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The Hospital Readmissions Reduction Program (HRRP), a part of the US Patient Protection and Affordable

Care Act, requires the Centers for Medicare and Medicaid Services (CMS) to penalize hospitals with excess

readmissions. We take an economic and operational (patient flow) perspective to analyze the effectiveness

of this policy in encouraging hospitals to reduce readmissions. We develop a game-theoretic model that

captures the competition among hospitals inherent in HRRP’s benchmarking mechanism. We show that this

competition can be counter-productive: it increases the number of non-incentivized hospitals, which prefer

paying penalties over reducing readmissions in any equilibrium. We calibrate our model with a dataset of

more than 3,000 hospitals in the United States and show that under the current policy, and for a large set

of parameters, 4% to 13% of the hospitals remain non-incentivized to reduce readmissions. We also validate

our model against the actual performance of hospitals in the three years since the introduction of the policy.

We draw several policy recommendations to improve this policy’s outcome. For example, localizing the

benchmarking process – comparing hospitals against similar peers – improves the performance of the policy.
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1. Introduction

According to the Medicare Payment Advisory commission (MedPAC) (Gerhardt et al. 2013), nearly

a fifth of Medicare beneficiaries that are discharged from a hospital are readmitted within 30 days.

Re-hospitalization of a patient shortly after the initial discharge is often viewed as a sign of poor

quality of care (Ashton et al. 1997 and Gwadry-Sridhar et al. 2004). Past research has shown that

hospital readmissions are often costly (Jencks et al. 2009 and MedPAC 2007) and avoidable through

simple process changes (Hansen et al. 2013). The Centers for Medicare and Medicaid Services
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Figure 1: Timeline of the Hospital Readmissions Reduction Program

(CMS) estimated that a 20% reduction in hospital readmission rates could save the government 5

billion dollars by the end of fiscal year 2013 (Mor et al. 2010).

The Hospital Readmissions Reduction Program (HRRP) was implemented by CMS on October

1, 2012, in response to the increasing costs of readmissions. The program penalizes Medicare

payments to hospitals with high 30-day readmission rates for acute myocardial infarction (AMI),

heart failure (HF), and pneumonia (PN). Chronic obstructive pulmonary disease (COPD) and

hip/knee arthroplasty (THA/TKA) will be added to the policy starting 2015. Using historical

data, the CMS determines for each hospital in the Inpatient Prospective Payment System (IPPS)1

whether its readmission rates are higher than expected given the hospital’s case mix. The CMS

model determines the targets by benchmarking hospitals against their peers.

Figure 1 gives a detailed view of the policy’s timeline. For fiscal year 2013, CMS uses bench-

marking data from July 2008 to July 2011 and, under current legislation, hospitals with higher-

than-expected readmission rates have their total Medicare reimbursement for fiscal year 2013 cut

by up to 1%. This maximum penalty cap increased to 2% in 2014 and to 3% in 2015.

Two common criticisms of HRRP are: (i) hospitals are not the appropriate entities to be held

accountable for readmissions, since some causes of readmission are outside the control of hospitals.

Only a small fraction of readmissions may be preventable by measures that hospitals directly

control (van Walraven et al. 2011); and (ii) the readmission rate of a hospital is not a good proxy

for its quality of care. There is empirical evidence that severely ill patients or those that come from

a disadvantaged socioeconomic status are at particularly high risk for readmissions (Joynt et al.

2011).

1 Hospitals that serve Medicare patients and are under the Medicare payment system are called IPPS hospitals.
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Supporters of HRRP argue that the purpose of the program is not to directly affect quality of

care but rather to make hospitals accountable also for post-discharge processes.2 They point to

the large number of patients whose discharges are fraught with poor communication, ineffective

medication management and inadequate hand-offs to primary care physicians or nursing homes. A

report by the Medicare Payment Advisory Commission supports HRRP in estimating a small but

significant decrease in national rates of readmission for all diseases from 15.6% in 2009 to 15.3%

after the introduction of HRRP (HealthCare.gov 2011). A recent study by CMS shows that during

2012 readmission rates fell in 239 out of the 309 hospital referral regions (HRR) (Gerhardt et al.

2013)

Unlike the above research focusing on whether readmission is a good quality-of-care metric,

this paper takes HRRP as a given government program and analyzes its effectiveness in reducing

readmissions. We adopt an economic and operational perspective to ask a simple question: assum-

ing that hospitals are self-interested operating-margin maximizers and are strategically forward-

looking, does HRRP provide economic incentives for a hospital to reduce its readmissions? What

are the characteristics of hospitals that prefer paying penalties over reducing readmissions (worst

offenders)? And how does the HRRP benchmarking (and the competition it induces) affect who is

a worst offender?

Readmission-reduction decisions present hospitals with trade-offs between cost and revenue

drivers: (i) The reduction of the penalty due to readmission improvements: 2,217 hospitals

nationwide cumulatively incurred more than $300 million in HRRP penalties in the fiscal year

2013 (Fontanarosa and McNutt 2013). Many hospitals incurred hundreds of thousands of dollars

in penalties, while the worst-performing hospitals incurred millions of dollars in penalties. These

amounts could be tripled by the end of 2015, when the maximum penalty cap is expected to

increase to 3%. (ii) Contribution loss due to readmission reductions: If a non-negligible portion of

a hospital’s patients are covered under a pay-per-case insurance scheme, readmissions may account

for a non-negligible proportion of the hospital’s contribution margin. (iii) Process-improvement

cost: Reducing readmissions may involve costly process changes.

CMS determines the expected readmission rate for each hospital using discharge-level data of all

IPPS hospitals from the previous three years. Per monitored disease, a logistic Hierarchical Gener-

alized Linear Model (HGLM) is used to determine the national average performance conditioning

on the case mix of the particular hospital – we refer to this conditional average as the CMS-expected

readmission rate for that hospital and that disease. If, for the next year, the hospital’s predicted

readmission rate, based on its actual performance, is greater than its CMS-expected readmission

2 http://blogs.sph.harvard.edu/ashish-jha/the-30-day-readmission-rate-not-a-quality-measure-but-an-accountability-
measure/
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rate, it incurs a penalty up to the maximal cap – 1% of overall Medicare payments to the hospital

in 2013. For fiscal year 2014, the CMS-expected readmission rate for each hospital is based on

data from July 1st, 2009 to June 30th, 2012. This penalty mechanism inevitably introduces game

theoretical elements into hospitals’ decision making as one hospital’s penalty is determined not

only by its own actions, but also by the performance of all other (similar) hospitals.

We use analytic modeling, data analysis and simulation to study the impact of HRRP on a

hospitals’ readmission reduction efforts. We develop a theoretical model that captures the patient

flow from readmissions, the financial drivers in a hospital’s decision, and the game-theoretical

nature of the policy. Our stylized operational and financial model of the individual hospital (see

Section 2) captures the three financial considerations mentioned above: the savings in penalty, the

loss in contribution, and the readmission-reduction cost. We allow for a flexible specification of the

process-improvement cost, which could capture other incentives related to readmission reductions,

such as back-fill opportunities and reputation effects.

We take initially the view that hospitals are non-strategic and do not take into account how the

CMS-targets are affected by decisions made by other hospitals. Our single-hospital model captures

the characteristics of hospitals that are incentivized to reduce their readmission rates in response

to HRRP. If hospitals do, however, take into account the decisions of their peers, one would want

to assess the effect of the strategic interaction on hospital response. Consequently, we introduce a

game where hospitals determine their readmission reduction efforts, taking other hospitals’ actions

into account. We show that pure-strategy equilibria need not exist and, even if they exist, need not

be unique. We are able, however, to identify bounds that apply to all equilibria of the game. Our

lower bound on the number of hospitals that are not incentivized by HRRP captures the limits of

the policy effectiveness.

In Section 5 we apply our model to hospitals nation-wide. We calibrate our model using the

data from Medicare Cost dataset, and report findings focusing, particularly, on the set of hospitals

that prefer paying penalties to reducing readmissions. The following observations arise from our

simulation study:

Effectiveness of the policy: By applying our model to data we show that, across 3,000 hos-

pitals in the US, there is a non-negligible fraction of hospitals (between 4%-13% for reasonable

parameter choices) that the policy would not incentivize to reduce readmissions – these would

rather incur penalties than reduce readmissions. Moreover, the number of such hospitals could

increase as CMS is expanding the list of monitored diseases. For example, in 2015, CMS is adding

COPD and TKA/THA to the current list of three monitored diseases: AMI, PN, and HF. CMS is

advocating monitoring as many diseases as possible (MedPAC 2013). As more diseases are added,
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the number of non-incentivized hospitals might increase significantly, reaching 30% if all diseases

are monitored.

Subtle effects of benchmarking: The Medicare Payment Advisory Commission emphasizes

the importance of the competition introduced by the HRRP benchmarking procedure (Glass et al.

2012), and rejects the idea of having a fixed target for each hospital (MedPAC 2013). It is therefore

important to understand the hospitals’ decisions in light of the strategic interactions among them.

