links to the found Sensor and Algorithm instances.

Class: Photo_Conductive

Properties:

has_Horizontal_Pixel_Resolution: 640

has_Vertical_Pixel_Resolution: 480

has_Type: Image

Sensor

Class: Pixel_Extractor

Properties:

has_Type: Image

has_Input_Horizontal_Resolution: 640

has_Input_Vertical_Resolution: 480

Algorithm

(a) (b)

has_Sensor

has_Algorithm

(c)

Class: Matched_Sensor_System

Properties:

has_Sensor: Photo_Conductive

has_Algorithm: Pixel_Extractor

WHERE

Queried,

Bind,

and

Checked

CONSTRUCT

Returned instance

The rules in the ontological problem-solving framework bind on all combinations of Sensor and

Algorithm instances. Their respective properties are then compared in the FILTER statements of the

WHERE clause to determine which instances need to be returned and when to establish links between

other instances. Figure 16 through Figure 19 each show one of many rules used to return possible

Profiling_Sensor_System instances and Matched_Sensor_System instances. The WHERE clause in the

Profiling_Sensor_System rules in Figures 16 and 17 bind on the properties of Sensor and Algorithm

instances, such as pixel resolution in Figure 16, number of detectors in Figure 17, and type for both

Figures 16 and 17. Further, in the WHERE clause, the FILTER statement now compares specific

Sensor instance properties to the Algorithm instance properties. For example, in Figure 16, the FILTER

statement compares the network communication type and pixel resolutions. Once a set of instances for

a Sensor and Algorithm have been queried, which satisfy the constraints of the WHERE clause, the

CONSTRUCT clause will then return a Profiling_Sensor_System instance and establish links to the

compatible Sensor and Algorithm instances. The same process occurs in the WHERE clause in

Figure 17, but instead of comparing pixel resolutions, detector properties are compared for

compatibility. The rules for Matched_Sensor_System in Figures 18 and 19 follow a similar logical

process as the Profiling_Sensor_System rule. The only difference between the rules, other than the

specific properties of the instances, is in the FILTER statement where an additional statement

constrains the WHERE clause to a specific type of Algorithm, in this case a “Classifier”. The rules

shown in Figures 14 and 19 both return Matched_Sensor_System instances, which will classify the

generated profiles of Profiling_Sensor_System instances.

Sensors 2011, 11

3192

Figure 16. Sample rule and instance diagram. The rule returns an instance of a

Profiling_Sensor_System if the Algorithm instance and Sensor instance are type compatible

with respect to the network communication and pixel resolutions properties.

CONSTRUCT{
Instance_Profiling_Sensor_System a Profiling_Sensor_System

Instance_Profiling_Sensor_System has_Sensor ?Instance_Sensor

Instance_Profiling_Sensor_System has_Algorithm ?Instance_Algorithm

}

WHERE{
?Instance_Sensor a Sensor

?Instance_Sensor has_Type ?Sensor_Type

?Instance_Sensor has_Network_Communication ?Sensor_Network

?Instance_Sensor has_Vertical_Pixel_Resolution ?Sensor_Vertical_Pixel_Resolution

?Instance_Sensor has_Horizontal_Pixel_Resolution ?Sensor_Horizontal_Pixel_Resolution

?Instance_Algorithm a Algorithm

?Instance_Algorithm has_Type ?Algorithm_Type

?Instance_Algorithm has_Network_Communication ?Algorithm_Network

?Instance_Algorithm has_Input_Vertical_Pixel_Resolution ?Algorithm_Vertical_Pixel_Resolution

?Instance_Algorithm has_Input_Horizontal_Pixel_Resolution ?Algorithm_Horizontal_Pixel_Resolution

FILTER(

?Sensor_Network == ?Algorithm_Network

?Sensor_Type == ?Algorithm_Type

?Sensor_Vertical_Pixel_Resolution == ?Algorithm_Vertical_Pixel_Resolution

?Sensor_Horizontal_Pixel_Resolution == ?Algorithm_Horizontal_Pixel_Resolution

)

}

Algorithm_Network

Sensor_Type Algorithm_Type

Sensor_Vertical_Pixel_Resolution Algorithm_Vertical_Pixel_Resolution

Algorithm_Horizontal_Pixel_ResolutionSensor_Horizontal_Pixel_Resolution

has_Algorithm
has_Sensor

Instance_Profiling_Sensor_System

has_Network_Communication has_Network_Communication

has_Type has_Type

has_Vertical_Pixel_Resolution has_Input_Vertical_Pixel_Resolution

has_Horizontal_Pixel_Resolution has_Input_Horizontal_Pixel_Resolution

Instance_Sensor Instance_Algorithm

Sensor_Network

Sensors 2011, 11

3193

Figure 17. Sample Profiling_Sensor_System rule and instance diagram. The rule returns an

instance if the Algorithm instance and Sensor instance properties: type, network

communication, number of detectors, and displacement properties are compatible.

