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Abstract. Monitoring algal blooms using traditional methods is expensive and labor intensive.
The use of satellite technology can attenuate such limitations. A common problem associated
with the application of such technology is the need to eliminate the effects of atmosphere, which
can be, at least, a time-consuming task. Thus, a remote sensed algal bloom monitoring system
needs a simple algorithm which is nonsensitive to atmospheric correction and that could be
applied to small aquatic systems. A slope algorithm (SAred−NIR) was developed to detect and
map the extension of algal blooms using the Landsat 8/Operational Land Imager. SAred−NIR was
shown to have advantages over other commonly used indices to monitor algal blooms, such as
normalized difference vegetation index (NDVI), normalized difference water index, and floating
algae index. SAred−NIR was shown to be less sensitive to different atmospheric corrections, less
sensitive to thin clouds, and less susceptible to confusion when classifying water and moderate
bloom conditions. Based on ground truth data from Eagle Creek Reservoir, Indiana, SAred−NIR
showed an accuracy of 88.46% while NDVI only showed a 46.15% accuracy. Finally, based on
qualitative and quantitative results, SAred−NIR can be used as a tool to improve the governance of
small size water resources. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.11.012005]
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1 Introduction

Algal blooms, especially cyanobacteria harmful algal blooms (CHABs), have been a big concern
for environmental and public health managers.1 The impacts range from simple esthetic issues
related to color, taste, and odor to the production of dangerous toxins, known as cyanotoxins.2

A large CHAB occurred in the summer of 2014 in the western region of Lake Erie, Ohio, and
resulted in a cyanotoxin contamination in the tap water of Toledo, Ohio, affecting over 500,000
people.3

CHABs are a big concern worldwide due to their fast growth rate4 and their capacity to
produce cyanotoxins.1 Human contamination is often reported, but its identification is difficult
since the symptoms are usually masked as a typical gastrointestinal disease. In aquatic systems,
especially in those used for water supply, it is very important to monitor algal blooms to adjust
treatment methods appropriately. Traditional algal bloom monitoring methods are labor intensive
and costly since they are based on a collection of field samples, laboratory analysis, and manual
cell counts.5 Additionally, because of the spatial and temporal heterogeneity of water bodies, the
characterization of algal blooms is usually inadequate since it relies on interpolation and extrapo-
lation among the sampled points.6 Satellite imagery provides spatial and temporal coverage with
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low cost for analysis and can be used as a tool to monitor water quality and algal blooms. An
example of this use is the “Experimental Lake Erie Harmful Algal Bloom Bulletin”7 developed
by the National Oceanic and Atmospheric Administration, which uses satellite imagery as a
prediction tool for algal blooms. The use of remote sensing is also emphasized by Kutser8

who stated that the use of remote sensing to provide information about the extent of algal blooms
is more reliable if compared to traditional monitoring methods, because it does not physically
break (or disturb) the algal bloom when collecting data. This statement agreed with Metsamaa
et al.9 who described remote sensing as the only technique able to map the spatial distribution of
algal blooms.

The moderate-resolution imaging spectroradiometer (MODIS) and medium resolution im-
aging spectrometer (MERIS) are the most commonly used remote sensors for monitoring
water quality.10 However, because of their moderate spatial resolution, 1000 and 300 m respec-
tively, it is not possible to monitor water quality from small aquatic systems or to detect spatial
variability within them. The most recent satellite from the Landsat family (Landsat 8) carries the
Operational Land Imager (OLI) sensor, which is a nine band push broom imager with eight
channels at 30-m spatial resolution.11 This spatial resolution combined with the global data avail-
ability makes OLI an important sensor for the monitoring of worldwide aquatic systems.12,13

Although OLI presents a better spatial resolution when compared to MODIS and MERIS,
OLI’s temporal resolution is not appropriate for an operational monitoring once algal blooms
quickly respond to changes in the environment. Therefore, OLI can be used to map algal bloom
extension. The use of sensors such as MODIS and MERIS, which have a higher temporal res-
olution, are appropriated in areas where spatial resolution is not an issue and/or there is a need to
create a time series of the obsevervations.14,15 Another important issue was highlighted by Hu16

who observed that indices commonly used for algal blooms identification were influenced by the
atmosphere. Therefore, an algorithm that can map the extension of algal blooms without being
influenced by the atmospheric correction used has a considerably advantage.

In this research, the overall goal was to assess the potential of the OLI sensor to map the
extension of algal blooms by subdividing them in three classes: severe bloom, moderate bloom,
and water. The specific objectives of this research are: (1) to compare and evaluate the perfor-
mance of several existing reflectance-based indices to map the extension of algal blooms using
Landsat 8/OLI spectral bands, (2) to develop a bio-optical algorithm using Landsat 8/OLI sensor
that is able to perform consistently when applied to images subjected to different atmospheric
corrections, and (3) to test the capability of such an algorithm to map algal blooms in three
classes (severe bloom, moderate bloom, and water) using Landsat 8/OLI data.