We find that the competition induced by HRRP may indeed incentivize more hospitals to reduce

readmissions relative to the individual hospital (no benchmarking) model. At the same time, we

find, that competition increases the number of non-incentivized hospitals, hospitals that have high

readmission rate yet are not incentivized by HRRP to improve their readmissions. The number of

these hospitals is expected to increase as the set of monitored diseases is expanded in 2015 and

beyond.

In other words, our model shows that, while competition among hospitals often encourages more

hospitals to reduce readmissions, competition can only increase the number of non-incentivized

hospitals, which are hospitals that prefer paying penalties over reducing readmissions in any equi-

librium.

Readmission dispersion: Importantly, the effectiveness of the benchmarking depends on how

readmission rates vary across hospitals (we call this readmission dispersion). The higher the dis-

persion is, the less effective the policy is. We propose an alternative benchmarking mechanism

of the policy and link the mechanism with existing CMS recommendations (MedPAC 2013); see

Section 6.2. We also apply our proposed benchmarking to data and show that it may reduce by

half the number of non-incentivized hospitals for all three monitored diseases in 2013.

Hospital characteristics: The effectiveness of HRRP depends on various hospital character-

istics: A hospital in an urban area, with greater competition and higher probability of patients

being readmitted to a different hospital, has a greater financial incentive to reduce its readmissions.

Second, the current version of HRRP is not effective in inducing hospitals with poor performance

(worst offenders) since, for these hospitals, the cost of reducing readmissions is greater than the

savings in penalties. Third, hospitals with low percentage of Medicare revenue are less likely to

reduce their readmissions. Patients served by these hospitals are at a relative disadvantage under

the current structure of the policy. Forth, the higher the contribution margin of a hospital, the

smaller the likelihood of the hospital to reduce its readmissions under HRRP. This suggests that

regulating payment system, such as decreasing the probability of up-coding, could potentially

reduce the contribution margin and increase the effectiveness of the policy.
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Technology: The cost of reducing readmissions by improving processes plays an important

role in hospitals’ decisions on whether to reduce readmissions. Reducing the costs of readmis-

sion reduction programs can effectively reduce the number of non-incentivized hospitals. Conse-

quently, research projects promoting simple (i.e, not costly) readmission reduction programs, such

as BOOST (Hansen et al. 2013), can enhance the effectiveness of the HRRP.

Some of our findings and policy implications in Section 6 draw on the subtle ways in which the

different drivers interact with each other. For example, the fraction of Medicare patients in a given

disease affects which diseases the government should target for quality improvement programs; see

Section 6.3.

In Section 5, we also validate our model predictions by comparing the simulation results to the

actual changes in hospitals predicted readmission ratios between 2013 and 2015. It is premature

to draw definite conclusions about its long-run effectiveness. Nevertheless, this initial empirical

evidence supports the ability of our model to identify those non-incentivized hospitals. Specifically,

we show that the set of hospitals that paid penalties in 2013 and would still pay penalties in

2015 (i.e., non-incentivized hospitals in practice) has on average 70% overlap with the set of non-

incentivized hospitals identified by our model. This shows that our model performs fairly well in

identifying non-incentivized hospitals within the considered parameter spaces.

We conclude this introduction with a brief literature review. Much of the medical literature

focuses on the causes of readmission and on hospital-level process improvement programs for

readmission reduction (Dharmarajan et al. 2013, Krumholz et al. 1997 and Stewart et al. 1999).

Using 2003-2004 Medicare data, Jencks et al. (2009) report the most frequent diagnoses for 30-

day readmissions for 10 common conditions. Using national Medicare data from 2006 to 2008,

Joynt et al. (2011) examine 30-day readmissions for AMI, HF, and PN, and show that Medicare

patients from a poor socioeconomic background have a particularly high risk of being readmitted.

The literature also demonstrates that simple process-improvement programs – such as coaching

the caregivers of chronically ill or older patients (Coleman et al. 2006), properly planning the dis-

charge process (Naylor et al. 1999, Hansen et al. 2013, Hu et al. 2014), keeping patients longer

in the in-patient unit (Bartel et al. 2014), using machine learning techniques (Bayati et al. 2014),

and conducting a nurse-directed multidisciplinary intervention (Rich et al. 1995) – can effectively

reduce readmissions. From a queuing perspective, readmissions are retrials to a queue. The opera-

tions management literature offers various insights into the dynamic management of queues with

retrials (De Véricourt and Zhou 2005, Ren and Zhou 2008, Aksin et al. 2007) and can serve as a

basis to study how process improvement within the hospital can affect readmissions. We abstract

away from such questions in this paper.
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Since the introduction of the US Patient Protection and Affordable Care Act (ACA), in par-

ticular its HRRP component, the medical literature studied the structure of the program and its

effectiveness. Vaduganathan et al. (2013) question the validity of considering 30-day readmissions

as a measure of one hospital’s readmission conditions in the policy. Srivastava and Keren (2013)

point out that the current policy does not cover pediatric hospitals and proposes, for pediatric

hospitals, to focus on other monitored conditions; Vashi et al. (2013) estimate that approximately

18% of hospitals discharges were followed by at least 1 hospital-based acute care encounter within

30 days, which suggests that 30-day readmissions do not necessarily reflect the quality of care in

the hospital. Vest et al. (2010) suggests that the readmission reduction policy should carefully dis-

tinguish between preventable and non-preventable readmissions. Furthermore, van Walraven et al.

(2011) conducts a survey of literature on preventable readmissions and concludes, similarly that it

is unclear which readmission is avoidable, and some care is needed in this regard.

Here we take HRRP as given and ask whether HRRP financially incentivizes hospitals to reduce

their readmissions. Our research is, in turn, also related to the stream of literature in health

economics, which studies moral hazard in hospitals’ and physicians’ behavior (Chiappori et al.

1998, Propper and Van Reenen 2010) and analyzes the effect of policy interventions (Cutler and

Gruber 1996, Card et al. 2008).

2. Model

In this section, we introduce a hospital-level patient flow model and link it to the contribution mar-

gin of a hospital. This sets the foundations for analyzing individual hospital behavior in Section 3

and hospitals’ joint equilibria in Section 4.

2.1. Hospital flow model

A hospital faces an exogenous arrival of patients for each disease i, e.g., AMI, HF, and PN,

and each insurance type j, e.g., Medicare, Medicaid, Private insurance, with a rate λEij.
3 The

HRRP distinguishes between Medicare, Medicaid, private insurance, military insurance and other

insurance types. For every disease type i and insurance type j, the readmission rate is denoted

by rij. A patient requiring readmission could either return to the hospital from which she was

originally discharged, or visit a different hospital. We refer to the probability that a patient is

readmitted to a different hospital as the hospital-level divergence probability and denote it by dh. A

hospital-flow diagram for patients with disease i and payment j is shown in Figure 2, where λ
dh
ij is

the rate of the readmitted patients coming from other hospitals. Finally, λij is the total throughput

of patients in group ij.

3 While some research claims that demand is not truly exogenous as patients can be induced to visit the hospi-
tals (Acton 1975), econometric studies show that hospitals can only minimally alter their incoming rate of patients
(Dranove and Wehner 1994).
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Figure 2: Operational flow of readmissions in a hospital

A hospital receives a payment pij for treating a patient of type ij. Readmitted patients may

receive a different payment. For example, Jencks et al. (2009) shows that the weighted payment

index for initial admission is 1.41 while only 1.35 for 30-day readmission. We denote by l the

readmission adjustment factor which is the percentage difference in payment per readmission. Thus,

the revenue for the kth readmission is lkpij.

Let λaij = λEij + λ
dh
ij be the total incoming rate for patient group ij. The combined arrival rate

(exogenous patients plus readmitted patients) for disease ij satisfies: λij = λaij + rij(1− dh)λij, so

that

λij =
λaij

1− rij(1− dh)
, (1)

where λaij is the total throughput of the hospital. Adding the subscript h to denote the specific

hospital, hospital h’s revenue per disease, and in total, is computed as follows:

ΠR
ijh(0) = λaijhpijh,

ΠR
ijh(rijh) = ΠR

ijh(0)
1

1− l(1− dh)rijh
,

ΠR
h (rh) =

∑
ij

ΠR
ijh(rijh).

(2)

where ΠR
ijh(0) is the revenue from patients in group ij for hospital h if rijh = 0. We define the

contribution margin, ΠC
h , as the difference between the hospital’s revenue and all hospitalization

variable labor and supply cost. We assume for a given disease i and a given hospital h, the con-

tribution margin is the same across all patients and constitutes a ratio Cm (Cm ≤ 1) of the total

revenue, i.e,

ΠC
h (rh) =CmΠR

h (rh). (3)
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Remark 1. For clarity and tractability of the model we do not explicitly model the disease-level

divergence. In Appendix C, we use a two-disease model and real data to show that this assumption

should not affect the main implications of our model.

