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Abstract

Examining task-free functional connectivity (FC) in the human brain offers insights on how

spontaneous integration and segregation of information relate to human cognition, and how

this organization may be altered in different conditions, and neurological disorders. This is

particularly  relevant  for  patients  in  disorders  of  consciousness  (DOC)  following  severe

acquired brain damage and coma, one of the most devastating conditions in modern medical

care.

We  present  a  novel  data-driven  methodology,  connICA,  which  implements  Independent

Component Analysis (ICA) for the extraction of robust independent FC patterns (FC-traits)

from  a  set  of  individual  functional  connectomes,  without  imposing  any  a  priori  data

stratification into groups.

We here apply connICA to investigate associations between network-traits derived from task-

free  FC  and  cognitive/clinical  features  that  define  levels  of  consciousness.  Three  main

independent FC-traits were identified and linked to consciousness-related clinical features.

The  first  one  represents  the  functional  configuration  of  an  “awake  resting”  brain,  and  is

associated to the level of arousal. The second FC-trait reflects the disconnection of the visual

and sensory-motor connectivity patterns and relates to the ability of communicating with the

external environment. The third FC-trait isolates the connectivity pattern encompassing the

fronto-parietal and the default-mode network areas as well as the interaction between left and

right hemisphere, which are also associated to the awareness of the self and its surroundings.

Each  FC-trait  represents  a  distinct  functional  process  with  a  role  in  the  degradation  of

conscious states in functional brain networks, shedding further light on the functional sub-

circuits that get disrupted in severe brain-damage.

Significance Statement

In  this  study  we  propose  a  novel  methodology  for  the  analysis  of  functional  brain

connectomes,  namely  connICA,  which  consists  of  the  extraction  of  robust  independent

patterns of functional  connectivity  between cortical  areas in  healthy and diseased human

brains. We apply connICA to investigate associations between robust functional traits and



cognitive/clinical  features that define levels  of  consciousness based on resting-state fMRI

connectivity in patients at different levels of consciousness after severe brain damage.  

The versatility and simplicity of the connICA framework presented here constitute a powerful

approach to extract and disentangle underlying functional processes embedded within healthy

and diseased human brains, which might pave the way for innovative and clinically highly

relevant brain connectivity analyses. 

\body

Introduction

Disorders  of  consciousness  (DOC)  remain  among  the  most  challenging  and  poorly

understood conditions in modern medical care. The term spreads over several pathological

states qualified by dissociation between awareness and arousal (1, 2). Among these, patients

in coma show no signs of awareness nor arousal; patients with unresponsive wakefulness

syndrome/vegetative state (UWS) show no signs of awareness but do have an altered sleep

and wake cycle; patients in a minimally conscious state (MCS) retain minimal non-reflexive

and highly fluctuating signs of awareness. When patients regain functional object use and/or

reliable communication they are referred to as emerging from MCS (EMCS) (3, 4). A particular

outcome is represented by patients with a locked-in syndrome (LIS), who have no means of

producing  speech,  limb  or  facial  movements  (except  mostly  for  eye  movement  and/or

blinking) but are still awake and fully conscious (5, 6). To date, the most validated diagnosis of

these patients is based on the behavioral presentation of the patient. The distinction between

these  pathological  levels  of  consciousness  can  be  very  challenging,  as  the  boundaries

between these states are often uncertain and ambiguous (4). 

In  the  last  decade,  advances  in  neuroimaging  techniques  have  allowed  the  medical

community to gain important insights into the pathophysiology of DOC and to observe that

altered  states  of  consciousness  are  related  to  complex  disruptions  in  the  functional  and

structural organization of the brain (7-11). 

At  the  same time,  quantitative  analysis  based  on complex  networks  have become more

commonly used to study the brain as a network (12), giving rise to the area of research so



called Brain Connectomics  (13,  14).  In  brain network models,  nodes correspond to  grey-

matter regions ( based on functional or structural, atlas-based parcellations that constitute a

partition).while links or edges correspond either to structural connections as modeled based

on white matter fiber-tracts or to the functional coupling between brain regions while subjects

are either at rest or performing a task (15). Recent advances in functional neuroimaging have

provided new tools to measure and examine in vivo the whole-brain temporal dependence of

the dynamics of anatomically separated brain regions, defined as functional connectivity (FC)

(16-18). 

In  parallel  to  the  development  of  methods  and  network  features  in  Brain  Connectomics,

analyses  of  functional  magnetic  resonance  imaging  (fMRI)  data  based  on  independent

component analysis (ICA) have become an increasingly popular voxel-level approach  (19).

ICA, by relying upon a general assumption of independence, is a powerful and versatile data-

driven approach for studying the brain, at temporal and spatial scales (20). 

Examining functional connectivity in the human brain can give insight on how integration and

segregation  of  information  relates  to  human behavior  and  how this  organization  may  be

altered in diseases (7, 21). In the case of disorders of consciousness, voxel-level ICA-based

fMRI studies of levels of consciousness in DOC patients have mainly shown alterations in the

functional connectivity of the default mode network area (DMN) (22-24). Recent studies have

also shown disrupted functional connectivity in resting state networks other than DMN (25)

and possibility to correctly classify patients based on the level of connectivity of the “auditory”

network (26).Furthermore, analyses of the functional networks of comatose brains have also

evidenced a radical reorganization of high degree “hub” regions  (27) and that most of the

affected regions in patients belonged to highly interconnected central nodes (11, 28).

