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Studying the Utility Preservation in Social
Network Anonymization via Persistent Homology

Tianchong Gao, Feng Li

Abstract—Following the trend of preserving privacy in online-social-network publishing, various anonymization mechanisms have
been designed and applied. Differential privacy is an approach that guarantees the privacy level. Many existing mechanisms claim that
they can also preserve the utility very well during anonymization. However, their utility analysis is always based on some specifically
chosen metrics. While the existing metrics only partially present the graph utility, this paper aims to find a novel approach that
describes the network in multiple scales. Persistent homology is a high-level metric, in that it reveals the parameterized topological
features with various scales, and it is applicable for real-world applications. In this paper, four differential privacy mechanisms with
different abstraction models are analyzed with traditional graph metrics and with persistent homology. The evaluation results
demonstrate that all algorithms can partially or conditionally preserve certain graph utilities, but none of them are suitable for all
metrics. Furthermore, none of the existing mechanisms fully preserves persistent homology, especially in high dimensions, which
implies that the true graph utility is lost.

Index Terms—Social online networks; data publishing; utility and privacy; persistent homology; differential privacy
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1 INTRODUCTION

ONLINE Social Networks (OSNs) have exploded in pop-
ularity recently. The OSN providers release users’ per-

sonal data to third parties for the purpose of feeding adver-
tisements, recommending new friendships, and testing the
effectiveness of applications. Since the data is sensitive to the
users, anonymization mechanisms are applied to prevent
the privacy leakage.

Differential privacy-based mechanisms are widely used
because they provide a strong privacy guarantee [3, 5].
Different abstraction models are applied to capture the
information of OSNs. Then noise is injected into the model
according to the privacy level. Sala et al. employed the
dK-2 series model, which transforms the OSN into pairs
of degrees [15]. Xiao et al. proposed a similar model with
the Hierarchical Random Graph (HRG) model in [18]. This
model captures the probability of connectivity of nodes.

Different abstraction models have various advantages in
preserving the network data. For instance, the dK-2 model
keeps the information of the degree; then the published
graph has a similar degree distribution. The HRG model
keeps a cluster of nodes in the same branch on the tree when
these nodes are closely linked in the original graph. Hence,
the clustering information is partially preserved in the HRG
model. In contrast, the dK-2 model only contains the linking
information of two nodes, and contains little to no clustering
data.

Do the existing anonymization mechanisms truly pre-
serve the graph utility in their published graphs? Although
these mechanisms claim to preserve the graph utility un-
der some utility metrics, these claims are doubtful. First,
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the evaluation results in this paper demonstrate that none
of the mechanisms perform well for all metrics. As men-
tioned above, the mechanisms based on the dK models may
achieve unsatisfactory performance in preserving the clus-
tering information. Second, each traditional utility metric
cannot reveal the whole graph. For example, the information
in the clustering coefficient is not covered in other metrics,
like the shortest path length. Third, some traditional metrics,
like the degree distribution, are not closely related with
applications. While OSN data publishing aims to find a
graph with similar properties to the original graph in real-
world applications, preserving these metrics is not enough.

In this paper, in order to answer the question whether
the existing anonymization mechanisms truly preserve the
graph utility, we propose a novel angle, persistent homol-
ogy, to analyze the anonymization mechanisms. Persistent
homology comprehensively summarizes the OSNs and ex-
tracts the persistent structures. When we define the distance
to be the number of hops of the shortest path between two
users, it shows the difficulty of information transmission.
Therefore, persistent homology is linked with applications
such as friendship recommendation.

We evaluate the performance of the anonymization
mechanisms under both traditional utility metrics and per-
sistent homology barcodes. The traditional utility metrics
contain both the graph utility metrics and an application
utility metric. The three chosen graph utility metrics are
the degree distribution, the clustering coefficient, and the
shortest path length, while the chosen application metric is
the influence maximization. The evaluation results under
traditional metrics show that most mechanisms are suitable
for preserving at least one metric; however, none of them
can fully preserve all the metrics.

Under persistent homology, the evaluation results show
that none of those mechanisms can preserve the barcode
information. Because real-world OSNs have specific struc-
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HIGHLIGHTS

• A new topological feature, the persistent homology,
is introduced into the utility analysis of the online
social network.

• Existing differential privacy anonymization mecha-
nisms are evaluated under both the traditional utility
metrics and the persistent homology barcodes.

• The potential reasons of the persistent homology
differences between the original OSN barcodes and
the anonymized graph barcodes are studied.
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ture information, anonymization mechanisms have diffi-
culty duplicating the features of the original graph in the
published graph. Specifically, we analyze the barcodes in
the H0, H1, and H2 domains. The analysis reveals that the
original OSN graphs have stable structures. The existing
OSN anonymization schemes overlooked the deep structure
properties, and they are unable to simulate that through
their design. Instead, the users in the anonymized graphs
are more closely connected.

The major technique contributions are the following:
• We introduce a new topological feature, persistent ho-

mology, into the utility analysis of OSNs.
• We evaluate persistent homology in the published

graphs of existing anonymization mechanisms.
• We study the potential reasons of persistent homology

differences between the original OSN barcodes and the
anonymized ones.

