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Graphical abstract 

Highlights 

 Modeling of mechanical behavior for the material-jet printed polymers

 Validation of the material models by comparing the finite element analysis and physical tensile test with

multi-material printed specimens

 The result proves that it is possible to create a desired strain field by locally changing the ratio of the digital

materials without changing the overall shape

Abstract 

The goal of this work is to validate the material models for parts created with a Material Jetting 3-dimensional 

printer through the comparison of Finite Element Analysis (FEA) simulations and physical tests. The strain maps 

generated by a video extensometer for multi-material samples are compared to the FEA results based on our material 

models. Two base materials (ABS-like and rubber-like) and their composites are co-printed in the graded tensile test 

samples. The graded islands are embedded in the rubber-like test specimens. The simulations were conducted 
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utilizing previously fitted material models, a two-parameter Mooney-Rivlin model for the elastic materials (Tango 

Black+, DM95, and DM60) and a bilinear model for the rigid material (Vero White+). The results show that the 

simulation results based on our material models can predict the deformation behaviors of the multi-material samples 

during a uniaxial tensile test. Our simulation results are able to predict the maximum strain in the matrix material 

(TB+) within 5% error. Both global deformation pattern and local strain level confirm the validity of the simulated 

material models.  

 

Keywords 

Material jetting, Functionally graded materials, 3-dimensional printing, Additive manufacturing, Finite element 

analysis, Digital materials 

 

1 Introduction 

 

Additive manufacturing (AM) is a process that creates parts by continuously adding material layer by layer. This 

technique has been utilized to create complex structures, such as internal hierarchal patterns [1, 2], which are 

impossible to create with other conventional manufacturing methods. AM has been used in several fields such as 

dental [3, 4], medical [5-9], aerospace [10, 11], electronics [12], and microfluidics [13, 14] to produce unique 

devices. As this technology matures, the number of printable materials has greatly increased, making it possible to 

print reinforced composites [15-17], conductive materials [12], and surgically implantable materials [5, 18].  

Material Jetting (MJT) is an AM technique that utilizes piezoelectric nozzles to selectively deposit polymer droplets, 

which are then cured with UV light [19, 20]. By using multiple material-jetting nozzles, it is possible to create 

composite materials. Various compositions can be achieved by mixing different ratios of resins prior to the curing 

phase. These new composite materials, also known as Digital Materials (DM), greatly expand the range of printable 

materials for the MJT printer. In MJT, the most widely used base materials are Tango Black+ (TB+) and Vero 

White+ (VW+). TB+ is a rubber-like material capable of large elongation, while VW+ is a rigid material that 

simulates the mechanical properties of Acrylonitrile Butadiene Styrene (ABS). There are six possible DM 

combinations printable from the mixture of these two base materials: DM40, DM50, DM60, DM70, DM85, and 
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DM95. The naming convention is based on the equivalent Shore A hardness of each material. For example, DM60 

stands for a Digital Material with Shore A hardness of 60. 

MJT is capable of locally tuning material properties to generate Functionally Graded Materials (FGM) [21]. Similar 

graded materials are naturally observed in the internal structures of bone, the exoskeletons of arthropods, and the 

bark of trees [22]. These natural graded materials have locally tailored properties that improve their overall 

performance. Artificially engineered FGMs have mainly focused on the usage of foam materials or metal alloys for 

the creation of lightweight components [23, 24]. These FGMs have been applied to create aerospace structural 

materials, lightweight concrete structures, and bone mimicking implants [25, 26]. Modeling of FGMs has been 

conducted with various different simulation methods, such as percolation theory, fractal analysis, neural networks, 

swarm optimization, and fuzzy logic [27, 28].  

Researchers have recently started to leverage the potential of MJT printing for advanced FGM applications, 

including robotic mechanisms [29], specialized prosthesis [8, 9], custom tooling [30], mechanical metamaterial [31-

33], and multi-material compliant mechanisms [34]. However, the capability of conducting meaningful computer 

simulations for MJT printed FGMs is limited mainly due to the lack of information regarding the material properties 

and appropriate material models. MJT manufacturers provide insufficient information on the mechanical properties 

to conduct FEA simulations.  

