
Investigation of Malicious Portable Executable File
Detection on the Network using Supervised

Learning Techniques
Rushabh Vyas, Xiao Luo, Nichole McFarland, Connie Justice

Department of Information and Technology, Purdue School of Engineering and Technology
IUPUI,

Indianapolis, IN, USA 46202
Emails: rushvyas@umail.iu.edu; luo25@iupui.edu; mcfarlni@umail.iu.edu; cjustice@iupui.edu

Abstract—Malware continues to be a critical concern for
everyone from home users to enterprises. Today, most devices are
connected through networks to the Internet. Therefore, malicious
code can easily and rapidly spread. The objective of this paper is
to examine how malicious portable executable (PE) files can be
detected on the network by utilizing machine learning algorithms.
The efficiency and effectiveness of the network detection rely
on the number of features and the learning algorithms. In this
work, we examined 28 features extracted from metadata, packing,
imported DLLs and functions of four different types of PE files
for malware detection. The returned results showed that the
proposed system can achieve 98.7% detection rates, 1.8% false
positive rate, and with an average scanning speed of 0.5 seconds
per file in our testing environment.

I. INTRODUCTION

Malware is an application that is harmful to your computer.
Malware analysis is the process of analyzing the behaviors
of malicious code and then create signatures to detect and
defend against it. Generally, there are two types of malware
analysis and detection mechanisms: static feature based and
dynamic feature based. Literature shows that static feature
based analysis is effective and efficient [1] [2] [3], and enables
network detection by loading the algorithm into the memory.
However, it is challenging when the malicious file or code is
packed or encrypted. Hence, the CPU instructions need to be
unpacked or decrypted then dynamic feature analysis needs to
be employed. One of the requirements of dynamic analysis is
to execute the file in a controlled environment such as virtual
machine or sandbox. On the other hand, given that the network
traffic is high speed, the dynamic analysis might not be feasible
for network malware detection.

In this paper, we investigated the static feature based mal-
ware detection by using different supervised learning algo-
rithms, and proposed a network malware detection process for
real time malware detection on the network. In this work, we
targeted malicious PE file detection with a small number of
features. We investigated how much we could push the su-
pervised learning techniques towards malware detection while
minimizing the computational cost for network malware detec-
tion. Four supervised learning techniques were used: Random
Forest, Decision Tree, k-Nearest-Neighbor and Support Vector
Machines. The ten folder cross validation results showed

that random forest learning technique achieved best detection
performance than the other three learning techniques. The
achieved detection rate and false alarm rate on experimental
data set were 98.7% and 1.8% respectively. We compared
the performances of the four learning techniques on four
types of PE malware - backdoors, viruses, worms and trojans.
The results showed that the same learning technique show
the similar performance on different types of malwares. It
demonstrated the features that are extracted from the files have
no bias for a specific type of malware. Lastly, we proposed
a network detection process and evaluated the feasibilities of
network detection of the best performed learning technique
identified in the experiments. Based on the computational
environment we used for this work, we achieved an average
scanning rate of 0.5 seconds per file on average.

The rest of paper is organized as follows. Section II sum-
marizes the related work. The feature extraction and feature
construction are presented in section III. The supervised learn-
ing techniques that are explored in this work are introduced
in Section IV. Section V presents the experimental setups and
results. Conclusions and future work are discussed in Section
VI.

II. RELATED WORK

In the literature, there are several attempts to improve the
performance of PE malware detection using machine learning
algorithms. Shafiq et al. proposed PE-Miner in 2009 for PE
malware detection. They first extracted 189 features from
the PE file segments [1]. Then, feature selection/reduction
algorithms, e.g. Principle Component Analysis (PCA) were
used to select the most relevant features. The five supervised
learning algorithms which include IBk, J48, NB, RIPPER, and
SMO, are deployed for seven types of malicious executable
detection. The seven types are backdoor + sniffer, Constructor
+ Virtool, DoS + Nuker, Flooder, Exploit + Hacktool, Work,
Trojan and Virus. The best results (99% detection rate and
0.5% false positive rate) were achieved on detection virus.
However, no discussion has been given on how to deploy these
learning algorithms for network detection.