In this paper, we first propose the new metric, persistent
homology, in Section 2. Then we introduce the differential
privacy mechanisms and their abstraction models in Section
3. Afterwards the existing mechanisms are evaluated under
different utility metrics in Section 4. Finally, we introduce
some related research in Section 5 and discuss the conclu-
sion and future work in Section 6.

2 PERSISTENT HOMOLOGY

In this paper, an OSN graph is modeled as an undirected
graph G = (V,E), where V is the set of vertices and E is
the set of edges. Each user is represented by a vertex in the
graph and the relationships between users are the edges in
the graph.

Persistent homology is proposed as a novel utility
metric. Unlike the traditional metrics which describe the
graph in specific angles, persistent homology gives multi-
scales summarization of the graph. The barcodes are de-
ployed to present persistent homology. They have two parts:
the Vietoris-Rips simplicial complex records the structure
change at different spatial resolutions in one dimension, and
the Betti number records different dimensions.

2.1 Simplicial complex
Simplicial complex [16] is the basis of persistent homology.
It contains points, line segments, triangles, and some high-
dimensional components. A simplicial complex K is the set
of simplices. It satisfies the following conditions:

1) Any face of a simplex from K is in K .
2) The intersection of any two simplices σ1, σ2 ∈ K is

either ∅ or a face of both σ1 and σ2.
A simplicial k-complex K has the property that the largest
dimension of any simplex in K equals k. For instance, the
1-simplex is the line segment, the 2-simplex is the convex
hull of the triangle, and the 3-simplex is the convex hull of
the tetrahedron.

Fig. 1 shows an example with a 3-simplex, some 2-
simplices, and some 1-simplices. The tetrahedron is the 3-
simplex, where 3 means the simplex is in dimension 3. The
face of the tetrahedron, e.g., the triangle {P, S, R}, is also a
2-simplex, and it is included in the simplicial complex. It is
notable that there is no 2-simplex in the node set {T, S, U,

Fig. 1: Example of the simplicial complex

W} because at least one pair of nodes has a distance greater
than the desired threshold δ. Then {T, S, U, W} forms a
2-dimensional hole.

The threshold δ is applied in some abstract models like
the Cech complex and the Vietoris-Rips complex [16]. In
this study, we apply the Vietoris-Rips complex model. Given
a distance parameter δ, this model determines the set of
simplices {σ1, σ2, ..., σm, ...} such that d(vi, vj) 6 δ for all
node pairs (i, j) in any simplex σm.

2.2 Barcode

Persistent homology [6] is the homology of a filtration. In
particular, changing the distance parameter δ results in an
increasing sequence of Vietoris-Rips complexes:

K0 ⊆ K1 ⊆ ... ⊆ Kn = K,

While the single simplicial complex is related with δ, per-
sistent homology collects the features in a wide range of
distances, which gives a better view of the data space.

Fig. 2 gives an example of the Vietoris-Rips complexes
chain. We can define K0 to be the set in the first plot, which
containis four nodes. Similarly,K1 is the second plot andK2

is the third. K1 has not only the four nodes, but also four
edges, which means four more 1-simplices. K2 has more
triangles than K1, i.e., 2-simplices. Then K0, K1, and K2

form an increasing chain of Vietoris-Rips complexes.
The homology group is defined based on the boundary

homomorphism. First, we need to define boundary. For
example, K2 in Fig. 2 is a tetrahedron, i.e., a 3-simplex,
including a triangle {P, R, S} and an extra node Q. In this
3-simplex, the boundary is the set of 2-simplices, i.e., the
four triangles on four faces. Second, having the boundary of
chain σn, we can get the kernel homomorphism and image
homomorphism [20]. Specifically, the kernel subspace of Kn

is the vector space of n-cycles Zn. The n-cycle is a chain
in n-dimension with empty boundary. For example, the
triangle {P, S, T} in Fig. 1 is a 1-cycle, while the node group
{P, S, T,W} is not a 1-cycle when edge T–W is appended to
the triangle. The image subspace of Kn+1 is the vector space
of n-boundaries Bn. The n-boundary of a chain is the sum
of the boundaries of all simplices in the chain. For example,
the 1-boundary in Fig. 1 is the tetragon {T,W, S, U}. Third,
we get the n-th simplicial homology group Hn. We have
Hn := Zn/Bn [21]. In Fig. 1, the hole inside the tetragon
{T,W, S, U} is a component in H1. The rank of Hn is
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Fig. 2: Example of the barcode

denoted by the Betti number Bettin. Bettin equals the
number of (n+1)-dimensional holes. In particular, Betti0 is
the number of connected components, Betti1 is the number
of holes, and Betti2 is the number of voids.

Applying the filtration gives the Betti intervals to de-
scribe the homology of Hn changes with δ. These intervals
are called barcodes, where each one means a component or a
hole in the corresponding dimension. The intervals show the
birth time and death time of the components. In conclusion,
the barcode collects the information of the existing periods
of all components and holes when changing the distance δ.

Fig. 2 also shows a simple example of the barcode. The
four nodes {P, Q, R, S} can form a square with a side of 1.
We find that when δ < 1, there are no edges in the graph.
Each node is a component in H0, so there are four bars in
[0, 1). When δ > 1, the nodes are connected together to
form a component, and this component exists until the end.
Therefore, there is one bar of H0 in [1,∞). When δ < 2,
the node pairs P–S and R–Q are not linked. Then the four
nodes form a hole in 2-dimension, so there is one bar of H1

in [1, 2).

