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Introduction 

Drug interaction is a leading cause of adverse drug events and a major obstacle for current clinical practice. 

Pharmacovigilance data mining, pharmacokinetic modeling, and text mining are computation and 

informatics tools on integrating drug interaction knowledge and generating drug interaction hypothesis. We 

provide a comprehensive overview of these translational biomedical informatics methodologies with 

related databases. We hope this review illustrates the complementary nature of these informatics approaches 

and facilitates the translational drug interaction research. 
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1. Background 

Adverse drug events (ADEs), the unintended drug side effects, have led to the major public health burden. 

In US alone, more than 500,000 serious ADEs were reported annually to the US Food and Drug 

Administration (FDA) during the past 5 years (1). ADEs are one of the leading causes of morbidity and 

mortality. A meta-analysis of 39 prospective studies suggested that 6.7% of inpatients have severe ADEs 

and 0.32% have fatal drug reactions (2). Substantial evidences show that the drug-drug interaction (DDI) 

is one of the leading causes of ADEs. With the increasing rate of poly-pharmacy, the risk of ADEs increased 

from 13% (two drugs) to 58% (five drugs) (3). Hence, efficient and powerful computational approaches are 

needed in detecting the DDI-induced ADE signals, and investigating their molecular mechanisms. 

In order to evaluate clinical effects and molecular mechanisms of DDIs, clinical pharmacokinetic (PK) 

studies, pharmaco-epidemiologic studies, and in-vitro PK experiments have been routinely utilized. One 

salient example is that of breast cancer hormonal therapy, tamoxifen. The formation of its active metabolite, 

endoxifen, was inhibited by co-administrated selective serotonin reuptake inhibitor (SSRI) paroxetine in a 

clinical pharmacokinetics study (4).  In vitro metabolism studies revealed that this is due to paroxetine’s 

strong inhibition of the tamoxifen bio-transformation to endoxifen via the CYP2D6 pathway (5). In a 

follow-up pharmacogenetics study, breast cancer patients with CYP2D6 loss function variants had a higher 

risk of disease relapse and a lower incidence of hot flush (6). The clinical consequence of treating breast 

cancer and depression using tamoxifen and SSRIs was reviewed (7), and called for further investigation. 

This example clearly demonstrates that the translational significance of drug interaction studies relies on 

both clinical and molecular pharmacology evidences. As described by Hennessy and Flockhart (8), an 

integrated informatics, epidemiology, and pharmacology approach has the potential to accelerate the 

translational drug interaction studies. Pioneered by Tatonetti et al. (9),  FDA adverse event reporting system 

(FAERS) and electronic medical records (EMR) were utilized to generate and validate Drug-ADE and drug-

drug-ADE associations. Duke et al. proposed a text mining strategy for DDI molecular pharmacology 

evidence discovery from the public literature (10), which discovered 13,197 potential DDIs. In the follow 

up in vitro study, Han et al. validated the loratadine‐simvastatin myotoxicity interaction, and its increased 

myopathy risk in both EMR and FAERS databases (11). 

Driven by the emerging big data and novel computational models, there are three areas where translational 

biomedical informatics and pharmacometrics are having a major impact on the drug interaction research. 

First, during the past two decades, federal regulatory agencies, hospitals and research organizations 

maintained various patient databases such as spontaneous reporting system (SRS), electronic medical 

records (EMR) and electronic health records (EHR) for post-marketing surveillance and epidemiological 
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studies. When these data are increasingly available to the research communities, computational models 

have been developed to identify and prioritize DDIs (12). Second, pharmacokinetics of DDIs have been 

well characterized and predicted with physiologically based pharmacokinetic (PBPK) models. Third, 

knowledge discovery through the literature has become a powerful approach for the DDI detection, in which 

the natural language processing (NLP) is the key computation technology. 

A few reviews have highlighted some translational biomedical informatics approaches. For instance, the 

reviews by Koutias and Jaulent, and Harpaz et al. focused on computational models for SRS and EMR 

databases (12, 13). Text and data mining techniques to detect ADE signals were reviewed by Karimi et al. 

(14). Jensen et al. summarized available EMR/EHR databases and the obstacles for the EMR/EHR mining 

(15). However, these reviews did not focused on the translational nature in the ADE research, and none of 

them specifically addressed the DDI research. In this review, we focus on computational approaches for 

post marketing surveillance data mining, PBPK modeling, and literature based knowledge discovery, 

because these three approaches complement to each other. The rest of this review is organized as following: 

data mining methods for the post marketing surveillance are shown in section 2; PBPK DDI models and 

databases are presented in section 3; literature-based DDI discovery approaches are presented in section 4; 

and section 5 concludes this review.  

2. DDI Data Mining Methods Using the Post-Marketing Surveillance Data 

2.1 A Brief Review of Single Drug ADE Association Analyses 

2.1.1 Univariate Disproportionality Analyses (DPAs)  

DPAs are the pioneer approaches to quantify and prioritize single drug-ADE associations. For a drug-ADE 

pair, DPAs summarize data into a 2-by-2 contingency table, in which contains the frequencies classified by 

the usage of a drug (yes/no) and the occurrence of an ADE (yes/no). The outcome is the frequency that this 

drug-ADE pair is observed, and the expectation is the expected frequency of this drug-ADE pair under the 

assumption of no association. As its name, DPAs compare the outcomes to their expectations. DPAs can 

be classified as frequentist, Bayesian or empirical Bayesian. DPAs can be either used to analyze specific 

drug-ADE pairs of interest, or can conduct drug wide and ADE wide signal screening.  

Proportional Reporting Ratio (PRR) and Reporting Odds Ratio (ROR) are frequentist DPAs (16, 17). ROR 

calculates the ratio of the ADE odds between the group of patients taking the drug and the other patients 

not taking the drug. PRR, on the other hand, calculates the ratio of two relative ADE risks between two 

patient groups. Practically, PRR_025 and ROR_025, the lower bound of 95% confidence intervals for PRR 
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and POR, are often used for the signal detection, too. Likelihood Ratio Test (LRT) is another frequentist 

DPA (18). It assumed that the drug induced ADE frequency follows a Poisson distribution. Under the null 

hypothesis, this Poisson distribution had the same ADE rate as the background rate, i.e. the ADE rate for 

patients not taking the drug; and under the alternative hypothesis, they are not the same.  The log-likelihood 

ratio statistics are then constructed to test this hypothesis. The LRT tests a drug and all ADEs at the same 

time, and the distribution of the maximum LRT can be calculated through the permutations.  