Most of the past research focused on the effects of the printing parameters on the final mechanical properties of the 

printed parts. Blanco et al. measured the stress relaxation modulus of RGD240 (Stratasys) with respect to the 

printing angle and orientation [35]. While Adamczak and Bochnia conducted physical testing to validate the stress 

relaxation models for TB+, VW+ and DM50 [36]. In addition, researchers have studied the effects of aging and print 

orientation on the mechanical properties of TB+, VW+ and some DMs [37], as well as the fatigue behavior of multi-

materials samples [38]. Apart from mechanical properties other characteristics of MJT polymers have been studied 

such as the thermal conductivities of the base polymers VW+, TB+, and Grey60, the results were subsequently 

validated through thermal FEA [39]. Dielectric properties for MJT polymers have also been studied by other 

research laboratories [40]. However, to the best of authors’ knowledge, little study has been reported on the material 

modeling for simulation of DMs created by MJT technology and its subsequent validation through physical testing. 

The goal of this study is to validate the developed material models for VW+, TB+, and DMs. This is done through 

the comparison of simulations and physical tensile test results. In the tensile test samples, various graded structures 
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were embedded in the elastic TB+ matrix. By comparing the strain maps generated from the FEA simulations and 

the tensile tests, the deformations in the multi-material samples were analyzed, and the material models were 

validated.  Additionally, the microstructures of the fracture surfaces were analyzed with a scanning electron 

microscope (SEM) in order to study the interface region between materials. 

2 Materials and Methods 

The samples were printed utilizing an MJT printer, Connex 500 (Stratasys). Samples were printed utilizing the DM 

printing mode, which prints at a 30-µm layer height. Both the standard support setting and the matte surface finish 

option were selected. The matte surface was utilized for better spray painting results, which was required for the 

video extensometer analysis. The parts were printed lying flat on the build tray with their tensile axis oriented along 

the printing axis (x-axis). The test samples are composed of TB+, VW+, and two of their DMs (DM95 and DM60, 

whose Shore A hardness are 95 and 60, respectively). For comparison, a door seal has a Shore A hardness of 55, a 

tire tread has a value of 70, and a roller skate wheel is around 98.  

Material models for these DMs and base materials (TB+, VW+) were developed for FEA simulations in our 

preliminary study. This characterization process was conducted by fitting tensile test data into a Mooney-Rivlin 2 

parameter material model. The uniaxial tensile test was based on the Korean Standard M6518 for vulcanized rubber, 

which is equivalent to the ASTM D638 test standard. The fitting procedure was done utilizing the fitting capabilities 

of the Origin Pro software suite. 

3-dimensional modeling and FEA simulations were conducted with SolidWorks 2016 (Dassault Systemes). Tensile 

tests were performed with a 100-series modular universal test machine (UTM, Test Resources). The strain 

distributions in the samples were analyzed utilizing a video extensometer (Vic Gauge, Correlated Solutions) and its 

corresponding image analysis software (Vic 2D, Correlated Solutions). The results were then compared to those of 

the FEA simulations. The microstructures of the samples were analyzed with a SEM (JEOL-7800F). 

2.1 Sample design 

Fig. 1 shows the dimensions of tensile test specimens. The baseline design, Sample 1 (S1) was printed utilizing only 

the elastic material (TB+). To discern the effects of multi-material prints, three different configurations were tested. 

Sample 2 (S2) shown in Fig. 1b consists of the same outline as S1 with the addition of a circular island made up of 

the rigid material (VW+). In Sample 3 (S3) and Sample 4 (S4) (Figs. 1c-d), graded islands were printed by creating 

regions of different materials at the center of the samples (VW+, DM95, and DM 60 from the center out). The 
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circular and rectangular graded islands are embedded within the TB+ in S3 and S4, respectively. The four sample 

design plans are summarized in Table 1.  

(Fig. 1) 

(Table 1) 

2.2 Tensile Testing 

The tensile tests of the printed samples were conducted with a UTM. The displacement was recorded with a video 

extensometer that measures the distance between markings on sample surface during deformation. The markings 

were generated by covering the samples with black paint and then by spraying with white spray paint to create a 

speckled pattern (Fig. 2a). The grips separated at a constant speed of 50 mm/min until the load cell recorded a 

sudden drop associated with the breakage of the sample or the grip reached the prescribed 30 mm displacement. The 

video extensometer continuously captured images of the sample as it deformed. These images were then imported 

into the analysis software. The analysis window (red shaded rectangle in Fig. 2b) was set in the analysis software 

and allowed for the strain mapping of the sample. The analysis window grows as the sample is stretched as 

illustrated in Fig. 2c.  