2.3 OSNs under persistent homology

The distance δ still needs to be defined such that persis-
tent homology can be applied to the analysis of OSNs.
Fundamentally, a basic OSN contains the users and their
relationships, which are vertices and edges in the graph.
And the anonymization mechanisms always focus on the
topological perturbation, which also outputs graphs. Hence,
the distance should capture the topology information of a
graph. In this paper, the distance is defined to be the number
of hops on the shortest path between the two vertices. In the
recommendation application, this definition of distance is
closely related to the difficulty of information transmission,
which gives the analysis of barcodes practical meanings.
Moreover, we can get the size of the components or holes
through this definition (see Section 4.1.3).
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Fig. 3: Example of the critical users and non-critical users in the graph

Having the definition of graphs, the information in H0

bars becomes a problem. Assuming the OSN is a connected
graph, when δ > 1, the whole graph becomes one com-
ponent. It is similar to the bar [0.5,∞) in Fig. 2, that all
connected graphs have a bar [1,∞). Assuming the OSN is
disconnected, when δ increases, disconnected subgraphs are
not able to connect. Then the H0 bars can only show the
number of disconnected subgraphs, which is trivial. To solve
that problem, the nodes are randomly separated into two
parts, critical users and non-critical users. Although the crit-
ical users are disconnected in the network, when δ increases,
these critical users can be connected by non-critical users.
Evaluation is performed on these critical users to show the
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recommendation performance. When the distance metric of
the whole network is generated, only the data of critical
users are the input to obtain the barcodes.

Fig. 3 gives an example of the critical users and non-
critical users. In the original graph, the four black nodes {P,
Q, R, S} are the critical nodes while the two grey nodes {U,
T} are non-critical users. The edges involving non-critical
users are dotted. Because the persistent structure only cares
about the critical users, the four nodes are apart when δ = 1.
However, in Fig. 3(c), these nodes are connected with the
help of non-critical users and their friendships. These four
nodes build an H1 hole when δ = 2, and the hole dies when
δ = 3.

3 SOCIAL NETWORK GRAPH ANONYMIZATION

Anonymization mechanisms based on differential privacy
are widely used in OSN data publishing, because they can
achieve a strict guarantee of privacy. These mechanisms em-
ploy graph abstraction models to do the anonymization. In
this section, we first introduce the definition of differential
privacy and two kinds of abstraction models. Then we give
a utility analysis with traditional metrics.

3.1 Differential privacy

Differential privacy is designed to protect the privacy be-
tween neighboring databases, which differ in only one ele-
ment [5]. This means that the adversary cannot determine if
one of the elements changes based on the releasing result.
In the model of OSNs, the adversary cannot be sure if two
users are linked in the original network.

Definition 1 (NEIGHBOR DATABASE). Given a databaseD1,
its neighbor database D2 differs from D1 in at most one element.

In this paper, the neighbor database/graph refers to an
OSN with one edge added or deleted.

Definition 2 (SENSITIVITY). The sensitivity (4f) of a func-
tion f is the maximum distance of any two neighbor databases in
the `1 norm.

∆f = max
D1,D2

‖f(D1)− f(D2)‖ (1)

Definition 3 (ε-DIFFERENTIAL PRIVACY). A randomized
algorithm A achieves ε-differential privacy if for all neighbor
datasets D1 and D2, and all S ⊆ Range(A)

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S] (2)

Equation (2) calculates the probability that two neighbor
databases have the same result under the same algorithm.
Based on this definition, researchers designed some graph
abstraction models to calculate the numerical results and
then add sufficient noise. To publish the anonymized graph,
these abstraction models should be able to rebuild the graph
from the perturbed numerical results. Several well known
models, like the dK model and the HRG model, were
designed to achieve differential privacy.
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Fig. 4: The dK graph model

3.2 The dK model
The dK-N model captures the degree distribution of con-
nected components of size N in a target graph [11]. For
example, dK-1 counts the number of nodes in each degree
value. So dK-1 is also known as the node-degree distribu-
tion. The dK-2 model, also called the joint-degree distribu-
tion, captures the number of edges in each combination of
two degree values, corresponding to the two nodes linked
by that edge. The dK-3 model gets the number of 3-node
subgraphs with different combinations of node degrees.
There are two kinds of 3-node subgraphs with different
structures: wedges and triangles.

Fig. 4 shows an example of the dK graph model. In par-
ticular, the dK-1 series 〈1〉 = 2 means there are two nodes
with degree 1. The dK-2 series 〈1, 4〉 = 2 means there are
two pairs of nodes with degrees 1 and 4. In the dK-3 series,
the symbol ∨ shows the wedge structure, while the symbol
5 shows the triangle structure. After deriving the dK series,
the differential privacy anonymization mechanism requires
us to add noise to the query result. For instance, let 〈1〉 = 1
replace 〈1〉 = 2. Then the graph is regenerated based on the
perturbed dK series.