2 Background

2.1 Monitoring Algal Blooms with Landsat Family

Remote sensing has been considered an efficient approach for the investigation of inland waters.
The feasibility of the Landsat satellites family to estimate water quality properties has been
recently studied by several researchers.17–22 The algorithms developed in these studies are di-
vided here into two groups: empirical and semiempirical following the classification proposed
by Ogashawara.23

Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus
(ETMþ) were used by Vincent et al.17 and Sun et al.18 to estimate phycocyanin (PC)—a unique
pigment of inland water cyanobacteria—via an empirical algorithm. Vincent et al.17 using one
TM and one ETMþ image over the western part of Lake Erie and developed an empirical algo-
rithm based on forward and backward stepwise linear regression and on its highest value for the
coefficient of determination (R2). This study showed that a combination of TM and ETMþ bands
centered at 485, 660, 835, and 2220 nm produced the highest R2 when related to PC concen-
trations. Sun et al.18 developed an empirical algorithm based on the data from two cruises in Lake
Dianchi, China, and the radiometric data from the blue, green, red, and near-infrared (NIR) chan-
nels from Landsat family imagery. Through a multivariate regression, the authors found the best
performance (mean absolute percentage error < 10%) with the use of a combination among
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coefficients and 10 independent variables (single bands or band ratios). Oyama et al.,19 using the
spectral bands in the blue, red, and NIR, and developed a spectral decomposition algorithm
to estimate chlorophyll-a (chl-a) and nonalgal particles (NAP) concentrations from Lake
Kasumigaura, Japan. This algorithm is based on the combination of these spectral bands
and the use of decomposition coefficients (one for phytoplankton and one for NAP concentra-
tions). Its applicability is restricted due to the need of some assumptions, such as (i) the need for
preliminary information about the phytoplankton and NAP, (ii) the need for standard reflectance
spectra from different optically active constituents present in the water column, [i.e., chl-a, NAP,
and colored dissolved organic matter (CDOM)], and (iii) the need for a corresponding estimation
model must exist.

Dalu et al.20 applied a semiempirical algorithm to estimate chl-a from TM images based
on the remote sensing reflectance (Rrs) values at blue, green, and red bands. Recently,
Ogashawara,23 using TM and ETMþ, evaluated the use of different semiempirical indices com-
monly used to map CHABs and aquatic macrophytes in inland water. The indices used were the
normalized difference vegetation index (NDVI),24 the normalized difference water index
(NDWI),25 and the floating algal index (FAI).16 Oyama et al.21 calculated, for each index, differ-
ent thresholds to map three different classes: cyanobacteria, macrophytes, and water. They
observed NDWI as the best to distinguish cyanobacteria and macrophytes while NDVI was
the best to classify water. Manzo et al.22 simulated OLI spectra based on the data collected
from three Italian lakes (Garda, Mantua, and Trasimeno). The simulated bands were used to
evaluate the sensitivity of each spectral band to different optical active compounds—chl-a, sus-
pended particulate matter, and CDOM. All these studies showed that there is a need for using the
spatial resolution from the Landsat family satellites for the spatial analysis of algal blooms,
especially in small aquatic systems. Thus, the continuity of the Landsat family is important
not only for the spatial analysis but also to have a continuous archive of data, which can be
used to understand the past in order to predict the future.

2.2 Monitoring Algal Blooms With Red–Near-Infrared Algorithms

Red–NIR bio-optical algorithms have been used for detecting and monitoring algal blooms in
inland waters. Although these algorithms used spectral bands located in the red and NIR chan-
nels, their mathematical structures are different (Table 1) and these differences can lead to differ-
ent estimations. The most common structure is a ratio between NIR and red, usually known as a
two-band algorithm.26 A variation of this algorithm is the use of a second NIR spectral band,
where reflectance is minimally affected by other optically active constituents.27 This structure is
known as a three-band model. Another algorithm that also uses three spectral bands was pro-
posed by Wynne et al.28 and is known as the spectral shape (SS) algorithm, which calculates a
base line between red and NIR bands and adds a second red spectral band to evaluate its height in
comparison to the base line. Most recently, Mishra and Mishra29 presented a normalized differ-
ence chlorophyll index (NDCI) that normalizes the difference between the NIR and red bands.

Table 1 Structure of red and NIR bio-optical algorithms.

Type Reference Structure

Two band Moses et al.26 RrsðNIRÞ
RrsðRedÞ

Three band Dall’Olmo and Gitelson.27
1

RrsðRedÞ − RrsðNIR1Þ
· RrsðNIR2Þ

NDCI Mishra and Mishra29 RrsðNIRÞ − RrsðRedÞ
RrsðNIRÞ þ RrsðRedÞ

SS Wynne et al.28 RrsðRed2Þ − RrsðRed1Þ − ½RrsðNIRÞ

−RrsðRed1Þ� ·
λðRed2Þ − λðRed1Þ
λðNIRÞ þ λðRed1Þ
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Studies have been comparing the performance of existing semiempirical bio-optical
algorithms for the estimation of algal blooms. Gurlin et al.30 compared the performance of
two-26 and three-band algorithms27 using MERIS spectral bands. The study showed that the
two-band algorithm estimated chl-a with a mean absolute error (MAE) of 2.3 mgm−3 when
the concentrations ranged from 0 to 100 mgm−3, whereas the three-band algorithm produced
an MAE of 2.5 mgm−3 for the same concentration range. For a lower range, from 0 to
25 mgm−3, the two-band algorithm produced an MAE of 1.2 mgm−3 while the MAE was
1.9 mgm−3 for the three-band algorithm. Augusto-Silva et al.31 compared the performance
of these two algorithms and added to the analysis the NDCI.29 The comparison was conducted
using in situ surface spectroradiometer measurements in an inland tropical reservoir. This study
showed similar results compared to Gurlin et al.,30 where the two-band algorithm outperformed
the three-band algorithm. However, in Augusto-Silva’s study, NDCI showed the best perfor-
mance among the three algorithms. While the normalized root-mean-square error (NRMSE)
for the two-band model was 18.32%, NDCI produced an NRMSE of 17.85%. Recently,
Beck et al.32 compared 12 bio-optical algorithms used for the estimation of chl-a concentrations
using the spectral bands of different sensors. The authors concluded that NDCI is the most
widely applicable algorithm and performs well for the following sensors: WorldView-2,
Sentinel-2, Landsat 8, MODIS, and Sentinel-3. Based on these comparisons, it was observed
that a simple band ratio and NDCI showed the best performance among several chl-a algorithms.
However, it was also observed that there is no algorithm that uses the slope between the red and
NIR spectral bands.