The potential of functional connectivity (FC) in particular and Brain Connectomics in general

in  exploring  the  diseased human brain  as  a  network  going  through systemic  changes is

undisputed. However, there is still  no clear way to  accomplish two critical  steps. of  great

clinical importance. First,  separate underlying FC patterns representing different functional

mechanisms  and,  second,  relate  those  FC  patterns  or  subsequent  network  features  to

individual  cognitive  performance or  clinical  evaluations.   This  is  specially  the  case  when

studying a continuum of states, where the stratification of the cohort-subjects into categories



or groups is inappropriate and/or poorly defined. Furthermore, standard FC techniques are

not able to model and disentangle common underlying forces or competing processes arising

from different  functional  patterns  of  healthy  and diseased human brains  in  a  data-driven

fashion, as for instance ICA does in the case of fMRI voxel time series  (19, 20). This was

indeed our motivation for the approach presented here.

In this study we bridge this gap by presenting a novel data-driven methodology,  connICA,

which consists of the extraction of robust independent patterns (traits) from a set of individual

functional  connectomes (see scheme in  Figure  1).  In  this  sense,  connICA is  a  multiplex

network framework both in the input (i.e., layers are individual FC connectomes) and in the

output  (i.e.,  layers  are  independent  patterns  or  FC-traits).  Here  we  apply  connICA to

investigate the link between cognitive/clinical features that define states of consciousness and

resting-state  functional  connectivity  (FC)  data.  The  method  allows  the  assessment  of

individual  FC  patterns  (or  FC  layers)  in  a  joint  data-driven  fashion  providing  as  outputs

multivariate independent FC-traits, which model independent sources or phenomena present

in the input (i.e. the aforementioned individual FC patterns). In a final step, we assess the

predictability of the weights (fingerprints) of each FC-trait on each subject from demographic

and  consciousness  related  variables,  allowing  for  a  continuous  mapping  of  levels  of

consciousness within functional connectomes.

Results

Following individual subject BOLD fMRI data processing (see Figure S1 for examples of four

individual  sessions)  and  subsequent  modeling  of  the  individual  task-free  functional

connectomes, connICA (see scheme at Figure 1) was run on the cohort of 88 subjects (32

conscious  controls  and  56  severely  brain-damaged  patients  at  different  levels  of

consciousness;  see  Methods  for  details)  without  imposing  any  a  priori information  or

stratification into groups. The procedure included 100 runs of  connICA and allowed us to

identify a total of 5 robust FC-traits (see Figure S2). In other words, they were present with

high frequency and reproducibility across runs (see connICA section in Methods for details).

Each FC-trait consists of two elements: an FC map of the same dimensions as an individual

FC matrix with connectivity units being unitless and represented by weights, and a vector

indicating the  amount of the FC-trait present on each individual functional connectome (i.e.



the weight of the trait on each subject). Importantly, this latter connICA outcome allows us to

associate individual cognitive and clinical features to each trait. Each of these 5 components

(FC-traits) was then evaluated in terms of explained FC variance and Newman's modularity

quality function Q (29) generalized for signed networks (30)  with respect to the partition into

RSNs proposed by Yeo and colleagues  (31).  The highest explained variance components

were 1, 2 and 4, with a dominant FC-trait  1 explaining 18% of variance on average. It  is

important to note that the FC explained variance does not quantify the meaningfulness of the

FC-trait with respect to the variables of interest (i.e. those related to levels of consciousness

in this case), but only the average prominence of the trait in the set of the FC connectivity

matrices extracted from the population of subjects.   

Of the 5 extracted traits, both FC-traits 1 and 2 had a high modularity ratio Q score (see

Figure 2A), which denotes that both FC traits have a strong fingerprint  on the underlying

RSNs  organization  (see  insert  in  Figure  2B)  in  functional  communities.  We focused  our

subsequent analysis on FC traits 1, 2 and 4, which were the ones with highest R 2 and at the

same time captured different aspects of the RSNs modular architecture.

The dominant FC-trait extracted using  connICA (i.e. the one with the highest explained FC

variance in the cohort) is shown in Figure 3D. Interestingly, it conforms to all the connectivity

blocks or modules of the resting-state functional networks (RSNs, see insert Figure 2B) as

introduced by Yeo and colleagues  (31). For this reason, this FC-trait was denominated the

RSNs trait. An incremental multi-linear model predicting the weight or  quantity of the  RSNs

trait on each subject (see Figure 3A) was used, based on up to 7 predictors (see Figure 3G).