CONSTRUCT{
Instance_Profiling_Sensor_System a Profiling_Sensor_System

Instance_Profiling_Sensor_System has_Sensor ?Instance_Sensor

Instance_Profiling_Sensor_System has_Algorithm ?Instance_Algorithm

}WHERE{

?Instance_Sensor a Sensor

?Instance_Sensor has_Type ?Sensor_Type

?Instance_Sensor has_Network_Communication ?Sensor_Network

?Instance_Sensor has_Number_Vertical_Detectors ?Sensor_Number_Vertical_Detectors

?Instance_Sensor has_Number_Horizontal_Detectors ?Sensor_Number_Horizontal_Detectors

?Instance_Sensor has_Vertical_Detector_Displacement ?Sensor_Vertical_Detector_Displacement

?Instance_Sensor has_Horizontal_Detector_Displacement ?Sensor_Horizontal_Detector_Displacement

?Instance_Algorithm a Algorithm

?Instance_Algorithm has_Type ?Algorithm_Type

?Instance_Algorithm has_Network_Communication ?Algorithm_Network

?Instance_Algorithm has_Input_Number_Vertical_Detectors ?Algorithm_Number_Vertical_Detectors

?Instance_Algorithm has_Input_Number_Horizontal_Detectors ?Algorithm_Number_Horizontal_Detectors

?Instance_Algorithm has_Input_Vertical_Detector_Displacement ?Algorithm_Vertical_Detector_Displacement

?Instance_Algorithm has_Input_Horizontal_Detector_Displacement ?Algorithm_Horizontal_Detector_Displacement
FILTER(

?Sensor_Network == ?Algorithm_Network

?Sensor_Type == ?Algorithm_Type

?Sensor_Number_Vertical_Detectors == ?Algorithm_Number_Vertical_Detectors

?Sensor_Number_Horizontal_Detectors == ?Algorithm_Number_Horizontal_Detectors

?Sensor_Vertical_Detector_Displacement == ?Algorithm_Vertical_Detector_Displacement

?Sensor_Horizontal_Detector_Displacement == ?Algorithm_Horizontal_Detector_Displacement

)

}

has_Algorithm
has_Sensor

Instance_Sensor Instance_Algorithm

Instance_Profiling_Sensor_System

Sensor_Network Algorithm_Network

Sensor_Type Algorithm_Type

Sensor_Number_Vertical_Detectors

Sensor_Horizontal_Detector_Displacement

Sensor_Vertical_Detector_Displacement Algorithm_Vertical_Detector_Displacement

Algorithm_Horizontal_Detector_Displacement

Sensor_Number_Horizontal_Detectors

Algorithm_Number_Vertical_Detectors

Algorithm_Number_Horizontal_Detectors

has_Network_Communication

has_Type

has_Number_Vertical_Detectors

has_Type

has_Network_Communication

has_Input_Number_Vertical_Detectors

has_Input_Number_Horizontal_Detectors

has_Input_Vertical_Detector_Displacement

has_Input_Horizontal_Detector_Displacement

has_Number_Horizontal_Detectors

has_Vertical_Detector_Displacement

has_Horizontal_Detector_Displacement

Sensors 2011, 11

3194

Figure 18. Sample Matched_Sensor_System rule and instance diagram. The rule returns an

instance if the Profiling_Sensor_System instance and Algorithm instance properties: network

communication, types, encoding, classification, and pixel resolutions are compatible.

CONSTRUCT{
Instance_Matched_Sensor_System a Matched_Sensor_System

Instance_Matched_Sensor_System has_Profiling_Sensor_System ?nstance_Profiling_Sensor_System

Instance_Matched_Sensor_System has_Algorithm ?Instance_Algorithm

}WHERE{

?Instance_Profiling_Sensor_System a Profiling_Sensor_System

?Instance_Profiling_Sensor_System has_Algorithm ?Instance_Profile_Algorithm

?Instance_Profiling_Algorithm has_Type ?Profiling_Algorithm_Type

?Instance_Profiling_Algorithm has_Profile_Type ?Profiling_Algorithm_Profile_Type

?Instance_Profiling_Algorithm has_Encoding ?Profiling_Algorithm_Encoding

?Instance_Profiling_Algorithm has_Network_Communication ?Profiling_Algorithm_Network

?Instance_Profiling_Algorithm has_Vertical_Pixel_Resolution ?Profiling_Algorithm_Vertical_Pixel_Resolution

?Instance_Profiling_Algorithm has_Horizontal_Pixel_Resolution ?Profiling_Algorithm_Horizontal_Pixel_Resolution

?Instance_Algorithm a Algorithm

?Instance_Algorithm has_Type ?Algorithm_Type

?Instance_Algorithm has_Network_Communication ?Algorithm_Network

?Instance_Algorithm has_Operation_Ability ?Algorithm_Operation_Ability

?Instance_Algorithm has_Input_Profile_Type ?Algorithm_Profile_Type

?Instance_Algorithm has_Input_Encoding ?Algorithm_Encoding

?Instance_Algorithm has_Input_Vertical_Pixel_Resolution ?Algorithm_Vertical_Pixel_Resolution

?Instance_Algorithm has_Input_Horizontal_Pixel_Resolution ?Algorithm_Horizontal_Pixel_Resolution
FILTER(