 (Fig. 2) 

2.3 FEA modeling 

Stress-strain curves for TB+, DM95, and DM60 from the uniaxial tensile tests conducted in our preliminary research 

were fitted into the Mooney-Rivlin two-parameter material model. The Mooney-Rivlin two-parameter model is one 

of the most widely used phenomenological models for modeling hyper-elastic materials. The fitting equation was: 

Eq. 1                      𝑦 = 2 × (1 +
𝑥

100
−

1

(1+
𝑥

100
)
2) × (𝐶1 +

𝐶2

1+
𝑥

100

) 

Where y and x are stress and strain, respectively. C1 and C2 represent the elastic behavior and the divert from 

elasticity, respectively [41]. C1 and C2 for the materials used in this study are summarized in Table 2. Fig. 3 shows a 

comparison between the stress-strain curves from the tensile test data used for the fitting procedure and the material 

models. TB+ (Fig. 3a) and DM60 (Fig. 3b) have an accurate fit, with DM95 (Fig. 3c) underestimating the stress 

values at strains lower than 20%. VW+ was modeled as a bilinear material with an initial Young’s modulus of 2.0 

GPa and yield point of 10 MPa, and a second modulus of 650 MPa and yield point of 30MPa (Fig. 3d). 

(Table 2) 
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(Fig. 3) 

SEM images of the fracture surface for VW+ and TB+ show a clear difference between the two materials. The 

images were taken at 60x (Fig. 4) and 200x (Fig. 5) magnification. TB+ displays a smooth fracture surface with 

horizontal stripping caused by the layer-by-layer printing. Conversely, the brittle sample of VW+ shows a very 

rough surface morphology. Both DMs show mostly smooth, but mildly rough surfaces. DM95 displays a rougher 

fracture surface than DM60 due to the increased amount of VW+ present in the material mixture. 

(Fig. 4) 

(Fig. 5) 

Individual models for each material were imported into the material library of the FEA simulation software and 

assigned to the corresponding regions shown in Fig. 1. Non-linear studies were used in the FEA to simulate large 

deformations. The simulation settings are summarized in Table 3. For the boundary conditions, one side of the 

sample was fixed while the other side was displaced up to 30 mm, mimicking the actual physical test conditions 

(Fig. 2c). The interface regions between different materials were modeled as perfectly bonded. Due to the mismatch 

in material properties, the transition regions were modeled with a finer mesh. Fig. 6 shows the center regions of S2 – 

S4, where the multi-material islands were printed. Details on the mesh parameters and size are summarized in Table 

4.  

(Table 3) 

(Fig. 6)  

(Table 4) 

3 Results and Discussion  

Fig. 7 shows the strain patterns of S1-S4 produced by the extensometer software at 30 mm displacement. At larger 

deformations, breakage of the paint on the sample surface affects the data acquisition and causes holes on the strain 

maps. As S1 deformed, it experienced uniform strain levels (Fig. 7a), shown by an almost uniform color throughout 

the gauge length. In contrast, multi-material samples (S2-S4) exhibited distinct strain patterns caused by the shape of 

embedded material islands. S2 (Fig. 7b) and S3 (Fig. 7c) display similar strain distributions as they share the same 

island shape. However, S3, which has a graded transition, displays lower strain values surrounding the VW+ region. 

The strain gradient shown in S3 is also observed in S4. The different levels of compliance in the DMs surrounding 

the rigid center cause the gradual transition in both S3 and S4.  

ACCEPTED M
ANUSCRIP

T



 

 

(Fig. 7) 

The strain patterns produced by the FEA simulation are shown in Fig. 8. The resulting strain patterns for each 

sample were analogous to those from the tensile test (Fig. 7). The single material sample (S1) showed uniform strain 

levels throughout the gauge length of the sample. While the multi-material samples displayed unique strain 

distributions depending on the shape of the embedded island.  

