1	TITLE: Emergence of drug resistant bacteria at the Hajj: a systematic review
2	RUNNING TITLE: Emergence of drug resistant bacteria at the Hajj
3	Thongpan Leangapichart ^a , Jean-Marc Rolain ^a , Ziad A Memish ^{b,c} , Jaffar A. Al-
4	Tawfiq ^{d, e} , Philippe Gautret ^a *
5	
6	^a Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE)
7	CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de
8	Pharmacie, Aix-Marseille-Université, Marseille, France.
9	^b Ministry of Health, Riyadh, Saudi Arabia, and Alfaisal University, College of
10	Medicine, Riyadh, Saudi Arabia.
11	^c Hubert department of Global Health, Rollins School of Public Health, Emory
12	University, Atlanta, USA
13	^d Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
14	^e Indiana University School of Medicine, Indianapolis, IN, USA.
15	
16	* Corresponding author: Philippe Gautret
17	Phone: (33) 4 91 96 89 35. Fax: (33) 4 91 96 89 38
18	Email: philippe.gautret@club-internet.fr
19	Abstract words: 269
20	Total words: 3,699
21	Number of Table: 2
22	Number of Figure: 3
23	Number of Reference: 72

This is the author's manuscript of the article published in final edited form as: Leangapichart, T., Rolain, J.-M., Memish, Z. A., Al-Tawfiq, J. A., & Gautret, P. (2017). Emergence of drug resistant bacteria at the Hajj: A systematic review. Travel Medicine and Infectious Disease. https://doi.org/10.1016/j.tmaid.2017.06.008

Abstract

27	Background: Hajj is the annual mass gathering of Muslims, and is a reservoir and
28	potential source of bacterial transmission. The emergence of bacterial transmission,
29	including multi-drug resistance (MDR) bacteria, during Hajj has not been
30	systematically assessed.
31	Methods: Articles in Pubmed, Scopus, and Google scholar were identified using
32	controlled words relating to antibiotic resistance (AR) at the Hajj from January 2002
33	to January 2017. Eligible studies were identified by two researchers. AR patterns of
34	bacteria were obtained for each study.
35	Results: We included 31 publications involving pilgrims, Hajj workers or local
36	patients attending hospitals in Mecca, Mina, and the Medina area. Most of these
37	publications provided antibiotic susceptibility results. Ten of them used the PCR
38	approach to identify AR genes. MRSA carriage was reported in pilgrims and food
39	handlers at a rate of 20%. Low rates of vancomycin-resistant gram-positive bacteria
40	were reported in pilgrims and patients. The prevalence of third-generation
41	cephalosporin-resistant bacteria was common in the Hajj region. Across all studies,
42	carbapenem-resistant bacteria were detected in fewer than 10% of E.coli isolates
43	tested but up to 100% in K. pneumoniae and A. baumannii. Colistin-resistant
44	Salmonella enterica, including mcr-1 colistin-resistant E.coli and K.pneumoniae were
45	only detected in the pilgrim cohorts.
46	Conclusion: This study provides an overview of the prevalence of MDR bacteria at
47	the Hajj. Pilgrims are at high risk of AR bacterial transmission and may carry and
48	transfer these bacteria when returning to their home countries. Thus, pilgrims should
49	be instructed by health care practitioners about hygiene practices aiming at reducing

- 50 traveler's diarrhea and limited use of antibiotics during travel in order to reduce the
- 51 risk of MDR bacterial transmission.
- 52 **Keywords**

53 Hajj; multidrug resistant bacteria; pilgrims; bacterial carriage; bacterial transmission;

54 systematic review; Saudi Arabia

55 **1. Introduction**

56 Hajj (pilgrimage to Mecca) is the largest annual mass gathering of Muslims with more

57 than two million participants every year from more than 184 countries gathering in

58 Saudi Arabia. During their journey, pilgrims visit the Holy Mosque in Mecca, stay in

59 a tented camp in Mina and usually travel to Medina [1]. This mass gathering has a

60 high potential for an outbreak due to the transmission of infectious diseases among

61 pilgrims via person-to-person contact, contaminated foods or water, and the

62 environment [1]. During the Hajj season, pilgrims are required to follow time-

63 sensitive religious rituals at specific times at different places simultaneously for a

64 week. This intensely crowded situation has the potential for outbreaks of

65 meningococcal disease [2], for the transmission of tuberculosis [3] other bacterial and

viral respiratory tract infections [4] and for diarrheal diseases [5]. Additionally, many 66

67 pilgrims travel to the Hajj in a group, sharing transport and accommodation including

68 airlines and buses, food, tents, and toilets for a week, which constitutes an additional

69 risk for transmission of communicable diseases. Nowadays, the global spread of

70 antibiotic-resistant (AR) bacteria, such as extended spectrum beta-lactamase

71 Enterobacteriaceae (ESBL-E), through international travelers is common [4,5]. The

- 72 acquisition of carbapenem-resistant bacteria has also been described in travelers,
- 73 including NDM-1 in travelers returning to the UK from India or KPC-producing

74 bacteria in travelers returning to France from the United States [6]. AR bacteria are

75	prevalent in Saudi Arabia [7–11]. Hajj pilgrims therefore have the potential to
76	disseminate or acquire AR bacteria during their stay in Saudi Arabia and to spread
77	these bacteria when returning to their home country. Here, we review the available
78	literature on the prevalence of major gram-positive and gram-negative AR bacteria
79	isolated in pilgrims or other populations living in the area where pilgrims stay,
80	including Mecca, Mina, and Medina.
81	2. Methods
82	We performed a systematic review according to the Preferred Reporting Items for
83	Systematic Reviews and Meta-Analyses (PRISMA) guidelines
84	(http://www.prismastatement.org). The electronic literature search was conducted in
85	three electronic databases, Pubmed, Scopus, and Google Scholar, for articles about
86	the emergence of antibiotic resistant bacteria during the Hajj. Searches were specified
87	only in Hajj areas including Mecca, Mina, and Medina. Papers published from
88	January 2002 to January 2017 and written in English were included. MeSH terms
89	included "Gram positive bacteria", "Streptococcus", "Staphylococcus",
90	"Enterococcus", "Gram negative bacteria", "Acinetobacter", "Enterobacteriaceae",
91	"Campylobacter", "Escherichia", "Klebsiella", "Neisseria", "Pseudomonas",
92	"Salmonella", "Shigella", "Yersinia", "methicillin", "MRSA", "vancomycin",
93	"VRSA", "VRE", "carbapenem", "Extended spectrum", "ESBL", "colistin", "drug
94	resistant", "colonization", "susceptibility", "Hajj", "pilgrims", "Makkah", "Mecca",
95	"Mina", "Madinah", and "Medina" (see Appendix). The search results were imported
96	into the Mendeley references manager and de-duplicated. The articles were
97	independently screened based on titles and abstracts by two researchers
98	(Leangapichart and Gautret) and any discord was discussed between the two
99	researchers. In addition, the Saudi epidemiology bulletin

100 (http://fetp.edu.sa/Bulletin.html) was hand searched for additional papers for 101 inclusion. Studies were eligible for inclusion if they reported on phenotypic and/or 102 genetic antibiotic resistance patterns and provided prevalence data. We excluded case 103 reports. Reference lists of selected papers were screened to retrieve additional 104 relevant studies. The following data were extracted from each study: year of study, 105 geographical area, study setting, demographics, bacterial species investigated, and 106 antibiotic resistance patterns. Prevalence of bacteria resistant to a given antibiotic was 107 calculated from the number of AR bacteria divided by the total number of isolates 108 tested. 109 3. Results 110 **3.1 Study selection**

A total of 275 papers resulted from the initial search. After de-duplication, 185 studies were screened based on abstract content and 148 were excluded. Subsequently, 37 full-text articles were assessed for eligibility and 31 were included in the qualitative synthesis of the systematic review with the first publication in July 2002 (Figure 1). Most of the publications provided antibiotic susceptibility results. Eleven of them used the PCR approach to identify AR genes. The main findings are presented in Tables 1 and 2.

118 **3.2 Studies conducted in pilgrims and Hajj workers (Table 1).**

A total of 14 publications were retrieved [12–25]. Studies were conducted during the
Hajj season from 2000 through 2015. Most studies were conducted in Mecca and
Medina, and one study was conducted in the Mina area. Study designs included cross-

- sectional surveys enrolling ill pilgrims attending health care structures in Saudi
- 123 Arabia and food handlers and kitchen workers from Mecca. Other studies were
- 124 prospective-cohort studies and were conducted in group of pilgrims before and after

125	participating in the Hajj or the Umrah. The number of individuals in each study varied
126	from 80 to 374. Participants originated from different continents and countries (the
127	Gulf region, Europe, Asia, Africa, America), with the majority from Saudi Arabia and
128	France. Participants were selected through travel agencies, food facilities in Mecca
129	and various Saudi health care structures. Studies conducted involving ill pilgrims
130	included patients suffering from skin infections [12], respiratory tract infections [23]
131	and urinary tract infections [25]. In two studies, the syndromic classification of
132	infectious diseases was not documented [14,24]. Most samples were collected using
133	nasal swabs (for respiratory pathogens), and rectal swabs (for intestinal pathogens).
134	Clinical infections in ill pilgrims were documented in five studies while nine studies
135	reported on asymptomatic bacterial carriage in pilgrims and Hajj workers (5
136	respiratory carriage studies and 4 digestive carriage studies). Only one study analyzed
137	risk factors for CTX-M acquisition by PCR detection in French pilgrims, during
138	2013-2014 Hajj. Shortness of breath, diarrhea, and β -lactam use were significantly
139	associated with high CTX-M acquisition. By contrast, the use of macrolide was
140	associated with low CTX-M acquisition.
141	3.2.1 Studies investigating MRSA colonization and resistant Streptococcus
142	pneumoniae

143 Several studies addressed oxacillin or methicillin-resistant *Staphylococcus aureus*

144 (MRSA) carriage, starting from the 2000 Hajj.

145 Ill pilgrims consulting hospitals during the Hajj

- 146 The proportion of MRSA in positive isolates reported in patients varied according to
- the type of infection, reaching 2% in pilgrims suffering from pyoderma in 2000 [12],
- 148 7% in patients suffering from various types of infection in 2004, 28% in pilgrims

- suffering from sinusitis in 2014 and 63% in pilgrims with community acquired
- 150 infections in 2015 [14,23,24].
- 151 Cohorts of pilgrims and food handlers
- 152 The acquisition of MRSA by pilgrims was also investigated through longitudinal
- surveys in 2009. The prevalence of MRSA among positive isolates was 15-20% in
- 154 Hajj pilgrims and 10-11% in Umrah pilgrims with no significant difference before
- and after participating in the events [15]. Additionally, food handlers working in
- restaurants in Mecca were screened for MRSA carriage during the Hajj 2001-2002
- and 2014 resulting, respectively, in 0 and 20% MRSA identification in positive
- isolates [13,22]. One study addressed the carriage of resistant S. pneumoniae in a
- 159 multinational cohort of pilgrims and showed that 23% of isolates were resistant to
- 160 multiple antibiotics (resistant to three or more classes of antibiotics) [17].
- 161 **3.2.2 Studies investigating ESBL colonization**

162 Cohorts of pilgrims

- 163 Five studies were prospectively conducted in cohorts of French pilgrims before,
- 164 during and after the Hajj with the aim of evaluating the carriage of resistant
- 165 pathogens[16,18–21]. During the 2013 and 2014 Hajj seasons, studies were conducted
- 166 using rectal and/or and nasal samples obtained before and after the Hajj. The
- 167 prevalence of the *bla*_{CTX-M} gene in rectal samples was 10% before-Hajj compared to
- 168 33% after-Hajj in 2013 [18] and 7% before-Hajj compared to 34.83% after-Hajj in
- 169 2014 [19]. There was also a significant increase in the number of pilgrims harboring
- 170 E. coli which was resistant to ceftriaxone and ticarcillin-clavulanic acid [18].

171 **3.2.3 Studies investigating carbapenem-resistant bacteria colonization**

172 *Cohorts of pilgrims*

- 173 Screening of carbapenemase genes by qPCR in rectal samples of pilgrims before and
- 174 after Hajj showed the acquisition of A. baumannii with bla_{OXA-72} and E. coli with
- 175 *bla*_{NDM-5} in a French cohort traveling to the 2014 Hajj [21].