?Profiling_Algorithm_Network == ?Algorithm_Network

?Algorithm_Operation_Ability == "Classifier"

?Profiling_Algorithm_Type == ?Algorithm_Type

?Profiling_Algorithm_Profile_Type == ?Algorithm_Profile_Type

?Profiling_Algorithm_Encoding == ?Algorithm_Encoding

?Profiling_Algorithm_Vertical_Pixel_Resolution == ?Algorithm_Vertical_Pixel_Resolution

?Profiling_Algorithm_Horizontal_Pixel_Resolution == ?Algorithm_Horizontal_Pixel_Resolution

)

}

Sensor_Network

Sensor_Type

Instance_Profiling_Sensor_System

S_Vertical_Pixel_Resolution

S_Horizontal_Pixel_Resolution

has_Network_Communication

has_Type

has_Vertical_Pixel_Resolution

has_Horizontal_Pixel_Resolution

Instance_Sensor
has_Sensor

A_Vertical_Pixel_Resolution

A_Horizontal_Pixel_Resolution

Algorithm_Type

Algorithm_Network

Algorithm_Profile_Type

Algorithm_Encoding

"Classifier"

has_Output_Horizontal_Pixel_Resolution

has_Input_Horizontal_Pixel_Resolution

has_Output_Profile_Type

has_Input_Profile_Type

has_Output_Encoding

has_Input_Encoding

has_Operation_Ability

has_Input_Vertical_Pixel_Resolution

has_Out_Vertical_Pixel_Resolution

has_Type

has_Network_Communication

Algorithm_Horizontal_Pixel_Resolution

Algorithm_Profile_Type

Algorithm_Encoding

Algorithm_Operation_Ability

Algorithm_Vertical_Pixel_Resolution

Algorithm_Type

Algorithm_Network

Instance_Algorithm
has_Algorithm

Instance_Algorithm

has_Profiling_Sensor_System

Instance_Matched_Sensor_System

has_Algorithm

Sensors 2011, 11

3195

Figure 19. Sample Matched_Sensor_System rule and instance diagram, which returns an

instance if the Profiling_Sensor_System instance and Algorithm instance properties:

network communication, types, encoding, classification, data rows, and columns properties

are compatible.

CONSTRUCT{
Instance_Matched_Sensor_System a Matched_Sensor_System

Instance_Matched_Sensor_System has_Profiling_Sensor_System ?nstance_Profiling_Sensor_System

Instance_Matched_Sensor_System has_Algorithm ?Instance_Algorithm

}WHERE{

?Instance_Profiling_Sensor_System a Profiling_Sensor_System

?Instance_Profiling_Sensor_System has_Algorithm ?Instance_Profiling_Algorithm

?Instance_Profiling_Algorithm has_Type ?Profiling_Algorithm_Type

?Instance_Profiling_Algorithm has_Profile_Type ?Profiling_Algorithm_Profile_Type

?Instance_Profiling_Algorithm has_Encoding ?Profiling_Algorithm_Encoding

?Instance_Profiling_Algorithm has_Network_Communication ?Profiling_Algorithm_Network

?Instance_Profiling_Algorithm has_Number_Data_Rows ?Profiling_Algorithm_Number_Data_Rows

?Instance_Profiling_Algorithm has_Number_Data_Columns ?Profiling_Algorithm_Number_Data_Columns

?Instance_Algorithm a Algorithm

?Instance_Algorithm has_Type ?Algorithm_Type

?Instance_Algorithm has_Network_Communication ?Algorithm_Network

?Instance_Algorithm has_Operation_Ability ?Algorithm_Operation_Ability

?Instance_Algorithm has_Input_Profile_Type ?Algorithm_Profile_Type

?Instance_Algorithm has_Input_Encoding ?Algorithm_Encoding

?Instance_Algorithm has_Input_Number_Data_Rows ?Algorithm_Number_Data_Rows

?Instance_Algorithm has_Input_Number_Data_Columns ?Algorithm_Number_Data_Columns
FILTER(

?Profiling_Algorithm_Network == ?Algorithm_Network

?Algorithm_Operation_Ability == "Classifier"

?Profiling_Algorithm_Type == ?Algorithm_Type

?Profiling_Algorithm_Profile_Type == ?Algorithm_Profile_Type

?Profiling_Algorithm_Encoding == ?Algorithm_Encoding

?Profiling_Algorithm_Number_Data_Rows == ?Algorithm_Number_Data_Rows

?Profiling_Algorithm_Number_Data_Columns == ?Algorithm_Number_Data_Columns

)