3 Materials and Methods

3.1 Remote Sensing Data

For the algorithm development, OLI images at level 1 (Table 2) and atmospherically corrected
products for the western part of Lake Erie were acquired on 2014 Julian days August 1, 2014,
September 18, 2014, and November 5, 2014, over West Lake Erie, near the city of Toledo, Ohio,
and those for Lake Tai, China, on October 26, 2014, were downloaded from the Earth Explorer
website.

These different dates were selected to characterize different algal blooms in the western part
of Lake Erie, Ohio. This region of Lake Erie has an average depth of 19 m and during the
summers it has recurring harmful algal blooms (HABs) due to its morphology and mainly
due to anthropogenic inputs of nutrients from farming.3 On August 1, 2014, an algal bloom
occurred and caused the shutdown of the water supply in Toledo, Ohio, as described by
Paerl et al.3 For September 18, 2014, and November 5, 2014, there was no reported bloom

Table 2 Image identifier, WRS-2 path and row, and date for the OLI and TM images used in this
research.

Image WRS-2 tile path-row Date

LC80200312014213LGN00 P020 – R031 August 1, 2014

LC80200312014261LGN00 P020 – R031 September 18, 2014

LC80200312014309LGN00 P020 – R031 November 5, 2014

LC81190382014299LGN00 P119 – R038 October 26, 2014

LT50210322006166GNC01 P021 – R032 June 15, 2006

LT50210322006182GNC01 P021 – R032 July 1, 2006

LT50220322006189GNC01 P022 – R032 July 8, 2006

LT50220322006205GNC01 P022 – R032 July 24, 2006
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in the region, thus these images were used use as an example of a no bloom event. Figure 1
presents the location of Lake Erie as well as the location of three regions of interest (ROIs): the
first one shows a severe bloom location [Fig. 1(d)], the second one shows severe bloom (solid
dark red pixels) and moderate bloom (cloudy pink pixels) locations [Fig. 1(e)], and the third one
shows clouds over the water [Fig. 1(f)]. These ROIs were used to evaluate the performance of the
existing indices and the proposed algorithm to map the extension of algal blooms. Figure 1
presents the location of the study sites used in this research in the Midwest of the United
States: Eagle Creek Reservoir, Indiana [Fig. 1(b)], and the western part of Lake Erie, Ohio
[Fig. 1(c)].

For validation purposes, we used a Landsat 8/OLI image acquired on October 26, 2014, over
Lake Tai, China, and four Landsat TM images acquired between June and July 2006 over Eagle
Creek Reservoir, Indiana (Table 2). Lake Tai was selected because of its frequent and serious
algal blooms, mainly related to CHABs. Lake Tai is the third largest lake in China and has a
surface area around 2338 km2. Algal blooms in this aquatic system are usually related to nutrient
level rise, which has been increasing since 1980s.5 Figure 2 presents the location of Lake Tai,
China, as well as the ROI red square within the RGB false color composite. In addition, four
Landsat TM images of Eagle Creek Reservoir, central Indiana were selected because of the
availability of ground truth chl-a concentration data, which was used to classify bloom severity
based on Ohio Environmental Protection Agency (Ohio EPA) HAB Response Strategy.33 Eagle
Creek Reservoir is one of the major supplies of drinking water for central Indiana and it fre-
quently experiences CHABs.

Fig. 1 Location of the areas used to evaluate the algorithms: (a) location of Lake Erie and Eagle
Creek Reservoir, (b) false color (R = band 4, G = band 3, and B = band 2) Landsat 5/TM
composite for Eagle Creek Reservoir, (c) false color (R = band 5, G = band 4, and B =
band 3) Landsat 8/OLI composite for West Lake Erie with the locations of the three ROIs,
(d) ROI 1, (e) ROI 2, (f) ROI 3.
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3.2 Atmospheric Calibration

To assess the sensitivity of different remote sensing indices commonly used for mapping
algal blooms to atmospheric effects, we used the selected OLI images, which were atmos-
pherically corrected using two different approaches: a complex and a simple atmospheric
correction. The complex approach is the provisional land surface reflectance product
(PLSRP), which is prepared and released as part of the Landsat 8 Surface Reflectance
Climate Data Record by the United States Geological Survey (USGS). This provisional prod-
uct is generated using L8SR, a complex, physically based radiative transfer atmospheric cor-
rection algorithm different from the 6S algorithm with the latter being used to generate the
land surface reflectance product for Landsat 4-5 TM and Landsat 7 ETMþ.34 L8SR uses a
series of meteorological and environmental parameters, such as pressure, water vapor, air
temperature, digital elevation model (DEM), ozone, aerosol optical thickness, and other sen-
sor-derived parameters.

