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Highlights: 

• Electrical microstimulation to modulate neural activity has emerged as a critical tool in brain

research, neurotherapeutics, and bidirectional neuroprostheses.

• Recent successes in sensory, motor, auditory, visual, and cognitive neuroprostheses

demonstrate a need for more focal micro-neuromodulation technologies.

• Advances in electronics, optics, and magnetics are leading towards stable, high spatial-

resolution interfaces.

• Advances in neuroprosthetic technologies may one day enable single neuron, whole-brain

micro-neuromodulation.

Abstract: 

Electrical stimulation technologies capable of modulating neural activity are well established for 

neuroscientific research and neurotherapeutics. Recent micro-neuromodulation experimental results 

continue to explain neural processing complexity and suggest the potential for assistive technologies 

capable of restoring or repairing of basic function. Nonetheless, performance is dependent upon the 

specificity of the stimulation. Increasingly specific stimulation is hypothesized to be achieved by 

progressively smaller interfaces. Miniaturization is a current focus of neural implants due to 

improvements in mitigation of the body’s foreign body response. It is likely that these exciting 

technologies will offer the promise to provide large-scale micro-neuromodulation in the future. Here, 

we highlight recent successes of assistive technologies through bidirectional neuroprostheses currently 

being used to repair or restore basic brain functionality. Furthermore, we introduce recent 

neuromodulation technologies that might improve the effectiveness of these neuroprosthetic interfaces 

by increasing their chronic stability and microstimulation specificity. We suggest a vision where the 

natural progression of innovative technologies and scientific knowledge enables the ability to selectively 

micro-neuromodulate every neuron in the brain. 
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Introduction  

The fields of neuroscience, medicine, and neural engineering have made great strides in how we 

interface the central nervous system to study normal function and treat injuries and diseases. The NIH 

Sponsored B.R.A.I.N. initiative aims to develop innovative technologies for studying individual cells and 

complex neural circuits [1,2]. These technologies aim for cellular and sub-cellular resolution, setting 

ambitious goals that include recording from every neuron in a single brain simultaneously. However, in 

addition to recording, the activation of these individual cells offers the promise of propelling forward 

both basic science and medicine. We envision technologies that will enable independent modulation of 

every neuron in a single brain, i.e., “whole-brain micro-neuromodulation.” In this review, we will first 

highlight advances in science and engineering that are developing higher resolution stimulation 

approaches to enhance performance and translation of recent neuroprosthetic successes. Subsequently, 

we will detail several promising new technologies that may enable even larger-scale and cellular-

resolution micro-neuromodulation in the near future. 

Current neuromodulation offers various clinical approaches that provide powerful alternatives to 

patients otherwise refractory to available treatments. Clinical neuromodulation therapies, such as deep 

brain stimulation (DBS), have been widely used for the treatment of Parkinson’s disease [3–5] and 

essential tremor [6]. DBS has also shown great potential for the treatment of a variety of neurological 

disorders, including, obsessive-compulsive disorder [7], Tourette’s syndrome [8,9], Alzheimer’s disease 

[10,11], alcoholism [12], and depression [13]. Similarly, less invasive approaches such as transcranial 

magnetic stimulation (TMS) has demonstrated neurorehabilitation potential [14], as well as, 

effectiveness in the treatment of depression [15,16], and neuropathic pain [17,18]. However, both DBS 

and TMS performance are limited by their poor spatial resolution: namely, the inability to focally 

microstimulate specific neurons or neuronal clusters [19]. For instance, DBS macroelectrodes are 

estimated to excite approximately 500,000 neurons simultaneously [20]. This low specificity is likely a 

source off-target stimulation [21–23] which has been attributed as a source of neuropsychological post-

stimulation side effects [24], such as increased impulsivity [25,26] and verbal fluency decline [27,28]. 