2.2. Penalty structure

On October 2012, CMS started penalizing Medicare payments to hospitals based on their excess

readmission ratios for three monitored diseases. We let D denote the set of all diseases andM⊆D

denote the set of monitored diseases. The excess readmissions of a hospital for each monitored

disease i is measured by the ratio of its risk-adjusted predicted readmission rate (rijh for disease

i and hospital h) and its risk-adjusted expected readmission rate (reijh for disease i and hospital

h). The term “risk-adjusted” refers to the fact that the estimated readmission rates (expected

and predicted) for a hospital are adjusted to the risk profile of its patients. Therefore, the more

severe patients a hospital has, the higher the risk-adjusted expected and predicted readmission

rates for that hospital. This risk adjustment prevents the discrimination of hospitals with more

severe patients.

CMS computes the expected and predicted readmission rates for each hospital and each disease

by applying the HGLM model to discharge-level data; see Appendix A. For each hospital h, the

risk-adjusted predicted readmission rate, rijh, predicts the readmission rate of disease-insurance

pair (i,Med) in hospital h for the following year, conditional on its case mix remaining unchanged.

In our model, we treat a hospital’s current readmission rate as its predicted readmission rate.

The risk-adjusted expected readmission rate reijh is, roughly speaking, the readmission rate of the

national average hospital with the same case mix as hospital h.

If the excess readmission ratio, computed as
rijh
re
ijh

, for hospital h is greater than 1, the penalty for

excess readmissions in disease i for hospital h is defined as the excess readmission ratio for disease i

minus 1 multiplied by the revenue from Medicare patients in disease i: max
(
rijh
re
ijh
− 1,0

)
ΠR
ijh(rijh),

where j = Med.

CMS computes the aggregate payments for excess readmissions for hospital h as the sum of

payments across monitored diseases,

∑
i∈M,j=Med

max

(
rijh
reijh
− 1,0

)
ΠR
ijh(rijh).

CMS then defines the readmission penalty ratio as the aggregate penalty for excess readmissions

divided by the Medicare revenue over all diseases,
∑

i∈D,j=Med ΠR
ijh(rijh). The readmission penalty

ratio is capped at the maximum penalty cap, denoted as Pcap. The absolute amount of the penalty
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is the Medicare revenue across all diseases multiplied by the minimum of the readmission penalty

ratio and the cap:

Ph(rh, r
e
h) =

( ∑
i∈D,j=Med

ΠR
ijh(rijh)

)
∗min

∑i∈M,j∈Med max{ rijh
re
ijh
− 1,0}ΠR

ijh(rijh)∑
i∈D,j=Med ΠR

ijh(rijh)
, Pcap


which can be rewritten as

Ph(rh, r
e
h) = min

( ∑
i∈M,j=Med

max

(
rijh
reijh
− 1,0

)
ΠR
ijh(rijh), Pcap

∑
i∈D,j=Med

ΠR
ijh(rijh)

)
. (4)

For example, if Pcap = 3%, a hospital with total Medicare revenue of $1 million will pay at

most $30,000 in penalties (i.e., Pcap
∑

i∈D,j=MedΠR
ijh(rijh) = 0.03 ∗ 1000000 = 30000). If there is

only one monitored disease (i.e., M= {1}) that accounts for 20% of hospital’s Medicare revenue

(ΠR
1,Med,h(r1,Med,h) = 200000), and the excess readmission ratio is 1.1 (max

(
r1,Med,h

re
1,Med,h

− 1,0
)

= 1.1),

the penalty will be $20,000 since the penalty is less than the cap. If the readmission ratio is

greater than 1.15, the penalty will be greater than $30,000 (max
(
r1,Med,h

re
1,Med,h

− 1,0
)

ΠR
1,Med,h(r1,Med,h)>

0.15 ∗ 200000 = 30000). In this case, the penalty will be capped at $30,000. Notice that the cap

is applied to all Medicare revenue, while the penalty is proportional to revenue from monitored

diseases only.4

3. Single-Hospital and Single-Disease Model

To gain structural insights, let us first suppose that there is a single hospital with a single monitored

disease (M=D = {1}) and a single insurance type, which is Medicare (j = Med). In this setting,

we can drop the subscripts ij. In Section 5, we show how to combine multiple single-disease models

to reflect the penalty across multiple monitored diseases.

3.1. Contribution

In this single-hospital and single-disease model, the revenue, the contribution margin, and the

penalty for hospital h with actual readmission rate rh and risk-adjusted CMS-expected readmission

ratio rh
re
h

are then given by:

ΠR
h (rh) = ΠR

h (0)
1

1− l(1− dh)rh
, (5)

ΠP
h (rh) =CmΠR

h (rh), (6)

Ph(rh, r
e
h) = φhΠR

h (rh)min

(
max

(
rh
reh
− 1,0

)
, Pcap

)
, (7)

where φh is the percentage of hospital h’s revenue that comes from Medicare. In the special case

that dh = 0 and l= 1, we have the simpler expression

ΠR
h (rh) = ΠR

h (0)
1

1− rh
= λahph

1

1− rh
.

4 For more details of the policy, refer to http://www.cms.gov/Medicare/Medicare-Fee-for-Service-
Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html
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3.2. Cost of process improvements

Reducing readmissions may require process changes (Naylor et al. 1999) and/or increases in staffing

(Stewart et al. 1999). These are long-term commitments. We assume that if a hospital reduces its

readmission from r0 to r, an annual readmission-management cost C(r0, r) is added to the hospital’s

operating costs in each subsequent year. The function C(y,x) is assumed to be continuous, non-

negative when x≤ y, and to have a second derivative that satisfies
∣∣∣ ∂2

∂x∂x
C(y,x)

∣∣∣≤ η 1
(1−x)3

for some

constant η and ∀x, r ∈ (0,1). This technical assumption is satisfied, in particular, by any function

of the form

Ch(y,x) =Cv
h(y−x)α + g(y),

where g is a bounded function and α ≥ 0. The term Cv
h(r − x)α represents the variable cost of

reducing readmission rates from r to x. When α∈ (0,1), this cost is concave, representing economies

of scale in reducing readmissions. It is convex if α> 1 representing a marginally increasing difficulty

in reducing readmissions. The second term, g(y), captures dependence of this cost on the initial

readmission rate r0. Some small amount of readmission might be unavoidable and, for hospitals

that have initially low readmission rates, further reductions might be expensive.

In principle, hospitals could discriminate patients based on characteristics that are not accounted

for in CMS’s risk adjustments but that do affect readmissions. For example, hospitals could choose

to treat only patients with relatively high socioeconomic status and relatively simple conditions.

As readmission rates are negatively correlated with patients’ socioeconomic status (Joynt et al.

2011) and health-condition complexity (Joynt and Jha 2013), this could decrease the hospital’s

readmission without changing the target set by CMS. Such “gaming” (e.g., costless readmission

reductions), no doubt, compromises the effectiveness of HRRP. Our purpose in this paper is to

identify the fundamental limits (and drivers) of HRRPs effectiveness even in the absence of such

gaming.

3.3. Structure of the optimal policy

A hospital h with current readmission rate rh0 and CMS-expected readmission rate reh, that decides

to reduce its readmission from rh0 to rh1 has operating margin

R(rh0, rh1, r
e
h) = ΠP

h (rh1)−Ph(rh1, r
e
h)−C(rh0, rh1)

=CmΠR
h (0)

1

1− rh1

(
1−φmedh

1

Cm
min

(
max

(rh1

re
− 1,0

)
, Pcap

))
−C(rh0, rh1),

(8)

for the subsequent year. The hospital solves the maximization problem

r∗h1(rh0, r
e
h)∈ arg max

x≤rh0
R(rh0, x, r

e
h) (9)
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We assume here that hospitals are operating-margin maximizers. Whereas nonprofit hospitals

should not incentivize their management to maximize profit, past studies have shown that these

hospitals do behave as profit maximizers in a competitive market (Deneffe and Masson 2002). We

also assume in this formulation that hospitals do not deliberately increase readmission rates. This

is grounded in ethical reasons but is also consistent with the spirit of our analysis that focuses on

best case outcomes of the policy and seeks to identify hospitals that “fall outside” of the policies

effectiveness boundaries.

The following characterizes the optimal solution: a hospital has financial incentive to reduce its

readmissions only if its readmission rate is contained in an interval, the width of which depends

on the hospital parameters and the policy parameters (the penalty cap).

Proposition 1. The optimal decision for hospital h with current readmission rate rh0 is either

to remain at its current readmission rate or to reduce its readmission rate to the CMS-expected

readmission rate reh:

r∗h1(rh0, r
e
h) =

{
reh if rh0 ∈ [reh, f(rh0, r

e
h)],

rh0 otherwise,
(10)

where f(rh0, r
e
h)≥ reh is the maximal solution to the equation:

R(f(rh0, r
e
h), reh, r

e
h) =R(f(rh0, r

e
h), f(rh0, r

e
h), reh), (11)

and R(·, ·, ·) is as in Equation 8.

