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Abstract  

Nitrous oxide (N2O) is an atmospheric constituent implicated in climate warming and 

stratospheric ozone depletion. Both bacteria and fungi participate in N2O production, but 

information is lacking with regard to the relative contribution of bacterial and fungal 

denitrifiers to the denitrification process in agricultural soils. The selective inhibition 

technique (SI) is widely used to assess the contribution of different groups of microbes to 

soil processes, but success of the technique depends on the effectiveness of the inhibitors. 

In this study, laboratory experiments were conducted to assess the contribution of 

bacteria and fungi to denitrification using soils from a woodlot, agricultural fields under 

conventional plowing (PT), and no-till for either 50 years (long-term) or 11 years 

(medium-term). A selective inhibition (SI) technique was developed using two 

bactericides (streptomycin, bronopol) and two fungicides (cycloheximide, captan) applied 

at different rates (0-32 mg g-1 soil). Regardless of application rate, streptomycin and 

cycloheximide were not effective inhibitors of denitrification, with degree of inhibition 

only between 2 and 20% relative to controls. These results are significant given the wide 

use of these products in SI studies. However, the bactericide bronopol and the fungicide 

captan effectively inhibited denitrification, with the strongest inhibition observed at an 

application rate of 16 mg g-1 soil. The ratio of fungal to bacterial denitrification activity 

(F:B) was generally less than 1, indicating a dominance of bacteria in denitrification 

activity in the soils investigated. However, an increase in F:B ratio from 0.24 in medium-

term NT to 0.87 in long-term NT soils was noted, suggesting perhaps a progressive 

increase in the role of fungal denitrifiers with longer duration of NT farming.       
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Introduction  

Nitrous oxide (N2O) is a by-product of nitrogen (N) cycling processes in soil ecosystems, 

and an important atmospheric constituent implicated in the accelerated greenhouse effect 

and stratospheric ozone depletion.1 Although N2O can also originate from nitrification, 

denitrification remains the dominant N2O production process in soils.1 Denitrification is 

the dissimilatory reduction of nitrate (NO3
-) to N2O/N2 by mostly facultative anaerobes as 

a substitute for oxygen during respiration under oxygen-deficient conditions.1,2 As 

denitrifying microbes are largely heterotrophs, N2O production is often limited by the 

availability of metabolizable organic carbon.3 

Both fungi and bacteria participate in N2O production in soils18, and therefore 

their relative contribution to the denitrification process can be affected by land-use and 

management. Among anthropogenic activities, agriculture has been identified as the 

largest contributor to global N2O emission, largely due to tillage operations and 

application of N fertilizers.4, 5, 6, 7,8, 9, 10 No-till (NT) is a farming practice that has gained 

wide acceptance in recent decades, and has been proposed as an alternative to the 

conventional plow-till (PT) practice. In contrast to PT, the land surface remains relatively 

undisturbed under NT, and the current year’s crop seeds are sown directly into the 

residue left by the previous crop. The effects of no-till farming on soil moisture, 

temperature, organic carbon (SOC) availability, size and composition of the soil 

microbial community are well documented.11 Several past studies have reported an 

increase in the fungi:bacteria ratio of the soil microbiota with NT adoption.2,11,12, 13, 14 It 

has been suggested that litter mixing with soil (and thus direct contact between the soil 

bacteria and substrate) caused by plowing creates conditions favorable to bacterial 
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growth under PT. 14  However, in NT systems in which there is a spatial separation 

between microorganisms and decomposable litter on the soil surface, the presence of 

hyphae confers an ecological advantage to fungi.15 Kladivko16 suggested that higher soil 

moisture content under NT management may contribute to fungal dominance in the soil 

microflora. This shift in soil microbial community composition has been linked to SOC 

accretion, with land management practices favorable to fungal dominance generally 

resulting in enhanced SOC storage11,17, but it remains unclear whether a similar 

connection can be made with regard to denitrification in agricultural soils. Thus, an 

objective of this study was to assess the relative contribution of fungi and bacteria to 

denitrification in PT and NT soils (both medium- and long-term). It was hypothesized 

that, as the soil microbial community becomes fungal-dominated with longer duration of 

NT, there will be a parallel increase in the relative contribution of fungi to denitrification 

in agricultural soils. 