Even though the precise effects of stimulation on the activity of neuronal populations remains 

controversial (see [29–31] for a discussion of clustered vs. distributed population activation by 

microstimulation), it can be assumed that advances in interfacing technologies will gradually allow for 

more selective microstimulation. Regardless of whether microstimulation activates clusters of neurons 

local to the implanted device, or sparse, widespread populations, it is likely that advanced technologies 

will allow more selective activation of specific neuronal populations. This focal microstimulation, 

providing high-resolution activation of small neuronal populations, will offer unparalleled advantages in 

neuromodulation [32]. These advantages, including more selective activation of the intended target, 

may result in both fewer off-target effects in neuromodulation therapeutics [21,22,27], as well as 

futuristic assistive technologies for sensory, motor, and cognitive repair [11,33–35].  

Existing microstimulation technologies, such as intracortical microelectrodes, must overcome critical 

challenges in order to achieve chronically stable whole-brain micro-neuromodulation. One of these 

challenges is the design of high-resolution interfaces through advanced materials and state-of-the-art 

microfabrication techniques (see [36]). Another challenge is the development of chronically stable 

devices capable of withstanding abiotic factors related to device breakdown [37] and biotic failures 

associated the foreign body response (FBR). The FBR is characterized by neuronal death, tissue 

encapsulation, and reduced functional longevity [37–40]. Multidisciplinary efforts for advanced device 
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manufacturing for greater abiotic stability [41–43] as well as mitigation of the FBR [44–59] are 

concurrently being investigated. 

 

The requirements from the latest breakthroughs in microstimulation-based neuroprostheses, as well as 

state-of-the-art advances in neuromodulation technologies, suggest that the field is naturally 

progressing towards multichannel micro-neuromodulation. These technologies are shifting the 

stimulation spatial resolution scale from the network level to the cellular (and sub-cellular) level. The 

perceived quality and adaptability of future prosthetics will be bolstered by advances in neuroscience, 

the consolidation of functional maps with neuronal resolution, and the ability to selectively modulate 

those neurons. For the remainder of this review, we will discuss current successes in sensory, motor, 

and cognitive prostheses. We will then highlight novel technologies that are overcoming drawbacks that 

may one day enable whole brain micro-neuromodulation. 

 

Figure 1. 

Overview of stimulation spatial resolution and its effects on somatosensory and visual neuroprostheses. (A) Low 

spatial resolution stimulation inducing blunt visual and sensory percepts. (B) High spatial resolution 

neuromodulation showing discrete activation of neuronal clusters. This increase in stimulation specificity will likely 

allow for higher quality, more naturalistic neuroprostheses.  

Recent Microstimulation Success 

Advances in brain-machine interfaces (BMI) have resulted in continually improving assistive technologies 

to increase the quality of life of patients with neurological deficits [60]. BMI’s progress has been possible 
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by innovations in computational algorithms, neuroscience knowledge, and predominantly, interfacing 

neuroprosthetic technologies (namely, the ability to record and/or microstimulate neuronal activity). 

Likewise, novel microstimulation technologies and targets may potentially propel forward advances and 

translational efforts in neuroprosthetics for patients with sensorimotor, visual, auditory, and cognitive 

deficits. In the following sections, we will briefly describe some of latest breakthroughs and assess 

critical challenges facing microstimulation neuroprostheses.  

 

Somatosensory Neuroprostheses 

Interfacing intracortical motor recordings [61,62] with complex decoding and prediction 

computer algorithms [63–65] has allowed tetraplegic patients to control robotic prosthetic limbs with 

several degrees of freedom [66–68]. Nevertheless, touch feedback is crucial for the proper biomimetic 

operational control of these interfaces [33]. Pioneering studies in non-human primates (NHP) by Romo 

et al. [69] demonstrated that microstimulation of somatosensory cortex (S1) could reproduce behaviors 

similar to the sense of touch [69–73]. Moreover, NHP somatosensory cortex microstimulation has led to 

further advances such as integrating sense of touch into a prosthetic hand [74] through bidirectional 