When the dK-1 model directly captures the degree-
distribution information, the dK-2 and other dK models also
store that information. In the example shown in Fig. 4, there
are four dK-2 series containing degree 2. Since each degree-2
node builds two edges, there should be two nodes of degree
2 in the graph. Hence, the degree perturbation in the dK
anonymized graphs mostly comes from the privacy request,
and the dK models fully preserve the degree information.

3.3 The HRG model
The HRG model captures the connection probability of
nodes. Specifically, an HRG model is a dendrogram T ,
which is a rooted binary tree with |V | leaf nodes corre-
sponding to |V | vertices in the graph G. Each node on the
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Fig. 5: The HRG model

tree except the leaf node has a number on it, which shows
the probability of connection between its left part and right
part.

Let Lr and Rr denote the left and right subtrees rooted
at r, respectively. nLr and nRr are the numbers of leaf nodes
in Lr and Rr. Let Er be the total number of edges between
the two groups of nodes Lr and Rr . Then, the posterior
probability for the subtrees rooted at r is pr = Er/(nLrnRr).
The posterior probability of the whole HRG model T to
represent G is given by

p(T ) =
∏

r∈T
pEr
r (1− pr)nLrnRr−Er (3)

Fig. 5 shows an example of two possible dendrograms
of the original graph. The pr in each root node is first
calculated. For instance, in the dendrogram T2, the root node
of subtrees {P, R} and {Q, S} have a probability 1/2. Because
there are two edges between the two sets of nodes, we have
Er = 2 so pr = 2/(2 ∗ 2) = 1/2. Then we get the posterior
probability of the two HRGs. p(T1) = (1/3)(2/3)2 ≈ 0.148
while p(T2) = (1/2)2(1/2)2 ≈ 0.006. p(T1) is greater than
p(T2), so T1 has more probability to represent the graph.

After collecting a group of dendrograms and their prob-
abilities, the differential privacy anonymization mechanism
requires us to resample one dendrogram with a noisy
probability distribution [18]. The final graph is regenerated
based on that dendrogram. Based on the HRG model, the

Fig. 6: Degree distribution of the Facebook dataset

local HRG means cutting the original graph into subgraphs,
applying the HRG anonymization mechanism, and pasting
them together.

The HRG model, including the local HRG model, builds
dendrograms by grouping nodes together. When the models
choose a cluster and transfer that cluster into a subtree in the
dendrogram, there is a high probability that the regenerated
graph has a similar cluster. When some nodes in the subtree
do not belong to the cluster, the dendrogram also captures
that information and stores it in the posterior probability pr .

3.4 Graph utility analysis

In this paper, four different graph models, including the
dK-2 model, the dK-3 model, the HRG model, and the
local HRG model, are compared with each other. The graph
utility is analyzed with four utility metrics: the degree dis-
tribution, the clustering coefficient, the shortest path length
and the influence maximization.

The degree of a node in a network is the number of
edges the node has to other nodes. The dK models directly
store degree information, but the HRG model does not.
Although the connection probability of nodes contains some
degree information, some information is lost because of the
model itself. Because the dK models directly store degree
information, these models may, by definition, have better
performance than the HRG model.

The clustering coefficient is a measure of how nodes in
a graph tend to cluster together. The HRG model directly
stores the clustering information, but the dK models do not.
In the dK models, the nodes information is separately stored
in groups of size N. The dK models can not fully preserve
the clustering information when N is smaller than the size
of clusters.

The shortest path length measures the average length
from one node to every other node. Theoretically, there is
no direct shortest path length information in any of the
four models. The models can only preserve this information
indirectly. For example, the dK model builds chains of
nodes, so that two nodes in the same chain can preserve
some path information. In the HRG model and the local
HRG model, the linking information of nodes and clusters
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Fig. 7: Degree distribution of the ca-HepPh dataset

allows us to derive the shortest path length. The shortest
path length between two clusters is the minimum value
of the shortest path length between any two nodes in the
clusters.

In influence maximization, the greedy algorithm is ap-
plied to choose a set of seeds [8]. Then the algorithm based
on the independent cascade model is evaluated to find the
percentage of influenced users [14]. Similar to the shortest
path length, there is no direct information of influence
maximization theoretically stored in any of the models. Both
the clusters and the shortest paths in the network may have
impact on the propagation of information.

The analysis shows that existing mechanisms are able to
preserve several particular utility metrics, which are limited
by their models. The success in preserving one metric, like
the dK-2 model preserving the degree distribution, does not
equal success in preserving graph utility. If researchers do
not want to evaluate multiple kinds of utility metrics, find-
ing a comprehensive utility metric like persistent homology
is significant.

4 EVALUATION AND ANALYSIS

Anonymization mechanisms based on these four models
are used to anonymize the same graphs. Three datasets are
analyzed, including the Facebook social network, the ca-
HepPh collaboration network, and the Enron email network
[10]. The privacy parameter, ε, is set to 5 for all mechanisms,
which means these mechanisms will effect the same ability
to preserve privacy. Then, performance is analyzed under
various utility metrics, including the traditional metrics and
the high-level metric, persistent homology.

