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Abstract: 

Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an 

axonal bridge while physically directing regenerating axonal growth in a linear pattern. 

However, without an additional growth stimulus, bridging axons fail to extend into the distal host 

spinal cord. Here we examined whether a combinatory strategy would support regeneration of 

descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. 

Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to 

the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of 

a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC 

injection into the caudal spinal parenchyma would further enhance regeneration of descending 

axons to re-enter the host spinal cord. Our data show that both serotonergic and descending 

axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number 

of regenerating axons is significantly increased when caudal BDNF expression is activated and 

transient BDNF delivery is able to sustain axons after gene expression is switched off. 

Descending axons are confined to the caudal graft/host interface even with continuous BDNF 

expression for 8 weeks. Only with a caudal injection of SCs, a pathway facilitating axonal 

regeneration through the host/graft interface is generated allowing axons to successfully re-enter 

the caudal spinal cord. 
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1. Introduction 

Axonal regeneration after injury of the mammalian spinal cord is very limited. This is due to an 

inhibitory microenvironment, cavitation and fibroglial scarring around the lesion site, an 

insufficient intrinsic growth capacity of adult neurons in the central nervous system (CNS), as 

well as a lack of suitable growth substrates and growth-stimulating factors [1, 2]. Several 

strategies including grafting of cells and/or biomaterials [3], delivery of growth factors and 

degradation of inhibitory matrix molecules [4], activation of an intrinsic growth program [5], and 

stabilization of growth cones and axonal cytoskeleton [6] have aimed to overcome these 

impediments. Of these approaches, biomaterials that can not only fill a lesion cavity, but can also 

provide a substrate for cellular grafting, physical guidance of regenerating axons and a vehicle 

for drug delivery are highly promising for cellular and molecular regenerative therapies [7].  

 

We have previously shown that anisotropic capillary hydrogels made from alginate, a natural 

biopolymer from the cell walls of brown algae and widely used in the food and pharmaceutical 

industry, are able to physically guide axons in vitro [8-10]. In the injured spinal cord, linear 

axonal growth in a rostro-caudal direction is enhanced when hydrogels are seeded with bone 

marrow stromal cells (BMSCs) and further amplified when BMSCs are genetically modified to 

overexpress the neurotrophin brain-derived neurotrophic factor (BDNF). However, axons fail to 

extend beyond the lesion site [11, 12]. The continuous expression of BDNF by cells within the 

scaffold may saturate the receptors of regenerating axons, which therefore fail to extend beyond 

the graft into the host tissue with lower BDNF levels. In addition, the limited integration of 

BMSCs into the spinal cord, and fibroglial scarring around the implant confine regenerating 

axons to the lesion site [11]. To address these issues, we explored Schwann cells as a more 

compatible cell candidate, along with distal growth factor delivery to chemotropically attract 

bridging axons into the host tissue. 

 

Schwann cells (SCs) support axonal growth in the injured spinal cord and are currently examined 

in clinical trials as an autologous cellular graft [13]. After transplantation, SCs can myelinate 

re-growing and spared, demyelinated axons to support their maintenance and elongation [14-16]. 

In addition, SCs secrete neurotrophic factors including nerve growth factor (NGF), 

neurotrophin-3 (NT-3), glial cell line-derived neurotrophic factor (GDNF) and ciliary 

neurotrophic factor (CNTF) [17-19] as well as extracellular matrix molecules (e.g. laminin, 

fibronectin and collagen) [20, 21], which are known to protect spared tissues and facilitate 

axonal growth. Furthermore, several studies have demonstrated that SC grafts may serve as 

bridges within the lesion and intermingle with astrocytic processes, making the graft/host 

interface more permissive for axonal extension [4, 22]. 

 

Brain-derived neurotrophic factor (BDNF) is one of the best characterized neurotrophins 

promoting neural protection and axonal regeneration after SCI [23-26]. Increasing BDNF levels 

in the host parenchyma by overexpression or ectopic delivery can overcome the inhibitory 

effects of proteoglycans in the scar and stimulate axonal growth beyond the lesion edge [27, 28]. 
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Transient BDNF delivery by genetically modified fibroblasts can sustain regenerated axons 

within the lesion site [29], however continuous BDNF overexpression may induce spasticity-like 

symptoms and deterioration of functional outcomes [30, 31]. A regulated delivery system is 

therefore needed. Tetracycline-regulated expression systems containing a tetracycline 

(Tet)-responsive promoter and transactivator have been used extensively to stringently control 

the expression of target genes [32, 33]. Two systems (Tet-off and Tet-on) have been described 

depending on whether gene expression is downregulated or upregulated in the presence of Tet. 

For clinical translation requiring transient gene expression, the Tet-on system has the major 

advantage that administration of Tet is only required during the period of desired gene 

expression [29]. 

 

In the present study, we applied a combinatorial approach of alginate hydrogels seeded with 

syngeneic SCs and a distal gradient of tet-regulated viral BDNF expression to promote 

descending axonal growth through the lesion. Our data show that the number of regenerating 

axons is enhanced by transient viral neurotrophin expression, and in combination with SC 

injection into the host parenchyma, descending axons extend across the hydrogel into the distal 

spinal parenchyma. 

 

2. Materials and Methods 

2.1.Production of capillary alginate hydrogels 

Alginate hydrogels with longitudinally aligned circular capillaries were prepared as previously 

described [8, 10, 11]. Ultrapure sodium alginate (UP MVG, Novamatrix FMC) with medium 

viscosity (>200mPa·s) and 70% guluronic acid content was dissolved in ion-free water 

(Millipore) at a concentration of 2% (w/w) before being filtered through a 0.2 µm 

polyethersulfone membrane (VWR). The alginate solution (65g) was transferred into an 

anisotropic hydrogel by covering it with 20 ml of 1M Zn(NO3)2 in an anodized cylindrical 

aluminum mold (diameter 5cm; Schuett-Biotec) and a minimum diffusion time of 36h. The gel 

was rinsed with deionized water to remove excessive electrolytes and the top 5 mm layer without 

capillary structures was cut off to obtain a 15 mm thick gel block. For chemical cross-linking, the 

gel block was dehydrated in increasing concentrations of acetone (25%, 50%, 75%, 100%) 

followed by dry acetone containing 0.1M hexamethylene-di-isocyanate (HDI; VWR). Fixed gel 

blocks were rinsed in 0.1M HCl to exchange cross-linking Zn
2+

cations and washed in purified 

water until a neutral pH was reached. Afterwards, the gel was cut into 2×2×1.3 mm cubes (length 

of capillaries: 2 mm) using a vibratome (Leica) and stored in 70% ethanol. Each scaffold was 

visualized under light microscopy (Olympus) to analyze dimension and density of capillaries. 