The second approach is dark object subtraction (DOS), a simple image-based atmospheric
correction algorithm. This algorithm was proposed by Chavez35 and it is based on the assump-
tions that within an image, there are dark pixels in which the radiance is only originated
from atmospheric scattering. When the radiance of the dark pixel is subtracted from all
other pixels, we remove the contribution of atmosphere. To perform the DOS, we first calculate
the spectral radiance (Lλ) in (Wm−2 sr−1 μm−1) from digital number (DN) based on OLI product
description.36

To remove the dark pixel value, we followed the procedure presented by Vincent et al.17 to
identify the dark pixel, which is based on removing the second darkest pixel (second lowest
radiance value)

EQ-TARGET;temp:intralink-;e001;116;137Lp ¼ Ldark −
0.01 × ESUNλ × cos θ

ðπ × d2Þ ; (1)

where Lp is the path radiance, Ldark is the radiance of the second darkest object in the histogram,
ESUN is the mean solar exoatmospheric irradiances, θ is the solar zenith angle in degrees, and

Fig. 2 Location of the area used to evaluate the algorithms: (a) location of Lake Tai, China,
(b) false color (R = band 5, G = band 4, and B = band 3) composite for Lake Tai with location
of the interested area, and (c) ROI from Lake Tai.
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d is the Earth–Sun distance in astronomical units. ESUN for OLI can be calculated37 using its
metadata file from the image as follows:

EQ-TARGET;temp:intralink-;e002;116;711ESUN ¼ ðπ × d2Þ × Radiance maximum

Reflectance maximum
: (2)

Therefore, the surface reflectance was finally calculated as

EQ-TARGET;temp:intralink-;e003;116;658ρ ¼ ½π × ðLλ − LpÞ × d2�
ðESUN × cos θÞ : (3)

Since DOS is only based on DN values of each spectral band, it is useful for operational purposes
because of its simplicity, especially when atmospheric parameters are not available to feed the
physically-based atmospheric correction algorithms, such as the PLSRP.

3.3 Water Classes

It is possible to identify three major algal bloom classifications: severe bloom, moderate bloom,
and water. The identification and mapping of three classes are essential for environmental mon-
itoring programs, which can use the geoinformation about moderate blooms to create mitigation
strategies for water quality management. According to the Ohio EPA HAB Response Strategy,33

severe bloom is characterized by the presence of a thick scum of algal blooms over the water
surface, a cyanobacteria cell count higher than 100;000 cells∕mL, presence of cyanotoxins,
biovolume higher than 10 mm3∕L, and chl-a concentration higher than 50 μg∕L. A moderate
bloom is visible in the water column, but has no scums on the surface, has a cyanobacteria cell
count between 10,000 and 100;000 cells∕mL, has a biovolume between 1 and 10 mm3∕L, and a
chl-a concentration between 5 and 50 μg∕L.

Based on these descriptions, the moderate blooms are important in the public health man-
agement perspective since no cyanotoxin is detected; therefore, in this stage, the algal bloom is
not harmful. The spatial identification of blooms helps environmental and public health man-
agers to prepare adaptive strategies for the presence of algal blooms. An example for each class

Fig. 3 Different water classes for algal bloom monitoring using an RGB false color composite (R =
band 5, G = band 4, and B = band 3). (a) Three classes in this area of the RGB composed image,
(b) severe bloom area, thick scum of algae which appears as red-purple area, (c) moderate bloom
area, thin scum of algae in the surface which appears as a thin pinkish cloud surrounding the
bloom pixels in the image, and (d) water area, no presence of blooms usually appears as
blue in the image.
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in an RGB false color composite of the Landsat 8/OLI image from August 1, 2014, over the
western portion of Lake Erie is shown in Fig. 3.

3.4 Algorithm Development

For the development of the algorithm, surface reflectance from PLSRPs for August 1, 2014,
September 18, 2014, and November 5, 2014, was used to calculate the average irradiance reflec-
tance spectra for severe bloom, moderate bloom, and water classes (Fig. 4). The PLSRP product
was chosen because of its robust atmospheric correction, which provides an irradiance reflec-
tance spectra better suited for the algorithm development. The average irradiance reflectance
spectra were extracted from these three PLSRPs in the proximity of the Toledo City’s water
intake in Lake Erie, Ohio (41°42′7′′ N, 83°15′41′′ W). The average spectra sensed from the
image of August 1, 2014, identified conditions of severe bloom (dark green) and moderate
bloom (light green), while that of September 18, 2014, and November 5, 2014, did not show
any bloom conditions (red and yellow lines). We observed that the slope between bands 4 (red,
655 nm) and 5 (NIR, 865 nm) is positive for severe bloom conditions (dark green line) due to the
high absorption of chl-a in the red region of the spectrum and high scattering of algal cells in the
NIR region. The slope is almost neutral for moderate bloom conditions (light green line) because
of average absorption of chl-a and a medium scattering of algal cells. The slope is negative for
the no bloom cases, mainly caused by the high absorption of water and low scattering in the NIR
region. This distinct pattern of the slope between red and NIR spectral bands led to the develop-
ment of a slope algorithm (SAred−NIR) to map the algal blooms’ extension in inland waters.

Therefore, the slope algorithm proposed in this work can be described as follows:

EQ-TARGET;temp:intralink-;e004;116;214SAred−NIR ¼
�
Rred − RNIR

λred − λNIR

�
× 1000; (4)

where SAred−NIR ¼ slope algorithm, Rred ¼ the irradiance reflectance on the OLI/band centered
at 655 nm, RNIR ¼ the irradiance reflectance on the OLI/band centered at 865 nm, λred ¼
655 nm, and λNIR ¼ 865 nm.