S1 displays a maximum strain level of 26%, shown in green throughout its gauge length (Fig. 8a). S2 experiences 

lower strain levels on the TB+ regions and higher strain levels at VW+ interface (Fig. 8b). S3 shows lower levels of 

strain immediately surrounding the VW+ region. Each material region experiences varying degrees of strain; with 

VW+ showing less than 1% strain, DM95 is slightly more compliant and experienced less than 2%. DM60 had a 

maximum of 20% strain, and TB+ the most elastic material experiences strain in the range of 20% to 40%. S4, 

which also has a graded transition, displays a similar pattern of strain distributions as S3, with the VW+ region 

experiencing no strain and each subsequent material region experiencing higher levels of strain. 

(Fig. 8) 

A comparison of the strain values and locations between the simulation and the physical test for S2-S4 are shown in 

Fig. 9. The maximum strain in each sample occurred closer to the embedded islands in the simulation results 

compared to the tensile test results. This disagreement is associated with the geometric assumption in FEA model. 

The simulation model assumes perfect boundary and bonding between different materials (VW+, DMs, and TB+). 

However, prior to UV cross-linking phases, the inks diffuse into each other at the interface between the 

heterogeneous materials. This inter-inks diffusion creates an intermediate region that reduces the abrupt change in 

material properties at the interface of the embedded island. Both SEM micrographs and visual images confirm the 

diffusion region between TB+ and VW+ (Fig. 10). The SEM of fracture surface (Fig. 10a) shows an intermediate 

roughness that is similar with the DMs in Figs. 5b and 5c. The visual image (Fig. 10b) also shows the grey color at 

the junction area between Tango Black and Vero White due to the diffusion.  

The insets of Fig. 9 show the location of rupture after the samples were stretched until the break. Of note, the FEA 

and tensile test results shown in Figs. 9a-9c were at the fixed displacement of 30 mm. The samples without the 

graded DM materials (Fig. 9a) broke near the island, while the samples with graded islands (Figs. 9b and 9c) broke 

away from the TB+ region. This is due to the stress concentration at the non-graded junction reaching the critical 

rupture stress before other TB regions in the sample. On the other hand, the graded islands reduce the stress around 
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the islands preventing the rupture of the sample until the background matrix material (TB+) breaks. The TB+ used 

in this study breaks at 170% – 220% according to the material data sheet provided by the manufacturer (Stratasys).  

(Fig. 9) 

(Fig. 10) 

A strain level comparison between the simulation results and the tensile test data for S1-S4 is shown in Figs. 11a-d. 

The probe points were selected from the center of the sample towards the edge of the analysis window (in the tensile 

test) or the grip boundary (in the simulation). From the simulation results 21 probe points were selected at 3.25 mm 

intervals, from the tensile test a line was plotted from the center of the sample to the edge of the viewing window 

and multiple points along that line were analyzed. As shown in Fig. 11, both physical test and FEA results show 

almost identical strain curves.  

S1 exhibits a slow decrease in strain as the points move away from the center to the grip (Fig. 11a). S2 displays low 

levels of strain at the center of the sample, then as the probe points transition from the VW+ (i region) to the TB+ (iv 

region) the strain rapidly increases, approximately to 35% and then slowly decreases (Fig. 11b). Meanwhile the 

samples with the gradient transition (S3 and S4) exhibit a gradual change in strain levels as shown in Figs. 11c-f. As 

mentioned before, due to model assumptions at material junctions the simulation results have a slight shift in their 

respective plots (Figs. 11b-d). The maximum strain is observed at a closer distance from the center in the simulation 

results. Additionally, the un-graded island (S2) shows a sharper increase in strain when compared to the graded 

island designs (S3 and S4) in both simulation (Fig. 12a) and physical test (Fig. 12b).  

(Fig. 11) 

(Fig. 12) 

With 50% of strain (30-mm displacement in 60-mm gauge length), the maximum strain levels in the materials 

(VW+, DM95, DM60, and TB+) the stress distribution was also obtained in the FEA simulation (Figs. 13a-d). While 

S1 shows minimal stress concentration throughout the sample (less than 0.2 MPa), the multi-material samples show 

concentrations of stress at every material junction.  