A significant  association  with  arousal,  a  subscore  of  the  Coma Recovery  Scale-Revised

(CRS-R)  (32-34), was found, after controlling for age, gender, traumatic brain injury (TBI),

sedation, onset and CRS-R total score (with none of them being significant terms). In other

words, the more aroused the subject (Figure 3G), the higher the subject-weight associated to

the RSNs trait and hence the higher the presence of such trait. This might be due to the fact

that this trait is reflecting a functional configuration of an awake resting brain. Therefore, this

configuration might give a significant fingerprint for discriminating the “baseline wakefulness

activity” of a human brain. 



The other two FC-traits linked to cognitive features associated with levels of consciousness

(i.e. the CRS-R total score and the communication subscore (32, 33)) are shown in Figure 3E

and 3F. 

In particular, the FC-trait depicted in Figure 3E mainly captures changes of intra-hemispheric

functional connectivity in the visual and sensory motor networks across subjects in different

levels of consciousness. We will refer to it as the VIS-SM trait. A significant link with the CRS-

R  communication  subscore  (32,  33) was  found,  as  well  as  with  three  other  variables

previously added to the multilinear model (precisely with TBI, sedation and onset, see Figure

3H). 

The positive sign of the beta coefficient associated to the communication subscore indicates

that the trend of the linear fit follows the correspondent individual weights of the FC trait. In

other words, the higher the communication subscore of a subject, the higher the contribution

or presence of the  VIS-SM trait in his/her functional connectome (Figure 3B). Interestingly,

when adding etiology, sedation and time since onset (quantified here as the inverse of the

days  since  the  insult,  see  Methods),  the  explained  variance  of  the  model  significantly

increased.  The  negative  sign  of  the  associated  beta  coefficients  for  the  three  nuisance

variables indicates a negative slope in the fit with the FC individual weights. That is, in the

case of etiology, TBI patients have a lower amount of  the  VIS-SM trait  in their  functional

connectomes; in the case of sedation, sedated patients have a lower contribution of the trait

on their individual FC patterns; in the case of time since onset, the more recent the insult, the

lower the prominence of the VIS-SM trait on the individual FC of the patient.  

The trait shown in Figure 3F mainly captures modifications in the connectivity between DMN

and fronto-parietal networks (hence denominated  FP-DMN trait). Interestingly, the  FP-DMN

trait is linked to the CRS-R sum of scores, but also to the CRS-R communication subscore,

even when the sum of  scores is  already added to the multilinear  model  (Figure 3I).  The

positive  sign  of  the  beta  coefficient  associated  to  these two predictors  indicates  that  the

higher the CRS-R sum of scores (communication subscore) for  a  subject,  the higher  the

presence of the FP-DMN trait on his functional connectome. Notably, as one goes lower in the

levels of consciousness, the contribution of the FP-DMN trait on the FC of a subject flips sign

from negative to positive  (see the sorted individual  weights associated to  FP-DMN trait,



Figure 3C, 3F). There is an analogous effect in a few subjects for the VIS-SM trait (Figure 3B,

3E).

The RSNs trait was mostly characterized by the underlying RSNs. We further characterized

VIS-SM and FP-DMN traits by identifying the regions with a higher functional strength. The

strength  of  participation  of  each  brain  region  to  the  two  FC-traits  was  measured  as  its

absolute weighted degree (i.e. computed as the sum over columns of the absolute value of

the FC-trait). The higher the strength, the more influential is the role of the brain region to the

FC-trait,  and  hence  to  the  disruption  of  the  level  of  consciousness.  VIS-SM trait  mainly

involves the occipital and visual areas, whereas fronto-parietal areas are the most involved in

the FP-DMN trait (Figure 4).

Further analyses were performed on VIS-SM and FP-DMN traits to assess the presence of

communities (Figure 5) by using consensus clustering  (35) over  100 modularity  solutions

computed  using  the  Louvain  algorithm  (36) with  quality  function  Q  extended  to  signed

networks (30) (see Methods). Note that the obtained modular configuration gives insights on

the data-driven organization of the functional cores common to the whole cohort. When going

back  to  the  individual  space,  the  multiplication  by  the  subject’s  weight  may  preserve  or

change this core modular organization depending on the sign (i.e. it  changes the FC-trait

signed  network,  see  Figure  3).  Hence,  performing  consensus  clustering  on  the  FC-traits

allowed us to track the “normal conscious” (positive weights) configuration that gets disrupted

towards “lower altered” (negative weights) levels of consciousness (Fig. 3A, 3B, 3C).  

We looked at the prominence of each community by averaging the correspondent connectivity

values within each module. Interactions between every two communities in the FC-traits were

then evaluated by  averaging the  connectivity  values connecting  them,  hence providing  a

representation of the “coupling” between communities.  

For both traits, the highest modularity was associated to partitions of three modules. In line

with results of Figure 4, the most influential module (the highest within-module average) for

the VIS-SM trait appears to be the one comprising the occipital cortex and higher order visual

areas.  Notably, the latter  is  strongly decoupled from the  DMN module (highest  between-

modules  negative  connectivity,  Figure  5B),  suggesting  that  in  a  healthy  brain  these  two



modules  are  negatively  correlated.  This  modular  configuration  is  then  altered  after

modifications of levels of consciousness. 