Lo, Pablo, and Carlos investigated the minimum features
that need to be used for PE malware detection [2]. They

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:
Vyas, R., Luo, X., McFarland, N., & Justice, C. (2017). Investigation of malicious portable executable file detection on the network using supervised learning 
techniques. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (pp. 941–946). https://doi.org/10.23919/INM.2017.7987416

https://doi.org/10.23919/INM.2017.7987416


concluded that with “9” features, they can achieve 99% accu-
racy on malware detection by using an assembly classification
schema. They also compared their performance against the
other algorithms in the literature. However, their base feature
pool was generated with an external software named virualtotal
[4]. So, the overall performance relies on virualtotal. Addition-
ally, the system was not compared against different types of
malware detection.

Liu et al. compared Naive Bayes, Support Vector Machines,
Decision Tree, Boosted Decision Trees (Adaboost + J48) and
individual Cost Sensitive Twin One-Class Classifier by making
use of both static features and dynamic features: Op-code n-
grams, API n-grams and embedded behavior graphs [5]. They
gained about 95% accuracy with about 2% false positive rate.
The feasibility of these algorithms for in network detection
was not discussed.

Shalaginov et al. compared Neuro-Fuzzy and Artificial
Neural Network (ANN) on detection of ten malware families
and ten malware categories [3]. Similar to the work of Lo et
al. [2], they have relied on virualtotal [4] to extract features.
It is not applicable for network malware detection. They
achieved detection rate and false positive rate are 81% and
20% respectively on malware family hupigon.

Ding et al. considered using opcode based n-gram features
for PE file malware detection [6]. They proposed a deep belief
networks learning algorithm and compared it against Support
Vector Machines (SVMs), k-NN, and Decision Tree by using
up to 400 n-grams. Their results showed 96.7% accuracy.

A gap in the literature showed no investigation has been
done using a small number of static features that were directly
extracted from the PE files, so that on network malware
detection can be done in an efficient manner. The contribution
of this research is investigation and exploring on network PE
malware detection using a small number of features and four
different supervised learning techniques.

III. FEATURE EXTRACTION AND FEATURE
REPRESENTATION

The PE files were those files generally run on the Windows
platform with extension of .exe or .dll. PE files are divided
into the PE file header, section table and sections. In the
PE file header, the compile timestamp, number of entries in
section table, required processor type can be found. There
are multiple sections, for example text section (executable
code), data sections (.bss, .rdata, and .data), resource section
(.rsrc),export section (.edata), import section (.idata) and so on
[7].

A. Feature Extraction

In this work, based on the features that are extracted from
PE header and sections, we re-grouped the extracted features
into four categories - file metadata, file packing, imported
dlls, and imported functions. The details of features from each
category are given in the following sub-sections.

TABLE I
META DATA FEATURES

Feature Name Explanation and Examples
Number Of Sections The NumberOfSections field in the PE header.

It is the number of entries in section table.
Number of DLLs Total number of DLL files imported in the

import section.
Number of Functions Total number of functions imported in

the import section.
Compile Time The TimeDateStamp field in the PE header.

It is the time and date when the file was
compiled.

Compile Time Indicator 1 - TimeDateStamp > current date;
0 - otherwise.

Address Of Entry Point The AddressOfEntryPoint field in the PE
header. It is the Offset of the entry point
of the PE file relative to the image’s
base address when it is loaded into memory.

Base Of Code The BaseOfCode field in the PE header.
It is the Offset of the beginning of the code
section relative to the image’s base
address when loaded into memory.

Number Of Symbols The NumberOfSymbols field in the PE
header. It is the number of entries in
the symbol table.

1) File Metadata: The file metadata category contains some
basic information about the PE file, for example the date on
which the file was compiled, the total number of DLLs that are
imported and so on. Specifically, we extracted eight metadata
features from a PE file, which are given in table I. The basic
information features may not independently imply that a PE
file is malicious or not. However, based on the literature
[8], the combinations of them might be strong indicators of
malware. Based on the TimeDateStamp, we added a derived
feature ‘Compile Time Indicator’. When binaries are compiled,
the compiler can put compile date and time in the file. Compile
date and time can be manipulated by the attacker. If a binary
file was compiled in the future, it is suspicious and the feature
‘Compile Time Indicator’ is marked as 1. NumberOfSymbols
was selected as a feature due to the fact that sometimes
malware authors strip the symbols from the binary to make
analysis harder.