To examine the role of fungi and bacteria in soil processes, different approaches 

have been adopted, but the selective inhibition (SI) has been the most widely-used 

technique.13,19 The technique was first introduced by Anderson and Domsch20 and was 

then modified for application to agricultural and forest soils.21 Different bactericides (e.g. 

streptomycin sulphate, bronopol and oxytetracycline) and fungicides (e.g. captan, 

cycloheximide, ketoconazole, benomyl and nystatin) have been employed in past 

studies13,17,22,23,24, including studies investigating denitrification in soils and sediments.13, 

25,26, 27,28 In these studies, different types of biocides were used and at different application 

rates. Inhibition efficiency has been variable, and after analysis of published results, it has 

not been possible to identify the type and the optimum concentration of biocide that is 
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most inhibitory to denitrification in agricultural soils. Therefore, in this study, a 

standardized method was developed and applied to several US Midwest soils to 

determine the relative contribution of fungi and bacteria to denitrification.  

 

Materials and methods 

Soil samples collection  

This study was conducted with soil samples (0-10 cm) collected from a farmer’s fields in 

Indiana (39°51′ 49″N, 86°21′31″W) and from experimental plots in Ohio (39°51′ 48″N, 

83°40′20″W) (USA). Management practices included conventional tillage (PT1), long-

term no-till (NT1, 50 years) at the Ohio plots, and included conventional tillage (PT2) and 

medium-term no-till (NT2, 11 years) at the farmer’s fields in Indiana. Soil samples were 

also collected from a nearby deciduous forest (woodlot, WL), serving as a local relatively 

undisturbed site for comparison. The Ohio plots are under continuous corn (Zea mays, 

L.), and typically receive16 kg N ha-1 at planting and 184 kg N ha-1 as anhydrous NH3 

(side-dress). The farmer’s fields in Indiana are under corn-soybean (Glycine max, L.) 

rotation. During the corn year, the fields receive 5-10 kg N ha-1 at planting plus 150-180 

kg N ha-1 as anhydrous NH3. No N fertilizer is applied during the soybean crop. At the 

sampling sites, soils are classified as Crosby (aeric Epiaqualfs) and Brookston (typic 

Argiaquolls) developed from glacial till. Soil samples were transported to the laboratory 

in plastic bags, sieved (2 mm) and kept in a refrigerator (4 oC) until used in the 

experiments described below. A portion of each soil sample was air-dried and used for 

determination of chemical properties (Table 1).  
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Selection of fungal and bacterial denitrification inhibitors 

The selective inhibition (SI) technique21 was used with adaptation. First, a series of 

assays was conducted to identify the biocides (bactericide and fungicide), and application 

rates that yield maximum inhibition of denitrification. The tested biocides included some 

of the compounds most commonly used in past studies as well as some novel products. 

This evaluation was conducted using soil samples collected from the NT1 site (Table 1). 

Field-moist (0.16 ± 0.02 g water g-1 soil) soil samples were left overnight at room 

temperature (22 oC) in the laboratory for acclimation. Then, 10 g of soil subsamples were 

placed in serum bottles (250 mL) and amended with 1.44 ml of denitrification enzyme 

activity (DEA) media (100 mg NO3-N kg-1, and 40 mg dextrose-C kg-1). Bottles were 

divided into three groups with one group receiving no treatment (control) and the other 

two groups treated either with a bactericide or a fungicide. The bactericides evaluated in 

this study were streptomycin sulfate (C42H78N14O24·3H2SO4, CAS#3810-74-0) and 

bronopol (C3H6BrNO4, CAS# 52-51-7) obtained from Fisher Scientific. The fungicides 

used in this study included cycloheximide (C15H23NO4, CAS#66-81-9) and captan 

(C9H8Cl3NO2S, CAS#000133-06-2) also from Fisher Scientific. Biocides, received in dry 

powder formulation, were used to prepare biocide solutions. Biocides were applied at 

different concentrations (1, 2, 4, 8 and 16 mg g-1 soil), and the final volume of suspension 

(DEA media and dissolved biocide) in each serum bottle was adjusted with deionized 

water as needed to reach a final volume of 20 mL. Each treatment was applied in 

triplicate.  