Only blocks with evenly distributed and straight capillaries parallel to the long axis of the 

scaffolds were selected for in vivo experiments. One day before implantation, alginate hydrogel 

scaffolds were transferred into Dulbecco's phosphate-buffered saline (D’PBS) for washing and 

stored overnight. The scaffolds used for implantation showed longitudinally aligned and evenly 

distributed capillaries at a density of 61 ± 4 channels/mm
2
 with a capillary diameter of 64.4 ± 6.2 

µm (Fig. 1A) and a wall/channel ratio of approximately 4:1. 
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2.2. Production and characterization of regulated adeno-associated viral (AAV) vectors 

The basic vector rAAV-rtTA-GFP carrying a tetracycline (Tet)-regulated bi-directional promoter 

(pTetbidiON) and the coding sequence for enhanced green fluorescence protein (GFP) has been 

described previously [34]. To further improve this vector, the original tet-responsive 

transactivator (rtTA) sequence [35] was replaced by rtTAV16, a mutated rtTA with improved 

doxycyline-sensitivity [36]. To obtain a BDNF Tet-regulated vector, the plasmid was digested 

with AgeI/NotI (Biolabs) to remove the GFP cDNA and an AgeI/NotI fragment containing the 

human BDNF cDNA was cloned into this site. For initial in vitro testing, plasmids were 

transfected into 293T cells using a calcium-phosphate transfection. Cells were treated with 1 

µg/ml doxycycline (Dox; Sigma-Aldrich) for 24h and the culture medium was collected for 

analysis of BDNF levels. The cells were fixed with 4% paraformaldehyde (PFA) and incubated 

with 0.25 µg/ml 4,6-diamidino-2-phenylndole (DAPI; Sigma Aldrich) to quantify the number of 

GFP expressing cells under a fluorescence microscope (IX81; Olympus).  

For in vivo experiments, the rAAV-rtTAV16 vectors were packaged into recombinant 

adeno-associated virus serotype 5 (rAAV5) capsids by the Gene Therapy Center Vector Core 

(University of North Carolina, USA). AAV5 has previously been shown to allow for more 

widespread expression in brain and spinal cord [37]. Viral titers as determined by quantitative 

polymerase chain reaction (qPCR) were: 1.5×10
12 

vg/ml for rAAV5-GFP 

(rAAV-rtTAV16-GFP), 2.3×10
12 

vg/ml for rAAV5-BDNF (rAAV-rtTAV16-BDNF). 

 

2.3.Primary cultures of SCs 

Highly purified SCs were prepared from sciatic nerves of wild-type (WT) Fischer 344 rats 

(Charles River) or GFP-transgenic Fischer 344 rats (F344-Tg(UBC-EGFP) F455Rrrc; Rat 

Resource and Research Center, Columbia, MO). Nerves were cut into 1 mm-long explants and 

cultured with Dulbecco's modified Eagle's medium (DMEM; Life Technologies) containing 10% 

fetal bovine serum (FBS) and 100 U/ml antibiotics (penicillin and streptomycin, Gibco). When 

migratory cells (primarily fibroblasts) around the explants reached confluence after 

approximately one week in culture, explants were transferred into a new dish with fresh cell 

culture medium. After 5-6 weeks, nerve explants were dissociated by 1.25 U/ml dispase 

(Worthington) and 0.05% collagenase XI (Sigma Aldrich) and replated in DMEM containing 

10% FBS, 20 µg/ml pituitary extract and 2µM forskolin (Sigma-Aldrich). Cells were passaged 

twice before transplantation. The purity of SCs evaluated by immunolabeling for the low affinity 

neurotrophin receptor p75 (mAB192MB hybridoma supernatants) and DAPI was 96-98%. 

 

2.4.Animal subjects and doxycycline treatment 

Adult female Fischer 344 rats (total n=73) weighing 150-200g were used in this study. National 

guidelines and the European Union Directive (2010/63/EU) were strictly followed for surgical 

procedures and animal care. Animals were housed in standard cages and had free access to water 

and food. Two days prior to surgery, animals were randomly divided into groups that were either 

treated with Dox in the drinking water (+Dox; 2 mg/ml in 5% sucrose) for the time indicated in 
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Table 1, in some cases followed by withdrawal of Dox. Control animals received 5% sucrose 

(-Dox) only throughout the experiment. 

 

2.5.Surgical procedures 

Animals were deeply anesthetized by intramuscular injection of a cocktail (2.5 ml/kg) of 

ketamine (62.5 mg/kg; Bremer Pharma), xylazine (3.175 mg/kg; Ecuphar) and acepromazine 

(0.625 mg/kg; Ceva). A laminectomy was performed at vertebra C4 (cervical spinal level C5), 

followed by a longitudinal incision of the dura to create a cervical spinal cord hemisection for 

hydrogel transplantation. After two lateral subdural spinal incisions spaced 1.5-2 mm apart, a 

block of spinal cord tissue at C5 was removed by alternately using micro-scissors and 

micro-aspiration (Fig. 1). Immediately prior to the transplantation, the scaffolds were pre-loaded 

with 2-3 µl (1×10
5 
cells/µl) of SCs suspended in 1 mg/ml glucose in PBS and derived from WT 

or GFP-transgenic animals (Table 1). Scaffolds were carefully implanted into the lesion cavity 

ensuring that the capillary direction was parallel to the spinal cord axis and the scaffold closely 

embedded into the surrounding tissue. An agarose film (2×3 mm) was placed over the scaffold 

and a mixture of 2 µl fibrinogen (100 mg/ml; Sigma Aldrich) and 2 µl thrombin (400 U/ml; 

Sigma Aldrich) was used to cover the dural opening. AAV vectors (8 µl) were injected via a 

pulled glass capillary into the ipsilateral spinal cord 4 or 6 mm caudal to the lesion, 1 mm lateral 

to the midline, at a depth of 1.5 mm. This was based on a preliminary experiment, which 

indicated that rAAV5-GFP diffuses 4-6 mm away from the injection site in the intact spinal cord. 

Injections were performed at a speed of 0.5 µl/min using a Picospritzer (Parker Hannifin). In one 

group of animals, GFP-transgenic SCs (1×10
5 
cells in 1 µl) were also injected into the spinal cord 

1 mm caudal to the lesion (Table 1). After each injection, the glass capillary was left in place for 

2 min and slowly withdrawn. Muscles were repositioned, sutured and the skin was stapled. To 

label descending propriospinal axons and possibly other axons of passage, 1 µl of 10% 

biotinylated dextran amine (BDA; MW 10,000kDa; Life Technologies) was injected at a depth 

of 1.5 mm, 1 mm lateral to the midline between C1 and C2 ipsilaterally to the lesion 3 or 7 

weeks later (one week before sacrifice). For post-operative treatment, all animals were injected 

subcutaneously twice a day with buprenorphine (30-40 µg/kg, Temgesic, Reckitt Benckiser) for 

two days and ampicillin (150 mg/kg, Ratiopharm) for 5-7 days to prevent infections. Carprofen 

(4-5 mg/kg, Rimadyl, Pfizer) was injected subcutaneously beyond 2 days post-surgery for further 

pain relieve as needed. All animals were fed with 2 ml high-energy nutrition drink (Fresubin, 

Fresenius Kabi) three times per day until their body weight started to increase. Dox (5 mg/ml) 

was mixed in the drink of designated groups. 