2) File Packing: Sometimes, the author of the malicious file
uses a packer software to first parses PE internal structures.
Then, it reorganizes PE headers, sections, import tables, and
export tables into new structures. During packing, a packer
software sometimes encrypts the code and resource sections
using the compression and encryption libraries [9]. The PE
files are packed in a way that it makes it very difficult to re-
verse engineer, or the anti-virus programs to figure out whether
the PE file is malicious or not. If PE files are packed using
a packer software, the packing related or generated attributes
are extracted. We extracted three file packing related features
which are given in table II. Based on the literature [10], high
entropy may imply packed malware. Hence, Shannon entropy
for each file is calculated as a feature. The formula of the
Shannon entropy calculation is given as formula 1, where f is
the binary representation of the PE file, p(i) is the probability
of ith unit of the binary file f with total n binary values.



TABLE II
FILE PACKING FEATURES

Feature Name Explanation and Examples
Shannon Entropy Shannon Entropy of the PE file binary.
SizeOfRawData The SizeOfRawData field in each section.

0 - If one SizeOfRawData in any section is 0,
1 - otherwise.

Section name 1 - Contains UPX, ASPack, FSG,
or MPRESS, 0 - otherwise.

H(f) = −
n∑

i=1

p(i)log2p(i) (1)

Sometimes PE files are packed and the way they are packed
causes them to have 0 as SizeOfRawData. When this is the
case, virtual size for the section is higher. When the executable
runs, the space allocated in the memory by the OS is the
same size as virtual size, the malicious code then unpacks code
into the memory [11]. So, SizeOfRawData for each section
is extracted and examined whether the value is 0 or not. In
addition to the entropy of the file and SizeOfRawData of each
section, section names were also examined to see if any of
them contain popular packers such as UPX, ASPack, FSG,
MPRESS, since they are commonly utilized by malware actors
to pack their malicious files. These features were assigned
values 1 or 0 depending on if the PE file contains these names
or not.

3) Imported DLL Files: DLL files can quickly tell the
functional intention of the PE file. For example, if wsock32.dll
is imported, it was assumed that the PE file does some-
thing network related. Hence, in this work, the specific
DLLs or the combinations of the DLLs were extracted
and used as one of the feature. The DLLs include ker-
nel32.dll, advapi32.dll, user32.dll, gdi32.dll, ws2 32.dll, nt-
dll.dll, crypt32.dll, shell32.dll, wsock32.dll, wininet.dll and
msvcrt.dll.

4) Imported Functions: Other than the imported DLLs,
imported functions are also extracted from the PE files.
Although there are no functions that are specific to malware,
some of the functions are typically used by malware [12].
The function types that were investigated were registry, anti-
analysis, packing, command or process execution, keylogging,
networking, screenshot, cryptographic, privilege escalation,
process or memory manipulation, service manipulation, in-
formation gathering, file or process creation, DLL related,
finding, and persistence. The specific functions that were
extracted for each function type are detailed in table III.

B. Feature Representation

After feature extraction, each file was represented in a
proposed vector format. Each entry of the vector presented
the corresponding feature. Figure 1 demonstrated the proposed
vector presentation of a file. There are total of 28 entries in the
vector presenting the features in the four categories described
in the previous section.