The modular organization of FP-DMN trait revealed a substantial division of the brain in two

hemispheres.  The  between-modules  average  weight  shows  that  the  most  “antagonistic”

communities encompass the two different hemispheres (Figure 5D), indicating that in normal

consciousness the hemispheres are also anti-correlated. This “decoupling” or negative inter-

module connectivity might change (i.e. it turns to positive, Figure 3C, 3F) following loss of

consciousness.

Discussion

In  this  work  we applied  a  novel  data-based methodology,  connICA,  to  the  field  of  Brain

Connectomics. Our approach is based on extracting independent connectivity traits from a set

of individual functional connectomes to extract and map robust independent mechanisms or

processes that explain the FC patterns of an entire cohort of subjects, without setting any a

priori stratification  into  groups.  We used the  connICA framework  to  assess rsfMRI  in  88

subjects  with  different  levels  of  consciousness:  32  conscious  controls  and  56  severely

damaged patients (2 coma, 17 UWS, 20 MCS, 13 EMCS, 4 LIS) of different etiology and

duration, 31 of whom were acquired while receiving sedative drugs to control for movement

artifacts.  We  investigated  the  functional  connectivity  traits  underlining  specific

sensorimotor/cognitive capacities related to consciousness.

We showed how these traits separate the FC data into network subsystems with significant

associations to levels of consciousness. Notably, this methodology allowed us to map and

match the most meaningful functional traits to consciousness-related predictors taken at the

patient’s  bedside.  This  approach  established  the  link  between  the  alteration  of  levels  of

consciousness and the connectivity core associated to it. 

The  connICA framework  provides  a  multiplex  data-driven  way  to  extract  and  compact

(dimensionality  reduction)  the  most  meaningful  multivariate  information  contained  in  the

functional connectomes in a relatively small set of connectivity traits. In this work we showed

how  the  modification  of  levels  of  consciousness  is  associated  to  specific  connectivity

disruptions using as reference seven widely accepted RSNs (i.e., visual, somatomotor, dorsal

attention, ventral attention, limbic system, fronto-parietal, default mode network (31), and for



completeness, also subcortical regions (SUBC) and cerebellum (CER), see insert in Figure

2B).

One  additional  advantage  of  this  approach  is  that  the  dimensionality  of  the  output  is

significantly reduced, both in the number of the robust components extracted with respect to

the  initial  population  size  (in  the  study  analyzed  here,  5  FC-traits  starting  from  88  FC

matrices) and in the number of variables to be encoded in the multi-linear models, hence

notably decreasing number  of multiple comparisons. As opposed to univariate approaches

mapping up to  N(N-1)/2 functional connections and their subsequent multi-linear models (N

being the number of brain regions), the multi-layered output of connICA allows to focus on a

small subset of robust FC-traits (by definition, a subset smaller or equal to the number of

components set). This dimensionality reduction does not compromise but rather considerably

facilitates the interpretability of the results, by compressing the individual variability into the

most meaningful independent functional cores. It is noteworthy that most if not all the traits

would  have  been  missed  with  a  standard  group-average  analysis  of  the  functional

connectomes.

By using  connICA,  we extracted three independent  functional  connectivity  traits  linked to

cognitive features of levels of consciousness. Below is a characterization of each FC-trait and

its association to different aspects of consciousness.

The RSNs trait (Figure 3D) is also the one which explains the most of the FC variance (Figure

2A) and is the closest to the Yeo’s RSNs organization (31).  It seems mainly associated to a

global drop in the functional connectivity within each of the networks, and correlates with the

CRS-R arousal subscore. We might think of this trait as the one of an awake resting brain. It

reflects the connectivity organization of a functioning brain, which  might be at least partially

driven by its underlying structural connectivity (37-39). 

The  VIS-SM trait seems more associated to the effect of the pathology (i.e. etiology, time

since onset) and the sedation level (Figure 3H). It shows a more prominent disruption in the

occipital and sensorimotor areas as the level of consciousness decreases (Figure. 3E), and it

also  correlates  with  functional  communication  (Figure. 3H).  Interestingly,  the  modularity

analysis  suggests  that  visual  areas  and  DMN  are  anti-correlated  in  normal  wakefulness

(Figure 4A, 4B), stressing the importance of the interaction between the so called sensory



“slave” regions (40) and higher order cognitive regions as the DMN, for consciousness and

functional communication  (11). This corroborates the hypothesis that loss of consciousness

might  correlate with  the disruption of  primary sensory areas and higher-order  associative

cortices, which are thought to be required for conscious perception (i.e. global workspace,

(26, 41)).   

However, the recovery of this connectivity pattern seems not a sufficient condition for the

restoration of levels of  consciousness. Another independent functional  trait  appears to be

linked to behavioral assessment of levels of consciousness, particularly to both the CRS-R

total score and the communication subscore (FP-DMN trait, Figure 3F). 

The  FP-DMN trait captures changes in the anti-correlation between the FP-DMN networks.