 

2.6.Characterization of BDNF expression in vivo 

Four weeks after grafting and virus injection, animals were deeply anesthetized and 

transcardially perfused with 50 ml of ice-cold 0.1M phosphate-buffered saline (PBS). The spinal 

cord ipsilateral to lesion as well as the biomaterial implants were carefully removed and 

immediately frozen at -80°C for further processing. In a pilot experiment, an 8 mm long segment 

adjacent to the lesion was used to assess the total amount of BDNF in the host spinal cord after 
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AAV5 injection (Table 1: GFP-Dox, n=3; GFP +Dox, n=3; BDNF -Dox, n=3; BDNF +Dox, 

n=4). For a more detailed analysis of BDNF levels, spinal cords collected from animals injected 

with rAAV5-BDNF and treated with Dox (n=6) or without Dox (n=4) were cut into 100 µm 

thick coronal sections on a cryostat (Zeiss) and consecutive series of 10 sections were pooled 

into 1 mm segments. BDNF levels were also measured within the scaffold in all of the animals 

described above. 

Samples were weighed before sonication in 40 µl/mg lysis buffer (PBS with 0.25% Triton 

X-100, 5mM EDTA, 0.5% BSA, 1mM PMSF, and 1 µl/ml aprotinin). After centrifugation at 

14,000 rpm at 4°C for 10 min, supernatants were collected for BDNF ELISA as previously 

described [29]. Briefly, rabbit anti-BDNF antibody (1:2000; Acris) was coated in 96-well plates 

while normal rabbit IgG was used as control. After 4 washes, plates were blocked with 3% 

bovine serum albumin (BSA; Sigma Aldrich) and diluted spinal cord tissue lysates were added. 

Serially diluted recombinant human BDNF (Biochrom) was used as standard. Plates were 

incubated overnight at 4°C, followed by 4 washes and overnight incubation with chicken 

anti-BDNF antibody (1:2500; Promega) under the same conditions. Plates were washed and 

incubated with anti-chicken IgY coupled to horseradish peroxidase (HRP, 1:1000; Promega) 

overnight. Additional washes were performed and ο-phenylenediamine (0.5 mg/ml; 

Sigma-Aldrich) was added as substrate for HRP detection. After 15 min, the reaction was 

terminated with10% H2SO4 and the absorption was detected by a spectrophotometer (Tecan) at 

490 nm wavelength. Absorption values of control wells coated with normal IgG were subtracted 

from wells coated with anti-BDNF antibody to exclude nonspecific binding. Diluted cell culture 

supernatants were analyzed using the same methods. 

 

2.7.Tissue preparation and immunohistochemistry 

Animals were deeply anesthetized and transcardially perfused with 100 ml ice-cold PBS, 

followed by 250 ml ice-cold 4% paraformaldehyde (PFA) in 0.1M phosphate buffer (PB). Brains 

and spinal cords were dissected, post-fixed in PFA for 1 hour and cryoprotected in 30% sucrose 

in 0.1M PB at 4°C. Horizontal sections were cut on a cryostat at 30 µm intervals from a 2.5 cm 

long block of spinal cord tissue centered around the grafts. Every 15
th
 section was directly 

mounted onto the same glass slide for immunolabeling. 

For immunolabeling, sections were rinsed in tris-buffered saline (TBS) and blocked with 5% 

donkey serum / 0.25% Triton X-100 in TBS. Sections were incubated with different 

combinations of the following antibodies: rabbit anti-GFP (1:1000; Life Technologies), mouse 

anti-GFP (1:2000; Life Technologies), goat anti-GFP (1:1000; Rockland), guinea pig anti-glial 

fibrillary acidic protein (GFAP, 1:500; Progen), rabbit anti-GFAP (1:1000; Dako), goat 

anti-Olig2 (1:500; Santa Cruz), mouse anti-NeuN (1:200; Millipore), mouse anti-βIII-tubulin 

(1:750; Promega) and rabbit anti-5-hydroxytryptamine (5-HT, 1:2000; Immunostar), 

streptavidin-Alexa 594 (to detect the anterograde tracer BDA, 1:500; Jackson Immuno 

Research). On the following day, secondary antibodies made in donkey including anti-rabbit and 

anti-mouse IgG coupled to Alexa 488, or Alexa 594 (all 1:300; Invitrogen) and anti-guinea pig 

IgG coupled to Cy5 (1:500; Jackson Immuno Research) were used and co-incubated with 0.25 
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µg/ml DAPI to visualize nuclei. Sections were dried and coverslipped with Fluoromount G 

(Southern Biotech). Sections were imaged using a XC30 camera connected to a BX53 

microscope (Olympus) or a FluoView1000 confocal microscope (BX61; Olympus). 

To detect BDA-labeled axons in light level, sections were incubated with 0.6% hydrogen 

peroxide in methanol to block endogenous peroxidase activity for 30 min at RT and washed in 

TBS. Sections were incubated overnight at 4°C with avidin–biotinylated peroxidase complex in 

TBS (Elite kit, 1:100; Vector Laboratories). After several washes, sections were maintained in a 

solution of diaminobenzidine with nickel chloride and hydrogen peroxide (Peroxidase substrate 

kit; Vector Laboratories) for 5-10 min before additional washing at RT. Sections were 

dehydrated and coverslipped with Cytoseal 60 (Thermo Fisher Scientific). 

 

2.8.Quantification of axon profiles within and beyond the scaffold 

The number of axons within the scaffold capillaries was counted in 2 out of 14 series by a person 

blinded to treatment conditions. Immunolabeled axons in all capillaries crossing imaginary lines 

perpendicular to the rostral-caudal axis of the hydrogel at 100 µm, 500 µm and 1000 µm from the 

rostral edge as well as 100 µm and 500 µm from the caudal edge of each section were counted at 

20× magnification to quantify βIII-tubulin labeled axons. The number of axons per mm
2 

hydrogel was calculated using the following equation: 

	N =
∑ ����	


,���,���∗	������	�������		(��)∗∑ �����	��	���	��������	��		���� ��	��	�����(��)
. 

BDA and 5-HT-labeled axons in the hydrogel were quantified in one out of 14 serial sections. 

The maximum number of axons observed at any distance in every channel was quantified 

separately in the rostral and caudal half of the hydrogel and divided by the total number of 

channels present in the section. Axons extending in the same channel were only counted once. The 

number of axons per channel was averaged for each animal and means of each group were used for 

statistical comparison. BDA-labeled axonal profiles in the ipsilateral host tissue crossing 

imaginary lines placed perpendicular to the longitudinal axis of the spinal cord caudal to the 

hydrogel edge at 100, 200, 400, 600, 800, 1000 and 1200 µm were also counted in 2 out of 14 

serial sections. 