The left panel of Figure 3 depicts hospital h’s operating margin as a function of its targeted

readmission rate, rh1, with dh = 0, l = 1, reh = 0.2, and no readmission reduction costs. The left

vertical line (i.e. A) indicates the position of the expected readmission rate, reh, and the square

denotes the initial readmission rate rh0. The green vertical line (i.e. B) corresponds to f(rh0, r
e
h)

and is, by definition, the readmission rate (greater than reh) that generates the same contribution

as setting (rh1, r
e
h). A hospital has financial incentive to reduce its readmissions if and only if its

current readmission rate falls in the region [A,B]. We define this region as the policy effective

region – hospitals that fall in this interval act optimally by reducing readmissions in response to

HRRP penalties.

There are three parameter regions in Figure 3:

Region (1) (Program-Indifferent Region, [0,A]). A hospital is in this region if its original read-

mission rate rh0 is smaller than its CMS-expected readmission reh. Its operating margin is strictly

increasing with its readmission rates, indicating that the optimal decision for the hospital is to

stay at current readmission rate. We call these hospitals program-indifferent (PI) hospitals.

Region (2) (Program-Effective Region, [A,B]). If the hospital’s initial readmission rate rh0 is

greater than reh and the operating margin at rh0 is lower than that at reh, then the savings in
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Figure 3: Left panel: No readmission reduction cost C(r0, r) ≡ 0, Right panel: f(rh0, r
e
h)− reh vs.

l(1− dh) and φmed
Cm

(For re = 20% and Pcap = 3%)

penalties from reducing the readmission rate outweigh the loss of contribution. The hospital’s

optimal decision is to reduce its readmission rate to reh (recall that hospitals in our model can only

reduce readmissions). We refer to these hospitals as program-effective (PE) hospitals.

Region (3) (Non-Program-Effective Region, [B,1]). In this area the contribution loss by reducing

readmissions is greater than the savings in penalties. The optimal strategy for the hospital is to

take no action, and remain at the current readmission rate. We call these hospitals non-program-

effective (NPE) hospitals.

There are two metrics that affect a hospital’s decision to reduce readmissions, assuming the

hospital has rh0 > reh. The first is the magnitude of the excess rh0 − reh. If this excess is large,

the hospital falls in Region (3), and it is less financially beneficial for the hospital to reduce

readmissions. The second metric is the width, f(rh0, r
e
h)− reh, of Region (2). The wider this region

is, the more likely it is to cover rh0, making it beneficial for the hospital to reduce readmissions.

The right panel of Figure 3 shows how the width of Region (2), f(rh0, r
e
h) − reh, changes with

other parameters (i.e. φmed, Cm, dh, and l.). These observations lead to the following corollary

that summarizes the comparative statics linking f(rh0, r
e
h) − reh to the primitives of a hospital

(l, dd, dh, λ
a, φemd).

Corollary 1. The width of Region (2) (f(rh0, r
e
h)− reh) is weakly increasing in the percentage

of contribution from Medicare patients φmed and the hospital divergence probability dh. It is also

weakly decreasing in the readmission-reduction cost coefficient Cv
h, the contribution margin ratio

Cm, and the readmission adjustment factor l.

These comparative statics are inherent to the HRRP’s design. First, the fact that the hospital

divergence probability and the inverse of adjustment factor have the same effect is expected. By
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CMS’s rules a readmitted patient contributes to the readmissions of the hospital from which the

patient was initially discharged. Consequently, increasing the divergence probability is effectively

equivalent to reducing the contribution from readmitted patients.

Second, since the penalty is proportional to the contribution of a hospital from Medicare patients

but the contribution loss due to reduced readmission applies to all patients, hospitals with a low

percentage of Medicare patients are less incentivized by HRRP.

Last, as expected, when the margin Cm is high the opportunity cost associated with reducing

readmissions is larger. The contribution margin of a hospital has an inverse relationship with its

inclination to reduce readmissions.

We will revisit these comparative statics after introducing an expanded model where hospitals’

actions impose externalities on other hospitals through the CMS-expected readmission rate. Propo-

sition 1 will be useful because the bounds that we derive in the next section are based on this

single-hospital/single-disease model.

4. Game-Theoretic Model

Building on the single-hospital model of the previous section, we now construct a multi-player

model to describe hospitals’ joint decisions assuming they are forward looking. In this multi-player

setting hospitals impose externalities on each other through the calculation of the CMS-expected

readmission rate, which, recall, results from benchmarking among hospitals.

The main result of this section is that, while strategic interactions among hospitals can increase

the number of PE hospitals, it can only increase the number of NPE hospitals: hospitals that prefer

paying penalties to reducing readmissions in the single-hospital setting do not reduce readmissions

also in the multi-player game-theoretic setting. We start with a single-year game which is expanded

to a multi-year game in Section 4.3.

4.1. Single-year game

There is a set of H hospitals. Each hospital maximizes its operating margin by determining, at the

beginning of the game, its reduction (possibly none) from the current readmission rate. Looking

one year into the future, a hospital takes into account how its decision (and those of its peers)

affect its CMS-expected target re for the next year. We assume that λ
dh
ij ≡ 0. That is, that the

divergence throughput is 0. This is seemingly a rather strong assumption, but our main results are

not sensitive to this assumption; see Section 4.2.

Hospital h with initial rate rh0 makes a reduction decision at time 0. The penalty is paid at

the end of the year against the expected readmission rate, reh1, that CMS computes based on the

actions of all hospitals. The dynamics of the game are as follows:

(0) Period 0:
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a. Let rh0 denote the current readmission rate at hospital h and reh0 denote the current year’s

CMS-expected readmission rate. These are given.

b. Each hospital h makes a single decision: its targeted readmission rate rh1 for next year so

as to maximize R(rh0, rh1, r
e
h1) (see Equation 8).

(1) Period 1: Hospital h incurs penalty based on its choice rh1 and the CMS-expected readmission

rate reh1.

In making decisions, each hospital knows all other hospitals’ initial readmission rate rh0

and the CMS-expected readmission rate re0. This information is publicly available from CMS

(http://www.Medicare.gov/hospitalcompare/Data/30-day-measures.html).

Hospitals, however, cannot precisely predict reh1 at the beginning of the year. For this, a hospital

would need to acquire the patient-level discharge data of all other hospitals, and re-estimate the

HGLM model used by CMS. This, as acknowledged by CMS (see FAQ in www.qualitynet.org), is

a difficult undertaking for the individual hospital as it does not have the patient-level discharge

data for all other hospitals. Getting access to such data is costly. Moreover, CMS may change its

CMS-expected-readmissions calculations frequently making it difficult for hospitals to predict in

advance what formulas will be used. For example, from 2011 to 2012, CMS added the readmission

cases from VA hospitals into the estimation model.

Instead of precisely predicting it, we assume that hospital h estimates its future expected read-

mission rate from existing data and other hospitals’ actions according to an updating function,

gh(·, ·), where

r̄eh1 = gh(~r1, ~re0) (12)

is a proxy for its true CMS-expected readmission rate. The hospital chooses rh1 to maximize

R(rh0, rh1, r̄
e
h1). The only property of gh that we use in our analysis is it is weakly increasing in rh̃1

for any hospital h̃. 5

We are now ready for the formal definition of the single-year static game with H hospitals:

Definition 1. Let ~r0 = {r10, r20, ..., rH0} be the initial readmission rates and ~re0 =

{re10, r
e
20, ..., r

e
H0} be the initial expected readmission rates of the H hospitals. Hospital h’s strat-

egy space is rh1 ∈ [0, rh0]. The payoff function for hospital h is R(rh0, rh1, gh(~r1, ~re0)) defined in

Equation 8.

A Nash Equilibrium in pure strategies is a readmission vector ~r∗1 such that r∗h1 ∈
arg maxrh1∈[0,rh0]R(rh0, rh1, gh((~r∗(−h)1, rh1), ~re0)) for every hospital h, where ~r(−h)1 represents a vec-

tor of readmission rates for hospitals except the hospital h. A mixed-strategies Nash Equilibrium

is π= {π1, π2, ..., πH} where πh is a probability distribution with support [0, rh0].

5 To the extent that the true CMS computations are monotone in the appropriate sense, our results continue to hold
even if hospitals overcome the challenges and are able to perfectly predict the CMS targets.
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Let ~r(−h)1 denote the decisions of hospital h’s peers. Hospital h’s best response is given by:

BRh(reh0, rh0, r(−h)1) =

{
gh(~r1, r

e
h0) if rh0 ∈ [gh(~r1, r

e
h0), fh(rh0, gh(~r1, r

e
h0))],

rh0 otherwise,
(13)

where f is as in Equation 11 and characterizes the PE region of a hospital. That is, given the

actions of all other hospitals, hospital h is solving a single-hospital optimization problem as in

Section 3.3. The no action strategy for hospital h is BRh = rh0. No-action is, in particular, the

optimal strategy for any hospital h that has an empty PE region (f(rh0, r
e
h) = reh). For such a

hospital it is financially inefficient for the hospital to reduce readmissions.