4.1 Traditional utility metrics
4.1.1 Degree distribution

Fig. 6 shows the degree distribution of the Facebook
dataset. The original graph has an average degree of 22.57,
while the anonymized graph has the average degree of
14.52, 21.11, 22.57, and 17.45 in the dK-2 model, the dK-
3 model, the HRG model, and the local HRG model

Fig. 8: Clustering coefficient of Facebook

Fig. 9: Clustering coefficient of the ca-HepPh dataset

anonymized graph. The standard deviations of the degree
are 13.06, 10.08, 13.16, 4.66, and 11.61 in the original graph
and the dK-2, dK-3, HRG, and local HRG results. We can
find that the dK-3 model can preserve the degree distri-
bution well, while the other three models only partially
preserve the degree information.

Fig. 7 shows the degree distribution under the ca-HepPh
dataset. The average degree is 2.98, 2.91, 2.89, 3.12, and 3.01
in the original graph and the dK-2, dK-3, HRG, and local
HRG results. The standard deviations are 1.76, 1.64, 1.82,
1.64, and 2.11, respectively. The results show that all four
models preserve the degree distribution.

Only the dK-3 model perfectly preserves the degree
information in both of these datasets. The dK-2 model
fails becase it does not contain as much information as
the dK-3 model. Consequently, it is hard to use the dK-2
series to regenerate a graph. The HRG model and the local
HRG model fail because the utility of degree is lost when
generating the models (which is analyzed in Section 3.4).

4.1.2 Clustering coefficient
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Fig. 10: Shortest path length of the Facebook dataset

Fig. 11: Shortest path length of the ca-HepPh dataset

Fig. 8 shows the clustering coefficient distribution of the
Facebook dataset. The average clustering coefficient is 0.68,
0.14, 0.20, 0.15, and 0.62 in the original graph and the dK-2,
dK-3, HRG, and local HRG results. The standard deviations
are 0.19, 0.18, 0.15, 0.02, and 0.21, respectively. The results
show that only the local HRG model can preserve the
clustering coefficient information well, while other models
break the clustering coefficient information.

Fig. 9 shows the clustering coefficient distribution of the
ca-HepPh dataset. The average clustering coefficient is 0.22,
0.07, 0.10, 0.02, and 0.25 in the original graph, the dK-2, dK-
3, HRG, and local HRG results, respectively. The standard
deviations are 0.31, 0.18, 0.21, 0.11, 0.35, respectively. Sim-
ilarly, only the local HRG model preserves the clustering
information.

Besides the local HRG model, the utility with clustering
coefficient is lost in the other three models. The experiment
of the HRG model shows that it does not preserve the
grouping information, though it theoretically has the ability.
The potential reason is that a normal OSN has a large
number of dendrograms and each dendrogram only has a
small posterior probability of representing the graph.

In the HRG model, the number of possible dendrograms

Fig. 12: Percentage of influenced users in Facebook

Fig. 13: Percentage of influenced users in ca-HepPh

is |T |=(2|V |-3)!! for a graph with |V | vertices, where !! is the
semi-factorial symbol [4]. The HRG model is able to capture
the clustering information and stores this information into
some dendrograms. However, if the total probability of
these useful dendrograms is relatively small, then it is hard
for the final graph to preserve that information. Compared
with the HRG model, the local HRG model splits the graph
into small subgraphs, which significantly reduces the num-
ber of dendrograms. Hence, the local HRG is the only model
to preserve the clustering information.

4.1.3 Shortest path length

Fig. 10 shows the average shortest path length of each
node in the Facebook subgraph. The overall average shortest
path length is 2.67, 2.73, 2.30, 1.87, and 2.81, corresponding
to the original graph and the dK-2, dK-3, HRG, and local
HRG results. The standard deviations are 0.50, 0.41, 0.29,
0.06, and 0.39, respectively. The results show that the local
HRG model and the dK-2 model can partially preserve some
shortest path length information.

Fig. 11 shows the shortest path length in the ca-HepPh
dataset. The overall average shortest path length is 6.55,
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(a) Original graph with distance information

(b) δ=2

(c) δ=3

Fig. 14: Persistent homology example of H0

4.81, 5.61, 4.62, and 5.81, corresponding to the original
graph and the dK-2, dK-3, HRG, and local HRG results.
The standard deviations are 1.38, 0.92, 1.00, 0.58, and 1.10,
respectively. Here, none of the four models preserves the
shortest path length.

Similar to the analysis, the experiment results reveal that
all models cannot fully preserve the information. Because
the models do not directly store the data, the anonymized
graphs introduce errors that are independent of the privacy
requirement. Consequently, the utility of the graphs is lost.

4.1.4 Influence maximization
In the evaluation, various sizes of the seed sets are chosen

to test the number of influenced users. The propagation rate
of information is set to 0.1. Fig. 12 shows the percentage of
influenced users in the Facebook dataset. Compared with
the original data, the root-mean-square errors (RMSEs) are
12.98, 8.17, 18.90, and 7.10 in the dK-2, dK-3, HRG, and
local HRG data. None of the four models preserves the
influence maximization information, since we can find a
shape increase when there are 13 seeds in the original
Facebook graph but it not exists in the anonymized graphs.

Fig. 12 shows the percentage of influenced users in the
ca-HepPh dataset. Compared with the original data, the
RMSEs are 1.87, 0.91, 0.70, and 0.92 in the dK-2, dK-3,
HRG, and local HRG data. The anonymized graphs of the
ca-HepPH all preserve some of the influence maximization
information of the original graph.