Information Component (IC) is a Bayesian DPA (19). This approach assumes that the drug induced ADE 

frequency follows a binomial distribution itself; its expected frequency is calculated from the marginal drug 

frequency and ADE frequency; and the prior distribution of drug marginal frequency and ADE marginal 

frequency are assumed to be uniform distributions. The IC calculates the expected ratio between drug 

induced ADE frequency and its expected frequency under all these distributions assumptions. Later, Noren 

et al. introduced a joint Dirichelet distribution prior and extended Bate’s IC model (20). Like PRR and 

ROR, signal detection using IC can be based on its lower bound of the 95% confidence interval (IC_025). 

Empirical Bayesian Geometric Mean (EBGM) is an empirical Bayesian DPA. Similar to the IC approach, 

EBGM calculates the expected ratio between drug induced ADE frequency and its expected frequency (21). 

However, different from the IC approach, a two-component mixture of gamma distributions was chosen to 

model the ratio, and this mixture model was further estimated from the data instead of pre-specified prior 

distribution. Bayesian False Discovery Rate (BFDR) is another empirical Bayesian DPA (22). For the above 

mentioned PRR, ROR and EBGM models, BFDR calculates the posterior probability for a predefined null 

hypothesis. For instance, BFDR was originally applied to the EBGM model (22); and later on, it was applied 

to the PRR too (23). BFDR itself can be used for signal detection. 

Three-Component Mixture Model (3CMM) is an empirical Bayesian DPA developed by our group (24). 

Similar to the EBGM, 3CMM utilizes gamma-Poisson assumption as well. However, unlike EBGM, 

3CMM has three distributions that characterize the ratio between drug-induced ADE frequency and its 

expected frequency; and local false discover rate (lfdr) is introduced for false positive control. Under 

3CMM, the first distribution specifies the point mass distribution at 0 for the ratio; the second distribution 

has a mean ratio of 1; and the third one has a mean greater than 1. Particularly, the second distribution 

characterizes the null hypothesis, while the third distribution characterizes the alternative hypothesis. 

Hence, the lfdr estimates the probability of the null distribution conditional on the data and the 3CMM.  

2.1.2 Multivariate Analyses 
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Univariate DPAs suffer from the confounding bias, which can be addressed in multivariate analysis. 

Tatonetti et al. assumes that confounding variables, such as co-morbidities, can be characterized by the co-

medication variables (9). He applied logistic regression model first, and estimated the propensity score for 

each drug of interest. Then, in analyzing a drug-ADE association, this drug’s propensity score was used to 

adjust the confounding variables.  

Multiple logistic regression (MLR) and regulated logistic regression (RLR) are two other approaches in 

analyzing drug-ADE associations. MLR is a traditional statistical approach to detect drug-ADE association. 

It can be considered to be a multivariate extension of ROR. Usually, the MLR analyzes an ADE and all 

available drugs at the same time.  Examples of applying MLR to EHR data can be found in Harpaz et al. 

(25). In certain situations, drug-ADE signal detection by MLR may involve a large number of drugs than 

sample sizes, where RLR becomes a viable solution, such as ridge and Lasso regression models. Example 

of signal detections by lasso regression models includes Caster et al. (26).  

DPAs are less computationally expensive compared within other multivariate approaches (12). 

Additionally, DPAs can be either used to analyze specific drug-ADE pairs of interest, or can conduct drug 

wide and ADE wide signal screening. Though the disproportionality measurements may suffer from 

confounding bias, evaluations by gold standard shown DPAs to have decent performances (AUCs) (27). 

Hence, DPAs are routinely used for large scale hypothesis generation. Multivariate analyses, on the other 

hand, are typically observed in epidemiology studies to validate a few candidate drug ADE associations.  

For logistic regression modeling, the number of predictors are usually less than two thousands, which is the 

similar to the number of FDA approved drugs. For pharmacovigilance databases, the sample sizes are 

usually up to a few millions. As a consequence, enhanced computational resources or smart techniques are 

required to handle the big data challenge. Our experiences indicate that a super computer with 50GB 

memory can handle MLR with a few hundred drugs and four million observations. With less powerful 

computational resources, bootstrap regression would be an ideal solution. 

2.2 Drug interaction signal detection 

Some of the DPAs in section 2.1 can be extended to detect drug interaction signals. By treating a drug 

combination as a new drug, the disproportionality measurements can be obtained, accordingly. For instance, 

Huang et al. introduced an extended LRT method which can be used for detecting signals for multiple drugs 

(or ADEs) in a drug class (or in an ADE group) (28). Likewise, an extended higher order IC method is 

proposed by Noren et al. (20). Higher order IC is based on the same model assumption as the traditional 
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IC, and its credibility interval can be derived similarly. They can not only be used for detecting the potential 

drug-drug interactions, but also can be used for detecting the association between a drug-ADE pair and 

another risk factor (e.g. age or gender). The examples for the extended EBGM can be found in Almenoff 

et al. and DuMouchel et al. (29, 30). Although these extended DPAs can be used for detecting the potential 

DDI signals, these approaches cannot distinguish the signals that are associated with drug interactions or 

just with independent drugs. 

Noren et al. proposed a novel model for detecting two-way DDIs (31). In their model, a ratio of the DDI 

induced ADE risk and its expected ADE risk is calculated, and the expected ADE risk is calculated from 

the single drug induced ADE risk from both drugs and baseline ADE risk from neither drugs. Like the IC 

approach, a Bayes approach is taken to estimate the expected DDI risk ratio, and an uninformative prior 

was speculated for the prior. This prior has the advantage of shrinking the ratio toward 1 when the sample 

size is small.  

The regression based method for detecting DDIs can avoid the confounding variable problems. Examples 

for the logistic regression model applied for detecting potential DDIs from SRS can be found in Van 

Puijenbroek et al. (32). Thakrar et al. proposed multiplicative and additive relationship to model the risks 

for single drugs and DDI pairs (33). The multiplicative model assumes that the risk associated with a drug 

multiplies with the background risk, and the additive model assumes that the risk associated with a drug is 

additive to the background risk. Their results show that the additive model is a more sensitive method for 

detecting signals and the multiplicative model may further help on qualifying the strength of the signals 

detected by the additive model. In addition to detecting the ADEs that were caused by the drug-drug 

interactions, the regression model can also be used for detecting the signals that one drug may reduce the 

ADEs of the other drug (i.e. beneficial effects of DDI).  