Serum bottles were stoppered, shaken vigorously to make a slurry, then 

successively evacuated and flushed with ultra-high purity (UHP) N2 at least 3 times, and 
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finally injected with acetylene (C2H2) for a partial pressure of 10 kPa C2H2 to stop the 

conversion of N2O to N2.13 Serum bottles were incubated at 25 oC. Gas samples were 

taken from bottles headspace after 3, 8, 24 and 48 h of incubation, and stored in 

evacuated glass vials to determine N2O concentration. Based on the results of this first SI 

test, additional assays were conducted using only the two most effective inhibitors, but 

increasing their application rate to 32 mg g-1 soil to determine if more pronounced 

inhibition can be achieved at higher application rates. 

 

Assessing fungal and bacterial denitrification in plowed and no-till soils   

Based on the previous results, the SI technique was applied to different soils (PT1, NT1, 

and WL from Ohio; PT2 and NT2 from Indiana; Table 1) to determine the relative 

contribution of fungal and bacterial microflora to denitrification. Field moist (10 g) soil 

subsamples were placed in serum bottles and amended with DEA media as described 

before. The following biocide treatments were applied: control (no biocide), bactericide 

(bronopol, 16 mg g-1 soil), fungicide (captan, 16 mg g-1 soil) and BroCap (mixture of 

bronopol and captan, each at 16 mg g-1 soil). Each treatment was applied in triplicate. The 

final volume (DEA media and dissolved biocide) of solution in each serum bottle was 20 

mL. Serum bottles were evacuated, flushed with UHP N2, injected with C2H2 (10 kPa) as 

previously described. Bottles were incubated at 25 oC, and gas samples were taken from 

the headspace after 3, 8, 24, 48, 72, 96, 120, 144 and 168 h of incubation for 

determination of N2O and CO2 concentration. 
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Analytical methods 

Soil pH was measured using a soil suspension (1:2 soil to water) and an Accumet-25 

pH/ion meter. Particle size analysis was conducted using the hydrometer method, with 

sodium hexametaphosphate (Na6P6O18, 5%) as a dispersing agent. Finely-ground (150 

µm) soil samples were analyzed for total carbon and nitrogen using a Vario-Cube 

analyzer (Elementar Americas, Mt Laurel, NJ). Concentration of N2O and CO2 in gas was 

measured using a Varian CP-3800 gas chromatograph (Palo Alto, CA) interfaced with a 

Combipal headspace auto-sampler (CTC Analytics) and equipped with a thermal 

conductivity detector (CO2 detection) and an electron capture detector (N2O detection) in 

parallel. The stationary phase consisted of a pre-column (length: 0.3 m; i.d.: 2 mm) and 

an analytical column (length: 1.8 m; i.d.: 2 mm) filled with Porapak Q (80-100 mesh). 

Operating conditions of the gas chromatograph were as follows: carrier gas (UHP He at 

20 mL min-1 for CO2, and UHP N2 at 60 ml min-1 for N2O), oven temperature (90 oC), 

detector temperature (TCD at 150 oC, and ECD at 300 oC). The gas chromatograph was 

calibrated using certified CO2 and N2O standards obtained from Matheson Tri-Gas. 

 

Computations 

The percentage (%) inhibition caused by a biocide was computed through comparison of 

gas production in biocide-treated bottles with the corresponding control (same soil) using 

the equation: 

%	݊݋݅ݐܾ݄݅݅݊ܫ ൌ ሺ ௜ܺ െ	ܺ஼௢௡௧௥௢௟ ܺ஼௢௡௧௥௢௟⁄ ሻ ൈ 100 

Where, Xi and XControl represent the amount of N2O (or CO2) produced during the 

incubation in biocide-treated bottles and control, respectively. Similar to the 
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computational procedure adopted in several past studies22,29,30 the fungi to bacteria (F:B) 

ratio was calculated based on CO2 and N2O production in the control relative to gaseous 

production in soils  treated with biocide. The ratio was calculated as: 