Notably, as one goes towards the deepest unconsciousness, the FP-DMN anti-correlation

decreases, until the point where it “flips” to positive correlation, (see Figure 3C, 3F). This is in

line with previous studies showing decreasing anti-correlation in anesthesia  (42, 43), sleep

(44)  and  UWS  patients  (45).  Particularly,  a  recent  study  (46) showed  that  negative

connectivity between DMN and FP networks was significantly different between patients and

healthy controls. Indeed, UWS and MCS patients showed a pathological positive connectivity

between these two networks, whereas patients who emerged from MCS and recovered a

level of consciousness sufficient for functional communication and/or object use, exhibited

partial preserved between-network negative connectivity (46). In this respect, the fact that the

FP-DMN trait is strongly correlated to the communication subscore corroborates the idea that

recovery of the FP-DMN between-network negative connectivity is prerequisite in order to

regain functional communication.

Notably, the modularity analysis on FP-DMN trait reveals that the decoupling between the two

hemispheres (Figure 5C) represents a “healthy” way of communication between left and right

brain areas. The anti-correlation between hemispheres tends to disappear (i.e. goes towards

zero or even positive correlation, see the individual weights of FP-DMN trait in Figure 3C) as

levels of consciousness decrease.  

Indeed, there is evidence suggesting that communication and coordination between the two

hemispheres  is  essential for  consciousness  and  conscious  perception  (47). It  has  been

reported that  transection of corpus callosum in  refractory epileptic patients (i.e.  split  brain

https://en.wikipedia.org/wiki/Corpus_callosum


patients)  caused each  hemisphere  to  have  its  own  separate  perception,  concepts,  and

impulses to act (48). The conscious abilities of the two hemispheres are strongly differentiated

in specialized cognitive modules (49), modulated by the thalamo-cortical system (subcortical

regions are also split in left and right modules in FP-DMN trait, see Figure 5C). In this study

we show that the interaction between specialized modules, as the VIS-SM interaction with

DMN or the FP-DMN between-networks negative connectivity, is crucial for the emergence of

consciousness. Perhaps this laterality enhances the complexity of ongoing brain processes

and facilitates demanding cognitive processes such as consciousness of the self  and the

surrounding.

Taken together, these findings suggest that the connectivity core which differentiates across

levels  of  consciousness  is  a  combination  of  positive  and  negative  interactions  between

functional  sub-networks.  This  evidence stresses the  importance of  a  whole-brain  network

modulation  between  coherent  and  non-coherent  functional  states.  The  disruption  of  the

equilibrium  between  these  two  might  lead  to  changes  in  levels  of  consciousness  and,

ultimately, to reduced levels of consciousness.  

In fact, the connICA results presented in this paper depict a very challenging reality. Within

the set of individual functional connectomes analyzed here, there is not just one but at least

three  independent  mechanisms,  namely  FC-traits,  whose  predictability  by  consciousness

related features is  present  but  different  on each one,  and hence is  most  likely  capturing

different  phenomena or  mechanisms.  A first  RSNs trait  only  predicted by arousal,  a  very

sensitive FC-trait, which isolates the functional connectivity blocks of typical RSNs present in

an alive and awake brain (Figure 3D); a second VIS-SM trait, with predominant influence of

visual  and  sensory  regions,  which  links  disruption  of  sensory  networks  to  the  CRS-R

functional communication subscore (Figure 3E); a third FP-DMN trait, significantly associated

to CRS-R sum of scores and communication, which stresses the key role of the negative

connectivity  between  FP  and  DMN  networks  (Figure  3F)  and  inter-hemispheric

communication (Figure 5 C,D) in the alteration of levels of consciousness.

The study presented here adds to recent studies from Iraji et al. (50),  where ICA components

of voxel-based functional connectivity were assessed, and from Misic et al. (51), where levels

of  integration of  joint  structural-functional  connectivity  patterns are assessed from sets of



individual connectomes by means of a single-value decomposition approach (47). Together

with the methodology presented here,  these recent efforts suggest  that the area of Brain

Connectomics is evolving into new data-driven ways of analyzing connectivity data at different

spatial  scales  without  stratifying  subjects  into  a  priori groups  and  hence,  also  without

performing group-averages of individual connectivity matrices. 

Our study has several  limitations. The optimal  size of the cohort  for  the extraction of the

connICA components  needs  to  be  further  investigated.  Similarly,  the  best  choice  of  the

starting number of ICA components (here fixed to 15) and the threshold for the final selection

of  the most frequent  components over multiple ICA runs (here fixed to 75%) need to  be

characterized in more detail. In this work we used the Shen parcellation (52) because of the

uniformity of the size of brain regions and its functional data-driven approach. We also used

the  well-assessed  RSNs  decomposition  provided  by  Yeo  as  obtained  in  a  large  cohort

(n=1000)  of  healthy  volunteers  (31).  However,  other  parcellations  (53,  54) or  finer

decompositions  (25, 26)  might be beneficial in the  connICA framework, depending on the

research problem at hand and the desired level of spatial resolution.

Future work can be extended to the use of connICA for structural connectivity patterns, hence

identifying SC-traits within a population of subjects. This approach is not limited to assessing

consciousness, but has the potential of studying other progressive diseases and disorders,

drug-induced effects (i.e. anesthesia), and also differences based on aging or gender. When

associating traits with cognitive/clinical features, multi-linear models employed here can be

expanded  by  allowing  for  non-linear  terms  and  interactions,  which  could  capture  more

complex associations between connectivity patterns and cognition.