}

Sensor_Network

Sensor_Type

S_Number_Vertical_Detectors

S_Number_Horizontal_Detectors

S_Vertical_Detector_Displacement

S_Horizontal_Detector_Displacement

A_Number_Horizontal_Detectors

A_Vertical_Detector_Displacement

A_Horizontal_Detector_Displacement

A_Number_Vertical_Detectors

Algorithm_Type

Algorithm_Network

has_Type

has_Network_Communication

has_Number_Horizontal_Detectors

has_Vertical_Detector_Displacement

has_Horizontal_Detector_Displacement

has_Output_Number_Vertical_Detectors

has_Input_Number_Vertical_Detectors

has_Output_Number_Horizontal_Detectors

has_Input_Number_Horizontal_Detectors

has_Output_Vertical_Detector_Displacement

has_Input_Vertical_Detector_Displacement

has_Type

has_Network_Communication

Algorithm_Number_Vertical_Detectors

Algorithm_Number_Horizontal_Detectors

Algorithm_Type

Algorithm_Network

Algorithm_Horizontal_Detector_Displacement
has_Output_Horizontal_Detector_Displacement

has_Input_Horizontal_Detector_Displacement

Algorithm_Vertical_Detector_Displacement

Algorithm_Profile_Type
has_Output_Profile_Type

has_Input_Profile_Type

Algorithm_Encoding
has_Output_Encoding

has_Input_Encoding

Algorithm_Profile_Type

Algorithm_Encoding

has_Operation_Ability Algorithm_Operation_Ability"Classifier"

Instance_Algorithm

Instance_Profiling_Sensor_System

Instance_Matched_Sensor_System

has_Algorithm

has_Profiling_Sensor_System

has_Sensor has_Algorithm
Instance_Algorithm

Instance_Sensor

has_Number_Vertical_Detectors

Sensors 2011, 11

3196

2.3. Instances of Profiling Sensor Systems and Algorithms on Ontological Problem-Solving Framework

To illustrate a simple case, Figure 20 shows five sensor instances, including three PFx sensors and

two conventional imagers, and six algorithms, including two profile generators and four different

classifiers, with different property specifications and requirements. When the inference cycle begins,

the rules from Figure 16 through Figure 19 will execute. On the first pass of the inference cycle, five

new Profiling_Sensor_System instances were created, as shown in Figure 21. The two algorithms

Profile Image Generator and Profile Matrix Data Generator were matched to multiple sensors based on

constraints of the algorithms and specifications of the sensors. For example, the Algorithm instance

Profile Image Generator was matched to the Sensor instance PF5 Conventional Visible Imager because

the constraint of requiring image data for the Profile Image Generator was satisfied.

Figure 20. Example instances: (a) Three PFx sensors and two conventional imaging

sensors. (b) Two profile generators and four classifiers.

Sensor: PF1 Sparse Detector with 16 NIR detector spaced 12 inches

Sensor: PF2 Sparse Detector with 16 NIR detector spaced 20 inches

Sensor: PF3 Sparse Detector with 8 Thermopile detectors

Sensor: PF4 Conventional Visible Imager with 640 x 480 resolution

Sensor: PF5 Conventional MWIR Imager with 640 x 480 resolution

A) Sensor Instance Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

B) Algorithm Instance Data

Algorithm: Classifier Human
Input : Profile Image

Algorithm: Classifier Vehicle
Input : Profile Image or Text Data

Algorithm: Classifier Animal
Input : Profile Text Data

Algorithm: Classifier Human
Input : Profile Text Data

Figure 21. Five new Profiling_Sensor_System instances returned, with derived relationships,

after the first pass of the inference cycle.

Profile_Sensor_System: PF1 matched Profile Data Generator

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF1 Sparse Detector with 16 NIR detector spaced 12 inches

Profile_Sensor_System: PF2 matched Profile Data Generator

Sensor: PF2 Sparse Detector with 16 NIR detector spaced 20 inches Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensors 2011, 11

3197

Figure 21. Cont.

Profile_Sensor_System: PF3 matched Profile Data Generator

Sensor: PF3 Sparse Detector with 8 Thermopile detectors Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Profile_Sensor_System: PF4 matched Profile Image Generator

Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

Sensor: PF4 Conventional MWIR Imager with 640 x 480 resolution

Profile_Sensor_System: PF5 matched Profile Image Generator

Sensor: PF5 Conventional Visible Imager with 640 x 480 resolution Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

During the second pass of the inference cycle, thirteen new Matched_Sensor_System instances were

created, as shown in Figure 22. The four different classifiers were matched to multiple

Profiling_Sensor_System instances based on the type of profile generated and the requirements of the

classifiers. For example, the Profiling_Sensor_System instance PF1 matched Profile Data Generator

was matched to the Algorithm instance Human Classifier because the constraint of requiring text data

was satisfied for the Human Classifier. On the third pass of the inference cycle, no new instances were

created; therefore, the inference cycle halts and returns all matches.

Figure 22. Thirteen new Matched_Sensor_System instances returned, with derived

relationships, after the second pass of the inference cycle.

Matched_Sensor_System: PF1 Profile Data Generator matched Classifier Human

Profile_Sensor_System: PF1 matched Profile Data Generator Algorithm: Classifier Human
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF1 Sparse Detector with 16 NIR detector spaced 12 inches

Matched_Sensor_System: PF1 Profile Data Generator matched Classifier Vehicle

Profile_Sensor_System: PF1 matched Profile Data Generator
Algorithm: Classifier Vehicle
Input : Profile Image or Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF1 Sparse Detector with 16 NIR detector spaced 12 inches

Matched_Sensor_System: PF1 Profile Data Generator matched Classifier Animal

Algorithm: Classifier Animal
Input : Profile Text Data

Profile_Sensor_System: PF1 matched Profile Data Generator

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF1 Sparse Detector with 16 NIR detector spaced 12 inches

Sensors 2011, 11

3198

Figure 22. Cont.