It is a-priori unclear how a hospital’s decision affects the decisions of other hospitals. If one

hospital decides to reduce its readmission rate, it effectively lowers the expected readmission rate

for other hospitals, and decreases other hospitals’ payoffs monotonically. This action exerts nega-

tive externality on other hospitals’ contribution margins to which they may respond by reducing

readmission in order to save on penalties. An opposite effect is, however, also possible. A reduction

decision by hospital h lowers the expected readmission rates for other hospitals. If the expected

readmission rate is lowered substantially, some hospitals may find themselves in Region (3) of

Figure 2 and prefer incurring penalties over reducing readmissions.

Since the payoff function is semi-continuous and the strategy set is compact, the existence of

a Nash Equilibrium in mixed strategies is guaranteed (Dasgupta and Maskin 1986). Existence of

pure-strategy Nash Equilibria (let alone uniqueness) is not, however, guaranteed.

Lemma 1. There exists at least one mixed-strategies Nash Equilibrium in the single-year game

for any continuous updating function. For specific updating functions, the game may not have a

pure-strategy Nash Equilibrium or it may have multiple such equilibria.

In the absence of a uniqueness result, we turn to bounds. We first establish a lower bound on the

number of hospitals that, in any equilibrium, prefer incurring penalties to reducing readmissions.

These are hospitals on which the policy is not effective. Let (~r0, ~re0) denote the initial expected

and the current readmission rates of hospitals in the game. We say that hospital h is strongly

non-program-effective (SNPE) hospital if it satisfies the condition:

rh0 > fh(rh0, gh(~r0, r
e
h0)) (14)

where fh is defined in Equation 11. We also call SNPE hospitals “worst offenders.”

A hospital is SNPE if, considering its current CMS-expected readmission rates, and its current

readmission, reducing readmissions is a sub-optimal decision. The term strongly non-policy-effective

is motivated by the following proposition showing that, for an SNPE hospital, reducing readmissions

is a dominated strategy.
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Proposition 2. For any equilibrium π, and any SNPE hospital h, πh(rh0) = 1. In particular,

the number of SNPE hospitals provides a lower bound on the number of NPE hospitals – those that

incur penalties but assign probability 1 to the no-action strategy in any equilibrium.

In effect, SNPE hospitals ignore the actions of their peers and make decisions following the single

hospital model. Thus, even though HRRP may increase the overall number of hospitals that reduce

readmissions, the competition it introduces can only increase the number of SNPE hospitals: since

readmission reduction by other hospitals can only further decrease the CMS-expected readmission

rate, a hospital that is SNPE under re0, will find reducing readmissions even less beneficial with

the new (lower) targets. Put differently, the worst offenders are indifferent to the benchmarking.

In other words, HRRP is ineffective in incentivizing worst offenders through benchmarking!

We turn to Program Effective (PE) hospitals, those that do respond to HRRP by reducing

readmissions in equilibrium. The following is an algorithm whose output is an upper bound on the

number of such hospitals.

0. Start with H hospitals with initial readmission rates ~r0 = {r1,0, r2,0, ..., rH,0} and expected

readmission rate ~re0 = {re1,0, re2,0, ...reH,0}.
1. Identify all SNPE hospitals. Set n= 0.

2. Update the readmission rate vector as follows:

rh,n+1 =

{
gh(~rn, ~ren) if rh,n > gh(~rn, ~ren), h 6∈ SNPE,
rh,n otherwise.

(15)

Any hospital h with a readmission rate rh,n at step n that is greater than its expected readmission

rate r̄eh,n, reduces to its CMS-expected readmission rate. Set n← n+ 1.

3. If there are no hospitals that reduce readmissions in step 2, terminate the algorithm and set

N = n. Otherwise, go back to step 2.

Let the terminal readmission vector of the algorithm be ~rN . We say that h is an strongly program-

effective (SPE) hospital if:

rh,N < rh0 (16)

In other words, an SPE hospital reduces its readmissions in some stage of the algorithm. In any

equilibrium π (mixed or pure), the number of SPE hospitals is an upper bound on the number of

PE hospitals.

Proposition 3. Under any equilibrium, the number of PE hospitals is bounded above by the

number of SPE hospitals:

∀π,
H∑
h=1

1{E[rh,π ]<rh0} ≤
H∑
h=1

1{h∈SPE} (17)

where E[rh,π] is the expected readmission under the (possibly mixed) equilibrium π. Moreover, the

set of SPE hospitals is mutually exclusive from the set of SNPE hospitals.
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Together, the SPE upper bound in Proposition 3 and the SNPE lower bound in Proposition 2,

provide a measure of HRRP’s effectiveness. The remaining hospitals (those that are neither SPE or

SNPE) are those that, under any equilibrium π, have readmission rates that are (with probability

1 in a mixed equilibrium) lower than their CMS-expected readmission rates. We refer to these as

Strongly Program Indifferent (SPI). Thus,

SPI = {1, . . . ,H} \ {SNPE∪SPE}.

4.2. Special case: a two-hospital game

The bounds we derived above provide a mechanism to obtain insights into a game in which the

existence or uniqueness of pure-strategy equilibria is not guaranteed. Two-hospitals and three-

hospitals games are more tractable and support insights derived through the bounds.

Consider a symmetric model with two hospitals and a single disease. The two hospitals have the

same patient volume, same patient mix, only Medicare patients and a 100% readmission adjustment

factor (l = 1). The two hospitals may have, however, different initial readmission rates ri0 for

hospital i ∈ {1,2}. The CMS-expected readmission rate, in this case, is simply the average re1 =

re2 = r10+r20
2

.

Label hospitals such that r10 < r20. In this case r10 < r
e
1, hospital 1 does not incur any penalties

and has no incentive to reduce readmissions. Hospital 2 decides between reducing readmission to

r10 (in which case (r10, r10) is the equilibrium) and remaining at r20. Under the former strategy

the hospital’s payoff is 1
1−r10

and it is 1
1−r20

min{max{r20/r10− 1,0}, Pcap} under the latter. Thus,

hospital 2 will reduce its readmissions if, and only if,

1

1− r10

>
1

1− r20

(
1−min

(
max

(
r20

r10

− 1,0

)
, Pcap

))
.

It will be indifferent between the options if r20 = r10 +Pcap(1− r10).

Corollary 2. A 2-hospital game has a unique Pareto-dominant pure-strategy equilibrium pro-

vided that r20 6= Pcap + r10(1−Pcap).

The equilibrium underscores two drivers of HRRP effectiveness:

(1) The first (and obvious) driver is the maximum penalty cap Pcap. The larger Pcap is, the more

beneficial it is for hospital 2 to reduce readmissions since it incurs greater penalties.

(2) The second is readmission dispersion, which represents how disperse a set of hospitals’

readmission rates are from their average. We formally define readmission dispersion as V(~r0) =∑
h∈S rh0−r̄0
|S| where r̄0 =

∑
h rho
H

and S = {i|rh0 > r̄0}. In the 2-hospital game V(r10, r20) = r20 −
r10+r20

2
= r20−r10

2
(assuming r2 > r1) and it is easy to show that there is a threshold d such that

when V(r10, r20) < d, hospital 2 reduces its readmission and it does not reduce otherwise (or is
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Figure 4: Trade-off of Maximum Penalty Cap and Readmission Dispersion (2-Hospital Model)

indifferent if the dispersion equals the threshold). In other words, the greater this dispersion, the

further away hospital 2 is from its expected readmission rate and hence, more likely to fall in region

(3) of Figure 3.

This simple game also uncovers a relationship between the two drivers that is illustrated in

Figure 4. In this numerical example r10 = 0.2, we vary V(~r) (by varying r20 and Pcap) and compute

the (unique Pareto-dominant equilibrium) for each pair of values. We clearly see that, the greater

the readmission dispersion, the larger the cap that is required to incentivize the hospital 2 to reduce

its readmissions. Since the cap is a policy variable, an obvious tool to incentivize hospital 2 is to

increase this cap. But, in fact, one may also be able to control the dispersion. The policy could

benchmark hospitals against similar peers to decrease the average dispersion. We revisit this policy

recommendation in Section 6.3.

We conclude this section by re-visiting the divergence throughput λ
dh
ij which, recall, we assume

to be 0 for our derivation of the SPE and SNPE bounds. The dynamics of the two-hospital game

with positive divergence help explain why setting λ
dh
ij to 0 may be in fact valid in a game with

many players. To this end, assume that dh > 0 so that λ
dh
ij > 0. Then (see Section 2.1),

λ
dh
1 =

r2dh
1− r2

λa2 =
r2dh

1− r2

(λE2 +λ
dh
2 ) and λ

dh
2 =

r1dh
1− r1

(λE1 +λ
dh
1 ),

where λEi , i ∈ {1,2} is the exogenous arrival rate to hospital i. It turns out that there is still one

unique Pareto-dominant pure-strategy equilibrium.