3.4.1 Evaluation and comparison

To evaluate the performance of the proposed algorithm, we used the Landsat 8/OLI image over
the western part of Lake Erie, Ohio, on August 1, 2014. To evaluate the sensitivity to different
atmospheric corrections approaches, SAred−NIR was computed from products of both types of

Fig. 4 Average irradiance reflectance from PLSRP for pixels classified as severe bloom (dark
green) from the product from August 1, 2014, moderate bloom (light green) from the product
from August 1, 2014, and no bloom (red and yellow) conditions from the products from
September 18, 2014, and November 5, 2014.
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atmospheric correction: PLSRP and DOS. For each procedure, pixels from each class (severe
bloom, moderate bloom, or water) were grouped to identify threshold values for each class. The
classification based on the threshold values was analyzed via a qualitative analysis based on the
visual comparison on ROIs areas. Quantitative analysis based on statistical discriminant analysis
among the classes was computed using central tendency estimators and a Mann–Whitney pair-
wise test. In addition to the evaluation of SAred−NIR, the same methodology was applied to evalu-
ate the commonly used indices to map the extension of algae blooms using the Landsat family
(as described in Sec. 2.1): NDVI,24 NDWI,25 and FAI.16 Results from all four algorithms were
compared for both atmospheric correction products to determine which was the least affected by
changes in the atmosphere. For the FAI, we did not apply the postatmospheric correction pro-
cedure (the calculation of Rayleigh-corrected reflectance) described by Hu16 since we were only
interested in evaluating the responses of the algorithms for two different types of atmospheric
correction: PLSRP and DOS.

3.4.2 Validation

The SAred−NIR algorithm was applied to both a Landsat 8/OLI image from Lake Tai, China,
(Fig. 2) and a Landsat 5/TM images from Eagle Creek Reservoir, Indiana, for validation.
For Lake Tai, the algorithm was validated based on qualitative and quantitative analysis of
the estimated classes and compared to the reference classes which were determined by
using visual identification of pixels of severe and moderate blooms as well as water pixels.
The validation was then computed via a confusion matrix between the reference (manually iden-
tified pixels) and the estimated classification based on the algorithm’s thresholds. Due to the
availability of in situ chl-a concentrations for Eagle Creek Reservoir, the algorithm was validated
based on the chl-a concentration ranges for each class based on the Ohio EPA HAB Response
Strategy.33

4 Results and Discussion

4.1 Indices Performances

The four indices (NDVI, NDWI, FAI, and SAred−NIR) were calculated for the Landsat 8/OLI
image over the western part of Lake Erie during the bloom on August 1, 2014. Indices values
were selected from pixels preclassified in one of the three classes: severe bloom, moderate
bloom, and water (Fig. 3). The pixel selection for class 1 [pixels that covered severe bloom,
Fig. 3(b)] contained 725 pixels, for class 2 [pixels with moderate bloom conditions, Fig. 3(c)]
945 sampling pixels, and class 3 [pixels with water, Fig. 3(d)] 1121 sampling pixels. Central
tendency statistics (average, maximum, minimum, and standard variation) for each of the classes
was compared to evaluate the discrepancy among the three classes for each index.

Table 3 presents central tendency statistics for each class calculated for each index using the
PLSRP and suggested that for this atmospheric corrected approach, all indices were able to
distinguish each class. However, it was also observed that FAI showed very small variations
from class to class with average FAI values around 0.05, 0.07, and 0.06 for severe bloom,

Table 3 Central tendency statistics for each index and class using PLSRP. Classes are indicated
by the number after each index (1 = severe bloom, 2 = moderate bloom, and 3 = water).

NDVI1 NDVI2 NDVI3 NDWI1 NDWI2 NDWI3 FAI1 FAI2 FAI3 SA1 SA2 SA3

Average 0.491 0.053 −0.196 0.741 0.577 0.247 0.050 0.072 0.062 0.613 0.047 −0.111

Max 0.782 0.171 −0.175 0.808 0.652 0.268 0.076 0.084 0.064 2.158 0.163 −0.098

Min 0.298 −0.076 −0.211 0.550 0.384 0.222 0.041 0.064 0.059 0.224 −0.053 −0.121

Std. dev. 0.124 0.041 0.007 0.040 0.028 0.008 0.005 0.003 0.001 0.394 0.038 0.005
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moderate bloom, and water, respectively. Although the standard deviations for FAI and NDWI
are lower than NDVI and SAred−NIR, the overlay between classes (based on the range for each
class) is more common for FAI and NDWI. Therefore, NDVI and SAred−NIR were shown to be
the most appropriated for the identification of algal blooms in inland waters using the PLSRP.

Table 4 presents the central tendency statistics for each class calculated for each index using
the DOS atmospheric correction approach. Even though DOS is a simple atmospheric correction
approach, the results from its central tendency analysis proved to be consistent with the pattern
shown for PLSRP in Table 3. In both types of corrections methods, NDVI and SAred−NIR were
shown to be the most appropriate indices for classifying algal blooms, while NDWI, in the image
corrected with the DOS approach, showed a higher confusion between severe bloom and mod-
erate bloom. It also stressed the similarity of the three classes when FAI was applied, with the
average values being around 0.019, 0.032, and 0.031 for severe bloom, moderate bloom, and
water classes, respectively. The confusion arising from the similarity in the maximum and mini-
mum values for each class indicated the inability of FAI classes moderate bloom and water to set

Table 4 Central tendency statistics for each index and class using DOS. Classes are indicated by
the number after each index (1 = severe bloom, 2 = moderate bloom, and 3 = water).

NDVI1 NDVI2 NDVI3 NDWI1 NDWI2 NDWI3 FAI1 FAI2 FAI3 SA1 SA2 SA3

Average 0.456 0.038 −1.002 0.758 0.764 −1.012 0.020 0.033 0.031 0.465 0.019 −0.139

Max 0.785 0.258 −0.908 0.872 0.935 −0.763 0.043 0.045 0.034 1.886 0.133 −0.127

Min 0.230 −0.299 −1.129 0.524 0.346 −1.533 −0.032 0.027 0.029 0.126 −0.080 −0.149

Std. dev. 0.136 0.087 0.032 0.059 0.073 0.101 0.011 0.003 0.001 0.349 0.037 0.005

Table 5 Probability of being the same from theMann–Whitney pairwise test for the indices values.