176 Ill pilgrims consulting hospitals during the Hajj

- 177 During the 2014-2015 Hajj, the *bla*_{CTX-M} gene in *E. coli* isolates was reported among
- 178 47% of pilgrims attending hospitals for urinary tract infections [25]. The 3GC-
- 179 resistant A. baumannii were observed at 91% during the 2014 Hajj [21] and 77% in ill
- 180 pilgrims during the 2015 Hajj [24]. Overall, imipenem-resistant bacteria were
- reported during the 2014-2015 Hajj at a rate ranging from 1 to 90% in A. baumannii,
- 182 E. coli, K. pneumoniae, and P. aeruginosa [21,23,24].
- 183 **3.2.4 Studies investigating colistin resistant bacteria colonization**

184 Cohorts of pilgrims

- 185 Salmonella enterica which were resistant to ceftriaxone, gentamycin and colistin were
- isolated from two pilgrims [16]. Screening for the *mcr-1* plasmid-mediated colistin
- 187 resistance gene directly from rectal swabs was conducted in 2013 and 2014, and
- 188 showed a prevalence of 1-2% before-Hajj and 9% after-Hajj. Rectal swabs from
- 189 positive individuals allowed culturing *mcr-1* producing *E. coli* and *K. pneumoniae*
- 190 [20].

191 **3.3** Studies conducted in patients attending hospitals in Mecca and Medina

- 192 (**Table 2**).
- 193 A total of 17 studies presented the prevalence of AR bacteria in local patients as
- shown in Table 2 [26–42]. Studies were conducted from 2003 through 2015.
- 195 Fifteen studies were conducted in Mecca, while two studies were conducted in the
- 196 Medina area. All studies were cross-sectional surveys conducted on patients attending
- 197 general hospitals in Saudi Arabia and one was conducted on clinical isolates obtained

198	from clinical laboratories. The numbers of patients in each study varied from 43 to
199	1,626 [26–42]. The patients' origin was not documented in 12 studies. In studies with
200	available data, the origin of patients was primarily Saudi Arabia. Studies were
201	conducted on patients suffering from various diseases due to bacterial infection
202	including skin infections [34], blood infections [28,36], digestive tract infections [27],
203	and diarrhea [42]. The type of infection was not documented in most studies [26,29-
204	33,35,37,40,41]. Several types of samples were collected depending on the type of
205	bacterial infection using wound swabs, ear swabs, eye swabs, blood, sputum, urine,
206	and stool samples. Two studies did not document the type of samples used [35,39].
207	Six studies reported the prevalence of MRSA in septicemic patients, diabetic patients
208	and patients with undocumented types of infections which ranged from 38.9-57.7% in
209	2003-2015 [26,28,30,34,35]. Identification of the Panton-Valentine leucocidin (PVL)
210	toxin by PCR was done in two studies, and PVL rose to 19% in 2012 [35] but was 0%
211	in 2016 [40]. However, a later study reported the <i>fnBPA</i> -encoding gene in MRSA
212	isolated from wound swabs at a rate of 8% and no vancomycin-resistant genes were
213	detected in this study [40].
214	One study conducted on patients belonging to 22 nationalities suffering from gram-
215	positive bacterial infections reported a low rate of vancomycin-resistant S. aureus
216	(VRSA) at 2%, vancomycin-resistant Enterococcus faecalis at 3.5% and vancomycin-
217	resistant Enterococci (VRE) at 2%, but a high rate of ampicillin-resistant S.
218	pneumoniae, at 21.1% [30]. Oxacillin-resistant coagulase-negative staphylococci
219	(CoNS) were observed at a rate of 61% during 2004-2005, 82.4% during 2008-2009,
220	and 93.6% during 2012-2013, mainly in patients with sepsis [28,30,36].
221	Some studies reported 3GC-resistant E.coli, K. pneumoniae, and A. baumannii in
222	patients with different bacterial infections during 2005-2015, ranging from 18.8% to

223	94% [29,33,34,41]. ESBL genes, <i>bla</i> _{CTX-M} , <i>bla</i> _{TEM} , and <i>bla</i> _{SHV} , were reported in two
224	studies conducted in ICU patients. The proportion of bla_{CTX-M} and bla_{TEM} in E.coli
225	and <i>K. pneumoniae</i> cases were similar at 18.5-30% but in <i>A. baumannii</i> was 71-81%,
226	while the rate of <i>bla</i> _{SHV} was 7.4% in <i>E. coli</i> , 17.2% in <i>K. pneumoniae</i> , and 0% in <i>A</i> .
227	baumannii [31,38]. Overall, low rates of imipenem-resistant bacteria, E. coli and K.
228	pneumoniae were reported to vary at around 4-11.9% during 2004-2015 [28,29,41]. A
229	high prevalence of imipenem-resistant A. baumannii and P. aeruginosa were detected
230	at varying rates of 4-60.5% and 4-43%, respectively. The prevalence of bla_{OXA-23} was
231	identified in 91% in A. baumannii isolates, causing infection in ICU patients during
232	2012-2013 [31]. The occurrence of metallo- β -lactamase genes among carbapenem-
233	resistant A. baumannii isolates during 2004-2014 was 11.5-27.1% carrying blavim and
234	13.6% carrying <i>bla</i> _{IMP.} For carbapenem-resistant <i>P. aeruginosa</i> isolated from patients,
235	4.1-18.4% carried bla_{VIM} and 4.7-21.0% carried bla_{IMP} [31,32,37]. One study
236	conducted on patients with peptic ulcer disease during 2003-2004 reported 31% of
237	Helicobacter pylori isolates as being resistant to metronidazole and 3% resistant to
238	tetracycline and erythromycin [27]. In addition, shiga toxin-producing E.coli was
239	investigated in patients suffering from diarrhea in the Medina area. The report
240	indicated significant associations between human and sheep isolates, with 70% of
241	human isolates being resistant to trimethoprim/sulfamethoxazole [42].
242	3.4 Assessment of antibiotic resistance patterns among bacterial isolates
243	When data were pooled from the 30 published reports, AR patterns of 28 studies were
244	compared between pilgrims and healthy participants during Hajj seasons and local
245	patients attending hospitals in Mecca, Mina, and Medina. Two studies reported AR
246	genes only using the PCR method. The reported rates of AR bacteria vary between

studies and hospitals. The comparisons of AR patterns were arranged by group of

248 species and year of study (Figure 2-4).

249 3.4.1 Antibiotic resistance in Gram-positive bacteria

- 250 The prevalence and AR pattern of gram-positive bacteria isolated from pilgrims and
- 251 Hajj workers, including local patients, drawn from 13 studies are presented in Figure
- 252 2. The prevalence of resistance in patients with *S. aureus* isolated from Hajj seasons
- was <30% for oxacillin but up to 100% in general patients. VRSA was identified in
- six studies, of which one reported a 2% resistance rate in local patients. CoNS and
- 255 Enterococcus sp. were not studied in pilgrims or Hajj workers but in patients from
- 256 Hajj areas. Compared to CoNS Enterococcus sp., and Streptococcus sp., vancomycin
- 257 was the most active agent with a resistance rate of 0-4%. The resistance rate of CoNS
- increased from 26% to 82% for gentamicin during 2004-2012; >70% for
- erythromycin; and >50% to 63% for clindamycin. The resistance rate of
- 260 *Streptococcus spp.* isolates to amoxicillin/clavulanic acid in pilgrims and patients was
- 261 1-7% and was 7-26% for penicillin.
- 262 **3.4.2** Antibiotic resistance in Enterobacteriaceae
- 263 Twelve studies performed antibiotic susceptibility testing on *E.coli*, *Klebsiella sp.*,
- 264 Enterobacter sp., Salmonella sp., and Proteus sp. (Figure 3).
- 265 Overall, resistance rates of *E.coli* in pilgrims and local patients were similar, varying
- from 5-100% for cephalosporins; <10% for imipenem, meropenem, and ertapenem;
- and 13-75% for gentamicin. Colistin-resistant *E.coli* was observed in one pilgrim
- study. Meanwhile, the occurrence of resistant *Klebsiella sp.* isolates among pilgrims
- and patients was high, at 16-64% for cephalosporins and 4-82% for imipenem. In
- addition, the resistance rate of *Enterobacter sp.* to ciprofloxacin and gentamicin was
- low at an early stage, but increased substantially during 2004-2015. Susceptibility

272 testing of Salmonella isolates was conducted in three studies. Most isolates were 273 susceptible to many antibiotic groups, including amikacin, imipenem, and 274 ciprofloxacin. 275 3.4.3 Antibiotic resistance in non-Enterobacteriaceae 276 The antibiotic resistance of A. baumannii isolated from pilgrims and local patients showed uniform resistance to cephalosporins with a resistance rate of 45-100%. 277 278 Resistance patterns of A. baumannii to imipenem in patients or ill pilgrims ranged 279 between 14-100% but were 2% in healthy pilgrims. However, the resistance rate of P. 280 *aeruginosa* to imipenem decreased in local patients from 43% to 22%, from 42% to 281 20% for amikacin, and from 61% to 27% for gentamicin during 2004-2015 (Figure 4). 282 Discussion 283 284 The prevalence of AR bacteria has increased significantly worldwide over the past 285 two decades. International travelers have been known for years to experience 286 alterations in gut microbiota due to the change of nutritional factors [43,44] and the 287 acquisition of AR bacteria through the use of antibiotics during travel [4]. By 288 attending the Hajj, millions of pilgrims present a source of infectious disease 289 transmission [1,45,46]. Pilgrims attending Hajj are an important reservoir for the

spread and transmission of AR bacteria. Many factors, such as crowded conditions,

airborne/droplet transmission, and lack of efficient personal hygiene, diarrhea, and

use of antimicrobial medications could be associated with the spread of AR bacteria.

293 Our review indicates the prevalence and increasing rate of AR bacteria in the Hajj

area include MRSA, 3GC-Enterobacteriaceae, imipenem-resistant bacteria, and

295 colistin-resistant bacteria. Resistance rates varied between studies, although

comparison was difficult due to differences in the antibiotics tested.

297	Community-acquired MRSA has been associated with closed settings involving lots
298	of people and travelers [47]. In Saudi Arabia, the rates of MRSA varied between
299	different regions ranging widely from 0.06% to 94%, in studies conducted during
300	2002-2012 [48,49]. The personal hygiene of food-handlers and the sanitation of
301	restaurants in Mecca were investigated in 2007, demonstrating that 67% of food-
302	handlers do not wear gloves and 45% have dirty fingernails [50]. It is not surprising
303	that MRSA isolated from the food-handlers increased from 0 during 2001-2002 to
304	20% during the 2014 Hajj [13,22] and to 63.2% in pilgrims during the 2015 Hajj.
305	Cross contamination of bacteria from workers may occur between people through
306	skin, hands and food. In addition, the presence of S. aureus in a water tank supplying
307	the drinking water to private households' in Mecca has also been reported. The poor
308	condition of these water stations can result in poor water quality [51].
309	Additionally, common diseases such as airborne transmission or respiratory tract
310	infections are well-documented in pilgrims through the acquisition of respiratory
311	viruses and bacteria [52], including S. pneumoniae, K. pneumoniae [53], and A.
312	baumannii [21]. The possible effect of desert dust and other particles in the spread of
313	airborne bacteria has been documented (24), which might be related to very common
314	symptoms among pilgrims including the "Hajj cough" [54]. Several pilgrims have an
315	increased rate of <i>S. pneumoniae</i> acquisition at the Hajj, rising from 1.2 times to 3.9
316	times during 2011-2013 [17,52,55,56].
317	Diarrhea is one of the most common problems among travelers, and is associated with
318	the acquisition of ESBL bacteria. Twenty-one percent of travelers with ESBL
319	acquisition had diarrhea [57]. ESBL-producing Enterobacteriaceae were detected in a

- 320 single cohort study of pilgrims traveling to the 2013 Hajj, demonstrating the
- 321 possibility that several bacterial species may carry CTX-M type ESBL genes [16,18].

322	A similar study was conducted on <i>E.coli</i> isolated from urinary tract infections in
323	pilgrims attending hospital in Mecca during the 2014–2015 Hajj [25]. These two
324	studies had the same circulating sequence type of <i>E.coli</i> , ST131 and ST648. The
325	plasmid-mediated colistin resistance gene, mcr-1 was screened in pilgrims during
326	2013-2014 and revealed the constant acquisition rate of <i>mcr-1</i> at 9% at return [20].
327	This may suggest an identical source of bacterial transmission among pilgrims during
328	the Hajj season. The spread of clones and specific types of AR genes might be related
329	to travel destination and food vehicles contaminated by MDR bacteria [58]. Thus, the
330	detection of AR genes in Mecca residents or environments related to pilgrims may be
331	a useful way of investigating the source of AR bacterial transmission. One limitation
332	of this study is the lack of data about diarrhea prevalence and use of antibiotics in
333	most included studies, which does not allow evaluating their possible impact on the
334	prevalence of AR bacterial related infection or carriage.
335	Recently, our group reported CTX-M genes acquisition during the 2013 and 2014
336	Hajj showing rates of acquisition at 31.0% and 34.8%, respectively [19]. Diarrhea and
337	use of β -lactam antibiotics during the Hajj were demonstrated to be independent risk
338	factors of CTX-M gene acquisition. Moreover, shortness of breath in pilgrims was
339	associated with CTX-M-gene acquisition and macrolide use was shown to be an
340	independent protective factor against CTX-M-gene acquisition [19]. Most of pilgrims
341	traveling to Hajj carry antibiotics from their home country or obtained from over the
342	counter in Saudi Arabia [59,60]. Pilgrims overuse or misuse of antibiotics ranged
343	from 34.9% to 94.7% at the Hajj, which likely contributes to increased resistance
344	[54,59–64].