Matched_Sensor_System: PF2 Profile Data Generator matched Classifier Human

Algorithm: Classifier Human
Input : Profile Text Data

Profile_Sensor_System: PF2 matched Profile Data Generator

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF2 Sparse Detector with 16 NIR detector spaced 20 inches

Matched_Sensor_System: PF2 Profile Data Generator matched Classifier Vehicle

Algorithm: Classifier Vehicle
Input : Profile Image or Text Data

Profile_Sensor_System: PF2 matched Profile Data Generator

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF2 Sparse Detector with 16 NIR detector spaced 20 inches

Matched_Sensor_System: PF2 Profile Data Generator matched Classifier Animal

Profile_Sensor_System: PF2 matched Profile Data Generator Algorithm: Classifier Animal
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF2 Sparse Detector with 16 NIR detector spaced 20 inches

Matched_Sensor_System: PF3 Profile Data Generator matched Classifier Human

Algorithm: Classifier Human
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Profile_Sensor_System: PF3 matched Profile Data Generator

Sensor: PF3 Sparse Detector with 8 Thermopile detectors

Matched_Sensor_System: PF3 Profile Data Generator matched Classifier Vehicle

Profile_Sensor_System: PF3 matched Profile Data Generator Algorithm: Classifier Vehicle
Input : Profile Image or Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF3 Sparse Detector with 8 Thermopile detectors

Matched_Sensor_System: PF3 Profile Data Generator matched Classifier Animal

Profile_Sensor_System: PF3 matched Profile Data Generator Algorithm: Classifier Animal
Input : Profile Text Data

Algorithm: Profile Matrix Data Generator
Input : Vertical Column Data

Output: Profile Text Data

Sensor: PF3 Sparse Detector with 8 Thermopile detectors

Matched_Sensor_System: PF4 Profile Image Generator matched Classifier Human

Profile_Sensor_System: PF4 matched Profile Image Generator Algorithm: Classifier Human
Input : Profile Image

Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

Sensor: PF4 Conventional MWIR Imager with 640 x 480 resolution

Matched_Sensor_System: PF4 Profile Image Generator matched Classifier Vehicle

Profile_Sensor_System: PF4 matched Profile Image Generator

Sensor: PF4 Conventional MWIR Imager with 640 x 480 resolution

Algorithm: Classifier Vehicle
Input: Profile Image or Text Data

Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

Sensors 2011, 11

3199

Figure 22. Cont.

Matched_Sensor_System: PF5 Profile Image Generator matched Classifier Human

Profile_Sensor_System: PF5 matched Profile Image Generator Algorithm: Classifier Human
Input: Profile Image

Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

Sensor: PF5 Conventional Visible Imager with 640 x 480 resolution

Matched_Sensor_System: PF5 Profile Image Generator matched Classifier Vehicle

Profile_Sensor_System: PF5 matched Profile Image Generator Algorithm: Classifier Vehicle
Input: Profile Image or Text Data

Algorithm: Profile Image Generator
Input : Image

Output: Profile Image

Sensor: PF5 Conventional Visible Imager with 640 x 480 resolution

3. Discussion

The challenge was to match sensor systems to compatible algorithms to form synthesized systems,

which are capable of satisfying a task and matching those systems to new systems for other tasks. The

sample rules described in this paper specified relatively simple compatibility constraints among

sensors and algorithms. However, even with these simple rules, it is noteworthy that the Algorithm

instances were matched to multiple Sensor and Profiling_Sensor_System instances thus achieving the

ability to reuse those systems for tasks that may have not been anticipated at the time the sensors and

algorithms were first deployed. For example, of the five synthesized system concept

Profiling_Sensor_System instances that were returned, the algorithm Profile Matrix Generator was

matched to three different sensor systems and the algorithm Profile Image Generator was matched to

two sensor systems. If not for the matching and return of the Profiling_Sensor_System synthesized

systems, each one of the matched systems would have had to be individually designed.