:ܨ ܤ ൌ ሺܣ െ ሻܤ ሺܣ െ ⁄ሻܥ  

Where, A= respiration measured (as cumulative CO2 concentration evolved) in the 

absence of inhibitors; B= respiration in the presence of the fungicide; and C= respiration 

in the presence of the bactericide. Since some biocides can affect non-target 

microorganisms, an inhibitor additivity ratio (IAR) was calculated to account for 

synergistic and antagonistic effects: 

ܴܣܫ ൌ ሾሺܣ െ ሻܤ ൅ ሺܣ െ ሻܥ ሺܣ െ ⁄ሻܦ ሿ 

Where, A, B and C are cumulative CO2 concentrations as described above, and 

D=respiration in the presence of both biocides (fungicide and bactericide).13,31 An IAR of 

1 indicates no overlap in the antibiotic action on non-target organisms, and no 

antagonistic effect of one antibiotic on the other. An overlap is identified by an IAR>1 

and an antagonistic effect by an IAR<1.13 

 

Statistical analyses 

Data were first tested for normal distribution using the normality test available in the 

Sigma Plot software (Systat, San Jose, CA). Since most of the data were not normally 

distributed, Kruskal-Wallis test was used to determine the significance of the 

experimental factors (soil type, biocide type and application rate) on N2O and CO2 

production. The Kruskal-Wallis test was followed by Mann-Whitney pairwise test when a 

significant difference was detected. Unless otherwise noted, statistical significance in this 
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study was determined at α=0.05. Statistical tests were conducted using PAST software 

(ver. 2.17c) downloaded from http://nhm2.uio.no/norlex/past/download.html (University 

of Oslo). 

 

Results 

Selection of optimum biocides and inhibitory concentrations 

The production of N2O was observed in all treatments, but the rate of production varied 

significantly depending on the treatment (Figs. 1 and 2). Regardless of application rate, 

no inhibition of N2O production was observed with the bactericide streptomycin. Instead, 

streptomycin addition resulted in a slight stimulation of N2O production (Fig. 1a). In 

contrast, bronopol, the other bactericide used in this study, decreased N2O production at 

all application levels, with the most inhibitory effect observed at an application rate of 16 

mg g-1 soil (Fig. 1b). With regard to the fungicides, cycloheximide (Fig. 2a) was a less 

effective inhibitor of denitrification compared to captan (Fig. 2b). With both fungicides, 

the strongest inhibition was observed at the 16 mg g-1 soil application rate. Overall, the 

cumulative amount of N2O produced during the incubation was significantly (P < 0.05) 

lower with the bactericide bronopol and the fungicide captan (both at 16 mg g-1) 

compared to the control (Figs. 1b, 2b). 

Since the most inhibitory effect of bronopol and captan was observed at the 

highest biocide application rate (16 mg g-1 soil) used in the initial assays, additional tests 

were conducted by extending biocide application to 32 mg g-1 soil to determine whether a 

higher degree of inhibition can be achieved. Incubation was conducted with the same NT1 

soil amended with bronopol or captan (32 mg g-1 soil). Gas production was monitored 
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during a 72-h period. Results showed that both biocides decreased N2O production 

compared to controls, but the cumulative amount of N2O produced during the incubation 

was statistically similar (P > 0.05) in bottles treated with 16 and 32 mg g-1 soil (Fig. 3). 

Since the two highest application rates (16 mg g-1 and 32 mg g-1 soil) of bronopol and 

captan produced the same degree of inhibition in N2O production (Fig. 3), the lower level 

(16 mg g-1 soil) was used in subsequent tests to determine the relative contribution of 

bacterial vs fungal denitrifiers to N2O production in agricultural soils. 