2.3 High Dimensional Drug Interaction Detection 

We recently developed a novel mixture drug-count response model (MDRM) to characterize and detect 

high dimensional drug interaction signals (34). MDRM is an empirical Bayesian method. This model 

assumes that the drug induced ADE follows two patterns: one pattern assumes a constant ADE risk 

regardless of the dimension of the drug combinations, while the other patter assumes that ADE risk 

increases like dose (i.e. drug counts) response curve. This model then estimates a probability for each drug 

combination who follows the drug-count response model. MDRM, for the first time, characterizes the 

pattern of high dimensional drug interactions and ADEs. Its innovation lies in the fact that MDRM allows 
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different drug combinations to share the same drug-count response relationship, as the sample size of each 

drug combination goes very small when the dimension of the drug combination increases.   

Currently, the amount of FDA approved drugs generate over millions of 2-way drug combinations; and as 

the dimension of drug combination increases, the amount of plausible drug combinations increases in a 

factorial speed. As traditional statistical models are insufficient to deal with tremendous amount of drug 

combinations, informatics approaches become a promising and practical solution. Two major informatics 

techniques to detect drug interaction signals include frequent closed itemset (FCI) mining and association 

rule mining. FCI is powerful on eliminating redundant drug combinations. For instance, if drug A, drug B, 

ADE X, ADE Y is a FCI, then its subsets (such as drug A, ADE X) are considered to be redundant. These 

redundant subsets can be removed unless such a subset appears in a record that does not contain all items 

of drug A, drug B, ADE X, ADE Y. Xiang et al. proposed a FCI-filter approach that integrated FCI mining 

and uninformative association removal to mine multiple drug interactions from the FAERS (35). Under 

their approach, potential itemsets are generated by FCI mining first; and uninformative itemsets are 

removed, if the itemsets and supporting transactions can be obtained from the interaction of other itemsets 

and their supporting transactions. An example of the application of association rule mining can be found in 

Harpaz et al. (36), in which Apriori algorithm is utilized to mine the FAERS data. Their Apriori 

configuration considers only itemsets that have a set of drugs in the antecedent and a set of ADEs in the 

consequent. Additionally, their prioritized itemsets are further filtered by the relative risks.   

3. Pharmacokinetics Modeling and Data Sources 

3.1 In vitro in vivo Drug Interaction Prediction Using Pharmacokinetics Modeling 

There are two ways to characterize pharmacokinetics of drug. The top-down approach investigates clinical 

pharmacokinetic using clinical trial data, and it builds up a population pharmacokinetic model. The bottom-

up approach, on the other hand, starts from pharmacokinetic data measured from in vitro studies, and 

extrapolates and predicts clinical drug exposure in humans. In this review, we will focus on one of the 

bottom-up approaches, steady state in vitro in vivo extrapolation (IVIVE) of drug interaction prediction. 

There are other great and comprehensive reviews on the bottom-up approach (37, 38). We select our focused 

IVIVE model because it is the one can be scaled up (i.e. including potentially all drugs), and interfaced with 

informatics analyses.   

The ratio of area under the (substrate) concentration time curve (AUCR) in the present and absence of 

inhibitors is widely used to determine the severity of a DDI. Here, we focus on a static DDI model proposed 
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by Ito et al. (39) and modified by Lu et al. (40), which calculates AUCR based on unbound inhibitor 

concentration ([I]), inhibition rate constant for a drug (Ki), fraction of metabolism (fm) and fraction of renal 

clearance (fe) [equation 1]. 

 
AUCR =

𝐴𝑈𝐶(𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑)

𝐴𝑈𝐶(𝑢𝑛𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑)
=

1

(1 − 𝑓𝑒) ∑

[
 
 
 
 

𝑓𝑚𝑖 ×
1

1 + (∑
[𝐼𝑗]
𝑘𝑖𝑗

𝐽
𝑗=1 )

]
 
 
 
 

𝑛
𝑖=1  +  𝑓𝑒

 

[1] 

All these parameters can be obtained from various available data sources, except for fm. For example, 

Metabolism and Transport Drug Interaction Database (DIDB) has a collection of drug Ki, and Goodman 

and Gilman has a collection of fe and drug maximum concentration (Cmax) which can be used as [I] (41). 

There are several ways to estimate fm for a substrate. Firstly, change in AUC or clearance in the presence 

of a co-administered CYP inhibitor through a clinical PK study is used to determinate the contribution of 

the CYP for a drug. For example, Yeung et al. utilized clinical drug interaction studies, in which 

ketoconazole was used as the CYP3A4 probe inhibitor, and calculated a drug’s fm in the CYP3A4 pathway 

using equation 2 (42): 

 
𝑓𝑚3𝐴4 = 1 −

𝐴𝑈𝐶(𝑢𝑛𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑)

𝐴𝑈𝐶(𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑)
 [2] 

Secondly, pharmacogenetics studies can also be used to estimate fm through the fold-change in exposure 

of a substrate in extensive metabolizers (EMs) comparing to poor metabolizers (PMs) (39). A large 

population of patients were studied with respect to the metabolism of metoprolol, which was metabolized 

by CYP2D6 (43), and fm was calculated by equation 3: 

 
𝑓𝑚2𝐷6 = 1 −

𝐴𝑈𝐶(𝐶𝑌𝑃2𝐷6, 𝐸𝑀, 𝐴𝑉𝐺)

𝐴𝑈𝐶(𝐶𝑌𝑃2𝐷6, 𝑃𝑀, 𝐴𝑉𝐺)
= 1 −

𝐶𝐿(𝐶𝑌𝑃2𝐷6, 𝑃𝑀, 𝐴𝑉𝐺)

𝐶𝐿(𝐶𝑌𝑃2𝐷6, 𝐸𝑀, 𝐴𝑉𝐺)
 [3] 

Thirdly, in-vitro experiments also have been used to determine the contributions of several CYP pathways. 

Substrate depletion in the human liver microsomes (HLM) is one method that the drug is incubated with or 

without specific CYP selective inhibitors. The percent of inhibition can be calculated by comparing the 

metabolism rates with and without inhibitor. Substrate depletion can also be incubated with individual 

recombinant enzymes isoforms (44). Each isozyme contribution is estimated as the percent contribution of 

each CYP enzyme towards the total HLM CLint via a scaling factor (RAF/ISEF) approach (45). Recently, 

due to the success of the cryopreservation of human hepatocytes (46), hepatocyte suspension model (47) 
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becomes a new method to estimate fm. Physiologically, cryopreserved human hepatocyte is closer to the 

human hepatic metabolism than the other in vitro system does. Desbans et al. (48) used cryopreserved 

human hepatocytes from 12 donors to estimate fm of CYP3A for five prototypical CYP3A substrates. After 

hepatocytes were incubated with test compounds and/or the inhibitor, the intrinsic clearance was estimated 

from the parent compound depletion profile. Then fmCYP3A was calculated from the ratio between CLint 

in absence and in presence of ketoconazole as equation 4: 

 
𝑓𝑚3𝐴 = 1 −

𝐶𝐿𝑖𝑛𝑡  (𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑)

𝐶𝐿𝑖𝑛𝑡  (𝑢𝑛𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑)
 [4] 

Although there are several different methods successful to determine fm, there is no comprehensive 

database that systematically store fm for DDI research.  