BMI [75,76] (For an extended review: see [33]). Less than two decades after Romo’s seminal 

breakthrough [69], penetrating microelectrodes [77] and electrocorticographic (ECoG) arrays [78,79] 

were implanted into somatosensory cortices of human volunteers to restore the sense of touch. The 

results of both of these studies demonstrated that, even with the status of neuromodulation 

technologies, somatosensory microstimulation is capable of eliciting naturalistic percepts of pressure, as 

well as, discrete spatial discrimination of touch. The detection thresholds, as well as the perceived 

quality of these percepts, depended on the stimulation parameters used [77,78]. Over time, 

spontaneous percepts were mitigated, and the patient was able to detect percepts from a higher 

number of electrodes. Similarly, the number of independent electrodes that the patient could 

discriminate gradually increased [77], suggesting an important role for neuroplasticity in the adaptation 

of these implants. Moreover, advances in sensory topographies [80], biomimetic feedback [81], and 

selective micro-neuromodulation have the potential to drive improvements in artificial somatosensation 

and spatial discrimination elicited by these devices (Fig. 1B- Top). 

 

Auditory Neuroprostheses 

The use of neuroprostheses to restore hearing is one of the oldest clinically available 

neuroprosthetic technologies. Worldwide, more 300,000, cochlear implants (CI) have allowed patients 

with auditory deficits to restore hearing and improve their quality of life [82]. Due to neurophysiological 

properties of the cochlea and the limited neural interface, CIs have many inherent drawbacks that 

compromise their performance. These include impaired pitch and music perception, speech 

comprehension in noisy backgrounds, and sound localization [35,83].   Approaches to overcome these 

challenges such as augmenting the number of effective electrodes and mitigating current spillover 

through focal stimulation have shown only modest results [35]. Alternative stimulation targets with 

direct neuronal interfacing may contribute to more naturalistic auditory neuroprostheses. For instance, 

interfacing directly with the auditory nerve offers several potential advantages over CI, including a 

broader frequency range, reduced interference, and lower activation thresholds [84].  

 

Other alternatives such as the auditory brainstem implants (ABI) [85] and auditory midbrain 

implants (AMI) [86] targeting the cochlear nucleus and inferior colliculus, respectively, have also been 

tested clinically. Although far less common and less effective than CI, ABI and AMI have been shown as a 

suitable approach to patients to whom CIs or auditory nerve implants are not feasible [87,88]. An 

additional potential target for auditory neuroprostheses is the medial geniculate nucleus of the 

thalamus. Animal studies have shown that thalamic stimulation might elicit ranges similar to CIs with 
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lower stimulation thresholds than AMI and ABI [89]. Lastly, primary auditory cortex microstimulation 

stands as a prospective target for auditory neuroprostheses. Otto et al. used a discrimination task to 

assess intracortical microstimulation of the auditory cortex of behaving rats. The results of these 

experiments indicated that the tonotopic location of the microelectrode correlates with the perceived 

frequency of the stimulus [90,91]. Moreover, microstimulation evoked faster responses than natural 

hearing [91]. Similar tonotopic activation has been reported in human electrical stimulation [92], and 

fMRI studies [93], suggesting potential translatability of these interfaces.  

 

The aforementioned experiments have identified promising auditory neuroprosthetic targets 

that might, one day, restore normal hearing of deaf patients. The emergence of massively parallel micro-

neuromodulation channels that can stimulate small neuronal populations independently will likely 

continue to add to the quality of auditory sensation, limiting the perceived frequency spread and 

enhancing the temporal resolution. 

 

Visual Neuroprostheses 

The potential of microstimulation to restore sight for the blind was established after the finding 

more than 80 years ago that stimulation of the visual cortex elicited localized phosphenes [94]. Since 

then, several potential visual neuroprosthetic targets along the visual pathway have been identified. 