 

2.9.Statistics 

All data are presented as mean ± standard error (SEM) and GraphPad Prism 5.01 software was 

used for all statistical analyses. Comparisons between groups were made using unpaired 

Student’s t-test or non-parametric analysis for data not normally distributed (Kruskal-Wallis test 

followed by Dunn’s test). One-way ANOVA with Tukey’s post hoc analysis or two-way 

ANOVA with Bonferroni post hoc tests were used for multiple comparisons. A significance 

criterion of p<0.05 was used. 

 

3. Results 

3.1.Integration of SC-seeded alginate hydrogels in the host spinal cord 
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For hydrogels to be suitable as implant in the injured spinal cord, they must integrate into host 

tissue without excessive scarring, maintain its integrity over the period of axonal regeneration 

and allow for sufficient diffusion of nutrients to support cell survival. The architecture of 

alginate hydrogels remained stable at 4 weeks (Fig. 2A-C) and 8 weeks (Suppl. Fig 4, Fig. 8) 

post implantation into a cervical hemisection, the longest time point examined. Scaffolds filled 

the spinal cord lesion site, numerous grafted GFP-labeled SCs survived within the channels and 

the adjacent tissue, integrating the hydrogel at the rostral and caudal ends of the lesion with the 

host spinal cord (Fig. 2C-F). GFAP-labeled astrocytes showed mild hypercellularity around the 

hydrogel with rare cavitation between the scaffold and the host tissue. 

 

3.2.Characterization of regulated GFP and BDNF expression in vitro and in vivo 

To characterize the tet-regulated plasmids, we first transfected 293T cells with 

rAAV-rtTAV16-GFP or -BDNF plasmid (Suppl. Fig. 1A). A significantly larger number of 

GFP
+ 

cells was observed in the group transfected with rAAV-rtTAV16-GFP (henceforth referred 

to as rAAV5-GFP) and treated with Dox (Suppl. Fig. 1B-F) when compared to cells transfected 

with the same plasmid without Dox treatment. After transfection with rAAV-rtTAV16-BDNF 

(henceforth referred to as rAAV5-BDNF), BDNF expression was upregulated 26-fold in cells 

receiving Dox in the culture medium (3.31±0.06 ng/ml per 24h) compared to cells that did not 

receive Dox. No BDNF was detected in cells transfected with the rAAV5-GFP control plasmid 

(Suppl. Fig. 1G). 

Based on these results, animals were injected with rAAV5-GFP 4 mm caudal to the hydrogel 

implant and continuously received Dox (2 mg/ml) or only 5% sucrose in the drinking water for 4 

weeks. Only a limited number of cells confined primarily to the virus injection site showed GFP 

fluorescence in animals that were not treated with Dox (Fig. 3A, C). In contrast, Dox-treated 

animals exhibited strong GFP fluorescence in the spinal cord ipsilateral to the lesion, which 

extended from the injection site to the graft/host border as well as ~5 mm caudal from the 

injection site (in total ~9 mm from the hydrogel) (Fig. 3B, D, E). Based on the morphology of 

GFP-labeled cells and double labeling with neuronal, astroglial and oligodendroglial markers, 

infected cells were primarily glia, but also host neurons (Suppl. Fig. 2). No GFP-labeled cells 

were observed within the channels of either rAAV5-GFP injected groups. 

Measuring overall BDNF levels by ELISA in an 8 mm ipsilateral spinal cord segment caudal to 

the lesion in animals injected with rAAV5-BDNF showed similar results. The highest levels 

were measured in animals that received Dox. In the absence of Dox, BDNF expression in 

animals injected with rAAV5-BDNF showed a minor increase, however did not significantly 

differ from BDNF levels in animals injected with rAAV5-GFP (Fig. 3F). BDNF levels in the 

alginate hydrogel were only slightly elevated in subjects receiving rAAV5-BDNF and Dox 

treatment with no significant difference between all groups (Fig. 3G). Given that animals 

injected with GFP virus did not indicate any GFP-labeled cells within the graft, it is likely that 

any BDNF in the alginate is derived from Schwann cells and BDNF diffusion from the adjacent 

host tissue. 
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Importantly, the spread of rAAV5-BDNF established a neurotrophic gradient within the spinal 

cord. BDNF levels in the first 9 mm caudal to the graft were significantly increased in animals 

after Dox treatment. The peak level of BDNF was detected directly at the vector injection site, 

with BDNF levels decreasing in rostral and caudal direction, although a slight increase in BDNF 

levels was observed close to the lesion. In the absence of Dox, animals showed a mild, but 

insignificant increase of BDNF at the injection site and at the graft/host interface (Fig. 3H). 

Taken together, these data show that gene expression can be tightly regulated by Dox both in 

vitro and in vivo. 

 

3.3.Distal delivery of BDNF increases axonal regeneration into alginate hydrogels 

To analyze overall axonal growth into the scaffold, axons were immunolabeled for βIII-tubulin. 

Labeled axons entered the scaffold from both sides and mostly filled the entire length of 

SC-seeded channels in all groups (Fig. 4A). Axons within the channels extended along SCs in a 

highly linear pattern parallel to the longitudinal axis of the channel wall irrespective of distal 

virus injection (Fig. 4B-D). Most axons were located in the center of each channel rather than 

directly attaching to the capillary wall, similar to our previous findings in alginate hydrogels 

seeded with BMSCs [11]. Confocal microscopy showed that axons were in close proximity to 

grafted SCs (Fig. 4E-F). 

Quantification of axons within the channels indicated that the number of axons in the middle of 

the hydrogel was not significantly different from the number at the rostral and caudal end of the 

alginate channels within each group. Thus, axons grew forward persistently without attenuation 

in number with increasing distance from the edge.  

When BDNF expression in the caudal host parenchyma was turned on, a 1.5-2-fold increase in 

the number axons per channel area was observed in comparison to subjects without Dox 

treatment or GFP control animals four weeks after engraftment. In contrast, when BDNF 

expression was continuously switched off (-Dox), the number of axons was only slightly higher 

compared to animals that received GFP virus, however this difference was not significant (Fig. 

4G, p>0.05 at all distances) after 4 weeks. Therefore, caudal BDNF expression augmented 

axonal growth in the alginate hydrogels and tet-on vectors could be turned off to a level that did 

not result in significant biological effects in vivo. 

Since virally expressed BDNF is relatively high right up to the graft interface, we hypothesized 

that increased axonal growth even at the most rostral portion of the alginate scaffold might be 

ascribed to the diffusion of BDNF into the channels. To address this hypothesis, one additional 

group of Dox-treated animals received the same volume (8 µl) of rAAV5-BDNF at a distance of 

6 mm instead of 4 mm caudal to the hydrogel to move the BDNF gradient more caudally and 

thereby limit BDNF diffusion into the implant. As the distribution of BDNF measured by ELISA 

in rAAV5-BDNF-injected animals was similar to that of GFP fluorescence in rAAV5-GFP 

injected animals (Fig. 3), for this more caudal injection AAV5-BDNF was mixed with 10% (v/v) 

of rAAV5-GFP as an indirect indicator of BDNF expression. In contrast to virus injections 4 mm 

caudal to the lesion (Fig. 3), GFP fluorescence after more distal injections did not reach the 

caudal host/graft interface and stopped 200-400 µm caudal to the lesion (Suppl. Fig. 3) 
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indicating a lower level of BDNF at the caudal edge of the hydrogel. This more distally located 

BDNF gradient failed to promote axonal regeneration into the scaffold compared to GFP virus 

injected animals (Fig. 4G, p>0.05 at all distances). Thus, for caudal BDNF virus to increase 

axonal growth, sufficiently high BDNF levels need to be present right at the caudal host/graft 

interface. 