It is worth to noting that instead of using eleven entries
in figure 1 to present the existence of each, we only used

TABLE III
IMPORTED FUNCTION TYPES AND FUNCTIONS

Function type Functions
Registry RegCloseKey, RegOpenKey, RegQueryValue,

RegSetValue, RtlCreateRegistryKey,
RtlWriteRegistryValue

Anti-Analysis CheckRemoteDebuggerPresent,
FindWindow, GetLastError, IsDebuggerPresent,
sleep, OutputDebugString, GetAdaptersInfo,
FindWindow, GetTickCount,
NtSettInformationProcess
DebugActiveProcess,
QueryPerformanceCounter,
NtQueryInformationProcess

Packing VirtualAllocEx, LoadLibrary,
VirtualFree, GetProcAddress,
LdrLoadDll, LoadResource
VirtualProtectEx

Execution CommandLineToArg, ShellExecute, system,
WinExec

KeyLogging SetWindowsHook, RegisterHotKey,
GetKeyState, MapVirtualKey

Networking listen, socket, accept, bind,
connect, send, recv, FtpPutFile,
InternetOpen, InternetOpenUrl,
InternetWriteFile, ConnetNamedPipe,
PeekNamedPike, gethostbyname, inet addr
InternetReadFie

Screenshot BitBlt, GetDC
Crypto CryptDecrypt, CryptGenRandom,

CryptAcqureContext
Privilege Escalation SetPrivilege, LookupPrivilege
Process Manipulation CreateRemoteThread, WriteProcessMemory,

ReadProcessMemory, OpenProcess,
NtOpenProcess, NtReadVirtualMemory,
NtWriteVirtualMemory

File/process creation CreateFile, CreateFileMapping,
CreateMutex, CreateProcess

Service manipulation CreateService, ControlService
OpenSCManager, StartServiceCtrlDispatcher

Process/memory manipulation CreateRemoteThread, WriteProcessMemory,
ReadProcessMemory, OpenProcess,
NtOpenProcess, NtReadVirtualMemory,
NtWriteVirtualMemory, MapViewofFile,
Module32First, Module32Next, OpenMutex,
OpenProcess, QueueUserAPC,
SetFileTime, SfcTerminateWeatherThread,
SuspendThread, Thread32First,
Thread32Next, WriteProcessMemory
ResumeThread

DLL DllCanUnloadNow, DllGetClassObject,
DllInstall, DllRegisterServer,
DllUnregisterServer

Persistent NetScheduleJobAdd
Information Gathering FindFirstFile, FindNextFile,

FindResource, WSAStartup

Fig. 1. The Proposed File Representation



Fig. 2. Example of Imported DLLs feature representation

one entry in the vector to present all the extracted imported
DLLs. We proposed to use a binary string to present the
imported DLLs in the file, and then transfer the binary to
an integer. The reason behind was to reduce the size of the
vector for file representation, so that the computational cost
of training can be reduced. For example, if a PE file imported
only crypt32.dll and shell32.dll, figure 2 represents the binary
string of existence of these DLLs. Only two entries in the
binary string are 1, the rest are 0. The corresponding integer
value is 12. Noted that transferring the binary presentation
to decimal presentation might effects the similarity measures
between the instances, we have done experiments to compare
the two presentations. We identified that this transformation
has very minimum affects on the detection performances of
the learning techniques we chose for this study. Same strategy
was used to present the value of the imported function types
as described in table III.

IV. LEARNING ALGORITHMS

The task of malware detection classified files into two
classes: malware or benign. Hence, in this research, we
deployed four supervised learning techniques (classification
models) for the task of malware detection. Specifically, they
were k-Nearest Neighbors (kNN), decision tree, support vector
machines and random forest. The overviews of the learning
techniques are given in the following sections.

A. k-Nearest Neighbors

k-Nearest Neighbors (k-NN) learning technique has been
used in pattern recognition and classification since the be-
ginning of 1970s as a non-parametric technique. It has been
studied extensively for data mining and malware analysis tasks
[13] [14]. k-NN uses a majority vote of its neighbors to
classify an object. The object being classified is most common
among its k nearest neighbors. k is a positive integer. If
k = 1, then the object is simply assigned to the class of
that single nearest neighbor. Typically, we experiment with a
different k to find the optimal k value to classify a given data
set. The neighborhood distance function varies from different
implementation of k-NN. The typical one is Euclidean distance
which was used in this work. The k value was three in this
work.