3.2 Adverse Drug Reactions Databases and Data Sources 

There are a number of drug related databases, which integrate bioinformatics, cheminformatics and/or DDI 

knowledge, have been widely used for the drug interaction alerting in a large range of clinical decision 

support and electronic prescribing systems. Meanwhile, clinical signal-based databases can be helpful for 

understanding the mechanism of action for drugs (11). Also, part of pre-market drug development relies on 

the drug information and DDI knowledge to predict interactions between a new drug candidate and drugs 

currently on the market.  

3.2.1 DDI related Database 

DrugBank (49) is a well-known comprehensive database which contains bioinformatics and chemo-

informatics resource of 9,591 drugs including molecule and biotech drugs. It combines detailed chemical, 

pharmacological and pharmaceutical information with comprehensive drug targets, such as sequence, 

structure or pathway information. All these can be useful for ADE research. In addition, DDI knowledge is 

included in the database. However, due to the simple description, additive and synergic interactions are 

hardly differentiated. Therefore, it is difficult to assure that an ADE is caused by a true interaction or simple 

dose increase. There are other similar comprehensive databases including Drugs.com (50) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (51). Some DDI knowledge database was derived from data 

mining from health record data sources. For example, the OFFSIDE database contains drug-event signals 

that are not listed on the FDA's official drug label (9). These signals were mined from FAERS data by a 

data-driven approach that removes many synthetic associations from indications, co-prescriptions, and 
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hidden covariates. Using the same method, DDI signals were further derived from FAERS data, which is 

called as TWOSIDES (9). 

Other databases, in which clinical information and mechanism knowledge are included, were derived from 

text mining and literature curating methods. By manually curating published literatures and FDA New Drug 

Application (NDA) reviews, DIDB collects in vitro and in vivo data of pharmacokinetics drug interactions. 

Unlike DrugBank, experimental conditions and results of DDI studies, which are crucial DDI factors, are 

all integrated in the DIDB database. Another important database is PharmGKB (52). It is one of the largest 

databases collecting associations among genes, drugs and diseases published in the literature. PharmGKB 

is well regarded as a reliable resource for personalized medicine and pathway-oriented DDI research (52). 

Table 1 provides summarized main features of DDI related databases.  

3.2.2. ADE-phenotyping sources 

Our focused ADE-phenotype refers to an EHR-based patient cohort definition, which experiences an ADE 

(53). Here we provide ADE-phenotype sources, level of evidence, terminologies & data types, and their 

integration with EHR (Table 2). Four criteria of ADE evidence are given as the following: ADE definition 

algorithm validation (criterion 1), comprehensiveness of the ADE definition algorithm (criterion 2), 

literature and/or ADE-related evidence (criterion 3), and terminological support for structured and 

unstructured data (criterion 4). Using these four criteria, we define the three levels of ADE evidence. 

Level I Evidence provides the highest reliable and precise ADE phenotypes. They met criteria 1, 2, and (3 

and/or 4). For instance, the Phenotype Knowledgebase website (PheKB) (54), “an online environment 

supporting the workflow of building, sharing, and validating electronic phenotype algorithms” (54), which 

offers algorithms using approaches, such as ICD-9-CM codes, medications, and NLP. The PheKB’s main 

goals are to improve algorithm transportability and validity across institutions (54) while achieving high 

positive predictive values (PPVs). 

Level II Evidence ADE phenotypes met criteria 3, and (2 and/or 4), but they have not been validated across 

institutions. For instance, Observational Medical Outcomes Partnership (OMOP) (55) has a library based 

on systematic literature review of a number of health outcomes of interest (HOIs) definitions to improve 

observational studies’ reproducibility. OMOP also recognized that literature has usually been inconsistent 

in defining and reporting ADEs, and sometimes lacked of details of the exact codes and validations (56). 

For example, acute liver injury has eight different definitions, such as laboratory-based versus diagnostic 

procedures.  
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In addition to OMOP HOI library, UpToDate is another evidence-based physician-authored clinical 

guideline repository (57). It provides an evidence-based and manually curated clinical guidelines for ADEs. 

Although it does not directly define the ADE using the EHR data, it certainly can assist in defining ADEs. 

Furthermore, SIDER (58) is also a reliable source for ADE definitions. 

Level III Evidence refers to terminology and vocabularies based data sources (criterion 4). For example, 

the medical dictionary for regulatory activities (MedDRA) is a key database for ADE (59), and the other 

database include CTCAE (60). Unlike MedDRA, CTCAE also contains the severity of ADE.  

 

3.2.3. Database Integration  

On the basis of these drug/DDI/ADE databases, some integrated databases combine them together, and 

form a complete dataset. The Drug Interaction Knowledge Base (DIKB), an evidence-based observed and 

predicted knowledge base, contains mechanisms and pharmacokinetic drug-drug interactions information 

for over 60 psychotropic and HMG-CoA reductase inhibitors (66). A rule-based metabolic DDI prediction 

was conducted with DIKB to determine the most optimal set of predictions (67). Further, Ayvaz (68) 

constructed an integrated potential DDI (PDDI) source by combining clinical-oriented information sources, 

natural language processing corpora, and bioinformatics/pharmacovigilance information sources by 

analyzing the overlap between the data sources and mapping drug entity to DrugBank ID. This dataset can 

benefit NLP corpora and lead to a better synthesis of PDDI knowledge. The merged data sources in the 

integrated database are descripted in Table 3.  

From the translational research perspective, there are some limitations in these data sources. First, there are 

as yet few means to integrate different databases conveniently and economically. In PDDI database, 

DrugBank ID was used for medication standardization. Additionally, OMOP Common Data Model (CDM) 

could be used to standardize the format and content of the observational databases including medication, 

ADE, symptom and indication. However, complete solution for data integration is unavailable yet. Second, 

the DDI information in the databases are limited. Particularly, information including the DDI type (e.g. 

additive/synergic, Pharmacokinetics/Pharmacodynamics (PK/PD)), mechanism, clinical impact and 

quantitative description should be included and improved in the future data collection. 

4. Knowledge discovery for drug interaction using text mining technologies 

Literature-based knowledge discovery was pioneered by Don R. Swanson in 1986 and had been widespread 

for decades in the biomedical informatics domain (69). This technique bridges new relationships between 
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existing knowledge by exploring the co-occurrence of words or phrases from different literature articles. 