Moreover, neural implants have shown substantial restoration of sight in low-vision patients. Retinal 

implants have shown great clinical and commercial success, enabling substantial improvements in 

motion detection, word recognition, and acuity tasks in blind patients [95,96] (See: [97] for an extended 

review). Despite these successes, due to anatomical constraints, retinal implants may never offer 

extreme high-resolution artificial vision. However, the visual cortex offers great potential for high-

resolution visual prostheses [98]. The feasibility of visual cortex implants was recognized by human trials 

[99–101]. These experiments led to important insights and considerations for future developments of 

visual cortex prostheses and neural implants in general, including the importance of spatial resolution 

and proper neuromodulation parameters. For instance, the charge necessary to reach threshold and 

evoke phosphenes of intracortical (penetrating) electrodes was orders of magnitude lower compared 

with cortical surface stimulation [101,102]. Likewise, high stimulation currents disrupted the color and 

quality of evoked phosphenes [101]. Furthermore, electrodes separated by at least 0.5 mm were able to 

elicit independent phosphenes. Currently, multidisciplinary efforts to develop a reliable visual cortex 

implants have been recently proposed [103–105] (see [106] for a review). Yet, several scientific and 

technological challenges must be overcome before the implementation of fully functional visual cortex 

prostheses. For instance, a detailed understanding of the encoding used within the primary visual and 

striate cortices can result in enriched receptive field mapping [107] and phosphene prediction models 

[108]. Combining these topographic models with specific spatiotemporal neuromodulation can 

potentially elicit real-time, high-quality percepts. Along the same lines, experiments in NHP suggest that 

microstimulation of visual association areas influences object perception, including direction [109] and 

faces [110]. Hence, coordinated neuromodulation of visual cortex with visual association areas could 

potentially alter the perception and connotation of elicited phosphenes. See [111] for an extended 

review.  Moreover, future prosthetic implementations must take into account the role of training and 

plasticity in chronic functional implants. Additionally, alternative stimulation targets, such as the optic 

nerve [112,113] and lateral geniculate nucleus (LGN) [114], have been studied for neuroprosthetic 

interfaces. Though still in development, advances in high-resolution brain mapping and micro-

neuromodulation will likely improve the visual resolution of the perceived images, as well as the spatial 

patterns observed during natural vision, in all of these visual prosthesis targets [101] (Fig. 1 - Bottom). 

 

Motor Neuroprostheses 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Even though direct neuromodulation of motor cortex for locomotion has been challenging due 

to the lack of fine motor tuning [115] and its impracticality in spinal cord injury patients [116], it has 

been widely used for brain mapping [117,118] and functional neurorehabilitation [119,120]. Typically, 

motor cortex serves as the efferent component of bidirectional brain-machine interfaces. Recordings 

from primary motor cortex serve to direct neuromodulation of specific targets, including the spinal cord 

(via intraspinal microstimulation (ISMS) or epidural stimulation) and functional electrical stimulation for 

the periphery [121]. These approaches have recently allowed paralyzed NHPs to reach and grasp 

[122,123], and effectively restore leg locomotion [34]. Moreover, recent human trials have shown 

successful limb control in paralyzed patients [124,125]. Although, aside from ISMS, these stimulation 

techniques are not strictly classified as microstimulation, high spatiotemporal resolution 

neuromodulation has the potential to continue to improve the overall sustainability and naturalistic 

performance of these interfaces. Focal neuromodulation can substantially help overcome some of the 

challenges facing current motor prostheses. These include the need to drastically reduce muscle fatigue, 

electrical spillover, and high power consumption [126]. Moreover, micro-neuromodulation in 

combination with functional mapping would drastically enhance selective control of independent 

muscular bundles for fine motor control [127]. Finally, the chronic stability of both recording and 

stimulating interfaces (see Invasive Neuromodulation section) is necessary for closed-loop motor and 

touch integration in the translation of future, fully-functional clinical motor neuroprostheses [75]. 

Cognitive Neuroprostheses 

Restoration of cognitive abilities has emerged as an intriguing micro-neuromodulation target. 