B. Decision Tree

Decision tree learning techniques have been used for mal-
ware detection in the literature and archived competitive
performances [1] [15]. There were different decision tree algo-
rithms, such as ID3, C4.5, C5.0 and CART (Classification and
Regression Trees). One of the differences between decision
tree algorithms and other supervised learning algorithms is that
the trained model of the decision tree can be interpreted and

visualized as a tree structured form, while others are more like
black boxes, the trained model could not be easily interpreted.
In this work, optimized CART which was implemented in
python Scikit-Learn package, was employed. CART was very
similar to C4.5. The difference was that it supports numerical
target variables (regression) and does not compute rule sets.
CART constructs binary trees using the feature and threshold
that yielded the largest information gain at each node [16].

C. Support Vector Machines

Support Vector Machines (SVMs) [17] was one of the
classification algorithms evaluated. SVMs was a large margin
classifier, and has been widely used in many different data
analytic tasks and malware detections [13] [15]. The SVMs
classifier aims to separate the input data using hyperplanes. To
generate a less complex hyperplane function for classification,
the maximum margin between the hyperplane and the support
vectors was required. When the samples were not linearly
separable, SVMs were used to non-linearly transform the
training features from a two dimensional space ‘x’ to a higher
dimensional feature space ‘φ(x)’ using a factor ϕ : x→ φ(x)
and a function called ‘Kernel’, an inner product of two
examples in the feature space. The ability to learn from large
feature spaces and the dimensionality independence make the
SVMs a universal learner for data classification [18].

D. Random Forests

Random forests algorithm was very similar to decision tree
algorithms. The one main difference was the number of trees
that were used to determine the error. Research has shown that
when decision trees grow very deep to learn irregular patterns,
they can over fit to the training sets [19]. Random forests
take one third of the data from the sample and used them
to calculate an unbiased estimate of error. Then, it used the
information while creating the next tree to improve accuracy.
The random forests algorithm provided a way of averaging
deep decision trees with the goal of reducing the variance
[19]. The combination of the multiple trees created a “forest”
which gave an accurate approximation of the data. On the
other hand, they also showed tree like models for visualizing
the results. Random forests have also been used for malware
detection in literature [15].

V. EXPERIMENTAL SETUPS AND RESULTS

The malware samples that were included in the experiments
conducted were originally collected by VXHeaven [20]. The
datasets were published as VX Heaven Virus Collection in
2010. The total amount of malware that was originally col-
lected was 47 GB when compressed. VX Heaven collected
known malware samples and gathered them for informational
and educational purposes. 10,400 malicious files of four dif-
ferent categories were used in this research. The categories
were worm, backdoor, virus and trojan. We also collected
1,100 benign files from a Windows 7 system, Ninite.com and
downloaded applications that were known benign. The details



TABLE IV
OVERVIEW OF THE DATA COLLECTION

Malware Type Instances
Malware Virus 2,600

Backdoor 2,600
Worm 2,600
Trojan 2,600

Benign 1,100

TABLE V
DETECTION RATES OF DIFFERENT TYPES OF MALWARE

Malware Type kNN Decision Tree Random Forest SVM
worm 0.971 0.979 0.989 0.726
trojan 0.970 0.972 0.987 0.726

backdoor 0.970 0.980 0.990 0.726
virus 0.961 0.979 0.983 0.726

Weighted-
Average 0.968 0.978 0.987 0.726

of each type of malicious and benign files were noted in table
IV.

To fully evaluate the learning algorithms for malware detec-
tion, ten folder cross validation was used to train and build the
learning models. The false positive rate (FPR) and detection
rate (DR) were the most common metrics for evaluating
malware detection or anomaly detection systems. They were
estimated as equations 2 and 3. Tables V and VI show
detection rates and false positive rates of the four learning
algorithms on different types of malware respectively.

FPR =
Number of Benign Detected as Malware

Total Number of Benign
(2)

DR =
Number of Detected Malware

Total Number of Malware
(3)

Based on the returned results, random forest performed bet-
ter than the other three algorithms in all cases. It gained 98.7%
of weighted-average detection rate and 1.8% of weighted-
average false positive rate. The SVMs performed the worse in
all the cases. One reason was in building the learning models,
the linear kernel for the SVMs was deployed. On the other
hand, all the learning algorithms gained better detection rates
on backdoor detection and better false positive rates on worm
detection. The performances of each learning technique on
all four types of malware were consistent which demonstrates
that the extracted features presented characteristics of each
malware type.