(Fig. 13)  

Conclusion  

This research has shown that the FEA method can be utilized to predict the deformation and stress concentrations of 

multi-material parts, such as FGMs, printed by the MJT printer. The uniaxial tension test results matched well with 
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the strain distributions predicted by FEA simulations based on our material models. The material models and FEA 

methods studied herein facilitate the design of FGMs in advanced applications with high fidelity of predictive 

analysis. Based on the result of this study, it is possible to create a desired strain field by locally changing the ratio 

of the DMs without changing the overall shape. 

The ability to selectively tune the material properties of a part from rigid to elastic allows for innovative 

applications. An example is the ability to create living hinges by creating a rigid-elastic-rigid material transition; the 

stiffness of the hinge can be tailored by using different DMs. It is recommended that intermediate DM materials be 

added to reduce the stress concentration at the heterogeneous materials junction. Tensile tests conducted until 

sample break (Fig. 9 insets) show that the multi-material junctions safely withstood large elongations, with the 

eventual break occurring in the TB+ region at an extreme elongation (>170 %).  

Future research will focus on characterizing the material properties when subjected to other load cases, such as 

compression and shear, to create a cohesive material model. Furthermore, other properties such as dielectric 

characteristics and conductivity are of special interest in the field of electronics, and therefore must be characterized. 

As well, special importance will be given to the characterization of the interface regions between different materials. 

A Nano-indentation experiment at the interface regions to measure the effect of material diffusion on the mechanical 

characteristics of the boundary is also proposed in the future research. 

 

Acknowledgments  

This work was supported by Summer Faculty Fellowship from the US Air Force Office of Scientific Research; We 

would also like to acknowledge the Integrated Nanosystems Development Institute (INDI) for use of their FESEM, 

which was awarded through the NSF grant MRI-1229514 and the new faculty start-up fund from Indiana 

University-Purdue University Indianapolis; This study is a part of the research project, “Small and Medium 

Enterprise Technology Supporting by Reliability Assessment Technology Improvement”, which has been supported 

by a grant from National Research Council of Science & Technology under the R&D Program of Ministry of 

Science, ICT and Future Planning. The authors also would like to thank the contribution of Diane Wagner and 

Andres Tovar at IUPUI for providing advises on material testing and designing.  

  

ACCEPTED M
ANUSCRIP

T



 

 

References 

1. B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, 

and J.W. Limperos, Making sense of 3-D printing: Creating a map of additive manufacturing 

products and services, Additive Manufacturing, 1–4 (2014) 64-76. DOI: 

https://doi.org/10.1016/j.addma.2014.08.005 

2. J. Wu, N. Aage, R. Westermann, and O. Sigmund, Infill Optimization for Additive 

Manufacturing -- Approaching Bone-like Porous Structures, IEEE Trans Vis Comput Graph, 

(2017). DOI: 10.1109/TVCG.2017.2655523 

3. W.J. van der Meer, A. Vissink, Y.L. Ng, and K. Gulabivala, 3D Computer aided treatment 

planning in endodontics, J Dent, 45 (2016) 67-72. DOI: 10.1016/j.jdent.2015.11.007 

4. D. Anssari Moin, W. Derksen, J.P. Verweij, R. van Merkesteyn, and D. Wismeijer, A Novel 

Approach for Computer-Assisted Template-Guided Autotransplantation of Teeth With Custom 

3D Designed/Printed Surgical Tooling. An Ex Vivo Proof of Concept, J Oral Maxillofac Surg, 74 

(2016) 895-902. DOI: 10.1016/j.joms.2016.01.033 

5. C.L. Ventola, Medical Applications for 3D Printing: Current and Projected Uses, P T, 39 (2014) 

704-711.  

6. L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. 

Martinez, M.I. Lopez, R.B. Wicker, and J. Bracke, Next-generation biomedical implants using 

additive manufacturing of complex, cellular and functional mesh arrays, Philos Trans A Math 

Phys Eng Sci, 368 (2010) 1999-2032. DOI: 10.1098/rsta.2010.0010 

7. J. Zuniga, D. Katsavelis, J. Peck, J. Stollberg, M. Petrykowski, A. Carson, and C. Fernandez, 

Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences, 

BMC Res Notes, 8 (2015) 10. DOI: 10.1186/s13104-015-0971-9 

8. E.L. Doubrovski, E.Y. Tsai, D. Dikovsky, J.M.P. Geraedts, H. Herr, and N. Oxman, Voxel-based 

fabrication through material property mapping: A design method for bitmap printing, Computer-