One study reported the negative association between macrolides and CTX-M
acquisition. Thus, restricted use of antibiotics during the Hajj should be highly
recommended.

348 In such a context, vaccination represents a key component in the fight against 349 antibiotic resistance. Vaccination against bacterial pathogens or against viral agents 350 including notably S. pneumoniae and influenza virus directly and indirectly reduces 351 the need for antibiotics for both the control of primarily bacterial infections and super-352 infection of viral diseases [65]. In addition, it has been well demonstrated that the 353 conjugate vaccine against S. pneumoniae targets the most virulent serotypes 354 associated with invasive pneumococcal diseases (IPD) that are also associated with 355 antibiotic resistance [66–68]. These arguments reinforce the need for compliance with 356 current recommendations for vaccinating at-risk Hajj pilgrims against IPD and 357 influenza [69].

358 The date of the Hajj changes from year to year and will fall in the summer season for 359 the next 10 years [70], which may provide a favorable environment for AR bacteria and the spread of infectious diseases. In this review, we presented the prevalence of 360 361 AR bacterial acquisition in pilgrims, including the prevalence of AR bacteria in food 362 workers and patients living in the Hajj area, which saw an increase over the 2000-363 2015-period. In Hajj season, the number of food poisoning cases ranged from 44 to 364 132 for the last 12 years [71]. Pilgrims may acquire AR bacteria from contaminated 365 food during preparation or storage, unpasteurized dairy products, raw unpeeled fruit 366 and vegetables, or contaminated water. Thus, the personal hygiene of kitchen staff 367 including sanitary of food preparation area and storage should be improved and 368 monitored to reduce the rate of the transmission of foodborne infections. Moreover, 369 pilgrims coming from different countries with different cultures and life style are

370	exposed to crowded food outlets, toilets, and other accommodation and transportation
371	facilities with different personal hygiene standards. Implementation of effective
372	personal hygiene practices such as wearing a face mask, hand hygiene, can be
373	effective approaches for reducing respiratory and digestive illness. Additionally,
374	pilgrims should be instructed by travel medicine practitioners for guiding hygienic
375	precautions, avoidance of diarrhea and unnecessary use of antibiotics before travels.
376	Moreover, our review showed a high rate of resistance among gram-positive and
377	negative bacteria including MRSA and 3GC-Enterobacteriaceae in local habitants;
378	whereas, VRSA, VRE, carbapenem and colistin-resistant bacteria prevalence is still
379	low. However, carbapenem resistance emergence in A. baumannii and P. aeruginosa
380	is of concern in Mecca and Medina area. In Saudi Arabia, antibiotics are easily
381	obtained from over the counter without legislation or restrictions on their use [72],
382	which may lead to increase AR bacteria prevalence. High rates of AR bacterial
383	infection in patients hospitalized in Saudi Arabia is worrying and physicians attending
384	patients in this area should be aware of the situation and undertake adapted isolation
385	measures. Therefore, controlling inappropriate use of antibiotics is the key for
386	reducing antibiotic resistance. Moreover, public educational campaigns to discourage
387	the use of antibiotics should be promoted. This may include country or global-wide
388	surveillance to monitor antibiotic consumption and resistance trends among local
389	population and international travelers including Hajj pilgrims.
390	

	17 ACCEPTED MANUSCRIPT
395	Funding
396	This work was supported by the Centre National de la Recherche Sci- entifique
397	(France) and IHU Méditerranée Infection.
398	Conflict of interest
399	None to declare.
400	Appendix A. Supplementary data
401	
402	
403	
404	Table legends
405	Table 1. Prevalence of antibiotic resistance bacteria in 13 studies conducted in
406	pilgrims and Hajj workers
407	Table 2. Prevalence of antibiotic resistance bacteria in 17 studies conducted in
408	patients hospitalized in Mecca and the Medina area.
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	

- 420 Figure legends
- 421 Figure 1 Study selection. Flow diagram of identification and selection process

422 included in systematic review.

- 423 Figure 2 Antibiotic susceptibility patterns of gram-positive bacteria from in-Hajj and
- 424 out-Hajj periods. Blue highlights indicate the study was conducted during Hajj
- 425 seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the

426 number of AR bacteria divided by the total number of isolates tested, red, $\geq 67\%$;

427 orange, < 67% and $\ge 33\%$; green, <33% are highlighted. Different numbers of

428 isolates tested for resistance are marked with asterisk.

- 429 Figure 3 Antibiotic susceptibility patterns of Enterobacteriaceae from in-Hajj and
- 430 out-Hajj periods. Blue highlights indicate the study was conducted during Hajj

431 seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the

432 number of AR bacteria divided by the total number of isolates tested, red, $\geq 67\%$;

- 433 orange, < 67% and $\ge 33\%$; green, <33% are highlighted. Different numbers of isolates
- 434 tested for resistance are marked with asterisk.

435 Figure 4 Antibiotic susceptibility patterns of Acinetobacter sp. and Pseudomonas

436 *aeruginosa* from in-Hajj and out-Hajj periods. Blue highlights indicate the study was

437 conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic

- 438 were calculated from the number of AR bacteria divided by the total number of
- 439 isolates tested, red, $\geq 67\%$; orange, < 67% and $\geq 33\%$; green, <33% are highlighted.
- 440 Different numbers of isolates tested for resistance are marked with asterisk.

References

442	[1]	Memish ZA, Zumla A, Alhakeem RF, Assiri A, Turkestani A, Al Harby KD, et
443		al. Hajj: infectious disease surveillance and control. Lancet 2014;383:2073-82.
444		doi:10.1016/S0140-6736(14)60381-0.
445	[2]	Yezli S, Bin Saeed AA, Assiri AM, Alhakeem RF, Yunus MA, Turkistani AM,
446		et al. Prevention of meningococcal disease during the Hajj and Umrah mass
447		gatherings: Past and current measures and future prospects. Int J Infect Dis
448		2016;47:71–8. doi:10.1016/j.ijid.2015.12.010.
449	[3]	Zumla A, Saeed A Bin, Alotaibi B, Yezli S, Dar O, Bieh K, et al. Tuberculosis
450		and mass gatherings-opportunities for defining burden, transmission risk, and
451		the optimal surveillance, prevention, and control measures at the annual Hajj
452		pilgrimage. Int J Infect Dis 2016;47:86–91. doi:10.1016/j.ijid.2016.02.003.
453	[4]	Hassing RJ, Alsma J, Arcilla MS, van Genderen PJ, Stricker BH, Verbon A.
454		International travel and acquisition of multidrug-resistant Enterobacteriaceae: a
455		systematic review. Euro Surveill Bull Eur Sur Les Mal Transm = Eur
456		Commun Dis Bull 2015;20. doi:10.2807/1560-7917.ES.2015.20.47.30074.
457	[5]	Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ,
458		Goorhuis A, et al. Import and spread of extended-spectrum β -lactamase-
459		producing Enterobacteriaceae by international travellers (COMBAT study): a
460		prospective, multicentre cohort study. Lancet Infect Dis 2016;373:1849-60.
461		doi:10.1016/S1473-3099(16)30319-X.
462	[6]	Rogers BA, Aminzadeh Z, Hayashi Y, Paterson DL. Country-to-country
463		transfer of patients and the risk of multi-resistant bacterial infection. Clin Infect
464		Dis 2011;53:49–56. doi:10.1093/cid/cir273.
465	[7]	Yezli S, Shibl AM, Livermore DM, Memish ZA. Antimicrobial resistance

		20 ACCEPTED MANUSCRIPT
466		among Gram-positive pathogens in Saudi Arabia. J Chemother 2012;24:125-
467		36. doi:10.1179/1973947812Y.0000000010.
468	[8]	Zowawi HM, Balkhy HH, Walsh TR, Paterson DL. β -lactamase production in
469		key gram-negative pathogen isolates from the Arabian Peninsula. Clin
470		Microbiol Rev 2013;26:361–80. doi:10.1128/CMR.00096-12.
471	[9]	Yezli S, Shibl AM, Livermore DM, Memish ZA. Prevalence and antimicrobial
472		resistance among Gram-negative pathogens in Saudi Arabia. J Chemother
473		2014;26:257–72. doi:10.1179/1973947814Y.0000000185.
474	[10]	Yezli S, Shibl AM, Memish ZA. The molecular basis of β -lactamase
475		production in Gram-negative bacteria from Saudi Arabia. J Med Microbiol
476		2015;64:127–36. doi:10.1099/jmm.0.077834-0.
477	[11]	Zowawi HM. Antimicrobial resistance in Saudi Arabia An urgent call for an
478		immediate action. Saudi Med J 2016;379:935-40.
479		doi:10.15537/smj.2016.9.16139.
480	[12]	Fatani MI, Bukhari SZ, Al-Afif KA, Karima TM, Abdulghani MR, Al-Kaltham
481		MI. Pyoderma among Hajj Pilgrims in Makkah. Saudi Med J 2002;23:782–5.
482	[13]	Dablool A, Al-Ghamdi S. Enterotoxigenicity of Staphylococcus aureus isolated
483		from food handlers during Hajj season in Saudi Arabia. Open J Saf Sci
484		2011;1:75–8.
485	[14]	Memish Z, Balkhy H, Almuneef M. Carriage of Staphylococcus aureus among
486		Hajj pilgrims. Saudi Med J 2006;27:1367–72.
487	[15]	Johargy A, Sorour A, Momenah A. Prevalence of Nasal Carriage of
488		Staphylococcus aureus among Umrah visitors and Pilgrims During Umrah and
489		Hajj Seasons. Egypt J Med Microbiol 2011;20:162–6.
490	[16]	Olaitan AO, Dia NM, Gautret P, Benkouiten S, Belhouchat K, Drali T, et al.

		$\frac{21}{4CCEPTED}$
491		Acquisition of extended-spectrum cephalosporin- and colistin-resistant
492		Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj.
493		Int J Antimicrob Agents 2015;45:600–4.
494		doi:10.1016/i.ijantimicag.2015.01.010.
495	[17]	Memish ZA, Al-Tawfiq JA, Almasri M, Akkad N, Yezli S, Turkestani A, et al.
496		A cohort study of the impact and acquisition of naspharyngeal carriage of
497		Streptococcus pneumoniae during the Hajj. Travel Med Infect Dis
498		2016;14:242–7. doi:10.1016/j.tmaid.2016.05.001.
499	[18]	Leangapichart T. Dia NM. Olaitan AO. Gautret P. Brouqui P. Rolain J-M.
500	[-]	Acquisition of Extended-Spectrum β-Lactamases by <i>Escherichia coli</i> and
501		Klebsiella pneumoniae in Gut Microbiota of Pilgrims during the Haii
502		Pilgrimage of 2013, Antimicrob Agents Chemother 2016:60:3222–6
503		doi:10.1128/AAC.02396-15
504	[19]	Leangapichart T Tissot-Dupont H Raoult D Memish ZA Rolain I-M Gautret
505	[17]	P. Risk factors for acquisition of CTX-M genes in pilgrims during Haii 2013
505		and 2014. I Antimicrob Chemother 2017. doi:10.1093/jac/dky155
500	[20]	Leengenichert T. Coutret P. Brougui P. Mernich 7A. Beoult D. Bolein I.M.
507	[20]	MI M Acquisition of mor 1 plasmid mediated collictin resistance in
500		Fight with the set of the fight and the set of the set
509		Escherichia coli and Klebsiella pneumoniae during Hajj 2013 and 2014.
510	50.13	Antimicrob Agents Chemother 2016;60:7537. doi:10.1128/AAC.02298-16.
511	[21]	Leangapichart T, Gautret P, Griffiths K, Belhouchat K, Memish Z, Raoult D, et
512		al. Acquisition of a High Diversity of Bacteria during the Hajj Pilgrimage,
513		Including Acinetobacter baumannii with blaOXA-72 and Escherichia coli with
514		blaNDM-5 Carbapenemase Genes. Antimicrob Agents Chemother
515		2016;60:5942-8. doi:10.1128/AAC.00669-16.

- 516 [22] Ahmed B, Mashat BH. Prevalence of classical enterotoxin genes in
- 517 *Staphylococcus aureus* isolated from food handlers in Makkah city kitchens.
- 518 Asian J Sci Tech 2014;5:727–31.
- 519 [23] Marglani OA, Alherabi AZ, Herzallah IR, Saati FA, Tantawy EA, Alandejani
- 520 TA, et al. Acute rhinosinusitis during Hajj season 2014: Prevalence of bacterial
- 521 infection and patterns of antimicrobial susceptibility. Travel Med Infect Dis

522 2016;14:583–7. doi:10.1016/j.tmaid.2016.11.004.

523 [24] Haseeb A, Faidah HS, Bakhsh AR, Malki WH Al, Elrggal ME, Saleem F, et al.