4.1.5 Conclusion

The anonymized results are evaluated under three tra-
ditional graph utility metrics (the degree distribution, the
clustering coefficient, and the shortest path length) and
one application utility metric (the influence maximization).
Generally, the dK-based models can preserve more degree
distribution information, while the HRG-based models can
preserve more clustering information. The dK-3 model al-
ways outperforms the dK-2 model, and the local HRG
model outperforms the HRG model. Although all models
preserve some of the information, none of them are suitable
for preserving all four kinds of metrics.

In previous research, utility metrics are always carefully
chosen and the adverse metrics are sometimes ignored.
Because each traditional metric can only describe the graph
in some aspects, the true utility of the anonymized graph is
questionable. Hence, this paper deploys persistent homol-
ogy to evaluate the anonymization mechanisms.

4.2 High-level utility metric
In this section, the barcodes of the original graph and
the anonymized graphs are generated. Fig. 15 shows the
barcodes of the Facebook dataset, while Fig. 16 shows the
barcodes of the ca-HepPh dataset. In each graph, 60 users
are randomly chosen to be the critical users. The results
show that most components or holes are in the H0 and
H1 dimensions. However, some anonymized graphs contain
3-dimensional holes. Then the barcodes show persistent
homology in H0, H1, and H2 dimensions. In the following
subsections, we evaluate the ability of preserving persistent
homology evaluated among different dimensions and ex-
amine why persistent homology information is lost.

4.2.1 H0 dimension

Longest bar. The barcodes of the H0 dimension shows
the number of components existing in a distance interval.
The longest bar from the beginning to the end exists in the
barcode of every connected graph. When the distance δ is
small, there are some disconnected components. When δ is
long enough, the graph becomes a connected graph, and the
disconnected components are combined into one. Hence, all
barcodes have a bar from 0 to the end of the x-axis.

The length of the x-axis is chosen to be the length of
longest shortest path in the graph, which ensures that all
components and holes are included in the barcode. In OSNs,
the longest distance shows the maximum number of hops
of information transmission. When the distance is small,
users are closely connected and the information is rapidly
transmitted. The original Facebook graph has the length of
6, while the anonymized results are from 3 to 5. The original
ca-HepPh graph has the length of 18, while the anonymized
results are from 8 to 14.

Second longest bar. Besides the longest bar, the second
one is [0, 3) in the original Facebook network. This bar
shows that when δ is no less than 3, the graph becomes
one united component. The length of the second longest
bar is a critical number, which shows the number of hops
connecting the graph together.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

0 1 2 3 4 5 6

Facebook original (dimension 0)

0 1 2 3 4 5 6

Facebook original (dimension 1)

0 1 2 3 4 5 6

Facebook original (dimension 2)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook DK2 method (dimension 0)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook DK2 method (dimension 1)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook DK2 method (dimension 2)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook DK3 method (dimension 0)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook DK3 method (dimension 1)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook DK3 method (dimension 2)

0 0.5 1 1.5 2 2.5 3

Facebook HRG method (dimension 0)

0 0.5 1 1.5 2 2.5 3

Facebook HRG method (dimension 1)

0 0.5 1 1.5 2 2.5 3

Facebook HRG method (dimension 2)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook local HRG method (dimension 0)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook local HRG method (dimension 1)

0 0.5 1 1.5 2 2.5 3 3.5 4

Facebook local HRG method (dimension 2)

Fig. 15: Barcode of the Facebook dataset

Fig. 14 shows a simple example, in which the barcode
is similar to the original Facebook graph. Some distance
information is shown in Fig. 14(a), e.g., the node pair P–T
has the longest distance, which equals 6. In Fig. 14(b), when
δ=2, the simplices are disconnected. In Fig. 14(c), when δ=3,
the whole graph is a connected component. In Fig. 15, we
find that only the barcode of the original graph has the
second longest bar, length 3, the barcodes of the dK-2, dK-3,
and the local HRG results have length 2; and the barcode of
the HRG result only has length 1.

The second longest bar length is meaningful in real-
world applications. Assuming OSNs, for instance, transmit
recommendation information, the second longest bar length
represents the ability to cover the critical users. When the
length is 1, the network has maximum transmission ability.
If the critical users are guaranteed to recommend the prod-
uct to their neighbors when they receive that information,
the group of all critical users is covered. When the length
is 2, the group of critical users is not fully covered when
the non-critical users refuse to broadcast the information.
However, the group can be fully covered when the non-
critical users adjacent to the critical users can recommend
the product. Like the example in Fig. 14(b), {P, Q, R} be-
comes connected with the help of some median non-critical
users. When the length is 3, the transmission becomes more
difficult. This requires all non-critical users who are within
range of 2 hops of critical users to broadcast the recommen-
dation information.

As described above, different second longest bar lengths
show different ability of to transmit information. When the
second longest bar length is 3 in the original Facebook
graph, the anonymized results are 1 and 2. When the second
longest bar length is 5 in the original ca-HepPh graph, the
dK-3 anonymized result is 6, the dK-2 anonymized result is

1, the HRG result is 3, and the local HRG result is 4.
H0 distribution. The H0 distribution has meaning sim-

ilar to the second longest bar length. One bar shows the
number of hops to connect a subgraph together. In the
Facebook dataset, the number of the [0, 2) bars is 8 in the
dK-2 anonymized results, while it is just 1 in the original
graph. Other anonymized results have a very similar H0

distribution. In the ca-HepPh dataset, the dK-2, HRG and
local HRG results have more short bars than the original
graph. The dK-3 result has more long bars than the original
graph. As demonstrated above, more long bars means more
difficulty transmitting information in OSNs.