The intuition is as follows: With the positive divergence, Hospital 1’s action can possibly change

Hospital 2’s payoff (by reducing the number of diverted patients), and vice versa. However, the

effect of Hospital i’s action on its own payoff remains the same after introducing the positive diver-

gent throughput. In other words, a strategy set that does not have profitable unilateral deviation in
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the original (no-divergence) game cannot have profitable unilateral deviation when there is positive

divergence throughput. This shows that any equilibrium in the original game remains an equilib-

rium in this new setting. Moreover, any strategy set that has a profitable unilateral deviation in the

original setting also has a profitable unilateral deviation with the positive divergent throughput.

Therefore, the set of equilibria do not change when we consider positive divergence throughput. In

other words, our model is robust towards the simplifying assumption that λ
dh
ij ≡ 0.

In Appendix B, we also study a three-hospital game. The three-hospital game has a multiplicity

of Pareto-efficient equilibria but we are, nevertheless, able to compute all pure-strategy Pareto-

efficient equilibria in the three-hospital game. This serves to compare SNPE and NPE hospitals in

equilibrium—a measure of the quality of the bounds—and to verify the robustness of the trade-off

in Figure 4 to the multiplicity of equilbria.

4.3. Multi-year game

We next consider an n-period game where, at each stage, hospitals play the one-stage game

described in the previous section. This represents the scenario where hospitals may update their

readmission rates at each period. Allowing hospitals to make readmission reduction decisions every

period, and allowing CMS to change the penalty every period (as is planned for 2014 and 2015),

allows us to calibrate our model with real data and make predictions about the long-run impact

of HRRP.

Let P l
cap denote the cap in the lth period. Let Pmax

cap = maxl=1,...,nP
l
cap be the maximum penalty

cap in the time horizon. Our concept of equilibrium is sub-game perfect Nash Equilibrium. Since

there is no unique Nash Equilibrium in the single-stage game, the uniqueness of a Nash equilibrium

is not guaranteed in the multi-stage game and we turn, as before, to bounds.

A hospital is SPE if, in some equilibrium and some year, it reduces its readmission with positive

probability. A hospital is SNPE if at any (possibly mixed) equilibrium the probability that it

reduces readmissions during the game is 0. The following allows us to apply the bounds from the

single-stage to the multi-year game.

Proposition 4. The set of SNPE hospitals in a one-year game with Pcap = Pmax
cap is a subset of

the SNPE hospitals in the multi-year game and hence the number of the former is a lower bound

on the number of the latter. Also, the number of SPE hospitals in the one-year game with Pmax
cap is

an upper bound on the number of SPE hospitals in the multi-year game.

5. Simulation and Model Validation

We use hospital data from the Medicare Cost and Hospital Compare datasets for fiscal year 2013

to better understand the drivers of HRRP’s effectiveness and propose model-based predictions.
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In Section 5.1, we describe the datasets. Simulation methods, necessary assumptions, and results

are reported in Section 5.2. We validate our model predictions with actual hospitals’ readmission

reduction efforts in Section 5.3.

5.1. Data

We combine three datasets: First, we construct financial and operational data for 3,408 hospitals

nationwide from Medicare Cost dataset provided by the CMS www.cms.gov. For fiscal year 2013,

this data allows us to compute the fraction of in-patient revenue from Medicare patients; see

Table 1.

Second, the CMS reports the CMS-expected and predicted readmission rates for each hospital

for fiscal year 2013. CMS computes these from the hospitals’ discharge data from July 2008 to June

2011. Out of 3,408 hospitals in the Medicare Cost dataset, 3,304 hospitals have CMS-expected

and predicted readmission rates from fiscal year 2013 to 2015. After matching these two datasets,

the number of hospitals per monitored disease are 2,041, 2,732 and 2,752 for AMI, HF, PN

respectively. The differences in the hospital counts across diseases are due to the selection rule of

HRRP, according to which a hospital with a small number of readmissions in a monitored diseases

is not considered in the penalty evaluation for that disease. The data is summarized in Table 1.

Third, the Affordable Care Act requires CMS to report, per hospital, the top hundred DRGs

with the highest Medicare payments. For each hospital, we compute the fraction of a hospital’s

Medicare revenue generated by each HRRP monitored disease from this dataset.

Statistic N Mean St. Dev. Min Max

Fraction of Revenue from Medicare 3,209 0.170 0.077 0.000 1.000
Fraction of Medicare Revenue from Monitored Diseases 3,317 0.375 0.188 0.000 1.000
Number of AMI Discharges 3,301 149.381 205.410 0 1,652
Predicted Readmission Rate for AMI 2,212 20.031 3.303 10.200 35.800
Expected Readmission Rate for AMI 2,212 19.933 2.377 14.300 30.700
Number of HF Discharges 3,301 354.767 353.426 0 3,667
Predicated Readmission Rate for HF 3,000 24.256 2.609 17.400 34.800
Expected Readmission Rate for HF 3,000 24.206 1.355 19.500 30.600
Number of PN Discharges 3,301 283.560 232.517 0 2,223
Predicated Readmission Rate for PN 3,012 18.222 2.330 11.600 31.000
Expected Readmission Rate for PN 3,012 18.166 1.429 12.800 25.900

Table 1: Summary statistics of hospital-level data

In our model, we assumed that average payment per patient pij depends only on the disease i and

insurance type j since Medicare and Medicaid systems do have a pay-per-case payment structure

based on diagnosis group of patients. Private insurance programs may adopt different payment
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structures where the payment may depend, for example, on the length of stay (pay-per-diem) and

the quality of treatment (pay-per-performance). According to past literature, small perturbation

on readmission rates, and in turn on workload of the system, should not have large effects on

the length of stay. For instance, Freeman et al. (2014) demonstrates that the workload has both

positive direct effects and negative indirect effects on post-birth length of stay in a delivery unit,

and in turn does not have significant effect on length of stay in general. Empirical evidence suggests

that readmission-reduction programs do not increase the length of stay of patients (Hansen et al.

2013).

5.2. Simulation and results

We next apply the bounds developed in Section 4. To numerically compute these bounds, we must

specify process-improvement costs and updating functions:

(1) Process-improvement costs: We assume that

Ch(r,x) =Cv
h(r−x)α +Cs

h

1

r
(18)

where α ∈ [1,2], Cv
h = Πh(0)Cv and Cs

h = Πh(0)Cs. In the simulation we set Cv = Cs = 0.001,

corresponding to a process-improvement cost of 0.1% of the hospital’s revenue from a disease in

return for a 1% reduction in readmissions for that disease. For a hospital with $1 billion in revenue,

this means a process improvement cost of $1 million to reduce readmissions for all diseases by 1%.

We also test the sensitivity to the cost parameters.

(2) Updating functions ~g(·, ·): The hospital’s prediction of the CMS-expected readmission

rate r̄eh1 (see Equation (12)) is computed as the average readmission rates of {rh1, ∀h} weighted

by the number of patients in each hospital. If all H participating hospitals have the same number

of patients, then r̄eh1 is simply 1
H

∑
k rh1.

5.2.1. Multiple-Disease Decentralized Model: For a large teaching hospital like North-

western Memorial Hospital, it is reasonable to assume that readmission reduction decisions are

made “locally” at the disease level and that the hospital only acts by assigning a penalty cap

to each disease so as to meet its overall targets. In this section, we demonstrate how to combine

multiple single-disease models discussed in Section 4 to reflect the aggregate penalty applied across

all monitored diseases in the policy.

Notice first that, per the definition of the policy, each monitored-disease’s excess readmissions

induce penalties on all diseases (monitored or not). Denoting by Πall the total Medicare revenue of

the hospital across all diseases and by Πi the Medicare revenue from disease i, the penalty induced

by excess readmissions in disease i is

Πall×min

(
max

(
rp,i
re,i
− 1,0

)
Πi

Πall

, P i
cap

)



Zhang et al.: Hospital Readmissions Reduction Program: An Economic and Operational Analysis
00(0), pp. 000–000, c© 0000 INFORMS 23

where rp,i and re,i are the predicted and expected readmission rates for disease i and P i
cap is the

cap assigned to disease d by the hospital.

By setting the disease-level caps so that
∑

iP
i
cap = Pcap, the hospital guarantees that

∑
i∈M

Πall×min

(
max

(
rp,i
re,i
− 1,0

)
Πi

Πall

, P i
cap

)
≤ΠallPcap.

In other words, the total penalty across monitored diseases does not exceed the global penalty

cap ΠallPcap. We assume that the hospital assigns the penalty cap proportionally to the relative

Medicare revenue of each disease:

P i
cap = Pcap

Πi∑
j∈MΠj

.

Then the penalty can be re-written as

Πi×min

(
max

(
rp
re
− 1,0

)
, Pcap

(∑
j∈MΠj

Πall

)−1
)
,

which reduces to Equation 7 in our single-disease model. Furthermore, the penalty cap can be

interpreted as saying that disease i has an effective maximum penalty cap,

Pcap

(∑
j∈MΠj

Πall

)−1

.