524 Antimicrobial resistance among pilgrims: A retrospective study from two

525 hospitals in Makkah, Saudi Arabia. Int J Infect Dis 2016;47:92–4.

- 526 doi:10.1016/j.ijid.2016.06.006.
- 527 [25] Alyamani EJ, Khiyami AM, Booq RY, Majrashi MA, Bahwerth FS, Rechkina

528 E. The occurrence of ESBL-producing *Escherichia coli* carrying

- aminoglycoside resistance genes in urinary tract infections in Saudi Arabia.
- 530 Ann Clin Microbiol Antimicrob 2017;16:1. doi:10.1186/s12941-016-0177-6.
- 531 [26] Asghar AH, Momenah AM. Methicillin resistance among *Staphylococcus*
- *aureus* isolates from Saudi Hospitals. Med Princ Pract 2006;15:52–5.
- 533 doi:10.1159/000089386.
- 534 [27] Karima TM, Bukhari SZ, Ghais MA, Fatani MI, Hussain WM. Prevalence of
 535 *Helicobacter pylori* infection in patients with peptic ulcer diseases. Saudi Med
 536 J 2006;27:621–6.
- 537 [28] Asghar AH. Frequency and antimicrobial susceptibility patterns of bacterial
 538 pathogens isolated from septicemic patients in Makkah hospitals. Saudi Med J
 539 2006;27:361–7.
- 540 [29] Asghar AH, Faidah HS. Frequency and antimicrobial susceptibility of gram-

541 negative bacteria isolated from 2 hospitals in Makkah, Saudi Arabia. Saudi 542 Med J 2009;30:1017-23. 543 Asghar AH. Frequency and antibiotic susceptibility of gram-positive bacteria [30] 544 in Makkah hospitals. Ann Saudi Med 2011;31:462-8. doi:10.4103/0256-545 4947.84622. 546 Asghar AH. Antimicrobial Resistance of Gram-Negative Bacilli Causing [31] 547 Infections in Intensive Care Units in Makkah Hospitals-Saudi Arabia. J Am Sci 548 2012;8:720-5. 549 [32] Asghar AH. Antimicrobial susceptibility and metallo- β -lactamase production 550 among Pseudomonas aeruginosa isolated from Makkah hospitals. Pakistan J 551 Med Sci 2012;28:7. 552 [33] Khan MA, Mahomed MF, Ashshi AM, Faiz A. Drug resistance patterns of 553 Acinetobacter baumannii in Makkah, Saudi Arabia. Pak J Med Res 554 2012;51:127-31. 555 [34] Johargy AK. Antimicrobial susceptibility of bacterial and fungal infections 556 among infected diabetic patients. J Pak Med Assoc 2016;66:1291-5. 557 Asghar AH. Molecular characterization of methicillin-resistant Staphylococcus [35] 558 aureus isolated from tertiary care hospitals. Pakistan J Med Sci 2014;30. 559 doi:10.12669/pjms.304.4946. 560 [36] Khan MMA, Faiz A, Ashshi AM. Clinically significant coagulase negative 561 staphylococci and their antibiotic resistance pattern in a tertiary care hospital. J 562 Pak Med Assoc 2014;64:1171-4. 563 [37] El-Ageery SM, Al-Hazmi SS. Microbiological and molecular detection of 564 VIM-1 metallo-beta-lactamase-producing Acinetobacter baumannii. Eur Rev 565 Med Pharm Sci 2014;18:965-70.

- 566 [38] Alyamani EJ, Khiyami MA, Booq RY, Alnafjan BM, Altammami MA,
- 567 Bahwerth FS. Molecular characterization of extended-spectrum beta-
- 568 lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii
- in Saudi Arabia. Ann Clin Microbiol Antimicrob 2015;14:38.
- 570 doi:10.1186/s12941-015-0098-9.
- 571 [39] Khan MA, Faiz A. Antimicrobial resistance patterns of *Pseudomonas*
- 572 *aeruginosa* in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med
- 573 2016;36:23–8. doi:10.5144/0256-4947.2016.23.
- 574 [40] Abulreesh HH, Organji SR, Osman GEH, Elbanna K, Almalki MHK, Ahmad I.
- 575 Prevalence of antibiotic resistance and virulence factors encoding genes in
- 576 clinical *Staphylococcus aureus* isolates in Saudi Arabia. Clin Epidemiol Glob
- 577 Heal 2016. doi:http://dx.doi.org/10.1016/j.cegh.2016.08.004.
- 578 [41] Khan MMA, Faiz A. Frequency of Carbapenemase Producing Klebsiella
- 579 *pneumoniae* in Makkah, Saudi Arabia. J Microbiol Infect Dis 2016;6:121–7.
- 580 doi:10.5799/ahinjs.02.2016.03.0229.
- 581 [42] Sharaf EF, Shabana II. Prevalence and molecular characterization of Shiga

582 toxin-producing *Escherichia coli* isolates from human and sheep in Al-

- 583 Madinah Al-Munawarah. Infectio 2016. doi:10.1016/j.infect.2016.05.001.
- 584 [43] David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC,
- 585 Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales.
 586 Genome Biol 2014;15:R89. doi:10.1186/gb-2014-15-7-r89.
- 587 [44] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE,
 588 et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature
 589 2014;505:559–63. doi:10.1038/nature12820.
- 590 [45] Al-Tawfiq JA, Memish ZA. Potential risk for drug resistance globalization at

- the Hajj. Clin Microbiol Infect 2015;21:109–14.
- 592 doi:10.1016/j.cmi.2014.11.013.
- 593 [46] Al-Tawfiq JA, Stephens G, Memish ZA. Inappropriate antimicrobial use and
 594 potential solutions: a Middle Eastern perspective. Expert Rev Anti Infect Ther
 595 2010;8:765–74. doi:10.1586/eri.10.56.
- 596 [47] Zhou YP, Wilder-Smith A, Hsu L-Y. The Role of International Travel in the
- 597 Spread of Methicillin-Resistant *Staphylococcus aureus*. J Travel Med

598 2014;21:272–81. doi:10.1111/jtm.12133.

- 599 [48] Yousef S, Mahmoud SY, Eihab MT. Prevalence of methicillin-resistant
- 600 *Staphylococcus aureus* in Saudi Arabia: systemic review and meta-analysis.
- 601 African J Clin Exp Micr 2013.
- 602 [49] Nazeer A, Al-Tawfiq JA. Methicillin-resistant *Staphylococcus aureus* metrics
 603 for patients in Saudi Arabia. J Infect Dev Ctries 2012;6:223–33.
- 604 [50] AI-Honaizil I, Choudhry AJ, AI-Hayani O. Assessment of Hygienic Quality of
- 605 Food, Food Handlers and Restaurant Environments in Makkah, Hajj 1428 H.

606 Saudi Epidemiol Bull 2008;15:27.

- 607 [51] Mihdhdir AA. Evaluation of bateriologial and sanitary quality of drinking
- water stations and water tankers in Makkah Al-Mokarama. Pakistan J Biol Sci
 2009;12:401–5. doi:10.3923/pjbs.2009.401.405.
- 610 [52] Memish ZA, Assiri A, Turkestani A, Yezli S, Al Masri M, Charrel R, et al.
- 611 Mass gathering and globalization of respiratory pathogens during the 2013
- 612 Hajj. Clin Microbiol Infect 2015;21:571.e1-8. doi:10.1016/j.cmi.2015.02.008.
- 613 [53] Al-Tawfiq JA, Gautret P, Benkouiten S, Memish ZA. Mass Gatherings and the
- 614 Spread of Respiratory Infections: Lessons Drawn from the Hajj. Ann Am
- 615 Thorac Soc 2016;13:759–65. doi:10.1513/AnnalsATS.201511-772FR.

- 616 [54] Gautret P, Benkouiten S, Griffiths K, Sridhar S. The inevitable Hajj cough:
- 617 Surveillance data in French pilgrims, 2012-2014. Travel Med Infect Dis
- 618 2015;33:485–9. doi:10.1016/j.tmaid.2015.09.008.
- 619 [55] Benkouiten S, Gautret P, Belhouchat K, Drali T, Salez N, Memish ZA, et al.
- 620 Acquisition of *Streptococcus pneumoniae* carriage in pilgrims during the 2012

621 Hajj. Clin Infect Dis 2014;58:e106–9. doi:10.1093/cid/cit749.

622 [56] Memish ZA, Assiri A, Almasri M, Alhakeem RF, Turkestani A, Al Rabeeah

AA, et al. Impact of the hajj on pneumococcal transmission. Clin Microbiol

624 Infect 2015;21:77.e11-77.e18. doi:10.1016/j.cmi.2014.07.005.

- 625 [57] Kantele A, Laaveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al.
- 626 Antimicrobials Increase Travelers' Risk of Colonization by Extended-
- 627 Spectrum Betalactamase-Producing Enterobacteriaceae. Clin Infect Dis

628 2015;60:837–46. doi:10.1093/cid/ciu957.

- 629 [58] Fonteneau L, Silva NJ Da, Fabre L, Ashton P, Torpdahl M, Müller L, et al.
- 630 Multinational outbreak of travel-related Salmonella Chester infections in
- Europe , summers 2014 and 2015. Euro Surveill Bull Eur Sur Les Mal Transm
- 632 = Eur Commun Dis Bull 2017;22:1–11. doi:http://dx.doi.org/10.2807/1560-
- 633 7917.ES.2017.22.7.30463.
- 634 [59] Azeem M, Tashani M, Barasheed O, Heron L, Hill-Cawthorne GA, Haworth E,
 635 et al. Knowledge, Attitude and Practice (KAP) Survey Concerning
- Antimicrobial Use among Australian Hajj Pilgrims. Infect Disord Drug Targets
 2014;14:125–32.
- 638 [60] Mustafa AN, Gessner BD, Ismail R, Yusoff AF, Abdullah N, Ishak I, et al. A
- 639 case-control study of influenza vaccine effectiveness among Malaysian
- 640 pilgrims attending the Haj in Saudi Arabia. Int J Infect Dis 2003;7:210–4.

- 641 [61] Alzahrani AG, Choudhry AJ, Al Mazroa MA, Turkistani AHM, Nouman GS,
- 642 Memish ZA, et al. Pattern of diseases among visitors to Mina health centers
- 643 during the Hajj season, 1429 H (2008 G). J Infect Public Health 2012;5:22–34.
- 644 doi:10.1016/j.jiph.2011.10.003.
- 645 [62] Alherabi AZ. Impact of pH1N1 influenza A infections on the Otolaryngology,
- 646 Head and Neck Clinic during Hajj, 2009. Saudi Med J 2011;32:933–8.
- 647 [63] Alherabi AZ. Road map of an Ear, Nose, and Throat clinic during the 2008

648 Hajj in Makkah, Saudi Arabia. Saudi Med J 2009;30:1584–9.

- 649 [64] Imani R, Karimi A, Habibian R. Acute respiratory viral infections among
 650 Tamattu' Hajj pilgrims in Iran. Life Sci J 2013;10:449–53.
- 651 [65] Lipsitch M, Siber GR. How Can Vaccines Contribute to Solving the
- Antimicrobial Resistance Problem? MBio 2016;7:e00428-16.
- 653 doi:10.1128/mBio.00428-16.
- 654 [66] Ladhani SN, Slack MPE, Andrews NJ, Waight PA, Borrow R, Miller E.
- 655 Invasive Pneumococcal Disease after Routine Pneumococcal Conjugate
- 656 Vaccination in Children, England and Wales. Emerg Infect Dis 2013;19:61–8.
- 657 doi:10.3201/eid1901.120741.
- 658 [67] Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern G V.
- 659 Changes in Pneumococcal Serotypes and Antimicrobial Resistance after
- 660 Introduction of the 13-Valent Conjugate Vaccine in the United States.
- 661 Antimicrob Agents Chemother 2014;58:6484–9. doi:10.1128/AAC.03344-14.
- 662 [68] Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al.
- 663 Effect of Introduction of the Pneumococcal Conjugate Vaccine on Drug-
- 664 Resistant *Streptococcus pneumoniae*. N Engl J Med 2006;354:1455–63.
- doi:10.1056/NEJMoa051642.

- 666 [69] Alharbi N, Al-Barrak A, Al-Moamary M, Zeitouni M, Idrees M, Al-Ghobain
- 667 M, et al. The Saudi Thoracic Society pneumococcal vaccination guidelines-
- 668 2016. Ann Thorac Med 2016;0:0. doi:10.4103/1817-1737.177470.
- 669 [70] Aleeban M, Mackey TK. Global Health and Visa Policy Reform to Address
- 670 Dangers of Hajj during Summer Seasons. Front Public Heal 2016;4:2–5.
- 671 doi:10.3389/fpubh.2016.00280.
- 672 [71] Al-Mazrou YY. Food poisoning in Saudi Arabia. Potential for prevention?
 673 Saudi Med J 2004;25:11–4.
- 674 [72] Alnemri AR, Almaghrabi RH, Alonazi N, Alfrayh AR. Current paediatric
- 675 research. Curr Pediatr Res 2016;20:169–73.