The H0 barcode shows that most anonymized OSNs
are more closely connected than the original graph. Com-
pared with the original results, all anonymized graphs have
shorter longest bars and second longest bars. Except the dK-
2 result of Facebook and the dK-3 result of ca-HepPh, all
anonymized graphs have more short bars than the orig-
inal results. In the application like recommendation, the
anonymized graphs transmit information more easily than
the original graphs.

4.2.2 H1 dimension

In the barcode, an H1 hole is a 2-dimensional hole sur-
rounded by a 1-dimensional cycle. Fig. 17 shows a pentagon
hole corresponding to the bar [1, 2). Fig. 18 shows a hexagon
hole corresponding to the bar [1, 2) in H1 and [2, 3) in
H2. The first subgraph of each graph shows the distance
information. According to the definition, the distance is the
number of hops of the shortest path between two users. For
instance, in Fig. 17, the distance of P–S is 2 if P–Q and Q–S
are two pairs of adjacent nodes.

In the two examples, when δ = 1, the holes are formed.
In Fig. 18(c) we find that when δ = 2, the hexagon is fully
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Fig. 16: Barcode of the ca-HepPh dataset

filled by triangles. Because triangles are not viewed as holes
in persistent homology, there is no H1 hole after δ = 2.
Although some polygons cannot be directly cut into trian-
gles, they are filled by the combination of parts of triangles.
For example, the quadrilateral {U,P, S,R} is covered by
the triangles {U,Q, S}, {U,P,Q}, and {S,R,Q}. The last
two triangles are not limited in the quadrilateral. However,
the H1 bar only cares about the holes in dimension 2, i.e.,
the occupancy of triangles. If the whole area is occupied by
triangles, the H1 bar dies.

The two examples show that the birth time and the
death time of the H1 bar are related to the size of the hole.
Specifically, having lengths of edges along the cycle, the
birth time of a hole equals the largest value of these lengths.
For instance, the birth time is 1 in Fig. 17. The death time is
the longest distance, which makes the polygon become filled
with triangles. If the birth time is δ = 1 and the death time
is δ = n in H1, the hole is a polygon with (3n − 2) sides,
(3n − 1) sides, or (3n) sides. Fig. 19, 20, and 21 give the
examples of polygons with 7, 8, and 9 sides. In these three
polygons, edge lengths are all 1. The examples show that
when δ = 2, there is at least one area not filled by triangles
in each polygon. When δ = 3, all the polygons are filled by
triangles. Hence, these polygons all have H1 bar [1, 3).

To analyze the effect of holes, we can imagine the break-
ing of holes. Take Fig. 17 as an example, if the node pairs
P–S and R–S have direct links in the graph, then the holes
are broken, and it becomes three triangles. The edges of the
triangles all have the distance of 1. Because of the definition
of simplicial complex, these triangles are not holes and
consequently not H1 barcodes. Whether the pentagon or the
three triangles, the five nodes are connected. This means that
if these users are guaranteed to transmit information, all of

them are covered. However, comparing the two structures,
we can see that the triangular structure is more stable. If two
edges in the pentagon are deleted, the component becomes
disconnected and some users are not covered. By contrast,
when at most one edge is deleted from each of the three
triangles, the structure is still connected. Hence, the stable
OSN has less H1 bars.

Fig. 15 shows that the original Facebook graph only has
5 bars in H1. However, all anonymized graphs have more
H1 bars. The dK-2, dK-3, HRG, and local HRG results have
82, 38, 50, and 8 H1 bars, respectively. In Fig. 16, the original
graph, the dK-2, dK-3, HRG, and local HRG results have
5, 36, 3, 18, and 6 bars, respectively. Furthermore, although
the H1 bars in the dK-3 result of ca-HepPh graph is less
than the bars in the original graph, the anonymized result
is not more stable because it has a bar [6, 7). According
to the analysis above, this bar is a tetragon or a pentagon
with edge distance of 6. The edge distance of 6 means
that at least one pair of critical users needs 4 non-critical
users to connect. This structure becomes weak when some
users refuse to transmit the information. Hence, the bars
with large birth time or death time have a huge impact on
the stability of the network. In conclusion, all anonymized
graphs are not as stable as the original graph, because they
have more 2-dimensional holes or larger holes.

4.2.3 H2 dimension

Similar to the H1 holes, the H2 bars represent the 3-
dimensional voids bounded by 2-dimensional surfaces. In
OSNs, the 2-dimensional surfaces are the clusters of users.
According to the definition of simplicial complex, the cluster
has to have at least three users to form a triangle. Then the
H2 bars show the stability of structures between clusters.
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(a) Original graph with distance in-
formation

(b) δ=1

(c) δ=2

Fig. 17: Example of hole with bar [1, 2) in H1

In Fig. 18, there is an H2 bar [2, 3). Although it is difficult
to analyze the hole in high dimension, i.e., H2, we can
combine H1 and H2 together to find some insights. In Fig.
18, the six nodes that form the hole have the maximum
pairwise distance of 3, and the holes, in H1 and H2, die
when δ = 3. This implies that the death time, of holes in
all dimensions, is the longest pairwise distance of the links
formed by nodes in the hole. If the birth time is δ = 1 and
the death time is δ = n in H1 and H2, the hole is a (2n)-
sided polygon or a (2n+ 1)-sided polygon.