 

3.4.Raphespinal and propriospinal axonal growth into alginate hydrogels 

Raphespinal axons from the brainstem play a vital role in modulating the activity of neural 

networks in the spinal cord and mediating locomotor function [38]. Immunolabeling for 

serotonin (5-HT), a neurotransmitter specific for raphespinal axons in the spinal cord, showed 

that 5-HT-labeled axons regenerated into and extended throughout the channels in all animals 

(Fig. 5B-F). Viral BDNF expression for 4 weeks in the caudal host parenchyma induced 

significantly more growth of serotonergic axons into the rostral half of the scaffold in 

comparison to animals that received rAAV5-BDNF without Dox treatment and GFP control 

groups regardless of Dox treatment. In the caudal half of the channels, BDNF also triggered 

more 5-HT
+
 axonal penetration compared to GFP control groups (Fig. 5G). However, the 

number of serotonergic axons in the channels was lower when comparing the rostral and caudal 

half of the hydrogel, and 5-HT
+
axons that extended up to the caudal interface of the hydrogel 

failed to enter the distal host parenchyma. 5-HT
+
 axons were not uniformly distributed, some 

channels contained bundles of axons whereas other channels did not contain any 5HT
+
 axons. 

Consistent with our data of overall neurite growth (βIII-tubulin) (Fig. 4G), more caudal (6 mm) 

BDNF virus injections and Dox treatment resulted in a similar number of 5-HT
+
 axons as 

observed in animals with BDNF virus without Dox treatment (Fig. 5G). An increase in 5-HT
+
 

axons was also observed when BDNF expression was never turned on in comparison to GFP 

control animals, but this difference failed to reach significance. 

 

Propriospinal neurons are an important part of spinal neural circuits for relay and connection 

with other tracts [39]. BDA was used as an anterograde tracer for descending propriospinal and 

other descending axons of passage in this study. BDA-labeled axons were found to regenerate 

through the scaffold, and animals that received rAAV5-BDNF injection and Dox treatment had 

the highest number of axons both in the rostral and caudal halves of the alginate graft (Fig. 

6A1-D3). In contrast to serotonergic axons, the number of BDA-labeled axons remained fairly 

constant from the rostral to the caudal half of the alginate in animals with BDNF expression 

turned on. Group differences observed within the graft were also found for axons within and 

beyond the scaffold (Fig. 6F-G). Consistent with 5-HT and βIII-tubulin labeling, the number of 

BDA-labeled axons decreased when the BDNF gradient was moved more caudally (6 mm) (Fig. 

6E1-E3 and F-G). 

Taken together, growth of descending axons is increased within hydrogel scaffolds when BDNF 

expression is turned on sufficiently close to the alginate hydrogel for 4 weeks, but axons do not 

extend for significant distances beyond the lesion. 
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3.5.Sustained BDNF expression for axonal regeneration into alginate hydrogels 

To determine whether longer BDNF expression would modify axonal growth responses after 

implantation of SC-seeded alginate hydrogels, a separate cohort of animals was allowed to 

survive for 8 weeks post-lesion after injection of BDNF virus (mixed with 10% GFP virus). 

Animals underwent continuous (8wks +Dox) or transient (4wks +Dox/4wks -Dox) Dox 

treatment. Animals that were treated with Dox for 8 weeks showed virus-infected GFP
+
 cells 

from the caudal injection site right up to the edge of the hydrogel as observed for shorter time 

points. In animals that received Dox only for the first 4 weeks, GFP fluorescence was absent four 

weeks after withdrawal of Dox, indicating that viral gene expression can be switched off in vivo 

(Suppl. Fig. 4). 

Overall axonal growth (βIII-tubulin labeling) was not altered by the longer time points. 

Compared to animals killed after 4 weeks of BDNF expression, continuous (8wks +Dox) or 

transient (4wks +Dox/4wks -Dox) Dox treatment resulted in a similar number of axons within 

hydrogel channels that remained rather constant at the rostral and caudal end as well as in the 

middle of the hydrogel (Fig. 7A, D). Similar results were observed for descending axons traced 

with BDA (Fig. 7C, F). However, the regrowth of 5-HT-labeled serotonergic axons was 

significantly enhanced at the 8 week time point after rAAV5-BDNF injection. Irrespective of 

BDNF being persistently (8wks +Dox) or transiently (4wks +Dox/4wks -Dox) expressed, the 

number of serotonergic axons was significantly increased in comparison with animals that had 

BDNF expression turned on for only 4 weeks (4wks +Dox) (Fig. 7B, E). Therefore, extending 

BDNF expression beyond 4 weeks has no overall additive effect, however enhanced growth of 

some axonal populations given additional time is possible even in the absence of higher BDNF 

levels. 

 

3.6.Modification of the graft/host interface by SC injection into the host spinal cord 

In the experiments described above, most of the regenerating descending axons were confined to 

the caudal interface rather than re-entering into the host parenchyma even in the presence of a 

distal BDNF gradient and extended periods for long distance growth (Fig. 6G and Fig. 8A). The 

fibroglial scar surrounding the graft is one potential obstacle impeding axonal regeneration into 

the distal spinal cord [2, 40]. To modify the permissiveness of the scar at the caudal 

hydrogel/graft interface and to further facilitate axonal growth, we additionally injected 

GFP-transgenic SCs into the host tissue 1 mm caudal to the alginate hydrogel in one group of 

animals that received caudal rAAV5-BDNF injection. Animals were treated with Dox and 

survived for 8 weeks. SCs seeded within the hydrogel were not GFP-labeled. Injected GFP
+
 

transgenic SCs migrated from the injection site, and some entered the capillaries of the hydrogel 

(Fig. 8F) even approaching the rostral graft/host interface. Interestingly, the combination of SC 

injection and BDNF expression for 8 weeks in the caudal spinal cord not only significantly 

increased the overall number of βIII-tubulin-labeled axons regenerating into the hydrogel (Fig. 

7D), but also doubled the number of 5-HT- (Fig. 7E) and BDA-labeled axons (Fig. 7F) growing 

into the channels compared to animals that underwent the same treatment without additional SC 

injection. 
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Most importantly, more BDA-labeled descending axons penetrated the caudal alginate/host 

interface and entered the host parenchyma when the caudal spinal cord was injected with SCs 

and BDNF expression was turned on for 8 weeks (Fig. 8E). A significantly increased number of 

BDA-labeled axons were found up to 1200 µm beyond the caudal hydrogel interface and 

extended along the migration pathway of injected SCs, which were intermingled with host 

astrocytes. A small portion of axons was also detected in the caudal host parenchyma at a long 

distance (>2000 µm) further caudal than the SC injection site (Fig. 8B and D-F). 