676

- 678 Appendix A. Supplementary data
- 679 Search strategy for the systematic review of the emergence of drug resistant
 680 bacteria at the Hajj
- 681 **Pubmed** ((Gram positive[tiab] OR streptococc*[tiab] OR staphylo*[tiab] OR
- 682 enterococc*[tiab] OR Gram negative[tiab] OR Acinetobact*[tiab] OR
- 683 Enterobacteri*[tiab] OR Entero bacteria*[tiab] OR Enteric bacteria*[tiab] OR
- 684 Enterobacter*[tiab] OR Escherichia*[tiab] OR e coli[tiab] OR Klebsiella*[tiab] OR
- 685 Campylobacter*[tiab] OR Salmonell*[tiab] OR Shigell*[tiab] OR Yersinia*[tiab] OR
- 686 Neisseria*[tiab] OR Pseudomonas*[tiab] OR methicillin*[tiab] OR MRSA*[tiab] OR
- 687 vancomycin*[tiab] OR VRSA*[tiab] OR VRE*[tiab] OR carbapenem*[tiab] OR
- 688 ESBL*[tiab] OR Extended spectrum*[tiab] OR colistin*[tiab])) AND ((resistan*[tiab]
- 689 OR coloni*[tiab] OR ((antibiotic*[tiab] OR antimicrob*[tiab]) AND sensitivit*[tiab])
- 690 OR susceptib*[tiab])) AND (hadj*[tiab] OR hajj*[tiab] OR pilgrim*[tiab] OR
- 691 Makkah[tiab] OR Mecca[tiab] OR Mina[tiab] OR Medina[tiab] OR Madinah[tiab])
- 692
- 693 Scopus TITLE-ABS-KEY ((("Gram positive") OR Streptococcus* OR
- 694 Staphylococcus* OR Enterococ* OR (("Gram negative" OR Acinetobacter* OR
- 695 enterobacteri* OR (enter* W/1 bacteria*)) OR enterobacter* OR Escherichia*
- 696 OR "e coli" OR Klebsiella* OR Campylobacter* OR Salmonell* OR Shigell*
- 697 OR Yersinia* OR Neisseria* OR Pseudomonas* OR methicillin* OR MRSA* OR
- 698 vancomycin* OR VRSA* OR VRE* OR carbapenem* OR Extended-spectrum* OR
- 699 ESBL* OR colistin*)) AND (resistan* OR coloni* OR ((antibiotic* OR antimicrob*)
- 700 W/3 sensitivit*) OR susceptib*) AND (hadj* OR hajj* OR pilgrim* OR Makkah
- 701 OR Mecca OR Mina OR Medina OR Madinah))
- 702

- 703 Google Scholar "Gram positive"|Streptococcus|Staphylococcus|Enterococcus|"Gram
- $704 \qquad negative"|A cineto bacter|Entero bacteriaceae|Escherichia|Klebsiella|Campylobacter|Sal$
- 705 monella|Shigella|Yersinia|Neisseria|Pseudomonas|methicillin|MRSA|vancomycin|VR
- 706 SA|VRE|carbapenem|"Extended spectrum"|ESBL|colistin|antibiotic
- 707 resistance|resistant|colonization|colonisation|susceptibility|Hadj|Hajj|pilgrim|Makkah|
- 708 Mecca|Mina|Medina|Madinah
- 709

Table 1. Prevalence of antibiotic resistance bacteria in 13 studies conducted in pilgrims and Hajj workers

Period/Year	Geographical area	Study design	Samples	Country of origin	Microbiological techniques	Number of individuals with positive culture/number of individual tested (%)	Bacteria or gene investigated	Number of individuals with resistant bacteria/ No. of individuals with positive culture (%)	Number of individuals with resistant bacteria/ number of individual tested (%)	References
Hajj 2000 and 2001	Месса	Cross-sectional survey conducted in 80 ill pilgrims attending the dermatology clinic for pyoderma at King Faisal Hospital	Skin lesion swabs	Saudi Arabia (46.3%), Asia (26.3%), Arabian Peninsula (non-Saudi Arabia) (26.2%), and Europe (1.2%)	Culture and AST	47/80 (58.8)	Methicillin resistant Staphylococcus aureus (MRSA)	1/47 (2.1)	<mark>1/80 (1.3)</mark>	Fatani et al., 2002 [12]
Hajj 2001 and 2002	Месса	Cross-sectional survey conducted on 428 food handlers	Nasal swabs, throat swabs, nail swabs, stool samples, and wound swabs when available	No data	Culture and AST	45/428 (10.5)	Enterotoxins producer MRSA	0/45 (0)	0/428 (0)	Dablool and Al-Ghamdi, 2011 [13]
Hajj 2004	Mina	Cross-sectional survey conducted on 411 ill pilgrims attending the National Guard Health Affairs facility for medical reason	Nasal, axilla, groin and open wound swabs when available	Saudi Arabia (59.3%), Egypt (17.3%), Pakistan (6.2%), Yemen (3.7%), Sudan (8.7%), India (2.5%), Chad (2.5%), Others (6.2%)	Culture, AST, PCR	85/411 (20.7)	MRSA	6/85 (7.1)	<mark>6/411(1.5)</mark>	Memish et al., 2006 [14]
Umrah 2009	Mecca	Longitudinal survey conducted on 979 pilgrims before and after the Umrah	Nasal swabs	Turkey (13.2%), Indonesia (13%), Pakistan (10.4%), Syria (10%), Nigeria (10%), Egypt (8%), Iran (7.9%), UK (5.7%), Iraq (5.7%), Malaysia (4%), Libya (2.8%), Sweden (1.4%), US (0.4%), Jordan (0.1%)	Culture and AST	155/979 (15.8) before and 235/979 (24.0) after	MRSA	16/155 (10.3) before and 25/235 (10.6) after	16/979 (1.6) before and 25/979 (2.6)	Johargy et al., 2011 [15]
Hajj 2009	Месса	Longitudinal survey conducted on 613 pilgrims before and after the Hajj	Nasal swabs	India (26.3%), Nigeria (16.6%), Indonesia (15.5%), Libya (14.7%), Syria (11%), UK (7.5%), Turkey (5.7%), Australia (1.8%), Sweden	Culture and AST	153/613 (25.0) before and128/613 (20.9) after	MRSA	30/153 (19.6) before and 19/128 (14.8) after	30/613 (4.9) before and 19/613 (3.1) after	Johargy et al., 2011 [15]

				(0.5%) and Iran (0.3%)						
Hajj 2013	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims before and after the Hajj	Rectal samples	France	Culture, AST, PCR screening	0/129 (0.0) before and 5/129 (3.9) after	ESBL and colistin-resistant Salmonella enterica	2/5 (40.0) after	2/129 (1.6) after	Olaitan et al., 2015 [16]
Hajj 2013	Mecca and Mina	Longitudinal survey conducted on 1,175 pilgrims before and 1,155 pilgrims after the Hajj	Nasal swabs	12 countries in Africa, Asia, USA, and Europe	Culture and AST, MLST	110/1175 (9.4)	Multidrug-resistant S. pneumoniae	25/110 (22.7)	25/1175 (2.1)	Memish et al., 2016 [17]
Hajj 2013	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims, before and after the Hajj	Rectal samples	France	Culture*, AST, MLST, PCR screening in samples	18/129 (14.0) before and 36/129 (27.9) after	CRO-resistant <i>E.coli</i> Ticarcillin-clavulanic- resistant <i>E. coli</i> PCR screening of AR gene -CTX-M	5/18 (27.8) before and 18/36 (50.0) after 5/18 (27.8) before and 13/36 (36.1) after 13/129 (10.1) before and 42/129 (32.1) after	5/129 (3.9) before and 18/129 (14.0) after 5/129 (3.9) before and 13/129 (10.1) after 13/129 (10.1) before and 42/129 (32.1) after	Leangapichart et al., 2016 [18]
Hajj 2014	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims (2013); 98 pilgrims (2014) before, during and after the Hajj	Rectal samples	France	PCR screening in samples	7/89 (7.87) before and 31/89 (34.83) after	PCR screening of AR gene -CTX-M	7/89 (7.87) before and 31/89 (34.83) after	7/89 (7.87) before and 31/89 (34.83) after	Leangapichart et al., 2016 [19]
Hajj 2013 and Hajj 2014	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims (2013); 98 pilgrims (2014) before, during and after the Hajj	Rectal samples	France	PCR screening of AR gene in samples, culture, AST, and MLST	-	PCR screening of AR gene - <i>mcr-1</i> colistin resistance gene	2013: 2/129 (1.6) before and 11/129 (8.53) after, 2014: 1/92 1.0) before and 9/90 (9.2) after	2013: 2/129 (1.6) before and 11/129 (8.53) after, 2014: 1/92 1.0) before and 9/90 (9.2) after	Leangapichart et al., 2016 [20]
Hajj 2014	Mecca, Mina and Medina	Longitudinal survey conducted on 98 pilgrims (98 pilgrims before; 90 pilgrims after the Hajj)	Pharyngeal and rectal swabs collected before and after Hajj	France	Culture, PCR screening in samples, AST, and MLST	A.baumannii*0/ 98 before (0) and 43/90 (47.8) after	CRO-resistant A.baumannii PCR screening of AR gene -OXA-72 A.baumannii -NDM-5 E.coli	39/43 (90.6) 1/90 (1.1) 1/90 (1.1)	39/90 (43.3) 1/90 (1.1) 1/90 (1.1)	Leangapichart et al., 2016 [21]
Hajj 2014	Mecca	Cross-sectional survey conducted on 200 male workers from 50 kitchens	Nasal and hand skin swabs	No data	Culture and PCR	165/200 (40.3)	MRSA	33/165 (20.0)	33/200 (16.5)	Ahmed and Mashat, 2014 [22]
Hajj 2014	Mecca	Cross-sectional survey conducted on 226 pilgrims	Sinus secretion swabs under	GULF (58%), Asian (12.4%), South Asia (11.9%), North Africa	Culture and AST	46/226 (20.4)	MRSA IMP-resistant <i>K.pneumoniae</i>	13/46 (28.3) 3/14 (21.4)	<mark>13/226 (5.8)</mark> 3/226 (1.3)	Marglani et al., 2016 [23]

			with acute rhinosinusitis attending Alnoor Specialized Hospital	endoscopic guidance	(11.5%), Africa (3.5%), Europe (2.2%), and American (0.5%)			K,			
	January to June 2015	Mecca	Cross-sectional survey conducted on 374 ill pilgrims with community- acquired infections attending Al-Noor Specialist Hospital and Ajyad Emergency Hospital	Urine, blood, sputum	Saudi Arabia (47.3%), Pakistan (8%), Egypt (6.4%), Bangladesh (4%), Yemen (6.7%), Myanmar (5.3%), Nigeria (2.1%), Indonesia (3.5%), Indian (3.5%), and others (13.1%)	Culture and AST	57/374 (15.2)	MRSA ESBLs- <i>E. coli</i> Ceftazidime-resistant <i>A. baumannii</i> IMP-resistant <i>E.coli</i> IMP-resistant <i>K.pneumoniae</i> IMP-resistant <i>A.baumannii</i> IMP-resistant <i>P.aeruginosa</i>	36/57 (63.2) 4/107 (3.7) 16/21 (76.2) 3/107 (2.8) 5/6 (83.3%) 9/10 (90.0) 5/45 (1.1)	36/374 (9.6) 4/374 (1.1) 16/374 (4.3) 3/374 (0.8) 5/374 (1.3) 9/374 (2.4) 5/374 (1.3)	Haseeb et al., 2016 [24]
	Hajj 2014 and 2015	Mecca	Cross-sectional survey conducted on 58 <i>E.coli</i> isolates from pilgrims suffering urinary tract infection attending two different general hospitals, which tried to be consistent and to present all studies in a similar way	Urine	No data	Culture, AST, PCR, and MLST	58	E.coli carrying AR genes -CTX-M -TEM -SHV -OXA-1 -aac6	27/58 (46.5) 22/58 (37.9) 2/58 (3.2) 28/58 (48.3) 26/58 (44.8)	27/58 (46.5) 22/58 (37.9) 2/58 (3.4) 28/58 (48.3) 26/58 (44.8)	Alyamani et al., 2017 [25]
712	•	Cefotaxime and C	epacia selective medium								
713 715 716	•	AST; Antibiotic sus	sceptibility test								

Table 2. Prevalence of antibiotic resistance bacteria in 17 studies conducted in patients hospitalized in Mecca and the Medina area.