In conclusion, we here proposed a novel data-driven approach, connICA, to extract the most

influential connectivity patterns in the alteration of levels of consciousness. Our results shed

light on isolating key functional core changes involved in the degradation of conscious states

and establish links between isolated clinical/cognitive features and specific FC-traits.

Materials and methods

Subjects



The cohort studied here consists of 88 subjects with different levels of consciousness. From

those, 32 were healthy controls (mean age 44 years ± 15 years, 21 males, 11 females). We

selected 56 patients from an initial cohort of 216 patients in different levels of consciousness.

Exclusion criteria were: i)  neuroimaging examination in an acute state, i.e. <28 days from

brain insult, ii) large focal brain damage, i.e. >2/3 of one hemisphere, as stated by a certified

neuroradiologist, iii) suboptimal segmentation, normalization and/or parcellation of the brain

volumes after visual inspection. Out of the selected 56, 39 were patients with disorders of

consciousness (2 coma, 17 UWS, 20 MCS), 13 EMCS and 4 LIS. 28 out of 56 patients had

traumatic brain injury (TBI), and 31 were sedated during the fMRI acquisition.

Healthy volunteers were free of psychiatric or neurological history. The study was approved

by the Ethics Committee of the Medical School of the University of Liège. Written informed

consent to participate in the study was obtained from the healthy subjects and from the legal

surrogates of the patients.

Demographics

Nuisance variables included age, gender, etiology (1 for TBI, 0 otherwise), sedation (1 for

sedated subjects, 0 otherwise) and the inverse of the time since the insult (in days), as we

assumed healthy subjects’ time since onset to be infinite and hence corresponds to zero in

our codification.

To assess the level  of  consciousness,  we used the scores obtained from the JFK Coma

Recovery Scale-Revised (CRS-R) (32-34) assessment for each DOC patient. The CRS-R is

the most sensitive and validated  (55) scale to fully characterize and monitor DOC patients

and provide  a  global  quantification  of  their  levels  of  consciousness.  In  particular, CRS-R

integrates 25 arranged items that comprise 6 sub-scales addressing auditory, visual, motor,

oromotor,  communication,  and  arousal  processes.  Each  item  assesses  the  presence  or

absence of a specific physical sign that represents the integrity of brain function at one of four

levels: generalized, localized, emergent, or cognitively mediated responsiveness. Scoring is

based  on  the  presence  or  absence  of  specific  behavioral  responses  to  sensory  stimuli

administered in a standardized manner. The reader can refer to  (33, 34, 56) for a detailed

description of the scale.

Image acquisition



Each  subject  underwent  structural  MRI  and  a  10  minute  fMRI  resting-state  (task-free)

session.  Whole-brain structural  MRI T1 data (T1-weighted 3D MP-RAGE, 120 transversal

slices, repetition time = 2300 ms, voxel size = 1.0 x 1.0 x 1.2 mm3, flip angle = 9, field of view

= 256 x 256 mm2 )  and resting state BOLD fMRI  data (Echo Planar  Imaging sequence,

gradient echo, volumes  = 300, repetition time = 2000 ms, echo time = 30ms, flip angle = 78°,

voxel size = 3 x 3 x 3 mm3, field of view = 192×192 mm2, 32 transversal slices) were acquired

on a Siemens 3T scanner. Healthy subjects were instructed to keep eyes open during the

fMRI acquisition.

Data processing and Functional Connectivity modeling

Data  processing  was  performed  by  combining  functions  from  FSL  (57) and  in-house

developed Matlab (MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000) code. The individual

functional connectomes were modeled in the native BOLD fMRI space of each subject. 

Processing  steps  were  based  on  state  of  the  art  fMRI  processing  guidelines  (58,  59).

Structural  images  were  first  denoised  to  improve  the  signal-to-noise  ratio  (60),  bias-field

corrected,  and  then  segmented  (FSL  FAST)  to  extract  white  matter,  grey  matter  and

cerebrospinal  fluid  (CSF)  tissue  masks.  These  masks  were  warped  in  each  individual

subject’s functional space by means of subsequent linear and non-linear registrations (FSL

flirt 6dof, FSL flirt 12dof and fnirt).

BOLD fMRI functional volumes were processed according to the steps recommended by (59).

These steps included: slice timing correction, motion correction, normalization to mode 1000,

demeaning  and  linear  detrending,  inclusion  of  18  regressors  consisting  of  3  translations

[x,y,z], 3 rotations [pitch, yaw, roll], and 3 tissue regressors (mean signal of whole-brain, WM

and CSF),  and the 9 corresponding  derivatives (backwards difference,  see Figure S1).  A

scrubbing procedure  censoring  high  motion  volumes was  based  on  Frame Displacement

(FD), DVARS and SD. FD measures the movement of the head from one volume to the next,

and is calculated as the sum of the absolute values of the differentiated realignment estimates

(by backwards differences) at every time-point  (59); DVARS measures the change in signal

intensity from one volume to the next, and is calculated as the root mean square value of the

differentiated BOLD time-series (by backwards differences) within a spatial  mask at every

time-point (61); SD is the standard deviation of the BOLD signal within brain voxels at every



time-point  (outlier  volumes higher  than 75 percentile  +1.5  of  the  interquartile  range were

discarded, see Fig. S1).