Following this lead, many “open discovery” and “close discovery” methods were developed to discover 

interesting associations among a large set of data items. To distinguish open and close discovery, we take 

the relationship between a disease and treatments as an example, the open method can generate a hypothesis 

to find the underlying pathological mechanisms of a disease. It starts with a disease, discovers the 

mechanisms of the disease from literatures, and finally finds a drug that may interact with those mechanisms 

(intermediates). Differently, a close discovery method can verify and elaborate an initial hypothesis. Its 

searching process starts simultaneously from a disease and a drug. Their overlapping mechanisms 

(intermediates) can demonstrate the relationship between a disease and a drug (70). Based on these two 

concepts, in the last decade, several discovery systems were developed. Srinivasan presented both open and 

close algorithms to automatically discover a small set of interesting hypotheses from a suitable text 

collection using MeSH terms in Medline (71). Hristovski combined the outputs of two NLP systems to 

provide semantic prediction, which demonstrated the improvement for literature-based knowledge 

discovery (72). Tsuruoka developed a searching engine for Medline abstracts, called FACTA, which 

retrieves textual evidence of associations between the query terms and the concepts (73). Frijters developed 

CoPub discovery tool to assess the significance of co-occurrence based on the mutual information measure 

and mine the new relationships between biomedical concepts (74). Finally, Yetisgen-Yildiz proposed an 

evaluation methodology allowing the comparisons cross different systems (75).  

While there have been many discovery methods developed, most of them often mined co-occurring entities 

from free-text in documents or data fields. The co-occurrences method has a critical drawback, since not 

all co-occurring entities possess “meaningful” and “quality” relations. To retrieve explicit fact from 

documents as efficiently as possible, text mining technologies facilitate quality discovery from biomedical 

literature, EHR, or Social media. Information Retrieval (IR) is the quality control process, which enables 

the identification of relevant documents and provides the quality of data resource for knowledge discovery. 

For example, the DDI IR step identifies higher quality DDI articles from PubMed (76). Information 

Extraction (IE) is the task of extracting information from unstructured text. The scope of extractions can be 

as simple as the predefined entities, such as the names of proteins, genes as well as drugs, or can be as 

complicated as the “true” associations between entities, such as drug-gene interactions or drug-drug 

interactions. Instead of co-occurrence-based knowledge, those applications automatically scrutinize the 

phase of generating quality information and potentially empower extracted information into truly novel 

hypotheses for open discovery or solid validations for close discovery. 

In this section, our review will focus on how text mining technologies assist on the drug interaction 

discovery in three aspects: (1) The manually curated corpus facilitates text analysis by providing syntactic 
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and semantic pharmacological knowledge for retrieving and extracting DDI. (2) The IR and IE technologies 

help aggregate quality data extensively, thereby providing the potential to perform hypothesis generations 

and validations. (3) Linking the dis-jointed sets of facts from documents uncovers hidden links between 

drugs and generates novel hypotheses. 

4.1 Drug Interaction Corpora 

Great TM methods rely on well-developed corpora. Corpora refers to manually annotated golden standard 

data. In the DDI TM domain, DDI corpora developed in both DDI Extraction challenge tasks in 2011 and 

2013 (77, 78), have guided a great number of supervised DDI TM methodologies’ development. The 

annotation strategies in corpus may differ subject to the purpose of TM tasks. There are three types of 

annotations in corpus. 1. Semantic annotation creates semantic labels for terminologies or relationships (79, 

80).  2. Syntactic annotation includes structural make-up, part-of-speech tagging, and constituent or 

dependency parsing trees (81). 3. Fragment annotation characterizes the properties of scientific text in 

specific measurements. Different from semantic and syntactic annotations, it provides sufficient generality 

to transcend the subject area. Fragment annotation was first designed to characterize text using five 

qualitative dimensions: focus, polarity, certainty, evidence, and directionality (82).  

Although many corpora are available, only a few focus on the topic of DDIs (77-80, 83, 84). DDI Corpus 

2011 and 2013 were built as reference standards for 2011 and 2013 DDI Extraction Challenges, respectively 

(77-79). These two corpora, consisting of 792 texts selected from Drugbank database and 233 Medline 

abstracts, were annotated with pharmacological substances and DDI relationships, including both PK and 

PD DDIs. The annotation schema includes drug entities (e.g. drug, brand, chemical agents, and drug groups) 

and DDI relationships (e.g. effect, mechanism, advice, or interaction). Another two corpora, PK DDI 

Corpus (83) and NLM CV DDI Corpus (84), were built up using drug product labels. PK DDI corpus 

comprises 64 labels. Two characteristics (type and role) are utilized to classify drug entities, and two 

properties (observed effect and experimental statement) are provided to model each PK DDI relationship. 

The types of drugs are active ingredient, drug product, or metabolite; and the roles of drugs are object and 

precipitant. The relationship between two co-administrated drugs are either positive or negative modality. 

The stated qualitative experimental data can also be used to identify drug interactions.  NLM CV DDI 

Corpus of 180 cardiovascular drug product labels was developed, and acted as a reference standard for 

pharmacokinetic PDDI TM in product labeling. The annotation schema contains drug entities and DDI 

roles. Pharmacologic substances, including drugs, drug classes, and other substances (e.g. food) are 

annotated as entities. For the roles of drugs in the interaction, the schema from (83) was reused (i.e. object 

and precipitant for the role of interacting drugs or substances). In addition, authors further categorize 
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interactions into “increase” and “decrease” classes. The final corpus, called PK corpus (80), was developed 

in our group. It was constructed to present four classes of PK abstracts: in vivo PK studies (n=56), in vivo 

pharmacogenetics studies (n=57), in vivo DDI studies (n=218), and in vitro DDI studies (n=210). A 

hierarchical three-level annotation schema was proposed to annotate key terms, drug interaction sentences, 

and drug interaction pairs. Except for drug names, this PK corpus was different from the other corpus, 

including enzyme, drug dosage, PK parameters with their values and units, mechanisms, action terms 

reflecting interactions are annotated. With regard to the relationship, DDIs were not only annotated based 

on their narrative descriptions, but also were judged using their quantitative and qualitative evidences. The 

fold change (FC) in PK parameters (e.g. FC > 1.5 or FC < 0.67 in AUC) or statistical measurement (e.g. P-

value < 0.05) specifies the numeric rule to define DDI quantitatively. The significance statement (e.g. 

significantly, moderately, or probably) specifies the language expression pattern for DDI relationship 

qualitatively.  