Aided Design, 60 (2015) 3-13. DOI: 10.1016/j.cad.2014.05.010 

ACCEPTED M
ANUSCRIP

T



 

 

9. H.H. David Moinina Sengeh, A Variable-Impedance Prosthetic Socket for a Transtibial Amputee 

Designed from Magnetic Resonance Imaging Data, Journal of Prosthetics and Orthotics, 25 

(2013) 129-137. DOI: 10.1097/JPO.0b013e31829be19c 

10. J.K. Fuller, STEREOLITHOGRAPHIC ROCKET MOTOR MANUFACTURING METHOD, 

US 8,844,133 B2, USA, 2014. 

11. S.L.N. Ford, Additive Manufacturing Technology: Potential Implications for U.S. Manufacturing 

Competitiveness, Journal of International Commerce and Economics, (2014). DOI: 

https://ssrn.com/abstract=2501065 

12. C.D. Yi Yan, Khai D. T. Ngo, Yuhui Mei, and Guo-Quan Lu. Additive Manufacturing of Planar 

Inductor for Power Electronics Applications. in International Symposium on 3D Power 

Electronics Integration and Manufacturing. 2016, Raleigh, NC, USA, IEEE. DOI: 

10.1109/3DPEIM.2016.7570536 

13. A.K. Au, W. Huynh, L.F. Horowitz, and A. Folch, 3D-Printed Microfluidics, Angew Chem Int 

Ed Engl, 55 (2016) 3862-81. DOI: 10.1002/anie.201504382 

14. J.O. Hardin, T.J. Ober, A.D. Valentine, and J.A. Lewis, Microfluidic Printheads for Multimaterial 

3D Printing of Viscoelastic Inks, Adv Mater, 27 (2015) 3279-84. DOI: 10.1002/adma.201500222 

15. X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li, and G. Ziegmann, Recycling and remanufacturing 

of 3D printed continuous carbon fiber reinforced PLA composites, Journal of Cleaner Production, 

142 (2017) 1609-1618. DOI: 10.1016/j.jclepro.2016.11.139 

16. K. Vidimce, A. Kaspar, Y. Wang, and W. Matusik. Foundry: Hierarchical Material Design for 

Multi-Material Fabrication. in Proceedings of the 29th Annual Symposium on User Interface 

Software and Technology. 2016, Tokio, Japan, DOI: 10.1145/2984511.2984516 

17. B.G. Compton and J.A. Lewis, 3D-printing of lightweight cellular composites, Adv Mater, 26 

(2014) 5930-5. DOI: 10.1002/adma.201401804 

ACCEPTED M
ANUSCRIP

T



 

 

18. S.Y. Chin, Y.C. Poh, A.-C. Kohler, J.T. Compton, L.L. Hsu, K.M. Lau, S. Kim, B.W. Lee, F.Y. 

Lee, and S.K. Sia, Additive manufacturing of hydrogel-based materials for next-generation 

implantable medical devices, Science Robotics, 2 (2017) eaah6451.  

19. J.W. Stansbury and M.J. Idacavage, 3D printing with polymers: Challenges among expanding 

options and opportunities, Dent Mater, 32 (2016) 54-64. DOI: 10.1016/j.dental.2015.09.018 

20. H. Bikas, P. Stavropoulos, and G. Chryssolouris, Additive manufacturing methods and modelling 

approaches: a critical review, The International Journal of Advanced Manufacturing Technology, 

83 (2015) 389-405. DOI: 10.1007/s00170-015-7576-2 

21. T.R. Jackson, H. Liu, N.M. Patrikalakis, E.M. Sachs, and M.J. Cima, Modeling and designing 

functionally graded material components for fabrication with local composition control, Materials 

& Design, 20 (1999) 63-75. DOI: https://doi.org/10.1016/S0261-3069(99)00011-4 

22. P. Fratzl, Biomimetic materials research: what can we really learn from nature's structural 

materials?, J R Soc Interface, 4 (2007) 637-42. DOI: 10.1098/rsif.2007.0218 

23. G. Udupa, S.S. Rao, and K.V. Gangadharan, Functionally Graded Composite Materials: An 

Overview, Procedia Materials Science, 5 (2014) 1291-1299. DOI: 10.1016/j.mspro.2014.07.442 