The same results can be seen in the synthesized system Matched_Sensor_System, which reused the

five Profiling_Sensor_System synthesized systems in thirteen systems with different tasks, such as

visualizing or classifying the profiles. If the original algorithms represented by the Algorithm instances

had been designed for specific Sensor instances, the reasoning process of the ontological

problem-solving framework would not have matched the algorithms to new sensors, thus the sensor

systems and algorithms would have had to be re-engineered specifically for one another to satisfy a

task. It is important to note that the synthesized system concepts Profiling_Sensor_System and

Matched_Sensor_System capture more than just a Sensor matched to an Algorithm. The concept

synthesized systems, represent new systems which are capable of performing a task. Other rules in the

ontological problem-solving framework may operate on far more than just two attributes for

establishing interoperability via matching constraints. The rules may determine that multiple matched

Profiling_Sensor_System and Matched_Sensor_System instances may be formed into new more

complex synthesized systems, which may be capable of satisfying more complex tasks, which may

include statistical analysis on multiple profiles. With the formation of the synthesized system by the

reasoning process, the ontological problem-solving framework may create more complex synthesized

systems. These more complex systems may then be assigned to subtasks of high-level missions by

other systems on the network coordinating and executing the mission. Without the use of the ontology,

Sensors 2011, 11

3200

rules, and inference engine these sensors and algorithms would have had to be designed a priori as a

synthesized system for every new task. However, many of these new tasks are not known at the time

the systems are deployed; therefore, opportunistically discovering compatible systems and dynamically

creating matched synthesized systems which are capable of satisfying a new task through inference

is important.

Currently, the reasoning process of the ontological problem-solving framework is still in a

prototype stage so scale-up performance analysis is limited. The problem-solving framework can scale

to large numbers of sensors and algorithms, but the time to compute all combinations of sensors and

algorithms is based on the computational complexity of the inference engine, which is influenced in

part by the reasoning strategy and the expressiveness of the knowledge representation formalism. For

the performance to increase, the inference engine must check multiple algorithms in parallel or the

ontological problem-solving framework must invoke the inference engine multiple times in parallel

with different algorithms and keep track of which instances are being checked to stop redundant

bindings. Even though the ontological problem-solving framework is still in the prototype stage,

performance issues and solutions are being studied; however, the logical framework is the priority at

this stage of research.

4. Conclusions

Challenges, such as matching sensors to compatible algorithms that may satisfy a task, will become

even more difficult with the continued development and deployment of new sensor systems and

algorithms. Compounding the challenge is the lack of knowledge models used to explicitly capture the

design and capabilities of sensor systems and algorithms. By leveraging knowledge models, sensor

systems and algorithms can be matched together in real-time without the need to design those matched

systems specifically for one another a priori, thus facilitating the use of these assets in new and

innovative ways not originally anticipated on deployment. To exploit the power of knowledge models,

algorithms must become less dependent on any given sensor data source, thus sensor systems and

algorithms must describe their respective attributes and capabilities in a machine-interpretable format

to allow the reasoning process to infer which systems may be matched together into more complex

synthesized systems. The reasoning process of the ontological problem-solving framework discussed

in this paper is the first step to achieving this goal and addressing the challenge of matching systems

that are capable of satisfying a task. Even though the reasoning process of the ontological

problem-solving framework was described in the context of profiling sensor systems and algorithms,

the overall approach may be used for other types of sensor systems and algorithms to form different

types of synthesized systems capable of satisfying new tasks.

Acknowledgements

Funding for this work was provided in part by the U.S. Army Research Laboratory (ARL) award

number: W911NF-10-2-0071, as well as funding from the Herff Fellowship program at the University

of Memphis and support from Indiana University-Purdue University, Indianapolis. The findings and

opinions expressed in this paper do not necessarily reflect the views of ARL or the U.S. government.

Sensors 2011, 11

3201

References

1. Bergamaschi, F.; Conway-Jones, D.; Gibson, C.; Stanford-Clark, A. A distributed test framework

for validation of experimental algorithms using real and simulated sensors. In Proceedings of the

First Annual Conference of the International Technology Alliance, Washington, DC, USA,

September 2007.

2. Russomanno, D.J.; Kotari, C.; Thomas, O. Sensor ontologies: From shallow to deep models. In

Proceedings of the Thirty-Seventh Southeastern Symposium on Systems Theory, Tuskegee, AL,

USA, 20–22 March 2005.

3. Russomanno, D.J.; Kotari, C.R.; Thomas, O.A. Building a sensor ontology: A practical approach

leveraging ISO and OGC models. In Proceedings of the International Conference on Artificial

Intelligence, Las Vegas, NV, USA, June 2005.

4. Goodwin, C.; Russomanno, D.J. An ontology-based sensor network prototype environment. In

Proceedings of the Fifth International Conference on Information Processing in Sensor Networks,

Nashville, TN, USA, 19–21 April 2006.

5. Goodwin, J.C.; Russomanno, D.J.; Qualls, J. Survey of semantic extensions to UDDI:

Implications for sensor services. In Proceedings of the International Conference on Semantic Web

and Web Services, Las Vegas, NV, USA, 25–28 June 2007.

6. Goodwin, J.C.; Russomanno, D.J. Ontology integration within a service-oriented architecture for

expert system applications using sensor networks. J. Expert Syst. 2009, 26, 409-432.

7. TopBraid Composer Maestro (Version 3.3.2); TopQuadrant: Washington, DC, USA, 2001;

Available online: http://www.topquadrant.com/ (accessed on 7 January 2011).

8. Perez, J.; Arenas, M.; Gutierrez, C. Semantics and complexity of SPARQL. In Proceedings of the

Fifth International Semantic Web Conference, Athens, GA, USA, 5–9 November 2006.