For example, if Pcap = 3%, a hospital with total Medicare revenue of $1 million will pay at most

$30,000 in penalties. If 20% of its Medicare revenue ($200,000) is attributed to monitored diseases,

the effective penalty cap of monitored diseases is 15% since 15%× 200,000 = 30,000. According to

the latest version of HRRP, the penalty cap is 2% for 2014 and 3% thereafter. For most hospitals

in our data the percentage of Medicare revenue from monitored diseases is between 5% and 40%,

which results in an effective penalty cap that is between 5% and 60%.

If all diseases are monitored (M=D) then the induced penalty of disease i is

Πi×min

(
max

(
rp,i
re,i
− 1,0

)
, Pcap

)
,

so that the effective penalty cap for disease i is simply the policy penalty cap Pcap.

5.2.2. Applying model to data: With this decentralized view, the numerical study reduces

to that of three single-disease models. We vary four parameters in the numerical study (1) the

contribution margin ratio Cm, (2) the product of the readmission adjustment factor and inverse

hospital divergence rate l(1− dh), (3) the cost function parameter α.

Whether a given hospital is SNPE or not does not depend on the parameters of other hospitals.

Thus, assigning the same contribution margin for all hospitals and varying it from 40% to 75%
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generated the same outcomes in terms of SNPE as allowing hospitals to have different contribution

margins within the box [40%,75%]H .

Tables 2, 3 and 4 report the number of SPI, SPE, and SNPE hospitals for a broad set of

parameters. The no-cost column corresponds to Cv = Cs = 0. Otherwise, we set Cv = Cs = 0.001

and use α= 1 for linear cost and α= 2 for convex cost.

No Cost Linear Cost Convex Cost

l× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100 %
40% 15% 81% 4% 22% 71% 7% 29% 62% 9%
75% 44% 28% 28% 46% 22% 32% 48% 19% 33%

80 %
40% 7% 92% 1% 13% 84% 3% 22% 73% 5%
75% 34% 52% 14% 38% 43% 19% 41% 39% 20%

60 %
40% 2% 98% 0% 5% 94% 1% 15% 82% 3%
75% 16% 80% 4% 24% 69% 7% 31% 59% 10%

Table 2: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for disease AMI

No Cost Linear Cost Convex Cost

l× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100 %
40% 22% 73% 5% 26% 67% 7% 32% 60% 8%
75% 45% 30% 25% 47% 24% 29% 50% 21% 29%

80 %
40% 11% 87% 2% 19% 77% 4% 27% 68% 5%
75% 36% 51% 13% 41% 41% 18% 43% 38% 19%

60 %
40% 5% 94% 1% 9% 89% 2% 21% 75% 4%
75% 22% 73% 5% 28% 64% 8% 34% 57% 9%

Table 3: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for disease PN

No Cost Linear Cost Convex Cost

l× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100 %
40% 34% 53% 13% 38% 44% 18% 43% 37% 20%
75% 51% 8% 41% 51% 6% 43% 52% 5% 43%

80 %
40% 24% 70% 6% 30% 60% 10% 36% 51% 13%
75% 44% 27% 29% 47% 19% 34% 49% 16% 35%

60 %
40% 13% 85% 2% 20% 75% 5% 30% 62% 8%
75% 33% 54% 13% 38% 43% 19% 43% 36% 21%

Table 4: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for disease HF
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Tables 2-4 confirm the comparative statistics we found for the single-hospital model in Proposi-

tion 1. First, as the readmission adjustment factor increases, hospitals are more inclined to reduce

their readmissions. Second, as the cost of reducing readmissions increases, the number of SNPE

hospitals dramatically increases. Lastly, the higher the contribution margin ratio, Cm, the larger

the number of SNPE hospitals.

We observe that the number of SNPE hospitals is significant even if there is no cost of reducing

readmissions. In other words, there are more than one hundred hospitals nationwide that are not

incentivized to reduce readmissions even if the cost of reducing readmission is only from the loss of

throughput. If the cost is positive and linear, we find that the number of SNPE hospitals increases

substantially. This shows that the HRRP has limited power in incentivizing worst-performing

hospitals to reduce their readmissions.

There are two characteristics of worst offenders. First, some hospitals may be too far away from

the penalty cap (i.e., too far away in Region (3)) and in turn are not incentivized to reduce.

Second, some hospitals may have very high readmission rates and revenue percentage from Medicare

patients so that reducing readmissions is always costly to them regardless of their positions.

The result is likely to become even worse when the set of monitored diseases is expanding starting

from 2015. We re-examine this issue and propose recommendations to alleviate it when discussing

policy implications in Section 6.

5.3. Model validation

HRRP was signed into law along with the Affordable Care Act on March 20, 2010; see Figure 1.

The first penalty was charged in fiscal year 2013 based on discharge data from July 2008 to July

2011. As the policy was advertised to hospitals in 2010, the first penalties affected by hospital

actions in response to HRRP are those levied in 2015, computed based on discharge data from

July 2010 to July 2013. The estimated 2015 penalties were publicized on April 30, 2014.

Our model and analysis are focused on the SNPE hospitals and we seek to validate our identifi-

cation of these. First, a significant number of hospitals that our model categorizes as SPI (policy

indifferent) did reduce their readmissions. This is not surprising, as reducing readmissions may

bestow other financial benefits on the hospitals besides reducing the penalties such as reputa-

tion effects or the ability to back-fill beds currently occupied by readmissions with higher-margin

patients. These hospitals are, in any case, not the target hospitals for the policy. We are concerned

with the effect of the policy on hospitals that do not have these “exogenous” incentives.

We perform validation study separately for each major states in the U.S. since contribution

margins and divergence rates may differ across states. We define major states as states with more

than 150 hospitals, which includes California, Florida, New York, Pennsylvania, and Texas. We
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State Disease Number of Hospitals Recall Precision
CA AMI 302 0.73 0.77
CA PN 302 0.77 0.62
CA HF 302 0.91 0.57
FL AMI 165 0.86 0.71
FL PN 165 0.83 0.75
FL HF 165 0.95 0.60
NY AMI 159 0.91 0.72
NY PN 159 0.80 0.77
NY HF 159 0.97 0.77
PA AMI 155 0.98 0.77
PA PN 155 0.94 0.67
PA HF 155 1.0 0.66
TX AMI 308 0.85 0.53
TX PN 308 0.91 0.5
TX HF 308 1.0 0.41
Overall AMI 1089 0.85 0.69
Overall PN 1089 0.85 0.63
Overall HF 1089 0.96 0.57

Table 5: Recall and Precision of the identification of SNPE hospitals.

use parameter sets within the parameter space of original simulation to conduct this validation.

Following traditions in the binary classification in machine learning literature (Forman 2003), we

examine our results in two directions: Recall: The probability that a hospital that was penalized

in 2013 and still pays penalty in 2015 is not a SPE hospital (i.e., the proportion of actual positives

which are predicted positive); Precision: The probability that a hospital that is classified as SNPE

hospital does pay penalty in 2015 (i.e., the proportion of predicted positives which are actual

positive).

Table 5 shows that, overall, the recall and precision are around 70%. This shows that the set of

hospitals that paid penalties in 2013 and will still pay penalties by the end of 2015 has roughly 70%

overlap with the set of SNPE hospitals identified by our model. This demonstrates that our model

performs remarkably well in identifying worst offenders within the parameter space we consider.

6. Policy Implication

Through our models and simulation results we have identified multiple drivers of policy effective-

ness. The findings have implications to policy design that we discuss below by relating recommen-

dations to the drivers they are intended to address.

6.1. The set of monitored diseases

In order to incentivize hospitals to reduce readmissions for diseases outside the current set of

monitored conditions, CMS is expanding this set. The diseases COPD and TKA/THA are added
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to the set of monitored diseases already this year (2015). In order to assess the effect of adding

diseases we consider here the extreme scenario that all diseases are monitored. In this case, the

effective maximum penalty cap (see Section 5.2.1) is then equal to the maximum penalty cap Pcap.

Tables 6, 7 and 8 report the results in this case.