A. Network Malware Detection

Today, files and information are transferred and exchanged
through the network and Internet, hence network malware

TABLE VI
FALSE POSITIVE RATES OF DIFFERENT TYPES OF MALWARE

Malware Type kNN Decision Tree Random Forest SVM
worm 0.029 0.021 0.011 0.274
trojan 0.030 0.028 0.013 0.274

backdoor 0.010 0.030 0.030 0.274
virus 0.039 0.021 0.017 0.274

Weighted-
Average 0.027 0.025 0.018 0.274

Fig. 3. Proposed Online Malware Detection Framework

detection is critical. This research investigated the feasibility
of using supervised learning algorithm for network malware
detection. A proposed network malware detection process is
demonstrated in figure 3. For any incoming network traffic
that passed through the router to the internal network, BroIDS
[21], a network analysis tool was used to extract the PE files
from the network traffic. Afterwards, the feature extraction
module was used to extract the features that were described
in the previous section. Once the features are extracted and
the file is represented using the features, a REST API is used
to submit the newly represented file to the malware detection
engine which has the trained learning algorithm loaded into
the memory. If it was detected as malware, an alert will be
triggered and sent to the operator.

From the previous results, we concluded that random forest
outperformed the other algorithms. Hence, random forests
learning technique was chosen for the network file analysis.
To keep file analysis and detection time minimal for the
network detection, we experimented with the number of trees
from 1 to 100 to find an optimal number of trees without
sacrificing the performances and limiting the computational
cost. Figure 4 shows that the performance of the random forest
stabilized when the number of trees reached approximately 10.
Consequently, we deployed random forest model with 10 trees
in our process. After the training process was done, the 10
tree structures were loaded into the memory for malicious file
detection. The learning model will be re-trained periodically
by including more input PE file instances and then reloaded
into the memory.

We used a laptop machine that has 12GB memory and an
Intel Core i72670 QM Processor which has 6 MB Cache,
4 cores and up to 3.10 GHz of Max Turbo Frequency as
malware detection server to test the efficiency of file analysis
and detection process. The training time for all four learning
techniques: k-NN, Decision Tree, SVMs and Random Forests
are 0.1, 0.1, 5 and 0.3 seconds respectively. k-NN and Decision
Tree took the shortest time of 0.1 seconds and SVM took the
longest time of 5 seconds. The table VII shows the averaged
feature extraction and analysis time in seconds for each file



Fig. 4. The performance of Random Forest with Number of Trees

TABLE VII
EFFICIENCY OF ONLINE FILE ANALYSIS

Benign
Average Time # of Files Total Volume

1.178 s 1157 1.6 GB
Malware

Average Time # of Files Total Volume
Worm 0.173 s 2641 490 MB
Trojan 0.224 s 2713 546 MB

Backdoor 0.251 s 2846 943 MB
Virus 0.188 s 2898 725 MB

type, total number of files and total volume of the files. It
demonstrated that the proposed network malware detection
process can detect malware in 0.21 seconds if the network
traffic can be tapped and forwarded to the malware detection
module. Also noted is the longer time on analyzing the benign
files. The reason was some of the benign PE files are larger
in size. It takes longer time to extract the features.

VI. CONCLUSION AND FUTURE WORK

This research explored four supervised techniques: Decision
Tree, k-NN, SVMs and Random Forests for malware detection
using the constructed 28 static features. Techniques were
evaluated on four types of malware: backdoor, virus, trojan
and worm. Random forests performed better than other three
and achieved a weighted average detection rate of 98.7% and
false positive rate of 1.8%. The results were very competitive
or even better compare to some research that used more
sophisticated learning algorithms or much more features in
the literature [3] [6] [5].