9. Bergamaschi, F.; Conway-Jones, D.; Gibson, C.; Stanford-Clark, A. Policy enabled ITA sensor

fabric a distributed framework for the validation of experimental algorithms using real and

simulated sensors. In Proceedings of IEEE Workshop on Policies for Distributed Systems and

Networks, Palisades, NY, USA, 2–4 June 2008.

10. Gomez, M.; Preece, A.; Mel, G.D. Towards semantic matchmaking in sensor-mission assignment:

Analysis of missions and means frameworks. In Proceedings of First Annual Conference of the

International Technology Alliance, Washington, DC, USA, September 2007.

11. Preece, A.; Gomez, M.; Mel, G.D.; Vasconcelos, W.; Sleeman, D.; Colley, S.; Porta, T.L. An

ontology-based approach to sensor-mission assignment. In Proceedings of First Annual

Conference of the International Technology Alliance, Washington, DC, USA, September 2007.

12. Preece, A.; Gomez, M.; Mel, G.D.; Vasconcelos, W.; Sleeman, D.; Colley, S.; Pearson, G.;

Pham, T.; Porta, T.L. Matching sensors to missions using a knowledge-based approach. In

Proceedings of SPIE: Defense Transformation and Net-Centric Systems, Orlando, FL, USA,

March 2008.

13. Qualls, J.; Russomanno, D.J.; Bollu, V.K. Integration of a profiling sensor onto sensor fabric. In

Proceedings of the International Conference on Information and Knowledge Engineering,

Las Vegas, NV, USA, 25–27 August 2010.

Sensors 2011, 11

3202

14. Wright, J.; Gibson, C.; Bergamaschi, F.; Marcus, K.; Pressley, R.; Verma, G.; Whips, G.

A dynamic infrastructure for interconnecting disparate ISR/ISTAR assets (the ITA sensor fabric).

In Proceedings of the Twelfth International Conference of Information Fusion, Seattle, WA, USA,

March 2009.

15. Wright, J.; Gibson, C.; Bergamaschi, F.; Marcus, K.; Pham, T.; Pressley, R.; Verma, G. ITA

sensor fabric. In Proceedings of the SPIE: Unattended Ground, Sea, and Air Sensor Technologies

and Applications XI, Orlando, FL, USA, 13–17 April 2009.

16. Kushwaha, M.; Amundson, I.; Koutsoukos, X.; Neema, S.; Sztipanovits, J. OASiS: A

programming framework for service-oriented sensor networks. In Proceedings of the Second

IEEE/Create-Net/ICST International Conference on Communication System Software and

Middleware, Bangalore, India, 9–11 January 2007.

17. Fok, C.L.; Roman, G.C.; Hackman, G. A light weight coordination middleware for mobile

computing. In Proceedings of the Sixth International Conference on Coordination Models and

Languages, Pisa, Italy, 24–27 February 2004.

18. Fok, C.; Roman, G.; Lu, C. Mobile agent middleware for sensor networks: An application case

study. In Proceedings of the Fourth International Symposium on Information Processing in

Sensor Networks, Los Angeles, CA, USA, 2005.

19. Fok, C.; Roman, G.; Lu, C. Rapid development and flexible deployment of adaptive wireless

sensor network applications. In Proceedings of the Twenty-Fourth International Conference on

Distributed Computing Systems, Columbus, OH, USA, 6–9 June 2005.

20. Whitehouse, K.; Zhao, F.; Liu, J. Semantic streams: A framework for composable semantic

interpretation of sensor data. In Proceedings of the Third European Workshop on Wireless Sensor

Networks, Zurich, Switzerland, 13–15 February 2006.

21. Liu, J.; Zhao, F. Towards semantic services for sensor-rich information systems. In Proceedings

of the Second IEEE/CreateNet International Workshop on Broadband Advanced Sensor

Networks, Boston, MA, USA, October 2005.

22. Franken, P.M.; Harrison, A.J.; Holton, J.J.; Macfarlan, L.; Wowczuk, Z.; Capshaw, R.W.;

Russomanno, D.J. Development of an ontology-based tool to support the test and evaluation

process for rapid acquisition of IED detection capabilities. ITEA J. Test Eval. 2009, 30, 300-308.

23. Russomanno, D.J.; Qualls, J.; Franken, P.; Robinson, W. Common IED exploitation target set

Ontology. In Proceedings of SPIE, Detection and Sensing of Mines, Explosive Objects, and

Obscured Targets XV, Orlando, FL, USA, 5–9 April 2010.

24. Eid, M.; Liscano, R.; El Saddik, A. A universal ontology for sensor networks data. In Proceedings

of IEEE Conference on Computational Intelligence for Measurement Systems and Applications,

Ostuni, Italy, 27–29 June 2007.

25. Sequeda, J.F.; Corcho, O.; Gómez-Pérez, A. Generating data wrapping ontologies from sensor

networks: A case study. In Proceedings of Second Semantic Sensor Network Workshop at

International Semantic Web Conference, Washington, DC, USA, 25–29 October 2009.