 

Degree of inhibition of denitrification in different soils  

Although some minor deviations were noted in the NT1 soil, N2O evolution was generally 

linear during the incubation period. As expected, N2O concentration was highest in the 

control followed by the captan-treated soils (Fig. 4). The addition of captan marginally 

affected N2O production in the PT2 and NT2 soils (Fig. 4d-e), but resulted in noticeable 

N2O production reduction in the PT1, NT1 and WL soils (Fig. 4a-c). At all sampling 

times, both bronopol and BroCap treatments resulted in the highest inhibition in N2O 

production and, in all the soils investigated, cumulative N2O concentrations in these 

treatments were significantly (P < 0.05) lower than in controls.  

Across treatments, addition of the bactericide bronopol resulted in 85±7 % 

inhibition of N2O production. A similar level of inhibition (84.7±4.7 %) was measured 

when bronopol was applied concurrently with the fungicide captan. In contrast, a smaller 

and more variable (36±21 %) degree of inhibition was measured with the fungicide 

captan, applied alone (Fig. 5). The highest N2O inhibition with captan was recorded in 

the NT1 soil (NT for 50 y).  
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Respiratory response of soils to biocide treatments 

A steady accumulation of CO2 was observed during the 7-day incubation period in almost 

all treatments (Fig. 6). As expected, CO2 production was higher in the controls than in the 

in the biocide-treated soils, although in the PT2 soil difference was only marginal (Fig. 

6d). Among the control, the highest rate of CO2 accumulation was recorded in the NT1 

soil (NT for 50 years) and the lowest in both PT soils (Fig. 6). The effect of biocides 

application on CO2 production was more variable and less pronounced than observed 

with N2O production. Like with N2O production, addition of the bactericide bronopol 

resulted in greater respiration inhibition than the other treatments (51.4±13.3 % in 

bronopol treatments vs 31±11.6 % in BroCap and captan treatments; Fig.7). A positive 

relationship (r2: 0.41, P<0.01) was found between % inhibition of N2O production and % 

inhibition of CO2 production. 

 

Fungi:bacteria ratio 

Fungi:bacteria ratios (F:B) were calculated using both the reduction in CO2 and N2O 

production in biocide-treated soils relative to the controls. For all the soil and biocide 

treatment combinations, F:B values were < 1, suggesting that bacteria were the dominant 

group of microorganisms responsible for CO2 and N2O production in the soils tested 

(Table 2). The highest and lowest F:B values were observed in the NT1 and PT2 soils, 

respectively.  
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Inhibitor additivity ratio 

Data from the treatments involving the combination of bronopol and captan (both at 16 

mg g-1 soil; BroCap) was used to calculate IAR. Results showed that the IAR was >1 in 

all the soils tested, indicating a synergistic effect of the applied biocides (Table 3). In 

general, IAR values tended to be the highest in the NT and lowest in the PT soils.  

 

Discussion 

Biocides efficiency in inhibiting bacterial and fungal activity 

The concentration of biocides used in past selective inhibition assays varies greatly, with 

optimum concentration reported in the literature ranging between 1 and 16 mg biocide g-1 

soil.2,13,17,22,23,32 The optimum concentration (16 mg biocide g-1 soil) found in the present 

study was in the upper end of that range. It has been suggested that high soil clay content 

can reduce the efficiency of biocides, and that higher concentrations are needed to obtain 

significant reduction in respiratory activity.22 Given the fine texture of the soils used in 

this investigation (Table 1), this reasoning would be consistent with the results. 

Therefore, as done in the present study, preliminary tests must be first conducted to 

determine optimum concentration of inhibitors for each new set of soils under 

investigation.  

In this study, different types and levels of biocides were used to find the most 

effective products against denitrification and respiratory activity mediated by bacteria and 

fungi in agricultural soils. These products include inhibitors that were tested in some of 

the pioneering work to develop the selective inhibition procedure20 as well as some 

inhibitors introduced more recently in the literature to distinguish fungal and bacterial 
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activity.13,17,23,24, 33 Streptomycin, the bactericide traditionally used in SI procedure, 

surprisingly showed almost no inhibitory effect on the activity of bacterial denitrifiers 