 

4. Discussion 

The present study systematically investigated the parameters needed to achieve axonal 

regeneration across an anisotropic capillary alginate hydrogel in a lateral hemisection lesion. Our 

data indicate that 1) transient expression of BDNF is sufficient to sustain regenerated axons, 2) 

some axonal populations continue to show increased growth beyond 4 weeks post-lesion even 

when BDNF expression has been turned off and 3) additional grafting of SCs beyond the lesion 

site is essential for axons to bridge across the lesion and to re-enter the caudal host tissue.  

In previous decades, biomaterials with different structural properties have been investigated in 

combination with a variety of strategies to facilitate axonal growth across a lesion after SCI [41, 

42]. One major advantage of biomaterials with linearized channels is the ability to guide axonal 

growth in a defined linear pattern allowing for more axons to regenerate across the lesion 

towards the distal host tissue for further sprouting and potential new connections [40]. In 

addition, channels provide space for the delivery of cells and bio-active molecules to improve 

therapeutic efficacy. Increased axonal regrowth was detected after implantation of 

poly(D,L-lactide-co-glycolide) (PLGA) scaffolds seeded with human mesenchymal stem cells into 

the channels [43]. Similar results were observed by engraftment of agarose scaffolds with 

encapsulated BDNF [44] or pre-seeded with BMSCs overexpressing NT-3 [40] in uniaxial 

channels. However, axonal regeneration terminated at the graft/host interface in most studies 

rather than extending into the host spinal cord to make new synaptic connections. The reactive 

cell matrix forming around a graft is a prominent obstacle impeding axonal growth into the host 

parenchyma [40].  

To overcome this impediment, we first aimed to generate a BDNF gradient caudal to the graft to 

induce axonal growth beyond the alginate hydrogel. In previous studies using a cell suspension 

graft at the lesion site and lentiviral NT-3 gene transfer rostral to the lesion, we have shown that 

gradients of neurotrophins can enhance short distance bridging of ascending sensory axons [45]. 

Distal delivery of BDNF has also been shown to promote some short distance growth of 

reticulospinal axon populations when lesions extended no more than 0.5-1 mm [31]. The current 

results also demonstrate that viral BDNF expression caudal to the lesion enhances axonal growth 

and augments the pro-regenerative effect of alginate channels pre-seeded with SCs. In addition, 

more than 50% of raphespinal and 80% of BDA-labeled descending axons found in the rostral 

half of the alginate biomaterial continue to extend over the caudal half of the 2 mm alginate 

hydrogel. Diffusion of BDNF from the caudal host tissue into the channels likely contributed to 

the increased growth as animals injected with rAAV-GFP never showed any transfected cells 
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within the graft. Yet, similar to studies using agarose or alginate scaffolds with channels in 

combination with cellular BDNF delivery within the biomaterial [11, 46], most of the descending 

axons failed to extend beyond the alginate hydrogels even when BDNF expression was extended 

up to 2 months post-injury (Fig. 6-7). It is possible that the widespread increase in BDNF 

established by rAAV5 caudal to the lesion does not provide a sufficiently steep growth factor 

gradient to attract axons beyond the caudal scar tissue. Delivery of neurotrophic factors using 

less diffusible vectors, e.g. rAAV2 or lentiviral vectors may help to create a more effective, 

localized gradient and propel axonal penetration into the host tissue. 

The second strategy in this study to enhance bridging axonal regeneration was the injection of 

syngeneic SCs in the caudal spinal cord in combination with BDNF delivery. Caudally injected 

SCs generated a cellular trail from alginate channels into the host tissue enabling BDA-traced 

descending axons to extend into the adjacent caudal spinal cord identified by GFAP labeling. 

Distal Schwann cell injections appeared to disrupt the distinct astroglial border usually found 

directly adjacent to the hydrogel. Axons extending along these Schwann cells were therefore able 

to reach more distal areas of the host spinal cord, where astrogliosis is less prevalent and more 

favorable for axonal bridging. Surprisingly, caudal SC injection also increased descending axon 

growth into the alginate. Given that SCs migrated towards the hydrogel, entered the channels, 

and often even approached the rostral host/graft interface, it is possible that the injected SCs 

served as an exogenous “cell bank” and supplemented dying SCs pre-seeded within the scaffold. 

From other studies, it is known that a large proportion of SCs grafted to the injured spinal cord 

gradually die via apoptosis [47]. Alternatively, the injected SCs might have been transfected by 

rAAV5-BDNF injected further caudally and thereby magnified the regenerative response of 

axons when they migrated into the channels. Compared to our previous studies using alginate 

hydrogels that were filled with bone marrow stromal cells and grafted in the same lesion model, 

seeding channels with SCs not only promoted growth of a greater number of axons, but axonal 

extension was also sustained continuously throughout the channels and a decrease in axon 

number in the center of the hydrogels was not observed [11]. Due to the nature of the lesion 

(lateral hemisection), we cannot definitively exclude the possibility that some BDA-labeled 

axons found caudal to the lesion site were derived from collateral sprouting from the 

contralateral side. However, some axons could be clearly traced from alginate channels into the 

caudal spinal cord and the decline in axon numbers with increasing distance from the alginate 

also suggests that these axons had extended through the hydrogel. Studies in complete 

transections will be better suited to answer this question by histological and electrophysiological 

means. 

In contrast to most previous studies using viral neurotrophin delivery, the current study used a 

tetracycline-inducible vector for BDNF expression. The temporal regulation of BDNF 

expression to enhance axonal growth is essential for clinical translation, given the adverse effects 

observed with long-term BDNF delivery [30, 31]. The controlled expression allowed us to 

determine whether high levels of BDNF for 2 months results in superior axonal growth 

compared to short-term one month delivery. Neither overall axonal growth, nor growth of 

serotonergic nor other BDA-labeled descending tracts differed between short and long-term 
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delivery. However, we observed more axon growth at 2 months compared to 1 month 

independent of high BDNF levels indicating that either SC-derived factors or very small BDNF 

levels from leaky vector-derived gene expression are sufficient to further improve regenerative 

growth. These longer-term studies also confirmed the excellent bio-compatibility of 

alginate-based hydrogels as previously reported at shorter time points [11]. As a crucial structure 

for axonal guidance, the linearized microstructure within the scaffold was stable for at least 8 

weeks after in vivo implantation. No obvious cavities were detected around the scaffold, which is 

beneficial for axonal growth and cellular survival (Figs. 2 and 4).  