Period/Year	Geographical area	Study design	Samples	Country of origin	Microbiological techniques	Number of individuals with positive culture (or number of positive isolates)/number of individual tested (or total number of isolates) (%)	Bacteria or gene investigated	Number of individuals with resistant bacteria (or number of positive isolates / No. of individuals with positive culture (or total number of isolates) (%)	Number of individuals with resistant bacteria/ number of individual tested (%)	References
April 2003 to March 2004	Месса	Cross-sectional survey conducted on 512 S. <i>aureus</i> clinical isolates from hospitalized patients attending Al-Noor, King Abdul- Aziz, Hera and King Faisal hospitals	Wound swabs, ear swabs, eye swabs, blood, urine, respiratory tract	No data	Culture and AST	512/512 (100.0)	MRSA	199/512 (38.9)	<mark>199/512 (38.9)</mark>	Asghar and Momenah, 2006 [26]
January 2003 to February 2004	Mecca	Cross-sectional survey conducted on 132 patients with peptic ulcer disease attending Hera General Hospital	Multiple biopsies from gastric antrum and fundus, duodenum	Saudi Arabia (97.7%) others (2.3%)	Culture and AST	132/132 (100.0)	Metronidazole-resistant Helicobacter pylori Tetracycline and erythromycin resistant H. pylori	41/132 (31.0) 4/132 (3.0)	41/132 (31.0) 4/132 (3.0)	Karima 2006 [27]
April 2004 to March 2005	Месса	Cross-sectional survey conducted on 1,626 patients with sepsis attending Al-Noor, King Abdul-Aziz, Hera, and King Faisal hospitals	Blood	Saudi Arabia (62.2%) others (37.8%)	Culture and AST	1530/1626 (94.1)	Oxacillin-resistant CoNS MRSA IMP-resistant <i>E.coli</i> IMP-resistant <i>Klebsiella</i> sp. IMP-resistant <i>Acinetobacter</i> sp. IMP-resistant <i>Pseudomonas</i> sp.	245/402 (61.0) 161/303 (53.0) 7/148 (5.0) 4/109 (4.0) 18/127 (4.0) 61/142 (43.0)	245/1626 (15.1) 161/1626 (9.9) 7/1626 (0.4) 4/1626 (0.2) 18/1626 (1.1) 61/1626 (3.8)	Asghar 2006 [28]
October 2005 to March 2006	Mecca	Cross-sectional survey conducted on 1,137 clinical isolates from 965 patients attending Al-Noor and Hera hospitals	Different sites of infection; urinary tract infection, respiratory tract infection, wound infection, septicemia, female genital infection, and other infections	No data	Culture and AST	1137/1137 (100.0)	CRO-resistant <i>E.coli</i> CRO-resistant <i>K.pneumoniae</i> IMP-resistant <i>E.coli</i> IMP-resistant <i>K.pneumoniae</i>	28/149 (18.8) 11/148 (22.9) 6/74 (8.1) 1/11 (9.1)	28/965 (2.9) 11/965 (1.1) 6/965 (0.6) 1/965 (0.1)	Asghar and Faidah, 2009 [29]
May 2008 to April 2009	Mecca	Cross-sectional survey conducted on 1,087 patients with gram- positive bacterial infection attending Al- Noor, Hera, and King Abdul-Aziz Hospitals	Different sites of infection; urinary tract infection, respiratory tract infection, wound infection, septicemia/blood culture, female genital infection, and ear/eye	22 different countries: Saudi Arabia (81%), Pakistan (4.4%), Yemen (2.0%), Nigeria (1.9%), Egypt (1.7%), others (9%)	Culture and AST	1087/1087 (100.0)	Oxacillin-resistant CoNS MRSA VRSA Ampicillin-resistant S. pneumoniae E. faecalis VRE Enterococcus spp. VRE	85/97 (82.4) 271/688 (39.4) 9/441 (2.0) 4/19 (21.1) 1/149 (2.0) 3/86 (3.5)	85/1087 (7.8) 271/1087 (24.9) 9/1087 (0.8) 4/1087 (0.4) 1/1087 (0.09) 3/1087 (0.3)	Asghar 2011 [30]

			infections							
September 2009 to March 2010	Mecca	Cross-sectional survey conducted on 509 clinical isolates from 313 ICU patients attending Al-Noor, Hera, and King Abdul- Aziz Hospitals	Urine, wound swabs, and other sample types	Saudi Arabia (50.9%), Pakistan (8.8%), India (5.9%), Egypt (5.7%) and Yemen (5.1%)	Culture, AST, PCR	509/509 (100.0)	E.coli carrying AR genes -CTX-M -TEM -SHV K.pneumoniae carrying AR genes -CTX-M -TEM -TEM -SHV P.aeruginosa carrying AR genes -VIM -IMP -VIM&IMP A.baumannii carrying AR genes -VIM -IMP VIM&IMP	10/54 (18.5) 10/54 (18.5) 4/54 (7.4) 35/116 (30.1) 22/116 (19.0) 20/116 (17.2) 6/148 (4.1) 7/148 (4.7) 2/148 (1.4) 22/191 (11.5) 26/191 (13.6) 6/101 (2.1)	10/313 (3.2) 10/313 (3.2) 4/313 (1.3) 35/313 (11.1) 22/313 (7.0) 20/313 (6.4) 6/313 (1.9) 7/313 (2.2) 2/313 (0.6) 22/313 (0.6) 22/313 (7.0) 26/313 (8.3) 5/313 (4.0)	Asghar 2012 [31]
September 2009 to March 2010	Mecca	Cross-sectional survey conducted on 478 clinical isolates from 365 ICU patients attending Al-Noor, Hera, and King Abdul- Aziz hospitals	Sputum, wound swabs, and urine	Saudi Arabia (64%), Pakistan (7.1%), Egypt (5.0%), Yemen (3.3%), India (3.1%), and Nigeria (1.9%)	Culture, AST, PCR	478/478 (100.0)	- MBL-producing <i>P. aeruginosa</i> carrying AR genes -IMP -VIM -IMP&VIM	33/76 (43.4) 16/76 (21.0) 14/76 (18.4) 3/76 (3.9)	33/365 (9.0) 16/365 (4.4) 14/365 (3.8) 3/365 (0.8)	Asghar 2012 [32]
February-April 2011	Mecca	Cross-sectional survey conducted on 43 hospitalized patients attending Al-Noor, Hera, Maternity and Children, King Abdul Aziz, and King Faisal hospitals	Sputum, endotracheal tube secretion, tracheal aspiration, wound swabs, urine, and blood	No data	Culture and AST	43/43 (100.0)	IMP-resistant <i>A. baumannii</i> CTX-resistant <i>A. baumannii</i>	26/43 (60.5) 28/43 (65.1)	26/43 (60.5) 28/43 (65.1)	Khan et al., 2012 [33]
June 2011 to June 2012	Mecca	Cross-sectional survey conducted on 138 diabetic patients attending Umm Al-Qura University	Foot infection and urinary tract infection samples	No data	Culture and AST	129/138 (93.5)	CTX-resistant <i>E.coli</i> MRSA	15/27 (55.6) 15/26 (57.7)	15/138 (10.9) 15/138 (10.9)	Johargy 2016 [34]
March to September 2012	Месса	Cross-sectional survey conducted on 206 <i>S.</i> <i>aureus</i> isolates collected from five major tertiary-care hospitals	No data	No data	Culture and PCR	206/206 (100.0)	MRSA carrying AR genes mecA PVL	100/206 (48.5) 19/100 (19.0)	<mark>100/206 (48.5)</mark> <mark>19/206 (9.2)</mark>	Asghar 2014 [35]
January 2012 to October 2013	Mecca	Cross-sectional survey conducted on 190 Coagulase-negative Staphylococci (CoNS) isolates from neonatal septicemia patients	Blood	No data	Culture and AST	190/190 (100.0)	Oxacillin-resistant CoNS	178/190 (93.6)	<mark>178/190 (93.6)</mark>	Khan et al., 2014 [36]

		attending Maternity and Children Hospital								
2014 (4 month- period)	Medina	Cross-sectional survey conducted on 48 patients attending out- patients clinic at King Fahd Hospital	Wound swabs, sputum, urine, blood	No data	AST and PCR	48/48 (100.0)	A.baumannii carrying VIM-1	13/48 (27.1)	<mark>13/48 (27.1)</mark>	El-Ageery and Al-Hazmi, 2014 [37]
2012 to 2014	Mecca	Cross-sectional survey conducted on 107 clinical isolates from ICU patients attending local general hospitals	Blood, and skin wound infection	No data	Culture, AST, PCR, MLST	107/107 (100.0)	ESBLs-A. baumannii A. baumannii carrying AR genes -CTX-M -TEM -SHV -OXA-51 -OXA-23	100/107 (94.0) 87/107 (81.0) 73/107 (71.0) 0/107 (0.0) 100/107 (94.0) 97/107 (91.0)	100/107 (94.0) 87/107 (81.0) 73/107 (71.0) 0/107 (0.0) 100/107 (94.0) 97/107 (91.0)	Alyamani et al., 2015 [38]
August 2013 to January 2014	Mecca	Cross-sectional survey conducted on 64 <i>P.</i> <i>aeruginosa</i> clinical isolates from patients at Al-Noor and Maternity and Children hospitals	Respiratory surgical, genital samples, urine, blood, ear swabs, eye swabs, burn swabs	No data	Culture and AST	64/64 (100.0)	IMP-resistant <i>P.aeruginosa</i>	14/64 (21.9)	14/64 (21.9)	Khan and Faiz, 2016 [39]
No data	Месса	Cross-sectional survey conducted on 50 S. <i>aureus</i> clinical isolates from clinical laboratories	Blood cultures, wound swabs, urine, nasal swabs, and sputum	No data	Culture, AST, PCR	50/50 (100.0)	MRSA carrying AR genes mecA fnBPA PVL van gene	11/50 (22.0) 4/50 (8.0) 0/50 (0.0) 0/50 (0.0)	11/50 (22.0) 4/50 (8.0) 0/50 (0.0) 0/50 (0.0)	Abulreesh et al., 2016 [40]
January to July 2015	Mecca	Cross-sectional survey conducted on 260 K. pneumoniae clinical isolates from patients at Al-Noor, King Faisal, King Abdul Aziz, Hera, and Maternity and Children hospitals	No data	No data	Culture and AST	260/260 (100.0)	CRO-resistant <i>K. pneumoniae</i> IMP-resistant <i>K. pneumoniae</i>	111/260 (42.7) 31/260 (11.9)	111/260 (42.7) 31/260 (11.9)	Khan and Faiz, 2016 [41]
June and August 2015	Medina	Cross-sectional survey conducted on 134 patients suffering from diarrhea attending Ouhud Hospital	Stool samples	No data	Culture and AST	30/134 (22.4)	Shiga toxin-producing <i>E.coli</i> resistant to Trimethoprim/Sulfamethoxazole	21/30 (70.0	<mark>21/134 (15.7)</mark>	Sharaf and Shabana, 2016 [42]
• AST;	Antibiotic susce	ptibility test	A C							

720 Figure 1 Study selection. Flow diagram of identification and selection process included in systematic review.

Figure 2 Antibiotic susceptibility patterns of gram-positive bacteria from in-Hajj and out-Hajj periods. Blue highlights indicate the study was

- 722 conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the number of AR bacteria divided by
- the total number of isolates tested, red, \geq 67%; orange, < 67% and \geq 33%; green, <33% are highlighted. Different numbers of isolates tested for
- resistance are marked with asterisk.