24. A. Chakraborty, S. Gopalakrishnan, and J.N. Reddy, A new beam finite element for the analysis 

of functionally graded materials, International Journal of Mechanical Sciences, 45 (2003) 519-

539. DOI: 10.1016/S0020-7403(03)00058-4 

25. A. Oshkour, N. Abu Osman, Y. Yau, F. Tarlochan, and W. Wan Abas, Design of new generation 

femoral prostheses using functionally graded materials: a finite element analysis, Proceedings of 

the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227 (2013) 

3-17. DOI: 10.1177/0954411912459421 

26. F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, and T. Kawasaki, 

Biocompatibility of materials and development to functionally graded implant for bio-medical 

application, Composites Science and Technology, 64 (2004) 893-908. DOI: 

https://doi.org/10.1016/j.compscitech.2003.09.005 

ACCEPTED M
ANUSCRIP

T



 

 

27. A.J. Markworth, K.S. Ramesh, and W.P. Parks, Modeling Studies Applied to Functionally 

Graded Materials, Journal of Materials Science, 30 (1995) 2183-2193. DOI: 10.1007/Bf01184560 

28. X.Y. Kou, G.T. Parks, and S.T. Tan, Optimal design of functionally graded materials using a 

procedural model and particle swarm optimization, Computer-Aided Design, 44 (2012) 300-310. 

DOI: 10.1016/j.cad.2011.10.007 

29. R. MacCurdy, J. Lipton, S. Li, and D. Rus. Printable programmable viscoelastic materials for 

robots. in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. 

2016, IEEE.  

30. A. Kampker, K. Kreisköther, and C. Reinders, Material and Parameter Analysis of the PolyJet 

Process for Mold Making Using Design of Experiments, World Academy of Science, 

Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials 

and Metallurgical Engineering, 11 (2017) 219-226.  

31. K. Yu, A. Ritchie, Y. Mao, M.L. Dunn, and H.J. Qi, Controlled Sequential Shape Changing 

Components by 3D Printing of Shape Memory Polymer Multimaterials, Procedia IUTAM, 12 

(2015) 193-203. DOI: 10.1016/j.piutam.2014.12.021 

32. A. Ion, J. Frohnhofen, L. Wall, R. Kovacs, M. Alistar, J. Lindsay, P. Lopes, H.-T. Chen, and P. 

Baudisch. Metamaterial mechanisms. in Proceedings of the 29th Annual Symposium on User 

Interface Software and Technology. 2016, ACM.  

33. A. Ion, L. Wall, R. Kovacs, and P. Baudisch. Digital Mechanical Metamaterials. in Proceedings 

of the 2017 CHI Conference on Human Factors in Computing Systems. 2017, Denver, Colorado, 

USA, ACM. DOI: 10.1145/3025453.3025624 

34. A.T. Gaynor, N.A. Meisel, C.B. Williams, and J.K. Guest, Multiple-Material Topology 

Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing, 

Journal of Manufacturing Science and Engineering-Transactions of the Asme, 136 (2014). DOI: 

10.1115/1.4028439 

ACCEPTED M
ANUSCRIP

T



 

 

35. D. Blanco, P. Fernandez, and A. Noriega, Nonisotropic experimental characterization of the 

relaxation modulus for PolyJet manufactured parts, Journal of Materials Research, 29 (2014) 

1876-1882. DOI: 10.1557/jmr.2014.200 

36. S. Adamczak and J. Bochnia, Estimating the Approximation Uncertainty for Digital Materials 

Subjected to Stress Relaxation Tests, Metrology and Measurement Systems, 23 (2016). DOI: 

10.1515/mms-2016-0048 

37. B. Lane, S. Moylan, E. Whitenton, and L. Ma, Exploring variability of orientation and aging 

effects in material properties of multi-material jetting parts, Rapid Prototyp J, 22 (2016) 778-787. 

DOI: 10.1108/RPJ-11-2015-0169 

38. J.P. Moore and C.B. Williams, Fatigue properties of parts printed by PolyJet material jetting, 

Rapid Prototyping Journal, 21 (2015) 675-685. DOI: 10.1108/rpj-03-2014-0031 

39. E.C. Mikkelson, Characterization and Modeling of the Thermal Properties of Photopolymers for 

Material Jetting Processes, in Mechanical Engineering. 2014, Virginia Polytechnic Institute and 

State University: Blacksburg, Virginia. 