PLSRP DOS

NDVI

Severe Moderate Water Severe Moderate Water

Severe — <0.0001 <0.0001 Severe — <0.0001 <0.0001

Moderate <0.0001 — 0 Moderate <0.0001 — 0

Water <0.0001 0 — Water <0.0001 0 —

NDWI

Severe Moderate Water Severe Moderate Water

Severe — <0.0001 <0.0001 Severe — 0.1780 <0.0001

Moderate <0.0001 — 0 Moderate 0.1780 — 0

Water <0.0001 0 — Water <0.0001 0 —

SAred−NIR

Severe Moderate Water Severe Moderate Water

Severe — <0.0001 <0.0001 Severe — <0.0001 <0.0001

Moderate <0.0001 — 0 Moderate <0.0001 — 0

Water <0.0001 0 — Water <0.0001 0 —

Note: Bold values indicate high similarity.
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up fixed thresholds to differentiate moderate bloom from water pixels. Therefore, we exclude
FAI from the follow up analysis.

Similarities among the classes and indices values were analyzed via the nonparametric
Mann–Whitney U pairwise test38 to statistically assess the performance of each index
(Table 5). For this test, the results (Table 5) are given in the p-value, for the null hypothesis
that the two populations are the same. Thus, a low p-value indicates that we reject the null
hypothesis and accept the alternative hypothesis that the compared populations are not the
same. In Table 5, each of the classes was distinguished by the four indices calculated with
PLSRP using the nonparametric Mann–Whitney U pairwise test. However, when the indices
were calculated using the DOS atmospheric correction, severe bloom and moderate bloom
classes were similar in the case of the NDWI index. Thus, the NDWI calculated using the sim-
plistic DOS approach for atmospheric correction generated confusion, which corroborates to the
hypothesis that some indices depend on the atmospheric correction used. These results show that
a simple atmospheric correction decreased the accuracy for classifying a severe bloom, which is
the only class that presents scum on the surface. The inability of NDWI to differentiate some
classes when using a DOS atmospheric correction (Table 5) and the impossibility to create
thresholds for the values of FAI when using PLSRP or DOS (Tables 3 and 4) justifies the
use of NDVI and SAred−NIR to map the algal blooms extension.

NDVI and SAred−NIR were shown to be consistent in their results for identifying the three
classes during an algal bloom. Therefore, to use NDVI and SAred−NIR to classify algal blooms,
thresholds were developed for each of the indices. Table 6 shows the thresholds calculated for
NDVI and SAred−NIR to perform the image classification, as well as the respective colors for each
class in the final classification.

4.2 Classification Evaluation for West Lake Erie, Ohio

The three ROIs within the western part of Lake Erie, Ohio, [Figs. 1(c), 1(d), and 1(e)] were used
to evaluate the performance of the NDVI and SAred−NIR in the classification of algal blooms.
NDVI and SAred−NIR were applied to the PLSRP and DOS atmospheric corrected images and
were compared to the false color Landsat 8/OLI RGB composite (R = band 5, G = band 4, and
B = band 3). Figure 5 shows the application of both indices to ROI 1 from the western part of
Lake Erie. Figure 5(a) shows the false color RGB composite for a part of the algal bloom that
affected the water supply in Toledo City, Ohio, during summer 2014.3 The severe bloom appears

Table 6 Thresholds adopted for algal bloom classification.

Severe bloom Moderate bloom Water

NDVI >0.2 From −0.15 to 0.2 < − 0.15

SAred−NIR >0.15 From −0.05 to 0.15 < − 0.05

Color of the class Dark green Light green Dark blue

Fig. 5 (a) False color (R = band 5, G = band 4, and B = band 3) composite over ROI 1 from West
Lake Erie, Ohio, (b) NDVI classification using PLSRP, (c) SAred−NIR classification using PLSRP,
(d) NDVI classification using DOS atmospheric corrected images, and (e) SAred−NIR classification
using DOS atmospheric corrected images.
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in red, moderate bloom pixels are indicated by the pinkish color (smooth pink), and blue is
related to nonbloom pixels, which are essentially water. Figure 5(b) shows the result from
the NDVI classification of the PLSRP, while Fig. 5(d) shows the result from the NDVI clas-
sification of the DOS atmospheric correction product. A comparison between the two NDVI
classification results [Figs. 5(b) and 5(d)] and the reference [Fig. 5(a)] shows a better discrimi-
nation among the three classes of interest when DOS is used to calculate the NDVI. In contrast,
the NDVI calculated with PLSRP overestimated the area of moderate bloom conditions as com-
pared with the results from the NDVI of the DOS product [Fig. 5(d)]. Figures 5(c) and 5(e) show
the application of SAred−NIR to the same area, and SAred−NIR resulted in a similar algal bloom
classification for both atmospheric correction products. Moreover, similar to the NDVI, the use
of the PLSRP led to overestimation of the moderate bloom area as compared to the use of the
DOS product. Based on this qualitative analysis, we observed a better identification of water
classes when SAred−NIR was used. Comparing the two atmospheric corrections, the DOS showed
a better performance since it could distinguish moderate bloom from water, while the PLSRP
was only able to distinguish it when SAred−NIR was used.