	Study	ened for resistance		Aminoglycosides		Tetracyclines	Glycylcyclines	Macrolides	0	Lincosamides	Streptogramins	Steroidal	FILEIICOIS	Oxazolidinones Dseudomonic acid				Penicillins				Penicillins/Beta-lactamase						Cephalosporins					Monobactam	Carbapenems	Glycopeptides	;	Lipopeptides	Polymyxins	Pyrimidines/Sulfonamides				Quinolones/ Fluoroquinolones				Rifamycin	Nitrofurans
Stapp: opcode::	Siluy	Total number of isolates scre	Amikacin	Gentamicin	Neo mycin Tobramycin	Tetracycline/ Oxytetracycline	uxy reulacycline Tigecycline	Erythromycin	Azithromycin	Clindamycin	Quinupristin/dalfopristin Eusidic acid	Chloramohenicol	linezolid	Mupirocin	Ampicillin	Ampicillin/sulbactam	Benzylpenicillin	Methicillin	Oxacillin	Penicillin/ Penicillin G	Piperacillin	Amoxicillin/clavulanic acid	Piperacillin/Tazobactam	Cefalotin Cefanolia	Cetazolin	Cefalexin	Cefoxitin Cefurovime	Cefotaxime	Ceftriaxone	Ceftazidime	Ceftizoxime	Cefepime	Aztreonam	Imipenem	Teicoplanin	Vancomycin	Fosfomvcin	Polymyxin B	Trimethoprim/	Sullaineurovazore Nalidixic acid	Ciprofloxacin	Gatifloxacin	Levofloxacin	Moxifloxacin	Norfloxacin	Norfloxacin/Ciprofloxacin	Rifampicin	Nitrofurantoin
Figure 41.2002 (12) 47 6 13 4 15 1	Staphylococcus aureus		<u> </u>	-	- + -				- 1								_					<u> </u>	- 1	-		- 1	-		1 -	1 -				- 1	· .				r -	-		- 1			-			
Oable Oathed Al-Grand, 2011 [13] 45 0 4 2 0 1 0 1 <	Fatani et al., 2002 [12]	47		6		13		4		4						6	, ,		2	81				2															4									_
Agabar and Momenta, 2006 (MRSA) (26) 199 885 800 160 100 100 100 100 <td>Dablool and Al-Ghamdi, 2011 [13]</td> <td>45</td> <td></td> <td>0</td> <td></td> <td>4</td> <td></td> <td>2</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>X.</td> <td>0</td> <td>100</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>7</td> <td></td> <td>\square</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dablool and Al-Ghamdi, 2011 [13]	45		0		4		2		0					1			X.	0	100				4															7		\square							
Asplar and Momerale 2006 (MSSA) [26] 313 100 100 10 <t< td=""><td>Asghar and Momenah, 2006 (MRSA) [26]</td><td>199</td><td></td><td>85</td><td></td><td>90</td><td></td><td>85</td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>0</td><td></td><td></td><td>100</td><td>100</td><td></td><td></td><td>1</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>80</td><td></td><td>\square</td><td></td><td></td><td>\rightarrow</td><td></td><td></td><td></td><td></td></t<>	Asghar and Momenah, 2006 (MRSA) [26]	199		85		90		85							10	0			100	100			1	100												0			80		\square			\rightarrow				
Member al., 2006 [14] 65 I	Asghar and Momenah, 2006 (MSSA) [26]	313		10	_	19		14				_		_	83	3	Y		0	96			_	5												0			9		\square			\rightarrow			_	
Aspin 2.011 (Jone) 1 0 44 0 0 1 0 1 0 1 0 1 0	Memish et al., 2006 [14]	85											_	_		_	_	7					_		_		7			_						_	_				\vdash			\rightarrow			—	
Asyle#, Xol1 (A) (-) 498 (-) (-) 498 (-) (-) 40 (-) (-) 4	Asghar, 2006 [28]	303		44		50		56		48	-	-	_		79				53	92		38		49		-	42			00	00		00			0		00	58	100		-	00		_		-	~
Johang tela., 2011 (Johang) (15) 128 3 4 10 <td>Asgnar, 2011 [30]</td> <td>1-688*</td> <td>60</td> <td>36</td> <td>0</td> <td>50</td> <td></td> <td>42</td> <td></td> <td>34</td> <td>8</td> <td>3.</td> <td>2 3</td> <td></td> <td>92</td> <td>63</td> <td>0.0</td> <td></td> <td>39</td> <td>93</td> <td></td> <td>42</td> <td></td> <td>C</td> <td>54</td> <td>31 .</td> <td>30 2</td> <td>4 2</td> <td>51</td> <td>22</td> <td>60</td> <td></td> <td>33</td> <td>23</td> <td>-</td> <td>2</td> <td></td> <td>38</td> <td>26</td> <td>100</td> <td>46</td> <td>6</td> <td>36</td> <td>_</td> <td>_</td> <td>2/ 1</td> <td>4</td> <td>21</td>	Asgnar, 2011 [30]	1-688*	60	36	0	50		42		34	8	3.	2 3		92	63	0.0		39	93		42		C	54	31 .	30 2	4 2	51	22	60		33	23	-	2		38	26	100	46	6	36	_	_	2/ 1	4	21
Outling tail, 2011 (light) 12 <th< td=""><td>Johargy et al., 2011 (Umran) [15]</td><td>235</td><td></td><td>3</td><td>4</td><td>19</td><td>0</td><td>11</td><td>_</td><td>10</td><td>1</td><td>1</td><td></td><td></td><td>-</td><td>/</td><td>88</td><td>11</td><td>15</td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td>11</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>1</td><td></td><td>3</td><td></td><td>\vdash</td><td>_</td><td>4</td><td>3</td><td></td><td></td><td>-</td><td>2</td></th<>	Johargy et al., 2011 (Umran) [15]	235		3	4	19	0	11	_	10	1	1			-	/	88	11	15				_		_		11	-		-					0	0	1		3		\vdash	_	4	3			-	2
Obstand Obstand <t< td=""><td>Johargy et al., 2011 (Markan) [15]</td><td>128</td><td>54</td><td>54</td><td>- 10</td><td>49</td><td>U</td><td>20</td><td>_</td><td>59</td><td>2</td><td></td><td></td><td></td><td>1</td><td>-</td><td>79</td><td>_</td><td>59</td><td>100</td><td>77</td><td>50</td><td>_</td><td>54</td><td>_</td><td></td><td>15</td><td>6</td><td>2</td><td>100</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>- 24</td><td>-</td><td>12</td><td>4-1</td><td>59</td><td>_</td><td>20</td><td>10</td><td></td><td>-</td><td><u> </u></td><td></td></t<>	Johargy et al., 2011 (Markan) [15]	128	54	54	- 10	49	U	20	_	59	2				1	-	79	_	59	100	77	50	_	54	_		15	6	2	100					0	0	- 24	-	12	4-1	59	_	20	10		-	<u> </u>	
Numeral at al. 2016 (MRSA) [23] 13 46 38 70 92 31 46 100 <th< td=""><td>Abulroosh et al. 2016 [40]</td><td>20</td><td>34</td><td>6</td><td>-</td><td>16</td><td></td><td>10</td><td>12</td><td>10</td><td>1</td><td>•</td><td></td><td></td><td>10</td><td>0</td><td>-</td><td>-</td><td>22</td><td>100</td><td>.,</td><td>16</td><td>-</td><td>54</td><td>-</td><td>-</td><td>22</td><td>0.</td><td>-</td><td>100</td><td></td><td></td><td></td><td>19</td><td></td><td>0</td><td></td><td></td><td>+</td><td>+</td><td>0</td><td></td><td>0</td><td></td><td>\rightarrow</td><td>_</td><td></td><td>_</td></th<>	Abulroosh et al. 2016 [40]	20	34	6	-	16		10	12	10	1	•			10	0	-	-	22	100	.,	16	-	54	-	-	22	0.	-	100				19		0			+	+	0		0		\rightarrow	_		_
Anglan et al., 2016 (MRSA) [23] 33 3 18 18 21 9 100	Maralani et al. 2016 (MRSA) [23]	12		46		30		77	92	31	_	0	-	1	10				22	100		100	100		-	1	100		10	1 100		100		100	_	0			54		62	_	69		-+	_	-	
Hasebe tal., 2016 (MRSA) [24] 5:24* 42 42 6 78 91 78 91 75 67 84 30 80 60 72 50 63 0 42 0 400 400<	Marglani et al., 2016 (MSSA) [23]	33		3		18		18	21	9	-			/	39							21	0		-		0		0	3		0		15		0			0		12		12					
Haseeb et al., 2016 (MSSA) [24] 7.17* 0	Haseeb et al., 2016 (MRSA) [24]	5-24*		42						-					78	3		1	1	91		75		87 8	34		30 8	0 6	0 67	50		60	72	50							63		0	42	+			
Coagulase-negative staphylococci Asghar, 2016 [28] 402 26 72 50 72 61 91 34 49 28 0 0 75 0 16 72 61 91 34 49 28 0 0 0 75 0 0 64 27 0 0 0 27 0 64 27 0 0 0 2 0 64 27 0 0 2 0 64 27 0 0 2 0 64 27 0 0 2 0 0 2 0 64 27 0 0 2 0 0 2 0 64 27 0 0 2 0 0 2 0 64 27 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0	Haseeb et al., 2016 (MSSA) [24]	7-17*								1	(1			91		1	1	24	89		29		0	0		0 0	0 0					0	43					1		40		0	40	0	-	-	
Asghar, 2006 [28] 402 26 72 50 72 61 91 34 49 26 71 71 80 75 60 76 7	Coagulase-negative staphylococci										_																	_																				
Asghar, 2011 [30] 1-86* 91 63 100 36 83 63 0 50 87 95 82 90 60 92 66 71 71 89 80 50 100 50 3 0 47 50 80 11 60 64 27 0 Khan etal, 2014 [36] 190 82 0 78 78 60 2 0 99 94 100 93 60 71 71 89 80 50 100 50 3 0 47 50 80 11 60 64 27 0 Asghar, 2006 [28] 78 95 83 98 6 50 9 12 79 0 64 50 0 3 33	Asghar, 2006 [28]	402		26				72		50					72	2			61	91		34		49			26									0			75									
Khan etal., 2014 [36] 190 82 1 78 95 78 78 78 78 95 78 96 84 11 98 95 78 96 84 11 98 95 78 96 84 11 98 95 78 96 84 98 <t< td=""><td>Asghar, 2011 [30]</td><td>1-86*</td><td>91</td><td>63 1</td><td>00</td><td>36</td><td></td><td>83</td><td></td><td>63</td><td>0</td><td>5</td><td>D</td><td></td><td>87</td><td>95</td><td>6</td><td></td><td>82</td><td>90</td><td></td><td>60</td><td></td><td>g</td><td>92</td><td>56</td><td>67 7</td><td>1 7</td><td>1 89</td><td>80</td><td>50</td><td></td><td>100</td><td>50</td><td></td><td>3</td><td></td><td>0</td><td>47</td><td>50</td><td>80</td><td>11</td><td>60</td><td></td><td></td><td>64 2</td><td>27</td><td>0</td></t<>	Asghar, 2011 [30]	1-86*	91	63 1	00	36		83		63	0	5	D		87	95	6		82	90		60		g	92	56	67 7	1 7	1 89	80	50		100	50		3		0	47	50	80	11	60			64 2	27	0
Enterococcus sp. Control [2] 78 98 <t< td=""><td>Khan et al., 2014 [36]</td><td>190</td><td></td><td>82</td><td></td><td></td><td></td><td>78</td><td>78</td><td>60</td><td>2</td><td></td><td>(</td><td>)</td><td>99</td><td>)</td><td></td><td></td><td>94</td><td>100</td><td></td><td>93</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>2</td><td></td><td></td><td></td><td>டா</td><td>T</td><td>T</td><td></td><td></td><td></td><td></td><td></td></t<>	Khan et al., 2014 [36]	190		82				78	78	60	2		()	99)			94	100		93														0	2				டா	T	T					
Asphar, 2006 [28] 78 95 78 95 78 95 78 96 84 11 98 95 78 0 88 78 0 78 96 84 11 98 95 78 0 88 78 0 11 98 95 78 0 78 96 84 0 78 0 33 50 0 33 50 0 33 50 0 33 50 0 33 50 0 66 83 75 0 0 33 25 0 0 67 0	Enterococcus spp.														_				_				_	_		_	_					-																
Asghar, 2011 [30] 1-99' 2 48 0 78 44 60 50 0 14 15 0 9 12 79 0 64 50 60 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 33 50 20 4 0 93 50 33 23 50 0 0 20 65 60 10 13 207 10 10 10 10 10 10 10 10 10 10 <td>Asghar, 2006 [28]</td> <td>78</td> <td></td> <td>95</td> <td></td> <td></td> <td></td> <td>83</td> <td></td> <td>98</td> <td>· · ·</td> <td></td> <td></td> <td></td> <td>23</td> <td>3</td> <td></td> <td></td> <td>96</td> <td>84</td> <td></td> <td>11</td> <td></td> <td>98</td> <td></td> <td></td> <td>95</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>	Asghar, 2006 [28]	78		95				83		98	· · ·				23	3			96	84		11		98			95									0			98								_	
Asghar, 2011 (<i>L:lacedia</i>) (30) 1-56' 0 83 75' 0 0 27' 50' 0 33' 25' 0 100' 50' 0 100' 2' 0 86' 67' 50' 50' 0' 0' 100' 2'' 0''' 86''' 50''' 50''' 0''' 0''''' 0''''' 0''''' 0''''' 0''''' 0''''' 0''''' 0''''' 0''''' 0'''''' 0'''''' 0''''''' 0'''''''' 0''''''''''''''''''''''''''''''''''''	Asghar, 2011 [30]	1-99*	2	48	0	78		44		60 5	50	C	1	4	15	5 0			9	12		79			0	64	50 5	0 6	7 60	33	33		50	20		4		0	93	50	38	100	33	\rightarrow	_	71 3	33	4
Streptococcus sp. Greptococcus pyrogenes [12] 24 O <th colspan="6</td> <td>Asghar, 2011 (<i>E.iaecalis</i>) [30]</td> <td>1-56*</td> <td>0</td> <td>83</td> <td>0</td> <td>94</td> <td></td> <td>65</td> <td></td> <td>83 7</td> <td>75</td> <td>0</td> <td></td> <td></td> <td>27</td> <td>50</td> <td></td> <td>L</td> <td>0</td> <td>33</td> <td></td> <td>25</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>67 0</td> <td>10</td> <td>0 50</td> <td>0</td> <td>0</td> <td>L</td> <td>0</td> <td>100</td> <td></td> <td>2</td> <td></td> <td>0</td> <td>86</td> <td>67</td> <td>56</td> <td>0</td> <td>61</td> <td></td> <td>_</td> <td>50 5</td> <td>10</td> <td>0</td>	Asghar, 2011 (<i>E.iaecalis</i>) [30]	1-56*	0	83	0	94		65		83 7	75	0			27	50		L	0	33		25			0	0	67 0	10	0 50	0	0	L	0	100		2		0	86	67	56	0	61		_	50 5	10	0
relative (streptococcus pp) (genera) (12) 24 26 24 13 27 26 1 23 23 33 0 0 79 0 0 10	Streptococcus spp.								-			-	-	-	-				0							_		-						_			-			—	_	-	-	—		4	4	
Asglar. 2006 (Streptococcus privations) [28] 44 89 16 9 7 16 7 51 14 18 1 00 68 69 68 69 68 69 68 69 60 60 67 60 78 <	Asphar 2006 (Streptococcus spo) [28]	24		80		_		26		24				_	10				27	26				22	_		22	_	_	-						0	_	-	70	┢─┦	\vdash			\rightarrow	+	+	+	
Argin: 2010 (Step)lococcus progenes) [30] 1-19* 100 0 3 17 39 100 0 0 100 25 8 13 17 8 13 100 0<	Asphar 2006 (Streptococcus ppeumoniae) [29]	10		80			-	16		0		_			7		-	-	16	20		5	-	14	-		19	_			-					0	_		- 19		⊢			\rightarrow	+	+	+	
Areginal 2011 Composition Co	Asphar 2011 (Streptococcus pneumoniae) [20]	44	100	70	0	33		17	_	30 4	00	0			21	10		1	67	20		7	_	14	00	25	8 1	3 1	7 9	12	100		0	0		20		0	70		100	50	67	\rightarrow			00	100
Nagletic (1) 110 56 25 13 6 8 0 0 4 1 1 Haseeb et al., 2016 (Streptoccccus spp) [24] 3-15° 0 20 0 36 75 0 0 45 1 100	Asphar 2011 (Streptococcus pyrogenes) [30]	1-19	100	56	v	60				17	00		-	-	- 21	10	-	-	-07	20						13		3	3 14	50	100							0	78		-00	30	51			-	001	-00
Hasebe et al., 2016 (<i>Streptococcus spp</i>) [24] 3-15 ⁺ 0	Memish et al., 2016 [17]	110				56		25		13		6			-		1	1	1	8		0					0			00						0			48		\vdash		1		+			
	Haseeb et al., 2016 (Streptococcus spp) [24]	3-15*	0															1	1	20		0		36			75		0					0											100	-	-+	-