(Fig. 1a). This result was somewhat unexpected given the large number of past 

investigations in which streptomycin was used as a bactericide.18,22,31,34 However, this 

result is in agreement with several past studies that have documented instances of 

inefficient inhibition of bacterial growth by streptomycin.2,35 Boyle et al.33 also reported 

that streptomycin was a much less effective bactericide than bronopol and 

oxytetracycline-HCl in controlling bacterial activity. Identifying the factors contributing 

to streptomycin inefficiency remains a challenge, but soil redox condition is likely not a 

contributing factor since streptomycin inefficiency has been reported in studies using 

both water-saturated and unsaturated soils.26  

Cycloheximide was another product that exhibited surprisingly low biocidal 

effect. In fact, cycloheximide was the least effective of the biocides examined, and 

resulted in slightly higher N2O production compared to control (Fig. 2a). These results 

contrast with those of other studies in which cycloheximide was found to inhibit fungal 

activity even at low concentrations (e.g. 1-2 mg g-1 soil).2,18 It has not been possible to 

find information in the literature to satisfactorily explain the inefficiency of 

cycloheximide observed in the present study. Overall, these mixed results with popular 

products such as streptomycin and cycloheximide underscore the need for 

experimentalists to first evaluate the biocides they plan to use in SI studies.  

 Bronopol (bactericide) and captan (fungicides) were found to be effective 

inhibitors of N2O production in this study. Several investigators have also successfully 

applied these products in past studies examining bacterial and fungal contribution to N2O 
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production and respiration13,17,24. Although bronopol and captan were effective inhibitors 

of N2O production, some level of microbial activity was still maintained, as manifested 

by the slow accumulation over time of N2O and CO2 in the incubation bottles (Figs. 4 and 

6). Even in the presence of both bactericide and fungicide (BroCap treatments) some 

gaseous production was observed. Similar observations were reported in selective 

inhibition studies involving desert, prairie, forest and agricultural soils17,18. This residual 

N2O and CO2 production in biocide-treated soils can be ascribed to the activity of 

surviving decomposers at the expense of metabolizable C and N released from dead 

microbes in the biocide-treated soils. Moreover, it needs to be noted that denitrifiers are 

only a small fraction (~ 5%) of the total soil microbial community and, therefore other 

microorganisms remain active even when N2O producers are inhibited.36 This line of 

reasoning is supported by the generally lower (1.8 times) rate of CO2 inhibition compared 

to that of N2O (Figs. 5 and 7).  

 

Bacteria and fungi contribution to N2O production in agricultural soils  

With all the soils tested in this study, the inhibition of N2O production was consistently 

stronger with addition of the bactericide bronopol than with the funcide captan (Fig. 4). 

These results suggest that bacteria were the main group of microorganisms contributing 

to denitrification in the soils investigated. The F:B ratios (Table 2) further supports this 

statement. A study by Herold et al.2 using arable soils also reported similar results, with 

fungi and bacteria contributing 18% and 54% respectively of the total N2O production. In 

contrast, data from Laughlin et al.26 showed a fungal dominance in N2O production in 

well-aerated grassland soils. The results of Seo and DeLaune31 suggested that bacteria 
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were the primary drivers of denitrification under strongly-reducing conditions, whereas 

fungi play a greater role under aerobic and moderately-reducing conditions. Results of 

the present study also contrasted with those of Chen et al.28 that documented higher 

fungal contribution than bacteria to N2O production in soils from various ecosystems. It 

is unclear that the pH (5.3-6.5 vs 5.5-7.4; Table 1) and texture (sandy vs clay-loam) of the 

soils evaluated by Chen et al.28, the antibiotics used (streptomycin/cycloheximide vs 

bronopol/captan in the present study) and their incubation method (< 90% water-filled 

pore space vs fully anoxic in the present study) may contribute to these contrasting 

results. Therefore, in light of these considerations and the variety of methodologies 

adopted in past studies, it is prudent to caution against generalization at this point. 

Therefore, future studies should examine these factors and, most importantly, the effect 

of redox status on the partitioning of N2O production between fungi and bacteria in 

agricultural soils.   