Other than the data recourses from biomedical literature or drug labels, social media, such as blog, forum, 

or Twitter, provide huge potential in the identification of ADEs and DDIs (85). In the past few years, 

corpora obtained from social media texts started emerging (86). A corpus of 10,822 tweets by Gonzalez lab 

was manually annotated for mining Twitter for ADRs (87). The annotation mainly focuses on drug names 

and ADRs. Different from the annotations in biomedical literature or drug labels, this corpus was sought to 

annotate not only the presence or absence of drug names or ADRs, but also to identify the span of 

expressions conveying individual ADR In addition, another corpus, also created by Gonzalez lab, consists 

of 267,215 Twitter posts. In this corpus, two sets of language models were created to encapsulate “semantic 

properties” by presenting word tokens as dense vectors and “n-gram sequences” by capturing sequential 

patterns (88). Moreover, TwiMed is one of the most recent corpus, which comprises 1,000 tweets and 1,000 

PubMed sentences (86). The annotations covered entities (drug, symptom, and disease) and their relations 

(outcome-negative, outcome-positive, and reason-to-use). Similar to fragment annotation, their attributes 

for entities are further annotated to provide their characteristics (polarity, person, modality, exemplification, 

duration, severity, status, and sentiment).  

In sum, all aforementioned corpora characterize different aspects of DDI studies. DDI corpus focused on 

the distinction in drug type and DDI effect (77, 79); PK DDI corpus and NLM CV DDI Corpus annotated 

package inserts as the data sources and identified the roles of drugs in DDI relationships (83, 84); PK corpus 

further differentiated PK DDI into in vivo and in vitro studies, and define drug interactions using 

experimental evidences (80). The corpora for social media were annotated differently from those in 

literature.  Two corpora, created by Gonzalez lab, were annotated in different scopes (87, 88). One focused 
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on entity level and another focused on language models. TwiMed not only annotated with both entity and 

relation levels but also identify the attributes for entities (86).    

4.2 Information Retrieval and Extraction for Drug Interaction and Drug-related Knowledge 

In order to promote DDI TM, DDI-Extraction challenges organized in 2011 and 2013 aimed for developing 

the TM methodologies of the pharmacological substance recognition and DDI detection (77, 78). For the 

named entity recognition of pharmacological substances, the best results were achieved by WBI_NER. This 

NER approach is formulated as a sequence labelling task (IOB format). Using domain-independent features 

from ChemSpot, Jochem, and ChEBI ontology, linear-chain conditional random field model was 

implemented to predict the sequences of name entities. The second best method (NLM LHC) utilized 

dictionaries from multiple biomedical resources, such as Drugbank, ATC system, or MeSH headings. In 

this challenge, most approaches can perform well on the recognition of generic or brand names, but not 

drug-n category (substances not approved for human use). The great variation and complex in naming 

convention lead to the difficulty in name recognition. Another focus in DDI-Extraction 2011 challenge is 

to identify true DDIs from all possible DDI pairs from the biomedical text in Medline abstracts and 

Drugbank. Among 10 participation computational algorithms, the best performance (F-measure=0.657) 

was achieved by the system (WBI) using ensemble learning approach. Combined three different kernels 

(all-paths graph, shallow linguistic, and k-band shortest path spectrum kernels) with a case-based reasoning 

(CBR) called MOARA, a majority voting ensemble of constructing machine learning methods was built 

for binary prediction. The DDI-Extraction 2011 concluded that approaches using kernel-based methods 

achieved better performances than the feature-based methods. In addition, most systems used primarily 

syntactic information, but not much semantic information. Different from the 2011 challenge, DDI-

Extraction 2013 not only aimed to detect DDI pairs, but also classified them into one of the following four 

types: advice, effect, mechanism, and interaction statement. In the 2013 challenge, FBK-irst achieved best 

performance and yielded an F-score of 0.80 for DDI detection and an F-score of 0.65 for DDI detection and 

classification. It applied a hybrid kernel based method and exploited the scope of negations and semantic 

roles for filtering negative instances. The 2013 challenge concluded that the systems using non-linear 

kernel-based methods outperformed linear SVM systems.     

Other than DDI Corpus in previous two challenges, PK corpus (80) was also utilized for developing DDI 

extraction tools. The extraction tasks were implemented in the in vivo and in vitro DDI corpus separately 

using the approach with all paths graph kernel. Interestingly, huge discrepancy on the performance was 

found between two sub-corpora in the PK corpus. The reported F-measure of in vivo DDI corpus, 0.76, is 

much higher than that of in vitro DDI corpus (0.52). Authors concluded that DDI representations in in vitro 

This article is protected by copyright. All rights reserved.



PK study were more diverse than those in in vivo PK study. It usually contains more drugs and PK 

parameters to describe DDI evidences, and it compares their inhibition/induction capability in a long 

sentence. Using the same dataset (PK corpus), Zhang et al. presented a graphic kernel based approach to 

combine syntactic and semantic information for extracting pharmacokinetic drug interaction (89). 

Compared with the previous all paths graph kernel methods (80), this new method further utilized semantic 

annotations from PK corpus and the F-measures were improved from 75.91 % to 81.94 % on the in vivo 

dataset and from 51.50 % to 69.34 % on the in vitro dataset, respectively.   

Learned from the previous works (80, 89), clearly, the performance of extracting PK DDI evidences would 

be varied if their experiment methods were different. For achieving better performances, it is important for 

a text mining system to treat DDI evidences differently according to their study types. In vitro studies 

investigate whether a drug is a substrate, inhibitor, or inducer of metabolizing enzymes or transporters; in 

vivo PK studies investigate the kinetics of drug metabolism involved in absorption, distribution, 

metabolism, and excretion (ADME) process, and clinical studies investigate the clinical effects, i.e. efficacy 

or side effects of DDIs. Recent work by Kolchinsky (76) classified the in vitro and in vivo PK DDI 

evidences. More recently, Wu developed a suite of text mining tools to explore and distinguish three 

different types of DDI evidences, namely in vitro PK, in vivo PK and clinical PD (90). A large-scale mining 

from 25 million abstracts in PubMed (1975-2015) was accomplished to retrieve DDI relevant abstracts and 

identify DDI pairs for each study. The result shows that 986 DDI pairs with all three types of evidences 

have their clinical usages. 2,157 DIDs with known clinical PK/PD DDI evidences and 13,012 DDIs with 

only clinical PD evidence have enormous research potentials. This result pointed out knowledge gaps and 

potentially gives an impetus to translational drug interaction research. 