725 Figure 3 Antibiotic susceptibility patterns of Enterobacteriaceae from in-Hajj and out-Hajj periods. Blue highlights indicate the study was conducted during

726 Hajj seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the number of AR bacteria divided by the total number of isolates

tested, red, $\geq 67\%$; orange, < 67% and $\geq 33\%$; green, <33% are highlighted. Different numbers of isolates tested for resistance are marked with asterisk.

	d for resistance			Aminoglycosides			Tetracyclines	Macrolides	Phenicols		Penicillins			Penicillin/ Beta-	lactamase	- inhibitors			1		- cepnalosporins		3		Monobactam		Carbapenems		Phosphonic	Polymyxins				Quinolones/ Fluoroquinolones				Pyrimidines/	Sulfonamides	Nitrofurans
Study	Total number of isolates screene	Amikacin	Gentamicin	Kanamycin	Streptomycin	Tobramycin	Tetracycline	Erythromycin	Chloramphenicol	Amoxicillin	Ampicillin	Mezlocillin	Piperacillin	A moxicillin/clavulanic acid	Piperacillin/Tazobactam	Ticarcillin/clavulanic acid	Cephalothin	Cefazolin	Cefoxitin	Cefuroxime	Cefotaxime	Ceftazidime	Ceftriaxone	Cefepime	Aztreonam	Imipenem	Meropenem	Ertapenem	Fosfomycin	Colistin	Nalidixic acid	Ciprofloxacin	N orfloxacin	Norfloxacin/Ciprofloxacin	Ofloxacin	Levofloxacin	Moxifloxacin	Trimethoprim/sulfamethoxazole	Sulfamethoxazole	Nitrofurantoin
Escherichia coli	1	47	10			_		_		_	00			70			70		0.0	_		10			45	_	_					05		—	_		—	05		
Asgnar, 2006 [28]	148	17	43			22	FC				89	_	55	70	9		76		38	20	45	43	10	20	45	5	4				40	35	22	20	┍──┤	50	\vdash	65	\vdash	10
Asghar and Faldan, 2009 [29]	40-316		20			22	70				04		01	52	47	-	01		12	30	15	20	19	55	50	0	1				49	40	32	39		53		29		12
Asyrial, 2012 [31]	22-52	0	47			50	70	100	11		03		70	50	41		91	_	20	50	54	50	40	55	52	0	4				100	00	67		┝──┤	<u> </u> '	\vdash	12	56	52
Sharaf and Shahana, 2016 [42]	9-27	0	12	57	17	50	77	100	33		22	-	10	09	-		07				50	50									100		17		<u> </u>	<u>├</u> ──	⊢′	70	30	0
Marglani et al. 2016 [23]	30		0	57	47		11		55		75			0	0				0			0	0	0		0				_		0	17	+				13		
Loopgopicbart et al. 2016 (a) (ESBL) [18]	10		28				_				13			-	0	72			0		-	0	100	0		0				0		0		\vdash	—— I		⊢!		⊢─┤	
Leangapichart et al. 2016 (b) (mcr-1) [20]	10		40							100				100	0	12		-					40	10	20	0			20	100	30	10		\vdash	<u> </u>	<u> </u>		60		
Haseeb et al. 2016 [24]	3-100*	7	28			57				100	84	100	· ·	59			97	40	24	45	31	34	40	41	49	3			20	100	75	60	44		$ \rightarrow$	100	63		⊢ −+	·
Haseeb et al., 2016 (ESBL) [24]	4	75	75			01						100		00			0,	-10	0	40		04			40	0	0	0		-	10	75		+		100	00			
Alvamani et al., 2017 [25]	58										97	Y							5		76	81		75	90	0	0	-				80			$ \rightarrow$					
K. pneumoniae																																								
Asghar, 2006 (Klebsiella sp.) [28]	109	42	54							<u> </u>	96		68	62	8		76		32			61		18	60	4						26					, , , , , , , , , , , , , , , , , , ,	67	\square	
Asghar and Faidah, 2009 (Klebsiella sp.) [29]	2-65*	21	32			36	67			1	99		44	44	7		37		19	60	33	32	42		37	9					47	34	56	57		50		52		32
Asghar and Faidah, 2009 [29]	4-85*	10	25			20	86	1			95		54	29	10		38		16	38	23	32	23		34	9					42	32	39	33		50		37	\square	27
Asghar, 2012 [31]	30-106*	×	51				61				100		84	71	47		78		44	62	63	64	56	60	73	13	17					53	43					64	\square	75
Khan and Faiz., 2016 [41]	260																					29	43	31		12	12													
Leangapichart et al., 2016 (ESBL) [18]	5		40												0	60						100				0				0										
Leangapichart et al., 2016 (mcr-1) [20]	1									100				100																						<u> </u>		100		ı
Marglani et al., 2016 [23]	14		0				V	/ Y			100			40	40				0			0	0	0		20						0			\square	0		0	\square	
Haseeb et al., 2016 [24]	6-63*	5	38			46		Z			94			52	17		67	43	20	35	23	24	0	27	23	82	10	13				41	0			44	55			
Enterobacter spp.	1					_				_																	_			_								_		
Asghar, 2006 [28]	19	5	16			07					84		26	89	11		95		84	4.00		26	50	0	26	0					57	0	00	07	-	—	\vdash	32		
Asgnar and Faidan, 2009 [29]	1-19^	ð	39			6/					95		50	100	20	_	100	, ,	90	100	0	46	56		47		0	0			57	9	33	67		├───'		24	┢──┦	29
Raseeb et al., 2016 (E.clocae) [24]	4-9"		50			0	_				15		_	04	0		100		100		0		0				0	0			U	45	U						\square	
Asphar 2006 (Salmonella spp.) [28]	11	0	9		1						55	-	36	36	0		27				1	0		0	0	0			1	1	-	0						64		
Olaitan et al., 2015 [16]	5	0	40	0		0				60	33		50	40			21				<u> </u>	40	40		40	0				40		0		\vdash		<u> </u>	\vdash	0		
Haseeb et al., 2016 [24]	4		-10	~						00				0		t t	1		1	0	0	0	-10	0	-10	0	0	0	-	10		0				0	0	—		
Proteus spp.							_	_						<u> </u>			-	-									~													
Asghar, 2006 [28]	12	25	17	1	I						83		42	58	0		75		67			8		0	17	8		1	1	1		25						33		
Asghar and Faidah, 2009 [29]	3-36*	27	43			86					53		19	32	33		33		16	29	33	7			12	6					80	17	4		+	50		67		
Haseeb et al., 2016 (P. mirabilis) [24]	6-16*	34	75								88			50			100)	23			70		58								60								

Figure 4 Antibiotic susceptibility patterns of *Acinetobacter sp.* and *Pseudomonas aeruginosa* from in-Hajj and out-Hajj periods. Blue highlights indicate the study was conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the number of AR bacteria divided by the total number of isolates tested, red, \geq 67%; orange, < 67% and \geq 33%; green, <33% are highlighted. Different numbers of isolates tested for resistance are marked with asterisk.

	d for resistance		A minochroneidor	Aminoglycosides		Tetracyclines			Penicillins			Penicillins / Reta-	lactamase	inhibitors				Cephalosporins				Monobactams		Carbapenems		Polymyxins				Quinolones/ Fluoroquinolones				Pyrimidines/ Sulfonamides	Rifamycins	Nitrofurans
Study	Total number of isolates screene	Amikacin	Gentamicin	Neomycin	Tobramycin	Tetracycline	Amoxicillin	Ampicillin	Mezlocillin	Piperacillin	Ticarcillin	Amoxicillin/clavulanic acid	Piperacillin/Tazobactam	Ticarcillin/clavulanic acid	Cephalothin	Cefoxitin	Cefuroxime	Cefotaxime	Ceftazidime	Ceftriaxone	Cefepime	Aztreonam	Imipenem	Meropenem	Ertapenem	Colistin	Nalidixic acid	Ciprofloxacin	Norfloxacin	Norfloxacin/Ciprofloxacin	Ofloxacin	Levofloxacin	Moxifloxacin	Trimethoprim/sulfamethoxazole	Rifampicin	Nitrofurantoin
Acinetobacter baumannii																																				
Asghar, 2006 (Acinetobacter sp.) [28]	127	75	72					97		73	X	87	8		98	92			79		45	90	14					77			\square			76		
Asghar and Faidah, 2009 [29]	1-106*	84	76		57			97				93	43	_	100	98	100	83	87	97		95	46	28			33		71		\square	64	,	75		83
Asghar, 2012 [31]	107-183'	* 93	81							99			95						97		93	-	87	93				96			\vdash					
Khan et al., 2012 [33]	43	54	44	100		65		65		95	74	0.4			400	100		65	58		58	72	61					61			\vdash		·	63	$ \rightarrow $	
El-Ageery and Al-Hazmi, 2014 [37]	48	90	81	100			07	100		/1		94		10	100	100		40	100	04		96	100			0		100								
Leangapicnart et al., 2016 [21]	43	0	2		2		31	100	100			74	0	40		100		49	77	91	77	93	2	64	0	0		5			_ /	07		5	0	
Resudemenas peruginesa	3-24"	67	40		50			100	100		I		U		L	L	I	100	11		11		90	64	U			83	L			67				
Fatani et al. 2002 [12]	5								1		r	1	1	1	r –	T T	1	1			[0	- 1				0	r	1			<u> </u>	-		
Asabar 2006 [28]	142	12	61		0		\bigvee	80		34		82	10		87	76			11		22	56	13					24			\vdash			73		
Asghar and Faidah 2009 [29]	16-330*	42	50		54	73		70		49		77	34		76	73			53	83	~~~	58	30	20			96	51	58	44		75		77		96
Asphar 2012 [31]	62-139*	47	55			10		10		44			57		10				63	00	69	00	44	53			00	60	00			10				00
Asghar 2012 [32]	90-464*	32	42			32	-	97		47		94	41	-	97	94	94	78	51	70	52	50	29	36				43						92		
Khan and Faiz. 2016 [39]	64	20	27			52				28	30		8						20		11	23	22	42				22				27				
Haseeb et al., 2016 [24]	3-45*	12	21		0			75	100		59		33		1	0		95	36		34		11	17				49	0			0	100	\rightarrow		