 

Tillage practices and N2O production partitioning between soil bacteria and fungi 

Under NT management, soils are less disturbed in comparison to PT and are generally 

covered with crop residue cover. This contributes to higher moisture content in NT, a soil 

environment that is likely favorable to the proliferation of denitrifying microbes.37,38 In 

addition, fungi are more likely to succeed in soil systems that are left undisturbed, 

allowing for the development of fungal hyphae which are in contact with crop residue on 

the land surface.11 In contrast, because of soil mixing and the direct contact between 

decomposers and substrates in PT soil systems, the microbial community is generally 

dominated by bacteria.17 
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Despite its wide use in soil biochemistry research, the SI method has inherent 

shortcomings. The IAR ratios provide a way to assess the validity of F:B ratios derived 

from the method. IAR values close to 1 are usually taken as an indication of the accuracy 

F:B estimations. 31 Values for IAR found in this study are in the same range as those 

reported in several past investigations.13,35 These deviations have generally been ascribed 

to inhibition of non-target microorganisms by the biocides applied.17 

The F:B ratios for N2O production were less than 1, indicating the dominance of 

bacteria as N2O producers in the soils tested. This conclusion is at variance with the 

hypothesis of the study regarding fungal dominance of NT soils. The N2O inhibition data 

(Fig. 5) showed that, among the soils tested, the fungicide captan induced its highest level 

(66%) of denitrification inhibition in the NT1 soil (50 y under NT). In comparison, the 

inhibition measured in the mid-term (11 y) NT soil was only 18 % (Fig. 5). Similarly, the 

highest F:B ratios (computed using either CO2 or N2O production data) were measured in 

the NT1 soil (Table 2), although difference was not significant. This trend could indicate 

the evolution of a larger population of fungal denitrifiers in agricultural soils with longer 

duration of no-till management (e.g. NT1). Chronosequence studies, using soils under NT 

for varying length of time, are needed to test the merit of that suggestion.    

 

Conclusions 

One of the objectives of this study was to identify the types and levels of biocide leading 

to optimum inhibition of denitrification in agricultural soils. Streptomycin and 

cycloheximide, the biocides most commonly used in selective inhibition assays, hardly 

resulted in any inhibition of N2O production. In fact, in some of the soils, streptomycin 
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stimulated the process. The reason for this lack of inhibition remains to be elucidated. 

Captan and bronopol, however, inhibited N2O and CO2 production, with an optimum 

concentration of 16 mg g-1 for both biocides. Fungi:bacteria ratios smaller than 1 were 

measured in all the soils tested, suggesting that bacteria were the dominant N2O 

producers in the soils investigated. Although the difference was not significant, this ratio 

was highest in the long-term NT soil (NT1), suggesting a progressively greater role for 

fungal denitrifiers in the denitrification process with longer NT duration.   
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Table 1 Chemical properties of soils (0-10 cm) used in the study 

 
	

Location of 

sampling sites 

Tillage 

practice 
pH 

Total C  

(g C kg-1 soil) 

Total N  

(g N kg-1 soil) 
Soil texture 

S. Charleston 

(Ohio) 

PT1 7.16 12.6±1.00 1.5±0.23 Silt clay loam 

NT1 6.14 21.2±0.20 2.0±0.50 Silt clay loam 

WL 
 

5.54 31.4±1.20 2.5±0.31 Silt loam 

Starkey farms 

(Indiana) 

PT2 6.41 13.3±2.3 1.9±0.60 Silt loam 

NT2 7.42 18.5±1.6 1.7±0.20 Silt loam 
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Table 2 Fungi:bacteria ratio (F:B) based on the cumulative CO2 and N2O concentration 
during a 168-h incubation of soils treated with either bronopol (bactericide) or captan 
(fungicide) applied at a rate of 16 mg g-1 soil. Soils used in these assays were from sites 
under plow-till (PT1 and PT2), long-term (50 years, NT1), and medium-term no-till (11 
years, NT2). Soils from a woodlot (WL) were also incubated for comparison 

  
 
	
Table 3 Inhibitor additivity ratio (IAR) based on the cumulative CO2 concentration 
during a 168-h incubation of soils treated with either bronopol (bactericide) or captan 
(fungicide) applied at a rate of 16 mg g-1 soil. Soils used in these assays were from sites 
under plow-till (PT1 and PT2), long-term (50 years, NT1), and medium-term no-till (11 
years, NT2). Soils from a woodlot (WL) were also incubated for comparison 
 