In the current experiment, animals were not tested for behavioral recovery. Lateral hemisection 

lesions extending over 2 mm at C5 destroy many neurons at segmental level (motor neurons, 

interneurons) required for upper forelimb movement and even very small differences in the 

mediolateral lesion extent possibly sparing some corticospinal axons profoundly influence 

functional outcomes. Small gains in motor performance due to regenerated axons might therefore 

not be detectable. While the current combinatorial strategy allows for the re-entry of axons into 

the host tissue, a premise for synapse formation and functional restoration [48], examining 

regeneration and functional recovery in complete transections would be better suited to prove 

that regenerated axons causally underlie any behavioral effects. 

 

5. Conclusion 

Alginate hydrogels with anisotropic capillaries support the survival of grafted SCs and guide 

supraspinal and propriospinal descending axons through and beyond the lesion site. The number 

of axons bridging the lesion significantly increases when caudal BDNF expression is activated. 

A combination of SC injection and BDNF overexpression in the caudal spinal cord further 

promotes axonal growth and penetration into the host parenchyma. Future studies will 

investigate the efficacy of the alginate hydrogel-based transplantation after SCI to improve 

functional outcomes. 
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FIGURE LEGENDS 

Fig. 1. Lesion paradigm and experimental procedures. (A) Schematic diagram of the 

experimental design. A 1.5-2 mm long segment of the spinal cord was removed unilaterally at 

the C5 level before implanting a Schwann cell (SC)-seeded alginate scaffold. Subsequently, viral 

vectors (yellow) for the regulatable expression of GFP (rAAV5-GFP) or BDNF (rAAV5-BDNF) 

were injected into the caudal spinal cord ipsilateral to the lesion. SCs (blue) were also injected 

into the caudal spinal cord in one group. Biotinylated dextran amine (BDA, red) was injected in 

the spinal cord rostral to the lesion to trace descending axons three or seven weeks post-lesion. 

(A1) Cross-sectional and (A2) longitudinal view of the capillary lumen. (B) After a hemisection 

lesion (arrowhead, ~2 mm in length) of the rat spinal cord, (C) the alginate scaffold loaded with 

SCs (white arrow) was grafted into the lesion and (D) virus (*) or SCs (black arrow) were 

injected into the spinal cord caudal to the scaffold using a glass capillary. Scale bar: 300 µm in 

(A1); 500 µm in (A2). 

 

Fig. 2. Integration of alginate hydrogels and Schwann cell (SC) survival. (A) Dorsal and (B) 

ventral view of the scaffold (arrows) in the spinal cord 4 weeks after engraftment. (C) Nuclear 

staining (DAPI) indicates that scaffold channels are filled with cells, and cavities at the host/graft 

interface are very limited in number and size. (D) Four weeks after engraftment, GFP-labeled 

SCs (green) survive within and around the alginate scaffold, connecting the scaffold to the host 

tissue identified by GFAP labeling (gray). Higher magnifications of the graft/host interface 

(dashed lines) are shown in (E, F). In (E), stars (*) label cell-seeded channels and triangles (∆) 

indicate the walls of the scaffold. Scale bar: 500 µm in (C, D); 100 µm in (E, F). 

 

Fig. 3. Characterization of tet-regulated GFP and BDNF expression in vivo. (A, B) GFP 

fluorescence (green) in the spinal cord of animals injected with rAAV5-GFP. (A) Only a few 

GFP expressing cells are found around the injection site in animals without doxycycline (Dox) 

treatment. (B) In contrast, strong GFP fluorescence is observed in Dox-treated animals spreading 

from the GFP virus injection site to the caudal graft/host interface (dashed line). (C-E) Higher 

magnification of the areas boxed in (A, B). Arrows in (A, B) indicate virus injection site. (F) 

Overall BDNF levels in the ipsilateral caudal spinal cord quantified by ELISA indicates 

significant higher BDNF levels in Dox-treated animals that received rAAV5-BDNF injection 

(***p<0.001, one-way ANOVA followed by Tukey’s post hoc analysis). (G) Differences in 

BDNF levels within the alginate scaffolds did not reach significance (n.s, not significant). (H) 

rAAV5-BDNF injection in the spinal cord established a BDNF gradient with highest levels 

around the injection site (***p<0.001; two-way ANOVA followed by Bonferroni post hoc test). 

Scale bar: 500 µm in (A, B); 100 µm in (C-E). Inset in (H) indicates the tissue (yellow) used for 

BDNF ELISA. 

 

Fig. 4. Axonal growth into SC-seeded alginate scaffolds 4 weeks post-implantation. (A) 

βIII-tubulin (red) immunolabeling of the lesion site in an animal that was implanted with an 

alginate hydrogel seeded with GFP-transgenic SCs and received caudal BDNF virus injection 
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and Dox treatment. (B-E) Higher magnification of areas boxed in (A) show similar numbers of 

βIII-tubulin-labeled axons (red) at (B) the rostral, (C) center and (D) caudal area of the alginate 

hydrogel extending along GFP-positive SCs (green) in the capillaries of the scaffolds. Dashed 

lines in (B) and (D) indicate edges of the hydrogel. (E) Confocal imaging (z-stack) and (F) cross 

plane of the area indicated by the dashed line in (E) indicates axons in the capillaries are in close 

contact or ensheathed by grafted GFP-positive SCs (arrowheads). (G) Quantification of axons 

within the scaffolds indicates significant higher number of axons at all distances in animals that 

received BDNF virus 4 mm caudal to the scaffold when gene expression was turned on 

(***p<0.001 vs GFP –Dox; ###p<0.001 vs GFP +Dox; 
&
p<0.05, 

&&
p<0.01 vs BDNF -Dox; 

^p<0.05, ^^p<0.01, ^^^p<0.001 vs BDNF/+Dox (6mm); two-way ANOVA followed by 

Bonferroni post hoc test). Scale bar: 500 µm in (A); 100 µm in (B-D); 20 µm in (E); 4 µm in (F). 

 

Fig. 5. Regeneration of serotonergic axons into alginate scaffolds. (A) Schematic 

representation of the scaffold in the spinal cord and location (box) where images in (B-F) were 

taken. (B-F) Serotonergic (5-HT-labeled) axons enter the scaffolds and extend along the 

channels. (G) Quantification of 5-HT-labeled axons within the scaffolds indicates higher number 

of 5-HT-positive axons in animals with BDNF expression turned on (*p<0.05; **p<0.01; 

***p<0.001; one-way ANOVA followed by Tukey’s post hoc analysis). Scale bar: 100 µm in 

(B-F). 

 

Fig. 6. Penetration of descending BDA-labeled axons through alginate scaffolds. (A1-E3) 

Propriospinal and other descending axons traced with BDA grow through the scaffolds in 

rostro-caudal direction. Schematics on top depict regions where images were taken. Dashed lines 

in (A1, B1, C1, D1, E1) and (A3, B3, C3, D3, E3) indicate the rostral and caudal edges of the 

scaffold, respectively. Axons extending through the scaffold terminate just caudal to the scaffold. 