Besides data mining using the post-marketing surveillance data or text mining using the scientific literature, 

social media provide different promising resources for identifying DDIs and ADEs. Social media databases 

are based on direct experiences from drug users. Thus, they provide up-to-date and timely messages 

conveying drug related information (91). Due to the unique issues of social media content, including 

credibility, uniqueness, frequency, and salience of the data (92), the existing IR and IE techniques for 

scientific literature may not be effective for social media data. To this end, many works were developed in 

the past few years. Sarker focused on the classification of sentences to detect ADR mentions utilizing 

features, including n-gram, UMLS semantic types, Synset expansion, etc. (93). By the same authors, the 

distribution word representations were generated to capture different types of semantic information and an 

n-gram sequential language model was used to capture sequential word occurrence probability. Utilizing 

both information facilitates the text classification and text normalization for drug-related knowledge (88). 

Except for the commonly used features extracted from narratives, sentiment analysis features is valuable 
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for improving the performance of detection. Korkontzelos demonstrated that the features extracted from 

Twitter data using sentiment analysis can achieve a statistical F-measure increase. For information 

extraction, Carbonell analyzed the features using time series analysis, co-evaluate the mentions of drugs in 

Twitter within intervals of 30 minutes, and explore the potential drug effects and drug interactions (94). 

Another tool called ADRMine utilized a variety of features, including a new feature for modeling words’ 

semantic similarities (95). Using conditional random fields (CRF) classifier, the similarities are modeled 

by clustering words based on word representation vectors (embeddings) generated from unlabeled user 

posts in social media. This work proved that word cluster features can significantly improve extraction 

performance for mining adverse drug reaction mentions. 

4.3 Information discovery for novel drug interaction and ADE 

Information retrieval and extraction for drug interaction evidence from biomedical literature lend an 

impetus to the generation of “meaningful” and “quality” evidences, which helps on aggregating DDIs and 

improving the coverage of DDI databases. However, an overlapping analysis between Drugbank and 

Micromedex showed that there are around 25% of disagreements (96). The lack of scientific evidences 

complicates the process of verifying the discrepancies. Therefore, to explore the mechanism behind drug 

interaction, it is crucial to supply the necessary scientific evidence to validate DDIs.  

To discover novel drug interactions and explore their mechanisms, knowledge discovery strategy had been 

widely employed. Both Tari and Percha are two typical examples of close discovery method. Tari developed 

a method combining text mining and automated reasoning to infer DDIs with the support of enzyme and 

biological domain knowledge (97). By representing the general knowledge related to the metabolism (drug-

gene) and biological interaction (protein-protein) with the logic rules, DDIs were predicted in the reasoning 

phase. In a different paper, Percha proposed a novel approach to predict novel DDIs by aggregating gene-

drug interactions which are extracted via rule-based method (98). Using the established DDIs as the training 

set, a supervised classifier was trained to score potential DDIs based on the normalized drug-gene assertions 

extracted from the literature that relate two drugs to a gene product. More significantly, a semantic network 

built based on the extracted drug-gene assertions were implemented to explain the pharmacological 

mechanisms for newly-predicted DDIs. Different from Tari and Percha’s methods, Duke proposed a 

literature discovery approach combined with analysis of electronic medical records (EMRs) and predicted 

13,197 CYP-related DDIs (10). Based on literature data on in vitro drug metabolism and inhibitory potency, 

this translational approach finally identified 5 novel drug interactions that synergistically increased the risk 

of myopathy.  
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Other than DDI prediction, identifying ADEs caused by DDIs using text mining approaches draws more 

and more attention. Recent approaches utilized the features that drug interaction with the same gene targets 

may lead to ADEs and drugs with similar structures for ADE predictions. In this fashion, Raja proposed a 

literature-mining framework to enhance the prediction of DDIs and ADE types through integrating drug-

gene interactions (99). Using the DDI features from DDI corpus, a supervised learning categorized ADEs 

into four types: adverse effect, effect at molecular level, effect related to pharmacokinetics, and DDI without 

known ADEs. This tool was applied to predict DDIs and ADE types related to cutaneous diseases and 

successfully identify promising new ADEs.  

Interestingly, an example of Twitter applicability in knowledge discovery for drug interactions is proposed 

by Hamed et al. (100). This tool called HashPairMiner majorly used hashtags in computational analysis to 

discover novel DDI pairs. Based on the computation of associations for co-occurred keywords in the same 

tweets and associations between keywords and hashtags that also appeared in the same tweet, a new network 

mining algorithm was created to detect connections between pairs of drugs. This work demonstrated how 

hashtags can connect information and synthesize new knowledge. 

5. Conclusion  

In this article, we review three essential computation and informatics approaches for the translational drug 

interaction research. First, we provide an overview for computational models for mining drug interaction 

signals from post-marketing surveillance databases. Second, we present PK models for in vitro in vivo 

extrapolation in DDI prediction. We particularly emphasize the value of fm in the DDI prediction. We also 

review and summarize available DDI related databases, ADE-phenotyping sources and integrated DDI 

databases. Third, we show diverse text mining techniques to discover ADEs and drug interactions from 

literatures and social media. Signals identified by each approach can serve as potential drug interaction 

hypotheses. Although significant progresses and achievements have been made for each of these 

approaches separately, researchers rarely utilize them jointly for drug interaction hypothesis generation and 

knowledge discovery. In the real world, these three approaches are naturally complementary to each other. 

On one hand, drug interactions shall or may initially manifest in clinical practices and reported to the clinical 

databases, and consequently can be detected by the post-marketing surveillance data mining. On the other 

hand, in vitro experiments together with in vitro in vivo models are well established to evaluate drug 

interaction PK evidence and validate their mechanisms. Nevertheless, findings of clinical drug interaction 

signals and in vitro drug interaction mechanisms are published in the research community. Effective 

literature-based knowledge discovery approaches will enhance drug interaction research by providing both 

clinical and in vitro drug interaction knowledge, or identify DDI knowledge gap. This review shall help 
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scientists to integrate all these translational biomedical informatics analyses for an improved translational 

drug interaction research. Most importantly, we hope this review to stimulate novel and creative 

translational biomedical informatics methods for the drug interaction research. 
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Table 1. Summary of Drug/DDI-based databases 

Database 

Name 

Data Type in 

Database 

Data Sources Main feature(s) DDI related 

Shortcoming(s) 

DrugBank Bioinformatics/ 

Cheminformatics/DDI 

Manual Search/merged 

with many other databases 

 DrugBank collects 8261 small molecule 

and biotech drugs including approved, 

withdraw and experimental drugs 

 Chemical, pharmacological, 

pharmaceutical information and DDI 

knowledge are combined in the database 

 Simple details in 

DDI 

 No additive or 

synergic information 

for DDI 

OFFSIDES Drug-ADE relationship Signal Detection in AERS  OFFSIDES database contains 438,801 

drug-event signals connecting 1332 drugs 

and 10,097 adverse events 

 These effects are not listed on the FDA's 

official drug label 

 Confidence is signed for each relationship 

- 

TWOSIDES DDI-ADE relationship Signal Detection in AERS   868,221 significant associations are 

included 

 Associations are limited to new-found 

ones 

 PD DDI and PK DDI are included 

 No additive or 

synergic information 

for DDI 

 PK and PD DDI are 

not classified 

DIDB In vitro and in vivo 

data of PK DDI 

Manually curating 

published literatures 

 DIDB collects in vitro and in vivo data of 

PK DDI. 