26. Janowicz, K.; Compton, M. The stimulus-sensor-observation ontology design pattern and its

integration into the semantic sensor network ontology. In Proceedings of the Third International

Workshop on Semantic Sensor Networks, Shanghai, China, 7–11 November 2010.

Sensors 2011, 11

3203

27. Kuhn, W. A functional ontology of observation and measurement. In Proceedings of the Third

International Conference on Geospatial Semantics, Mexico City, Mexico, December 2009.

28. Neuhaus, H.; Compton, M. The semantic sensor network ontology: A generic language to

describe sensor assets. In Proceedings of AGILE Workshop on Challenges in Geospatial Data

Harmonization, Hannover, Germany, June 2009.

29. Babitski, G.; Bergweiler, S.; Hoffmann, J.; Schön, D.; Stasch, C.; Walkowski, A. Ontology-based

integration of sensor web services in disaster management. In Proceedings of the Third

International Conference of GeoSpatial Semantics, Mexico City, Mexico, December 2009.

30. Compton, M.; Henson, C.; Lefort, L.; Neuhaus, H.; Sheth, A. A survey of the semantic speciation

of sensors. In Proceedings of the Second International Workshop on Semantic Sensor Networks,

Eight International Semantic Web Conference, Washington, DC, USA, 25–29 October 2009.

31. Kobialka, T.; Buyya, R.; Leckie, C.; Kotagiri, R. A sensor web middleware with stateful services

for heterogeneous sensor networks. In Proceedings of the Third International Conference on

Intelligent Sensors, Sensor Networks and Information, Melbourne, Australia, 3–6 December 2007.

32. Cox, S. Observations and Measurements Part 1—Observation Schema; OpenGIS Implementation

Standard OGC 07-022r1; Open Geospatial Consortium Inc.: Redlands, CA, USA, 2007.

33. Cox, S. Observations and Measurements Part 2—Sampling Features; OpenGIS Implementation

Standard OGC 07-002r3; Open Geospatial Consortium Inc.: Redlands, CA, USA, 2007.

34. Botts, M.; Robin, A. Sensor Model Language; OpenGIS Implementation Standard OGC 07-000;

Open Geospatial Consortium Inc.: Redlands, CA, USA, 2007.

35. Havens, S. Transducer Markup Language; OpenGIS Implementation Standard OGC 06-010r6;

Open Geospatial Consortium Inc.: Redlands, CA, USA, 2006.

36. Na, A.; Priest, M. Sensor Observation Service; OpenGIS Implementation Standard OGC 06-009r6;

Open Geospatial Consortium Inc.: Redlands, CA, USA, 2006.

37. Simonis, I.; Dibner, P.C. Sensor Planning Service Implementation Specification; OpenGIS

Implementation Standard OGC 07-014r3; Open Geospatial Consortium Inc.: Redlands, CA, USA,

2007.

38. Simonis, I. Sensor Alert Service Candidate Implementation Specification; OpenGIS

Implementation Standard OGC 06-028r3; Open Geospatial Consortium Inc.: Redlands, CA, USA,

2006.

39. Simonis, I.; Wytzisk, A. Web Notification Service; OpenGIS Implementation Standard OGC

03-008r2; Open Geospatial Consortium Inc.: Redlands, CA, USA, 2003.

40. Jacobs, E.; Chari, S.; Russomanno, D.; Halford, C. Profiling sensors for border and perimeter

security. In Proceedings of SPIE Newsroom, Bellingham, WA, USA, 20 August 2009.

41. Chari, S.K.; Halford, C.E.; Jacobs, E. Human target identification and automated shape based

target recognition algorithms using target silhouette. In Proceedings of the SPIE: Infrared

Imaging Systems: Design, Analysis, Modeling, and Testing XIX, Orlando, FL, USA, 16–20 March

2008.

42. Chari, S.; Halford, C.; Jacobs, E.; Smith, F.; Brown, J.; Russomanno, D. Classification of humans

and animals using an infrared profiling sensor. In Proceedings of the SPIE: Unattended Ground,

Sea, and Air Sensor Technologies and Applications XI, Orlando, FL, USA, 13–17 April 2009.

Sensors 2011, 11

3204

43. Russomanno, D.J.; Yeasin, M.; Jacobs, E.; Smith, M.; Sorower, M.S. Sparse detector sensor:

Profiling experiments for broad-scale classification. In Proceedings SPIE-Defense and Security

Symposium: Unattended Ground, Sea, and Air Sensor Technologies and Applications X, Orlando,

FL, USA, March 2008.

44. Russomanno, D.; Chari, S.; Halford, C. Sparse detector imaging sensor with two-class silhouette

classification. Sensors 2008, 8, 7996-8015.

45. Russomanno, D.J.; Chari, S.; Emmanuel, K.; Jacobs, E.; Halford, C. Testing and evaluation of

profiling sensors for perimeter security. ITEA J. Test Eval. 2010, 31, 121-130.

46. Russomanno, D.J.; Chari, S.; Jacobs, E.; Halford, C. Near-IR sparse detector sensor for intelligent

electronic fence applications. IEEE Sens. J. 2010, 10, 1106-1107.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