Microstimulation of hippocampal cells demonstrated enhancements in memory performance tasks in 

rodents [128] and NHPs [129]. These microstimulation experiments were feasible by a nonlinear multi-

input multi-output (MIMO) model that allowed online extraction of the patterns of firing of hippocampal 

cells during memory tasks to provide effective pulses of microstimulation in real time [128]. Similarly, 

human studies have shown that neuromodulation via DBS of other potential targets such as the medial 

temporal lobe can significantly improve tasks of verbal recall [130] and spatial memory [11,131]. More 

recently, Ezzyat et al., demonstrated that these memory enhancements via neuromodulation are 

dependent on current brain encoding state [132], further supporting the importance of bidirectional 

(afferent and efferent) BMI [133]. These findings indicate that controlled neuromodulation of specific 

brain targets may be used in the future to treat patients with memory disorders and cognitive 

dysfunctions. As we expand our understanding of the circuitry involved in the acquisition, consolidation, 

and retrieval of memories, the efficacy of current cognitive prostheses can improve significantly by using 

micro-neuromodulation with high spatial and temporal precision.  Even though the implementation of 

these type of neuroprostheses might have unparalleled clinical applications, several ethical questions 

are important to discuss [134].  

 

Recent neuromodulation technologies 

Invasive Neuromodulation 

 Electrical 

The advancement of neuroscientific research and therapeutic performance of current 

neuroprostheses are dependent on the robustness, reliability, and predominantly the spatiotemporal 

resolution of the interfacing neuromodulation technology. Due to its long history of usage, safety 

profile, cortical depth selectivity, and low threshold currents [101,135], penetrating electrical 
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stimulation has been the gold standard for the vast majority of aforementioned neuroprosthetic 

successes [60](Figure 3A). Novel silicon microelectrodes [136–138] have systematically become denser 

by decreasing the size and increasing the number of electrode sites [32]. Even though performance 

variability occurs among different site locations [46,139], when compared to regular single-site 

microelectrodes [135], high-density microelectrodes allow independent placing of electrode sites within 

a single shaft, improving focal selectivity within cortical layers [140].  Task-specific design of 

microelectrodes can greatly benefit the selectivity and functionality necessary for particular 

neuroprosthetic applications. Advances in design and microfabrication, such as electron-beam 

lithography [141] and active CMOS electronic units [142] would allow for an increased number of traces 

and independent stimulation channels [143]. This next generation of microelectromechanical systems 

(MEMS) would greatly propel forward both microstimulation and recording capabilities [143]. In 

addition to conventional MEMS, the mechanical, electrical, and particularly, dimensional properties of 

carbon fibers have proven to be an attractive alternative to the manufacture of chronic electrical 

microelectrodes [144–146](Figure 3B). Even though these penetrating electrodes have been mostly 

developed as recording devices (essential for bidirectional BMI) [133], discrete modifications can be 

done to achieve electrostimulation [147,148].  Additionally, advances in material composition, 

compatibility, and deposition techniques have allowed a variety of microelectrode designs with different 

substrate profiles [36]. These advances have led to novel electrode designs that can potentially mediate 

the scale of the FBR, such as: mechanically dynamic probes [45], ultraflexible nanoelectronic threads 

[149], injectable mesh electrodes [150,151], as well as, endovascular stent electrodes [152]. Further 

studies are necessary to assess the chronic performance of these novel interfaces, as well as, their 

potential ability to neuromodulate surrounding neurons. Despite their obvious functional and 

theoretical advantages, penetrating microelectrodes face several practical challenges, primarily, 

biocompatibility-related. Device implantation inherently causes trauma, including blood-brain-barrier 

disruption [15], and neuronal death [38]. This initiates a FBR [37] by the immune system that triggers 

microglia [154,155] and astrocyte activation [156] leading to the formation of an indwelling glial sheath 

that surrounds the electrode [38–40] (Figure 2). Even though, this encapsulating glial sheath, as well as 

neuronal death, has been primarily associated with chronic decline in recordings [157,158] and not in 

stimulation [77], there is literature  suggesting that the FBR might have a role in, hindering chronic 

performance of focal micro-neuromodulation [140] (Figure 3A).  