Fig. 15 and 16 show that the original graphs do not
have H2 bars. The H2 bars exist in the dK-2 and the
HRG anonymized graphs. The H2 bars show that in the
anonymized graph of the two models, some clusters are
not strongly connected. If some edges are broken, these
clusters will become disconnected with each other. In the
recommendation application, if some linking users refuse
to recommend the product, some clusters of users may not
obtain the information. The anonymized network of the two
models get bad performance.

4.2.4 Impact of different parameters
In order to evaluate the performance of the anonymization
methods under different privacy criteria, we set ε to dif-
ferent values and generate the respective barcodes. In Fig.

(a) Original graph with distance in-
formation

(b) δ=1

(c) δ=2

(d) δ=3

Fig. 18: Example of hole with bar [1, 2) in H1

(a) δ = 1 (b) δ = 2 (c) δ = 3

Fig. 19: Example of 7-sided polygons

22, we present the results of utilizing the dK-3 model in
the Enron email dataset, which preserves some persistent
homology information. We get the same results in other
models and other datasets.

Fig. 22 shows that when ε is smaller, i.e., the privacy level
is stricter, there is less persistent homology information in
the anonymized graph. For example, there are no H1 and
H2 bars in the original graph. However, there are 4 H2 bars
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(a) δ = 1 (b) δ = 2 (c) δ = 3

Fig. 20: Example of 8-sided polygons

(a) δ = 1 (b) δ = 2 (c) δ = 3

Fig. 21: Example of 9-sided polygons

when ε = 0.5 and 2 H2 bars when ε = 1. The presence of
the H1 and H2 holes means that the anonymized graphs
are not strongly connected. When ε > 5, the H1 or H2 bars
are eliminated, which means the corresponding holes do not
exist in the anonymized graph.

The length of the longest H0 bar is another important
factor in the anonymized graph. The figure shows that
even when ε = 50, which is a very loose privacy criteria,
the longest H0 bar is much longer than the one in the
original graph. As analyzed before, the longest distance in
the original graph is 4, but it is 11 to 35 in the anonymized
graphs. Furthermore, when the privacy requirement gets
looser, the anonymized graph does not preserve more pre-
cise information of the longest bar length. It shows that
the anonymization model cannot perfectly preserve the per-
sistent homology information, rather than that the privacy
noise causes the data distortion.

4.2.5 Conclusion

Comparing the four models, we found that the local
HRG model is the best to preserve persistent homology
information. However, some information, like the longest
bar length, the second longest bar length and the H0, H1

distributions are not well preserved. The other models sig-
nificantly change persistent homology, especially in adding
H1 and H2 bars.

In the H0 analysis, the anonymized graphs are more
closely connected than the original graphs. However, the
H1 analysis and H2 analysis show that these connec-
tions are based on some specific linking users. Hence, the
anonymized graphs are not stable. By contrast, although the
original graphs cannot rapidly transmit information like the
anonymized graphs, their structures are more stable. The
real-world dataset contains a compact structure that existing
anonymization mechanisms find difficult to duplicate.

5 RELATED RESEARCH

Persistent homology is a description of topology features
[21]. It was applied in analyzing persistent air passengers’

networks [13], obtaining the distance of lower bounds be-
tween networks [7], and scheduling robot paths in uncertain
environments [1]. The idea of barcode was proposed in [6]
but it is novel in security analysis. In [17], the authors made
an attempt to employ zigzag persistent homology [2] to
achieve K-anonymity [19].

The simplest OSN anonymization mechanism is naive ID
removal [12]. It does not change the topology of the social
networks, and proved to be vulnerable to de-anonymization
attacks [9]. K-anonymity based mechanisms are designed to
anonymize relational data [19, 22]. Although they are suit-
able for some specific structural semantics, e.g., the degree
distribution, attackers can use other structure information to
conquer the anonymized data. Fortunately, advanced mech-
anisms like differential privacy-based methods are proposed
to solve the vulnerability [3, 5].

6 CONCLUSION AND FUTURE WORK

Existing anonymization mechanisms claim to achieve a bal-
ance between utility and privacy. In this paper, we demon-
strate that when the privacy level is not extremely high
(ε=5), the utility of the anonymized graphs are significantly
violated. From a comprehensive point of view, with per-
sistent homology, the trade-off between the utility and the
privacy is broken. The violation of the utility is mainly
related to the models, but not the privacy request. The
performance of existing mechanisms on real-world datasets
becomes untrustworthy.

In the future, we aim to design a new anonymization
mechanism to preserve persistent homology. As shown in
the analysis, persistent homology is related to the compo-
nents and holes in the network. Hence, our work will start
with the basic structural components. Compared to existing
work, which preserves degree information or clustering
information, persistent homology is believed to be more
significant because it can be deployed in recommendation
applications.
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