(F) Quantification of BDA-labeled descending axons regenerated into the rostral and caudal half 

of scaffolds shows significant higher numbers in animals with BDNF virus when gene 

expression is turned on. (G) Similar differences are observed for BDA-labeled axonal profiles 

just beyond the caudal edge of scaffolds (*p<0.05; **p<0.01; ***p<0.001; one-way ANOVA 

followed by Tukey’s post hoc analysis). Scale bar: 100 µm in (A1-E3). 

 

Fig. 7. Long-term BDNF expression combined with SC injection for axonal growth within 

the alginate hydrogel. Representative images for (A) overall axon growth, (B) serotonergic 

axons and (C) BDA-labeled descending axons within the scaffold 8 weeks post-lesion with 

continuous caudal BDNF expression. Schematics on top of (B, C) depict regions where images 

were taken. (D-F) Quantification of (D) overall axonal growth, (E) serotonergic axons and (F) 

descending propriospinal axons within the channels. Significantly more axons are found in 

animals that received rAAV5-BDNF when gene expression is turned on and SCs are injected 

caudal to the lesion (*p<0.05, **p<0.01 vs rAAV5-BDNF/4wks +Dox; 
#
p<0.05, 

##
p<0.01 vs 

rAAV5-BDNF/4wks +Dox/4wks -Dox; 
&
p<0.05, 

&&
p<0.01 vs rAAV5-BDNF/8wks +Dox; 

two-way ANOVA followed by Bonferroni post test). The same group also shows the highest 
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level of serotonergic and BDA-labeled axons (*p<0.05; **p<0.01; ***p<0.001; one-way 

ANOVA followed by Tukey’s post hoc analysis). Dashed line in (C) indicates caudal edge of the 

hydrogel. Scale bar: 500µm in (A); 100 µm in (B, C). 

 

Fig. 8. Caudal injection of SCs allows for descending BDA-labeled axons to extend beyond 

the alginate scaffolds. (A, C) Most BDA-labeled axons (red) fail to extend beyond the graft/host 

interface (dashed line) demarcated by GFAP-labeled astrocytes (cyan) in animals that received 

SC-seeded alginate scaffolds and caudal BDNF virus injection despite survival for 8 weeks in the 

presence of doxycycline (gene expression turned on). (B, D) In contrast, descending 

BDA-labeled axons regenerate through the entire hydrogel and the caudal interface (dashed line) 

into the host tissue identified by GFAP labeling into and beyond areas occupied by (F) injected 

GFP
+ 

SCs in animals with caudal BDNF virus injection and additional SC injection. Axons 

(arrowheads) elongate into the distal host spinal cord beyond the SC grafts. (E) Quantification of 

axons regenerated beyond the caudal edge of the scaffold (*p<0.05; **p<0.01; ***p<0.001; 

one-way ANOVA followed by Tukey’s post hoc analysis). SC injection site is indicated by 

arrow. Scale bar: 300 µm in (A-D, F). 

 

Suppl. Fig. 1. Vector map and in vitro regulation of gene expression. (A) Plasmid map of the 

tet-regulated AAV vector. Expression of the reverse tetracycline (tet) transactivator (rtTA) and 

enhanced GFP (eGFP) or human BDNF (huBDNF) is driven by a bi-directional tet-regulated 

promoter (ptetbidi). ITR, inverted terminal repeat; SV40pA, SV40 polyadenylation signals. (B-E) 

GFP fluorescence was detected in 293T cells 24h after transfection with the 

rAAV-rtTAV16-GFP plasmid, but not rAAV-rtTAV16-BDNF plasmid. (F) Quantitative analysis 

shows a significant increase of GFP
+
 cell number when the wells are treated with 1 µg/ml Dox. 

(G) BDNF levels are significantly higher in the supernatant of cells transfected with 

rAAV-rtTAV16-BDNF and treated with Dox (+Dox) (*p<0.05; ***p<0.001; Kruskal-Wallis 

followed by Dunn’s test). Scale bar: 100 µm in (B-E). 

 

Suppl. Fig. 2. Characterization of rAAV5-GFP infected cells. Double immunofluorescence 

labeling for GFP and glial and neuronal markers shows co-localization of GFP with (A, B) 

astrocytes (GFAP) and (C, D) oligodendrocytes (olig2). Confocal images confirm co-localization 

of (E) NeuN and (F) GFAP with GFP. Arrows indicate examples of double-labeled cells. Scale 

bars: 100 µm in (A-D), 50µm in (E, F). 

 

Suppl. Fig. 3. Diffusion pattern of tet vectors after a more caudal (6 mm) injection. (A) GFP 

fluorescence in the spinal cord after injection of rAAV5-BDNF containing 10% (v/v) of 

rAAV5-GFP 6 mm caudal to the lesion. GFP-labeled cells can be detected in the caudal spinal 

cord, but do not reach the graft/host interface (dashed line). (B, C) Higher magnification of the 

areas boxed in (A). Scale bar: 500 µm in (A); 100 µm in (B, C). 
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Suppl. Fig. 4. Long-term regulation of tet vectors in vivo. (A, B) GFP fluorescence in the 

spinal cord after injection of rAAV5-BDNF containing 10% (v/v) rAAV5-GFP 4 mm caudal to 

the lesion. (A) No GFP
+
 cells are visible in the caudal spinal cord of animals treated with 

doxycycline (Dox) for 4 weeks followed by withdrawal of Dox for 4 weeks. (B) GFP 

fluorescence can be easily detected in the caudal spinal cord of animals continuously treated with 

Dox for 8 weeks. (C-E) Higher magnification of the areas boxed in (A, B). Scale bar: 500 µm in 

(A, B); 100 µm in (C-E). 
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Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult 

mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can 

guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have 

shown some promise in increasing the growth distance of regenerating axons.  In the present 

study, we combined an alginate biomaterial with linear channels with transplantation of Schwann 

cells within and beyond the lesion site and injection of a regulatable vector for the transient 

expression of brain-derived neurotrophic factor (BDNF).  Our data show that only with the full 

combination axons extend across the lesion site and that expression of BDNF beyond 4 weeks 

does not further increase the number of regenerating axons.   
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Table 1: Experimental groups 

Gene 

regulation 
rAAV5

*
 

SC seeding 

in the 

hydrogel 

Caudal SC 

injection 

# of animals 

Histological 

analysis 

BDNF 

ELISA 

4 weeks on  BDNF GFP-SC - 6 10 

4 weeks on  BDNF
§ 
(6 mm) WT-SC - 6 

 

4 weeks off  BDNF GFP-SC - 6 7 

4 weeks on GFP WT-SC - 6 3 

4 weeks off GFP WT-SC - 6 3 

8 weeks on BDNF WT-SC GFP-SC 6 
 

8 weeks on BDNF
§
 GFP-SC - 8 

 

4 weeks on /  

4 weeks off 
BDNF

§
 WT-SC - 6 

 

*Virus was injected in the host spinal cord tissue 4 mm caudal to the graft/host interface unless 

otherwise indicated. 
§
Virus containing 10% (v/v) rAAV5-GFP. 
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