A bandpass first-order Butterworth filter in forward and reverse directions [0.001 Hz, 0.08 Hz]

was then applied. After that, the 3 principal components of the BOLD signal in the WM and

CSF tissue were regressed out of the GM signal. 

A  whole-brain data-driven functional parcellation based on 278 regions, as obtained by Shen

and colleagues  (52), was first warped into each subject’s T1 space (FSL flirt 6dof, FSL flirt

12dof  and finally fnirt) and then into each subject’s fMRI space. To improve the registration of

the  structural  masks  and  the  parcellation  to  the  functional  volumes  FSL boundary-base-

registration  was  also  applied.  Individual  functional  connectivity  matrices  (FC)  were  then

estimated by means of pairwise Pearson correlations between the averaged signals of the

regions of the parcellation, excluding the censored volumes as determined by the above-

mentioned scrubbing procedure. Finally, the resulting FC matrices were ordered according to

7 resting-state sub-networks (RSNs) as proposed by Yeo and colleagues ((31), see insert of

Fig  2B).  For  completeness,  we  added  two  more  sub-networks:  an  8 th sub-network

representing the subcortical regions and a 9th sub-network representing the cerebellum.

ConnICA:  Independent  component  analyses  of  sets  of  individual  functional

connectomes

The input of ConnICA consists of all the individual FC profiles embedded into a dataset matrix

where each row contains all the entries of the upper triangular part of the FC matrix for each

subject (given the symmetry of FC) and hence provides an individual FC pattern. Note that

this  includes  all  FC  matrices  from  all  subjects,  without  any  a  priori information  or  any

stratification of the data into groups (see scheme at Fig. 1). With this input, ICA decomposition

of the FC patterns was applied by running fastICA algorithm (62) and setting the number of

independent components to 15. 

The output of connICA consists of two vectors per component. The first output vector will be

referred to as  FC-trait,  which represents an independent pattern of functional connectivity.

Interestingly, this vector can be represented back to its spatial form, i.e. a square symmetric

matrix with brain regions in rows and columns. While the values here express connectivity

units, they are not Pearson correlation coefficients and hence not restricted tothe [-1,1] range.



The second output vector is the weight of the FC-trait on each subject, which quantifies the

prominence or presence of the trait in each individual FC matrix (note that this value can be

positive or negative). In that sense, connICA is maximizing the individual variance explained

by the multilinear regression of the obtained collection of FC-traits and subsequent subject

weights.

Given the non-deterministic nature of ICA decomposition into components, we selected only

the  most  robust  ones  (from  now  on  simply  denominated  FC-traits),  i.e.  only  those

independent patterns that are frequently observed during the ICA decomposition of the FC

data. To do so, instead of analyzing the connICA components from a single run, we evaluated

the similarity of the connICA components over 100 runs. For an FC-trait to be robust, it has to

appear (correlation of 0.75 or higher across runs) in at least 75% of the runs. This criterion

resulted in 5 robust FC-traits. Each of these traits is obtained by averaging the correspondent

“representations” found along the runs (see Fig. S2).  

Each FC-trait was characterized by the mean and standard deviation of explained variance

with respect to the individual FC matrices. The subject weights associated to each assessed

FC-traits was then used as response in an incremental multi-linear regression model with up

to 7 predictors. Predictors included the Coma Recovery Scale Revised (30) clinical subscores

of each patient (Arousal, Auditory, Communication, Motor, Oromotor, Visual), and the sum of

these scores. The control population was assumed to have the highest scores for each of the

subscales.  As  aforementioned,  the  following  variables  were  also  included:  age,  gender,

etiology (traumatic/non traumatic), sedation level and the inverse of the time since onset. 

We then identified the FC-traits whose presence (weights) in individual FCs was significantly

explained by a cognitive predictor (statistical significance set at p-value ≤ 0.05, Fig. 3G, 3H,

3I). The aim was to extract the connectivity patterns or traits associated to clinical features

that go from wakefulness to the deepest level of unawareness. 

Modularity analyses

Modularity is a measure of the strength of division of a network into modules or communities.

Networks with high modularity have dense connections between the nodes within modules

but  sparse connections between nodes in  different  modules.  The  Newman-Girvan quality

function Q is a way of quantifying network modularity. It is defined as the fraction of edges



that fall within modules minus the expected number of edges for a random graph with the

same node  degree  distribution  as  the  given  network  (29). Particularly, we here  used  the

extension of Q for signed undirected networks proposed by Mucha et al. (30), and inspired by

(63, 64).  

To investigate the functional organization properties of the FC-traits extracted with connICA,

we  first  assessed  the  similarity  of  each  trait  with  Yeo’s  partitions  using  Newman-Girvan

modularity function Q for  signed undirected networks  (30).  In other  words,  we wanted to

evaluate to what extent each FC-trait can be well-separated into communities based on a

partition based on RSNs.