ROI 2 was selected to asses if NDVI and SAred−NIR were able to identify a water track cross-
ing the algal bloom as shown in Fig. 6(a). Similarly to the previous results, the NDVI calculated
using the PLSRP overestimated the moderate bloom pixels and underestimated the water pixels
[Fig. 6(b)]. However, the use of DOS atmospheric corrected images for NDVI did not result in
such over- and underestimation [Fig. 6(d)]. For SAred−NIR, the results were similar for both
atmospheric correction approaches and led to the detection of the water track crossing the
algal bloom [Figs. 6(c) and 6(d)]. Thus, the NDVI was shown to be more susceptible to var-
iations in the atmospheric correction, while the SAred−NIR consistently identified the differences
between moderate bloom and water for both atmospheric correction methods.

Figure 7 shows a sensitivity test for both NDVI and SAred−NIR to distinguish cloud cover from
severe blooms. The ROI 3 is placed over an area in which clouds were present [Fig. 7(a)] and the
application of the NDVI calculated using the PLSRP [Fig. 7(b)] showed that the cloud cover was
misclassified as moderate bloom for most of the area of ROI 3. The NDVI calculated using DOS

Fig. 6 (a) False color (R = band 5, G = band 4, and B = band 3) composite over ROI 2 from West
Lake Erie, Ohio, (b) NDVI classification using PLSRP, (c) SAred−NIR classification using PLSRP,
(d) NDVI classification using DOS atmospheric corrected images, and (e) SAred−NIR classification
using DOS atmospheric corrected images.

Fig. 7 (a) False color (R = band 5, G = band 4, and B = band 3) composite over ROI 3 from West
Lake Erie, Ohio, (b) NDVI classification using PLSRP, (c) SAred−NIR classification using PLSRP,
(d) NDVI classification using DOS atmospheric corrected images, and (e) SAred−NIR classification
using DOS atmospheric corrected images.
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[Fig. 7(c)] also misclassified clouds as moderate bloom conditions; however, the area of
this misclassification is much smaller than the one calculated using PLSRP [Fig. 7(b)].
SAred−NIR performed similarly when applied to the two atmospheric correction approaches
[Figs. 7(c) and 7(e)] with the exception that when used to classify the DOS corrected image
[Fig. 7(e)] part of the cloud was misclassified as severe bloom. Nevertheless, it is already
known that the use of optical remote sensing is limited to the cloud cover of the image.
Once again, SAred−NIR was shown to be consistent between the two atmospheric correction prod-
ucts and was not sensitive to thin clouds. Overall, these qualitative results indicate that SAred−NIR
is a better option to map algal blooms because it is consistent between both atmospheric cor-
rection approaches, less sensitive to thin clouds, and led to less confusion in the classification of
water and moderate conditions. However, both the NDVI and SAred−NIR with either atmospheric
correction misclassified thick clouds. Moreover, these results also indicate that NDVI performed
better when applied to the DOS product than to the PLSRP. Overall the PLSRP was shown to
distinguish severe blooms better than DOS; however, in most cases, it was unable to distinguish
moderate blooms from water. Because of this, the simple atmospheric correction was shown to
outperform the complex one, since it was able to distinguish the three classes.

To quantitatively evaluate the performances of NDVI and SAred−NIR in mapping algal
blooms, we computed the confusion matrix among all sampling pixels. Table 7 shows the results
of the confusion matrix for the NDVI and SAred−NIR calculated using both atmospheric correc-
tion approaches. The confusion matrix results, SAred−NIR and NDVI, showed similar accuracies
in both atmospheric corrections approaches. Thus, based on the quantitative analysis for the
western part of Lake Erie, both indices were able to classify algal blooms with a higher accuracy.
If compared to the qualitative analysis, the indices performances were not significantly different.

Table 7 Confusion matrix for NDVI and SAred−NIR for both atmospheric corrections approaches.

PLSRP

NDVI Severe Moderate Water Accuracy

Severe 725 0 0 0.9857

Moderate 0 905 40

Water 0 0 1121

SAred−NIR Severe Moderate Water Accuracy

Severe 725 0 0 0.9996

Moderate 5 939 1

Water 0 0 1121

DOS

NDVI Severe Moderate Water Accuracy

Severe 725 0 0 0.9889

Moderate 13 914 18

Water 0 0 1121

SAred−NIR Severe Moderate Water Accuracy

Severe 698 27 0 0.9900

Moderate 0 944 1

Water 0 0 1121

Note: Bold values indicate the accuracy for confusion matrix.
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4.3 Classification Validation for Lake Tai, China

As previously explained, Lake Tai, China, was chosen to assess the performance in another study
area, due to the frequent cyanobacteria blooms occurring in the aquatic system. Qualitative
results from Lake Tai, China, showed similar patterns as those observed in the western part
of Lake Erie, Ohio. Figure 8 shows the application of both indices for the ROI within
Lake Tai, whose results were similar to those found in the western part of Lake Erie, Ohio.
It also showed that the NDVI using PLSRP overestimates the moderate bloom class and

Table 8 Confusion matrix for NDVI and SAred−NIR for both atmospheric corrections approaches.

PLSRP

NDVI Severe Moderate Water Accuracy

Severe 715 0 0 1.000

Moderate 0 361 0

Water 0 0 1324

SAred−NIR Severe Moderate Water Accuracy

Severe 715 0 0 0.9900

Moderate 20 337 4

Water 0 0 1324

DOS

NDVI Severe Moderate Water Accuracy

Severe 704 11 0 0.9883

Moderate 12 272 5

Water 0 0 1324

SAred−NIR Severe Moderate Water Accuracy

Severe 702 13 0 0.9912

Moderate 0 353 8

Water 0 0 1324

Note: Bold values indicate the accuracy for confusion matrix.