Several multidisciplinary efforts are currently developing strategies to mitigate these effects 

[44], including electrical [47,48,159], mechanical [45,49–51], and chemical approaches [52,55–59] that 

may result in more biomimetic interfaces. A less invasive electrical microstimulation alternative is the 

use of intracranial electrode grid placed over the cortical surface denominated electrocorticography 

(ECoG) arrays. Microstimulation in humans with these devices have shown success [78] (see 

Somatosensory Neuroprostheses section). Likewise, novel reduced-size μECoG arrays [160,161] have 

shown great potential. However, the spatial resolution and effective neuromodulation of these are 

limited to the cortex, excluding critical deeper neuromodulation targets.  
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Figure 2.  

Overview of foreign body response to intracortical microelectrodes.  

Pre-implant phase (left) showing undisrupted tissue. Post-implant acute phase (center), characterized by 

mechanical brain blood barrier disruption and local bleeding (depicted in red), neuronal death, and activation of 

microglia. Chronic phase (right), characterized by additional neuronal death and astrocytic glial sheath surrounding 

the electrode, potentially impairing its performance. 

 

 Magnetic 

A conventional alternative to standard electrical stimulation is the use of induced electric fields 

from magnetic stimulation to modulate neural activity; such is the case of TMS. Through large hand-held 

coils that induce strong magnetic fields, TMS is able to modulate brain activity through the scalp [162]. 

TMS is commonly used for the treatment of neurological disorders, including, depression [15] and stroke 

[120]. Analogously, implantable-sized microcoils are capable of reaching neuronal activation thresholds 

through micromagnetic stimulation (µMS) [163]. This novel µMS technology offers several advantages 

over conventional electrical stimulation, including, potential MRI compatibility [163] and, high spatial 

resolution (<60 μm) [164]. Additionally, the focused spatial selectivity due to the asymmetric nature of 

elicited magnetic fields can selectively activate [164,165], or suppress [166] neurons depending on the 

coil orientation (Figure 3C). Moreover, neuronal modulation through the FBR may improve chronic 

performance of µMS relative to micro-electrical stimulation. Compared to conventional 

microelectrodes, these microcoils require a much higher power input to modulate neuronal activity 

[164,166]. Novel microcoil designs and materials can potentially reduce this power, as well as, 

dramatically increase their selectivity. Furthermore, additional longitudinal in vivo studies will help to 

validate the potential of µMS as a viable and safe micro-neuromodulation mechanism. 
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 Optical 

Optical neuromodulation, through cell-type specific genetically-inserted light-sensitive proteins 

(opsins) [167], opened the door for a different microstimulation paradigm, known as optogenetic 

neuromodulation [168]. In the past decade, optogenetics has been established as a powerful tool for 

neuroscience research [168,169]. Advances in optogenetic systems [170], as well as the ability to 

selectively activate or inhibit specific cell types [167](Figure 3D), has increased interest in optogenetic 

neuromodulation technologies [171]. Yet, this nascent technology faces many challenges for 

neuroprosthetic implementation, including low temporal resolution, complex interfaces, and more 

importantly, the necessity to genetically manipulate cells [167,168,172,173]. In this manner, 

multidisciplinary efforts to overcome some of these challenges have shown recent success. These 

include, subverting the need for genetic manipulation through gold nanoparticles [174], as well as the 

development wireless [175,176], fully implanted systems [176,177], and improved flexible 

multifunctional probes [178]. Similarly, implantable μECoG arrays for optogenetic recording and 

microstimulation have shown recent success [179]. Faster and more sensitive opsins will continue to 

increase the temporal resolution of this technique [143]. Analogously, the spatial resolution could be 

drastically improved by reductions in probe size and highly selective genetic labeling. Furthermore, 

advances in high-resolution genetic tagging efforts analogous to nucleotide barcoding [180] and 

Brainbow labeling [181], might one day allow micro-neuromodulation at cellular and sub-cellular 

resolution. 

 

Chemical and Thermal 

Alternatively, chemical and thermal neuromodulation technologies have also been proposed. 