The proposed network malware detection process achieved
an average file analysis speed of 0.5 seconds per file on a
laptop machine. The process can detect the malware within
0.21 seconds. Network malware detection efficiency has never
been investigated in the literature. In the future, we will
evaluate the proposed malware detection system on a server
with more computing resources and on different network
traffic settings. We will also consider expanding this system to
detect portable executable files for other OS platforms, such
as Unix. Other future work includes: extensively evaluating

the proposed system on big data sets and using multiple
evaluation metrics, such as Receiver Operating Characteristic
(ROC) curve and F1-measure and investigating the minimal
number of features that include dynamic features for network
malware detection.

ACKNOWLEDGMENT

This research is supported by and is conducted as part of
the IUPUI Living Lab at: https://livlab.org/.

REFERENCES

[1] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, PE-Miner: Mining
Structural Information to Detect Malicious Executables in Realtime,
Recent Advances in Intrusion Detection, Volume 5758 of the series
Lecture Notes in Computer Science, pp 121-141, 2009

[2] Chia Tien Dan Lo, Ordonez Pablo, and Cepeda Carlos, Feature Selection
and Improving Classification Performance for Malware Detection, IEEE
International Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom), pp 560 - 566, 2016

[3] A. Shalaginov, L. S. Grini, and K. Franke, Understanding Neuro-Fuzzy
on a class of multinomial malware detection problems, IEEE International
Joint Conference on Neural Networks (IJCNN), pp 684-691, 2016

[4] VirusTotal, https://www.virustotal.com/
[5] J. C. Liu, J. F. Song, Q. G. Miao, Y. Cao, and Y. N. Quan, An Ensemble

Cost-Sensitive One-Class Learning Framework for Malware Detection.
International Journal of Pattern Recognition and Artificial Intelligence,
29(5), 2015

[6] Yuxin Ding, Sheng Chen and Jun Xu, Application of Deep Belief
Networks for Opcode Based Malware Detection, IEEE International Joint
Conference on Neural Networks (IJCNN), pp 684-691, 2016

[7] Steven Roman, Win32 API Programming with Visual Basic, O’Reilly
Media; 1 edition, ISBN-10: 1565926315, 1999

[8] D. K. R. Chhabra, Feature selection and clustering for malicious and
benign software characterization, Master Thesis, Master of Science in
Computer Science Information Assurance, University of New Orleans,
2014

[9] W. Yan, Z. Zhang, N. Ansari, Revealing Packed Malware, IEEE Security
and Privacy, pp. 72-76, 2008

[10] R. Lyda and J. Hamrock, Using Entropy Analysis to Find Encrypted
and Packed Malware. IEEE Security and Privacy Magazine, 5(2), pp 40
- 45, 2007

[11] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, No Starch Press, 1st edition
(March 3 2012), ISBN-10 1593272901

[12] Windows Functions in Malware Analysis - Part 1,
http://resources.infosecinstitute.com/windows-functions-in-malware-
analysis-cheat-sheet-part-1/

[13] Ivan Firdausi, Charles Lim, Alva Erwin and Anto Satriyo Nugroho,
Analysis of Machine Learning Techniques Used In Behavior-based Mal-
ware Detection, The Second IEEE International Conference on Advances
in Computing, Control, and Telecommunication Technologies, pp. 201-
203, 2010

[14] Y. Yang and X. Liu, A Re-examination of Text Categorization Methods,
Proceedings of the ACM SIGIR, pp 42-49, 1999

[15] Richard R. Yang, V. Kang, S. Albouq and M. A. Zohdy, Application of
Hybrid Machine Learning to Detect and Remove Malware, Transactions
on Machine Learning and Artificial Intelligence, Vol 3, No 4, 2015

[16] Python SciKit Library, http://scikit-
learn.org/stable/modules/tree.html#tree-algorithms

[17] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New
York, 1995

[18] T. Joachims, Text categorization with support vector machines: learning
with many relevant features, ECML, LNCS, vol. 1398, pp. 137142, 1998

[19] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
Learning (2nd ed.), Springer, ISBN0-387-95284-5

[20] VX Heaven Virus Collection, http://vxheaven.org/vl.php
[21] The Bro Network Security Monitor, https://www.bro.org/index.html