Soil type IAR 

PT1 1.02±0.18 

NT1 1.80±0.51 

WL 1.46±0.11 

PT2 1.22±0.35 

NT2 1.71±0.24 

 

 

 

 

  

	

Soil type 
F:B  

(based on CO2 concentration) 

F:B  

(based on N2O concentration) 

PT1 0.50±0.21 0.50±0.13 

NT1 0.67±0.31 0.87±0.18 

WL 0.45±0.18 0.46±0.24 

PT2 0.43±0.22 0.24±0.09 

NT2 0.49±0.15 0.22±0.11 
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Fig. 1 Nitrous oxide production in control and soils treated with different 
concentrations of bactericide, (a) control vs. streptomycin, (b) control vs. bronopol. 
Error bars represent SD from a mean of three replicates. 
 
Fig. 2 Nitrous oxide production in control and soils treated with different 
concentrations of fungicide, (a) control vs. cycloheximide, (b) control vs. captan. 
Error bars represent SD from a mean of three replicates. 
 
Fig. 3 Nitrous oxide production in control and soils treated with different 
concentrations of biocides, (a) control vs. bronopol, (b) control vs. captan. Error 
bars represent SD from a mean of three replicates. 
 
Fig. 4 Nitrous oxide production in control and soils treated with either bronopol 
(bactericide), captan (fungicide) or their mixture (BroCap). Biocide was applied at 
a rate of 16 mg g-1 soil. Soils used in these assays were from sites under plow-till 
(PT1 and PT2), long-term (50 years, NT1), and medium-term no-till (11 years, NT2). 
Soils from a woodlot (WL) were also incubated for comparison. Data are presented 
in the following graph panels: (a) PT1, (b) NT1 (50 years), (c) WL, (d) PT2, and (e) 
NT2 (11 years). Error bars represent SD from a mean of three replicates. 
 
Fig. 5 Percent inhibition (%) of nitrous oxide production in soils treated with either 
bronopol (bactericide), captan (fungicide) or their mixture (BroCap). Biocide was 
applied at a rate of 16 mg g-1 soil. Soils used in these assays were from sites under 
plow-till (PT1 and PT2), long-term (50 years, NT1), and medium-term no-till (11 
years, NT2). Soils from a woodlot (WL) were also incubated for comparison. Data 
are presented in the following graph panels: (a) PT1, (b) NT1 (50 years), (c) WL, (d) 
PT2, and (e) NT2 (11 years). Within a biocide treatment, bars are labelled with 
different letters to indicate a significant difference between tillage practices. Error 
bars represent SD from a mean of three replicates.   
 
Fig. 6 Carbon dioxide production in control and soils treated with either bronopol 
(bactericide), captan (fungicide) or their mixture (BroCap). Biocide was applied at 
a rate of 16 mg g-1 soil. Soils used in these assays were from sites under plow-till 
(PT1 and PT2), long-term (50 years, NT1), and medium-term no-till (11 years, NT2). 
Soils from a woodlot (WL) were also incubated for comparison. Data are presented 
in the following graph panels: (a) PT1, (b) NT1 (50 years), (c) WL, (d) PT2, and (e) 
NT2 (11 years). Error bars represent SD from a mean of three replicates. 
 
Fig. 7 Percent inhibition (%) of carbon dioxide production in soils treated with 
either bronopol (bactericide), captan (fungicide) or their mixture (BroCap). Biocide 
was applied at a rate of 16 mg g-1 soil. Soils used in these assays were from sites 
under plow-till (PT1 and PT2), long-term (50 years, NT1), and medium-term no-till 
(11 years, NT2). Soils from a woodlot (WL) were also incubated for comparison. 
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Data are presented in the following graph panels: (a) PT1, (b) NT1 (50 years), (c) 
WL, (d) PT2, and (e) NT2 (11 years). Within a biocide treatment, bars are labelled 
with different letters to indicate a significant difference between tillage practices. 
Error bars represent SD from a mean of three replicates.   

 