Optically-induced thermal neuromodulation technologies, such as infrared neural stimulation (INS) [182] 

do not require genetic manipulation [139]. In vivo studies have shown that INS is able to effectively 

modulate neuronal activity of visual cortex [183] and peripheral nerves [182] with high selectivity [184]. 

Nevertheless, absence of thermally induced damage, spatiotemporal resolution, and chronic stability are 

yet to be proven in longitudinal studies [139]. On the other hand, selective injection of 

neurotransmitters [185], charged ions [186], or temperature-sensitive magnetic nanoparticles (MNP) 

[187,188] are capable of modulating neuronal activity with high precision [19]. Recently, a method of 

stimulation called magneto-thermal genetic stimulation was tested for the first time in freely behaving 

rats. Combining MNPs with non-invasive alternating magnetic fields, this stimulation method allows for 

high specificity of genetically-modified cells [189]. However, these technologies require further 

improvements in stimulation onsets. Currently, poor temporal resolution renders these 

neuromodulation technologies unfeasible for real-time neuroprostheses.  
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Figure 3. 

Representative biostability and chronic performance of current intracortical neuromodulation technologies.. 

Electrical microstimulation by (A) silicon and (B) carbon fiber microelectrodes showing different foreign body 

responses and relative performance (stimulated neurons). (C) Implantable-sized microcoil eliciting orientation-

based selective activation of neurons by micromagnetic stimulation (µMS) capable of passing though the glial scar. 

(D) Optical fiber probe eliciting cell type-specific optical stimulation after genetic modification (not shown). 

Non-invasive Neuromodulation  

Non-invasive neuromodulation technologies such as TMS [120] and transcranial current 

stimulation [122] have been available in the clinic for more than a decade. Even though these methods 

have the advantage of not requiring invasive procedures, these transcutaneous neuromodulation 

techniques have poor temporal and spatial resolution. Further, the unwieldy equipment necessary in 

the case of TMS renders these impractical for chronic neuroprostheses. Nevertheless, recent non-

invasive neuromodulation alternatives have emerged with improved spatial resolution. For example, 

transcranial focused ultrasound (tFUS) has demonstrated neuromodulation recently in human studies 

that has successfully elicited discrete somatosensory [190,191] and visual [192] percepts. Likewise, 

temporal interference (TI) electrical stimulation has recently demonstrated that transcranial electric 

field interference stimulation is capable of neuromodulation at a selective depth [193]. Further studies 

will look to demonstrate the practicality and spatiotemporal resolution of these technologies for their 

application in micro-neuromodulation.  
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Conclusion 

In conclusion, modern developments from the fields of medicine, neuroscience, and neural 

engineering are bringing the possibility of micro-neuromodulation closer for prosthetic and science 

applications. Recent studies in both human and animals have demonstrated the power of high-density, 

high-resolution neural interfaces to provide sensory, motor, and cognitive effects. Simultaneously, 

technologies from electronics, optics, and magnetics are continually being miniaturized to provide high-

density, robust interfaces that avoid some biotic failures associated with the FBR. As non-invasive 

stimulation techniques gradually improve, Short-term solutions to the spatial resolution obstacle will 

most likely be overcome through invasive penetrating electrodes. Like DBS and cochlear implants, the 

drawback associated with the implantation of these devices will be outweighed by their clinical success. 

Furthermore, technological advances in computational power, artificial intelligence, and 

microelectronics must be developed in parallel as stimulation neuroprostheses become more reliable 

and precise. As the BMI spotlight shifts from academic and biomedical grounds towards commercial 

endeavors within the next decade, we will see an inevitable shift from assistive technologies and 

therapeutics towards sensory augmentation, performance enhancement, and faster-than-thinking 

communications. Emerging companies such as Neuralink and Kernel are leading pioneering efforts 

towards these goals. As the incentives for innovation and development of neuroprosthetic interfaces 

increase, strides towards super-high resolution integrative BMI will continue to flourish. Truly, the ability 

to selectively micro-neuromodulate every single neuron in the brain will one day become a pillar of 

neuroscientific research, adding a functional layer of complexity to current multidisciplinary brain 

mapping initiatives. 
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