We then assessed the community structure of each FC-trait by using the Louvain method for

identifying  communities  in  large  networks  (36). In  order  to  improve  the  stability  of  the

community detection procedure, we performed  consensus clustering (35) out of a set of 100

partitions obtained by the Louvain method. Consensus clustering is a technique that seeks

for a  median (or consensus) partition, i.e. the partition that is most similar, on average, to

all the input partitions. The similarity can be measured in several ways, for instance co-

occurrence  of  the  nodes  in  the  clusters  of  the  input  partitions  (35).  This  “consensus”

partition was finally selected as the most robust one.
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Figure Legends

Figure 1. Workflow scheme of the proposed Connectivity Independent Component Analysis (ConnICA).

The N individual functional connectivity (FC) matrices (left) are concatenated into a matrix where rows are the

subjects and columns are the functional connectivity entries in the FC matrix). The ICA algorithm extracts the M

independent components (i.e. functional traits) associated to the whole population and their relative weights

across  subjects.  Colorbars  indicate  positive  (red)  and  negative  (blue)  connectivity  values,  being  Pearson’s

correlation coefficient values in the case of individual FC matrices (left side of scheme), and unitless connectivity

weights in the case of FC-traits (right side of the scheme).  



Figure 2. connICA-extracted robust FC traits A) Bar plot of the explained FC variance for the 5 most robust

traits extracted with connICA. Error bars show the standard error across subjects. B) Bar plot of the modularity

ratio for the 5 robust FC-traits extracted with connICA. This ratio is defined as the quality function Q ( (30), see

Materials and Methods) for the imposed a priori  Resting State Networks’ (RSNs) partition (encompassing 7

networks: visual (VIS), sensorimotor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), fronto-parietal

(FP), default mode network (DMN), see top right insert in panel B), divided by the quality function Q (30) for the

data-driven partition obtained from consensus clustering (35) and Louvains' algorithm (36). 



Figure 3 Mapping of the three main functional traits and their predictability by consciousness features .

A-C) Quantified presence of each FC-trait on each individual functional connectome. Subject weights are sorted

from greater to smaller on each FC-trait.  D-F) Visualization of the three FC-traits associated to consciousness

features.  The brain  regions are ordered according to  Yeo’s  (31) functional  RSNs as indicated :  Visual  (V),

Somato-Motor  (SM),  Dorsal  Attention  (DA),  Ventral  Attention  (VA),  Limbic  system (L),  Fronto-Parietal  (FP),

Default Mode Network (DMN), and for completeness, also subcortical regions (SUBC) and cerebellum (CER). G-

I) Bar-plot of the FC-traits predictability based on additive multi-linear regression models when predictors are

sequentially introduced in the following order: age, gender, trauma, sedation, inverse of the time since onset,

Coma Recovery Scale – Revised (CRS-R) total scores and the CRS-R communication subscore. Error bars

show the standard error across the 100 ICA runs. Crosses on the top of a bar indicate that the inclusion of the

correspondent predictor significantly increased the predictability of the model. The sign of the beta coefficient

associated to each significant variable is shown below each asterisk, indicating whether there is a negative or

positive trend with respect to the weights of the FC traits.



Figure 4.  The strength per region computed as absolute sum of component weights allows an assessment of

the overall centrality of each region for A) VIS-SM trait and B) FP-DMN trait. 



Fig.  5  A)  Brain  render  of  the  modules obtained  on  VIS-SM trait  (see  Materials  and Methods).  Each  color

represents region’s membership in a module. B) Left: bar plot of the average weight within each module in VIS-

SM trait. Right: bar plot of the average between-module weight in VIS-SM trait. C) Brain render of the modules

obtained on FP-DMN trait. D) Left: bar plot of the average weight within each module in FP-DMN trait. Right: bar

plot of the average between-module weight in FP-DMN trait.



Figure. S1: Illustration of the fMRI preprocessing steps described in the Materials and Methods section on

four subjects. Task-free session for four single subjects (A-D). For each subject, the 4 plots from top to bottom:

1) The fMRI time courses in GM voxels after slice timing and motion correction, normalization to mode 1000,

demeaning and detrending; 2) The 18 motion and physiological noise regressors;  [x, y , z, pitch, yaw, roll], the

tissue  mean  signal  of  whole-brain,  WM  and  CSF  and  their  corresponding  nine derivatives  (backwards

difference); 3) Visual representation of the scrubbing procedure based on Frame Displacement (FD), DVARS

and SD to drop or censor volumes with motion (indicated by the dark vertical bars) from the computation of the

pairwise  correlations;  4)  Residuals  of  the  BOLD  time  courses  of  GM  voxels  after  regressing  out  the  18

regressors. Subjects A and B had no censored volumes, with C and D having 14% and 11% censored volumes,

respectively. Note that first and last 7 volumes in each session were always excluded.



Figure S2:  A) Plot of the correspondent weights per subjects for each single connICA run.  B) Plot of the five

robust  connectivity  traits  extracted  using  connICA based  on  100  runs.  Only  three  of  the  FC  traits  were

associated with cognitive scores linked to levels of consciousness.
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