 No additive or 

synergic information 
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 Experimental conditions and results of 

DDI studies are all integrated  

for DDI 

 Only PK DDI are 

included 

 

PharmGKB Pharmacogenetics and 

pharmacogenomics 

knowledge 

Literature and drug label 

reviews 

 PharmGKB is one of the largest databases 

in pharmacogenetics and 

pharmacogenomics knowledge 

 Gene-drug associations, drug-centered 

pathway and gene-drug-disease 

relationships are included via literature 

and drug label reviews 

- 
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Table 2. Sources for ADE-phenotyping 

Source Name Level of 

evidence 

Source Description Terminologies and datatypes Integration into EHR 

Medical Dictionary for 

Regulatory Activities 

(MedDRA) (59) 

 

Level III A unified standard terminology for 

recording and reporting adverse drug 

events. 

From higher to lower levels: 

System Organ Class (SOC), 

High-Level Group Terms 

(HLGT), High-Level Terms 

(HLT), Preferred Terms (PT), 

and Lowest Level Terms 

(LLT). 

 Used in structured data or 

unstructured clinical narratives. 

Current Procedural 

Terminology (CPT) 

(61) 

Level III A medical terminology to bill 

outpatient & office procedures. 

Category I, Category II, and 

Category III codes 

 Used in structured data or 

unstructured clinical narratives. 

International 

Classification of 

Diseases (ICD) (62) 

Level III An international diagnostic 

classification standard codes for 

clinical, and research purposes. 

Hierarchical comprehensive 

classification of diseases, 

signs, symptoms, and 

procedures 

 Used in structured data or 

unstructured clinical narratives. 

Logical Observation 

Identifiers Names and 

Codes (LOINC) (63) 

Level III A common language for identifying 

health measurements, observations, 

and documents. 

Set of identifiers, names, and 

codes. Mostly used for 

laboratory tests concepts. 

 Used in structured data or 

unstructured clinical narratives. 

The Systematized 

Nomenclature of 

Medicine (SNOMED 

Level III A multilingual clinical terminology 

to address the requirement for 

effective Electronic Health Record 

Hierarchical representation of 

detailed clinical information, 

e.g. top level concepts, such as 

 Used in structured data or 

unstructured clinical narratives. 
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CT) (64) (EHR). clinical finding, procedure, 

and substance. 

RxNorm (65) Level III A normalized naming system for 

generic and branded drugs that 

supports interoperability between 

clinical systems. 

Normalized names and unique 

identifiers for medicines and 

drugs linked to their 

ingredients, strength, and dose 

forms. 

 Used in structured data or 

unstructured clinical narratives. 

Common Terminology 

Criteria for Adverse 

Events (CTCAE) (60) 

Level III A comprehensive, multimodality 

grading system for reporting adverse 

drug effects (ADEs) of cancer 

treatment. 

AEs terms associated with 5-

point severity scale of ADE, 

and mapped to MedDRA 

Lowest Level Term (LLT) to 

supports standardization of 

ADEs terms in EHR. 

 Used in structured data or 

unstructured clinical narratives. 

 Severity scale of ADEs 

provides additional evidence. 

The SIDER database 

of drugs and side 

effects (SIDER) (58) 

Level II A computer-readable side effect 

resource/database mined from FDA 

drug labels, contains about 1,430 

drugs, 5,868 side effects (SE), and 

139,756 drug-SE pairs. 

Connects drugs to their 

recorded ADEs terms, 

provides frequency 

information, occurrence of 

ADEs, and drug indications. 

ADEs are mapped to 

MedDRA-preferred terms. 

 Used in structured data or 

unstructured clinical narratives. 

 Used for mapping drugs to 

ADEs. 

UpToDate (57) Level II An evidence-based, physician-

authored clinical decision support 

tool. 

Synthesized medical 

information, such as clinical 

guidelines, graded 

recommendation, and drug 

 Used in structured data or 

unstructured clinical narratives. 

 Evidence-based medical 

information and drug 
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entries and interactions. interactions assist in defining 

ADEs. 

 An up-to-date clinical 

guidelines 

Observational Medical 

Outcomes Partnership  

(OMOP) (55) 

Level II Literature-based Health Outcome of 

Interest (HOI) definitions library of 

conditions that have relevant to drug 

toxicities, medical significance, 

and/or public health. 

ICD, CPT, SNOMED CT, 

LOINC, diagnostic or 

therapeutic procedures, and lab 

values 

 Used in structured data or 

unstructured clinical narratives. 

 Broad and narrow definitions 

can be implemented directly 

into EHR based on users’ needs 

The Phenotype 

Knowledgebase 

website (PheKB) (54) 

Level I A collaborative environment to build 

and validate phenotyping 

algorithms. 

ICD, CPT, Laboratories, 

Medications, Natural 

Language Processing, Vital 

Signs 

 Used in structured data or 

unstructured clinical narratives. 

 Comprehensive validated 

definitions and/or algorithms 

can be implemented into EHR 

based on users’ needs 
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Table 3. Summary of Integrated database 

Database Name Data Type in Database Data Sources 

DIKB Mechanisms and 

pharmacokinetic drug-drug 

interactions information 

with confidence 

 Retrospective studies 

 clinical trials 

 metabolic inhibition identification & inhibition catalysis identification 

 statements, reviews and observational reports  

 phenotyping definition including MeSH, WordNet and NCI Thesaurus 

Merged PDDI Potential DDI  
a. 5 clinically-oriented information sources 

 CredibleMeds 

 VA NDF- RT 

 ONC High Priority 

 ONC Non-interruptive 

 OSCAR 

b. 4 Natural Language Processing (NLP) Corpora 

 DDI Corpus 2011 

 DDI Corpus 2013 

 PK DDI Corpus 

 NLM CV DDI Corpus 

c. 5 Bioinformatics/Pharmacovigilance information sources 

 KEGG DDI 

 TWOSIDES 

 DrugBank 

 DIKB 

 SemMedDB 
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