Fig. 8 (a) False color (R = band 5, G = band 4, and B = band 3) composite over the ROI from Lake
Tai, China, (b) NDVI classification using PLSRP, (c) SAred−NIR classification using PLSRP,
(d) NDVI classification using DOS atmospheric corrected images, and (e) SAred−NIR classification
using DOS atmospheric corrected images.
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underestimates the water class. Similarly to previous results, NDVI using the DOS atmospheric
corrected image performed better than NDVI using PLSRP. SAred−NIR results were consistent
with those obtained from Lake Erie. This suggests a better performance of SAred−NIR as com-
pared with NDVI in two different geographic regions.

To quantify the performance from both indices, we computed the confusion matrix among
the three classes (Table 8) for Lake Tai. Such quantification drew similar results to those found
in the western part of Lake Erie with the accuracy being not significantly different for both
indices. Similarly, these results suggested a better performance of the SAred−NIR algorithm
when compared to the NDVI algorithm as well as a better performance of DOS when com-
pared to PLSRP.

Table 9 Chl-a concentrations, EPA classification (reference), and estimated classes from NDVI
and SAred−NIR.

Sampling point Chl-a (μg∕L) EPA classification SAred−NIR NDVI

0606-502 24.53 Moderate bloom Moderate bloom Severe bloom

0606-503 23.63 Moderate bloom Moderate bloom Severe bloom

0606-504 25.8 Moderate bloom Moderate bloom Severe bloom

0606-506 21.9 Moderate bloom Severe bloom Severe bloom

0606-511 24.2 Moderate bloom Moderate bloom Moderate bloom

0606-514 25.28 Moderate bloom Moderate bloom Severe bloom

0606-517 23.72 Moderate bloom Moderate bloom Severe bloom

0606-520 23.31 Moderate bloom Moderate bloom Moderate bloom

0606-521 27.38 Moderate bloom Moderate bloom Severe bloom

0606-552 21.7875 Moderate bloom Moderate bloom Moderate bloom

0606-553 30.8625 Moderate bloom Moderate bloom Severe bloom

0606-554 35.4375 Moderate bloom Moderate bloom Severe bloom

0606-555 32.55 Moderate bloom Moderate bloom Severe bloom

0606-560 8.7375 Moderate bloom Moderate bloom Severe bloom

0606-561 8.1375 Moderate bloom Moderate bloom Severe bloom

0607-611 30.6 Moderate bloom Moderate bloom Moderate bloom

0607-612 8.33 Moderate bloom Moderate bloom Moderate bloom

0607-613 24.68 Moderate bloom Moderate bloom Moderate bloom

0607-614 14.93 Moderate bloom Moderate bloom Moderate bloom

0607-615 24.93 Moderate bloom Moderate bloom Moderate bloom

0607-616 11.85 Moderate bloom Moderate bloom Moderate bloom

0607-617 25.2 Moderate bloom Moderate bloom Moderate bloom

0607-618 46.2 Moderate bloom Moderate bloom Moderate bloom

0607-619 41.31 Moderate bloom Moderate bloom Moderate bloom

0607-620 47.18 Moderate bloom Severe bloom Severe bloom

0607-621 70.35 Severe bloom Moderate bloom Moderate bloom

Note: Boldface indicates the discrepancy from the reference.
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4.4 Validation for Eagle Creek Reservoir, Indiana

Ground truth data were also used to assess the indices comparison. For this purpose, Landsat
images were acquired concomitant to the field collection for Eagle Creek Reservoir, Indiana.
Chl-a concentrations were collected for each sample. Chl-a concentration was used as the refer-
ence for the algal bloom classifications; chl-a concentrations varied from 8.1375 to 70.35 μg∕L.
SAred−NIR and NDVI classes for each pixel corresponding to the field samples were also
classified and the results were presented in Table 9. The results showed an accuracy of
88.46% and 46.15% for SAred−NIR and NDVI, respectively. As shown in Table 9, the NDVI
overestimates the classification of severe bloom areas, with a confusion between moderate
and severe bloom classes.

Based on the results from qualitative and quantitative analysis from these three study sites,
SAred−NIR was shown to outperform other indices in the identification and mapping of algal
blooms. These results show that SAred−NIR can be a useful tool for analysis of time series of
Landsat family data and web tools, which could be used to connect society and academia in
order to promote a better governance of small size water resources.

5 Conclusions

A simple slope algorithm (SAred−NIR) is introduced to map the extension of algal blooms in
inland waters using 30-m spatial resolution data from Landsat TM and OLI sensors. The
SAred−NIR, defined as the slope between irradiance reflectance from red and NIR, is an effective
approach to detect and map the extension of algal blooms using different atmospheric correction
algorithms. Compared to NDVI, NDWI, and FAI, the SAred−NIR was better able to identify the
occurrence of algal blooms with a Landsat 8/OLI image in the presence of thin clouds. Such
ability gives to SAred−NIR an advantage over the other indices. In addition, due to the spatial
resolution of OLI, SAred−NIR could be used as a powerful tool for monitoring algal blooms
in inland waters, which are usually smaller than the spatial resolutions of other satellite sensors
(MODIS/Aqua, MODIS/Terra, and VIIRS/NPP). If combined with previous Landsat sensors
(TM and ETMþ), SAred−NIR could be used to establish a time series of algal bloom occurrence
in different aquatic systems worldwide. Therefore, several applications to improve the water
governance and consequently public and environmental health could be developed using
SAred−NIR.
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