40. W.J. Monzel, B.W. Hoff, S.S. Maestas, D.M. French, and S.C. Hayden, Dielectric Breakdown of 

Additively Manufactured Polymeric Materials, Ieee Transactions on Dielectrics and Electrical 

Insulation, 22 (2015) 3543-3549. DOI: 10.1109/Tdei.2015.005199 

41. V.V.R. Nomesh Kumar, Hyperelastic Mooney-Rivlin Model: Determination and Physical 

Interpretation of Material Constants, MIT International Journal of Mechanical Engineering, 6 

(2016) 43-46.  

ACCEPTED M
ANUSCRIP

T



 

 

Figure captions 

Fig. 1 Dimensions of samples designs: (a) S1, (b) S2, (c) S3, and (d) S4 (Unit: mm). 

 

Fig. 2 Test sample preparation: (a) Samples were covered with black paint and speckled with white spray, (b) 

Selection of the analysis window in the software, and (c) Image representation of the test procedure. 

 

Fig. 3 Stress-strain curves for the characterization test and the Mooney Rivlin material models for (a) TB+, (b) 

DM60, (c) DM95, and (d) VW+. 

 

Fig. 4 SEM images of the fracture surface at 60x magnification for (a) TB+, (b) DM60, (c) DM95, and (d) VW+.  

 

Fig. 5 SEM images of the fracture surface at 200x magnification for (a) TB+, (b) DM60, (c) DM95, and (d) VW+.  

 

Fig. 6 Finer mesh control at the interface regions for (a) S2, (b) S3, and (d) S4. 

 

Fig. 7 Strain map results from the video extensometer for (a) S1, (b) S2, (c) S3, and (d) S4. Centerline is shown as a 

black dotted line. 

 

Fig. 8 Strain map results from the FEA simulation for (a) S1, (b) S2, (c) S3, and (d) S4. 

 

Fig. 9 Visual comparison of strain distribution between FEA simulation and physical tensile tests for (a) S2, (b) S3, 

and (c) S4 at the displacement of 30 mm. Maximum stress tends to occur closer to the island in FEA simulations. 

(Inset figures: the images of failure locations when the samples were stretched until break) 

 

Fig. 10 Diffusion of inks at the interface. Mixed regions are boxed with a red-dotted line: (a) SEM cross-sectional 

view at 100x magnification for the interface between TB+ and VW+; and (b) Cross-sectional image of the interface 

between TB+ and VW+ with no magnification and a 1 mm scale bar.  

 

Fig. 11 Comparison of strain measurements along the centerline between the tensile test and the simulation results 

for (a) S1, (b) S2, (c) S3, and (d) S4. 

 

Fig. 12 Comparison of the location of maximum strain for the samples with embedded islands for the (a) tensile test 

and (b) the simulation. 

 

Fig. 13 Stress maps from FEA simulation for (a) S1, (b) S2, (c) S3, and (d) S4. 
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List of Tables 

Table 1 

Description of the shape of the island and gradient type for test samples. 

 
S1 S2 S3 S4 

Island no yes yes yes 

Shape no Circle Circle Square 

Gradient no no yes yes 
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Table 2 

Material constants for the Mooney-Rivlin model in Eq. 1. 

Material C1 C2 

TB+  0.15624 MPa  -0.03726 MPa 

DM95  -0.54321 MPa  4.18569 MPa 

DM60  0.77412 MPa  -0.5262 MPa 
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Table 3 

Finite Element Analysis simulation settings in SolidWorks. 

Analysis type Nonlinear  

Mesh type Solid Mesh 

Large displacement formulation On 

Large strain formulation On 

Solver type FFEPlus 

Iterative technique Newton-Raphson 

Integration Method Newmark 
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Table 4 

Mesh information for the Finite Element Analysis simulation. 

Mesh S1 S2 S3 S4 

Mesher Standard mesh 

Jacobian points 4 Points 

Total Nodes 96113 109159 125763 138239 

Total Elements 56658 65476 76786 84362 
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