No Cost Linear Cost Convex Cost

l× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100 %
40% 48% 25% 27% 49% 21% 30% 48% 22% 30%
75% 51% 8% 41% 50% 7% 43% 50% 8% 42%

80 %
40% 45% 34% 21% 48% 27% 25% 48% 26% 26%
75% 50% 15% 35% 50% 13% 37% 50% 14% 36%

60 %
40% 38% 50% 12% 44% 36% 20% 46% 32% 22%
75% 49% 24% 27% 50% 19% 31% 50% 20% 30%

Table 6: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for disease AMI

No Cost Linear Cost Convex Cost

l× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100 %
40% 50% 26% 24% 50% 23% 27% 50% 23% 27%
75% 52% 10% 38% 53% 8% 39% 52% 9% 39%

80 %
40% 47% 35% 18% 50% 27% 23% 50% 27% 23%
75% 53% 16% 31% 52% 14% 34% 52% 15% 33%

60 %
40% 37% 53% 10% 46% 37% 17% 48% 33% 19%
75% 50% 25% 25% 52% 20% 28% 50% 22% 28%

Table 7: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for disease PN

No Cost Linear Cost Convex Cost

l× (1− dh) Contribution Margin SPI SPE SNPE SPI SPE SNPE SPI SPE SNPE

100 %
40% 50% 18% 32% 51% 14% 35% 51% 15% 34%
75% 52% 3% 45% 51% 3% 46% 51% 3% 46%

80 %
40% 47% 28% 25% 49% 22% 29% 49% 22% 29%
75% 51% 8% 41% 51% 6% 43% 51% 7% 42%

60 %
40% 43% 40% 17% 47% 30% 23% 48% 28% 24%
75% 51% 18% 31% 52% 13% 35% 51% 15% 34%

Table 8: Number of strongly program-indifferent (SPI), strongly program-effective (SPE) and
strongly non-program effective (SNPE) hospitals for different parameters for disease HF
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As the set of monitored diseases is expanded, the effective penalty cap per disease decreases,

weakening the incentive to reduce readmissions as more hospitals now fall in region (3) of Figure 3

and are SNPE. Moreover, since the cap will be more frequently binding with the expanded set of

monitored diseases, the effects of other drivers, e.g., dispersion in readmissions are magnified. This

means that as more diseases are added, more fine-tuning of the policy (and hospital) parameters

becomes imperative. Since CMS is constantly expanding its set of monitored diseases and the effect

of other drives becomes more pronounced when the set of monitored diseases expands, we take the

view that all diseases are monitored for the remainder of this section.

Implication: CMS plans to continue expanding the set of monitored diseases (MedPAC 2013).

We show that increasing the number of monitored diseases may have the unintended consequence of

making the effective penalty cap smaller for monitored diseases, which may increase the number of

SNPE hospitals. Hence, CMS should carefully increase the maximum penalty cap when it expands

the set of monitored diseases.

6.2. Readmission dispersion

Recall (see Section 4.2) that to achieve a certain percentage of SNPE hospitals, the higher the read-

mission dispersion, the higher the penalty cap must be. This suggests that the policy may be more

effective if hospitals are benchmarked against similar peers. To the extent that geographic prox-

imity implies similar readmission rates, local benchmarking may provide a mechanism to increase

the effectiveness of the policy.

To examine this, we study the dispersion at the Hospital Referral Region (HRR) level vs. the

nationwide. A past study (Zhang et al. 2010) has shown hat hospitals within the same HRR

have similar performance in various measures of quality of care. Therefore, we hypothesize that

benchmarking hospitals in the HRR level will result in a smaller readmission dispersion.

We cannot rerun the hierarchical logistic regression to estimate the HRR-level fixed effect since

this requires the patient-level data for all hospitals from CMS. Instead, we compute each hospital’s

HRR-level expected readmission rate as its national expected readmission rate multiplied by a

HRR correction factor, which represents the ratio of average hospitals’ performance in the nation

and in the HRR. We calculate the correction factor for each disease and each HRR as the weighted

average predicted readmission rate for hospitals in that HRR divided by the weighted average

predicated rate for hospitals in the nation. We merge an HRR with less than 5 hospitals to an

adjacent HRR.

With the new HRR-level expected readmission rates for each hospital, we re-compute the set of

SNPE hospitals for each HRR. Table 9 shows the percentage of hospitals that are SNPE under the

baseline parameter for both the nationwide benchmark and the HRR-wise benchmark. Indeed, we
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AMI PN HF
Percentage of SNPE hospitals (Nationwide and 3 monitored disease) 4% 5% 13%
Percentage of SNPE hospitals (HRR-wise and 3 monitored disease) 1% 2% 9%
Percentage of SNPE hospitals (Nationwide and all disease monitored) 27% 24% 32%
Percentage of SNPE hospitals (HRR-wise and all disease monitored) 17% 21% 26%

Table 9: Fraction of hospitals that are SNPE under different comparison policies (Cm = 0.4, l ×
(1− dh) = 100% and Cv =Cs = 0).

decreased the number of SNPE hospitals by 75%, 60%, and 31% for AMI, PN, and HF respectively

by comparing hospitals HRR-wise.

Recall that benchmarking has a positive effect: it increases the number of PE hospitals by incen-

tivizing PI hospitals in the single-hospital model to reduce their readmissions. It has, however, also

a negative consequence: it increases the number of SNPE hospitals. The alternative local bench-

marking mechanism offered above retains the positive effect while minimizing the negative effect

by reducing the number of worst offenders. Moreover, in using local instead of national bench-

marking, this alternative mechanism alleviates unfairness concerns raised about HRRP such as the

possibility of over-penalizing hospitals in geographic regions with low socioeconomic population.67

Implication: CMS is considering to benchmark hospitals against similar peers to reduce the

unfairness created by not adjusting for socioeconomic status (MedPAC 2013). We show that local

benchmarking has other important benefits: it may decrease the number of NPE hospitals, and in

turn increase the effectiveness of the policy.

6.3. Penalty cap and Process-improvement costs

There are two important metrics that affect the incentives of all hospitals nationwide: the penalty

cap and the cost of reducing readmissions.

Penalty Cap: HRRP is less effective on SNPE hospitals—those that have initial readmission

rates that are significantly greater than their CMS-expected readmission rates. The greater the

distance, the lower the financial incentive for a hospital to reduce readmissions. The penalty cap

protects these hospitals from paying excessive penalties. A possible remedy is to increase the

penalty cap. To assess the effectiveness of such action, we simulate our model with base parameters

(Cm = 0.4, l= dh = 0% and Cv =Cs = 0) and varying the maximum penalty cap between 3% and

100%.

Figure 5 displays the percentage change in the number of SNPE hospitals as we increase the

penalty cap for each of the three monitored diseases. Most of the reduction in the number of SNPE

6 http://www.manchin.senate.gov/public/index.cfm/press-releases?ID=e43f6f51-bee5-4be0-9c77-9d1096a121ff

7 http://www.charlestondailymail.com/article/20140620/DM0104/140629951
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Figure 5: Equilibrium Behavior of Hospitals under Different Maximum Penalty Caps (α= 1, Cv =
0.01, l= 0.8, dh = 0.15, Cm = 40%)

hospitals is achieved by increasing the cap to 10% for all three diseases. The effect diminishes as

the maximum penalty cap increases.

Moreover, we observe that cap-increase has a differential effect on diseases. Increasing the max-

imum penalty cap from 3% to 10%, reduces by 80% the number of SNPE hospitals for AMI and

PN, but only by 50% for HF. The main driver here is there are many hospitals that are much less

incentivized to reduce for HF compared to AMI and PN. For instance, among the SNPE hospitals

when the max penalty is 3%, there are 20% hospitals which are at least 3 percent away from their

target, while only 14% and 17% such hospitals exist for PN and AMI. Moreover, there are 41%

hospitals among SNPE hospitals for HF having percentage of revenue from Medicare patients less

than 15%, while AMI and HF only have 29% and 36% such hospitals respectively among their

SNPE hospitals.

Process-improvement costs: As CMS notes, the major goal of designing the policy is that the

penalty for not meeting reduction targets exceeds than the incremental cost of reducing readmis-

sions and the lost marginal profit from those readmissions (MedPAC 2013). Therefore, the costlier

the process-improvement required to reduce readmissions, the less incentivized are hospitals to

reduce these. To obtain more refined insights, we re-visit the linear cost case but vary the cost

coefficient Cv (it was set to 0.001 in Section 5). Figure 6 demonstrates the percentage of SNPE

hospitals for each disease as a function of changes to the cost parameter relative to the base cost

of Cv = 0.001.

Making the readmissions-reduction costless reduces the number of SNPE hospitals by 10%, 11%,

and 8% for AMI, PN, HF respectively. Similarly, diseases benefit differently from reducing process-
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improvement costs depending on the number of hospitals that are close to the boundary between PE

and NPE regions. The more such hospitals, the more benefit there will be to reductions in process

improvement costs. Facing a decision between investments in readmission reduction toolboxes (such

as Boost, see Hansen et al. (2013)) the government may want to selectively target diseases.

Figure 6: Equilibrium Behavior of Hospitals under Different Variable Costs (α = 1, Pcap = 0.03,
l= 0.8, dh = 0.15, Cm = 40%)

Implication: We show that increasing the penalty or reducing process-improvement costs is

helpful in incentivizing more hospitals to reduce readmissions. However, different diseases benefit

differently. The diseases which have fewer hospitals that are close to the PE-NPE boundary would

benefit the most.

6.4. Hospital characteristics

First, HRRP has relatively greater influence on hospitals that have higher divergence probability.

Under base parameters, the number of SNPE hospitals will decrease by 75%, 60%, and 50% for

AMI, PN, and HF respectively if the divergent probability increases from 0% to 20%. Hospitals with

higher divergence rates are typically located at more developed and dense urban areas. Residents

of these areas already have access to more hospitals and better healthcare relative to patients in

the rural areas. HRRP may then magnify the health-care-access gap as hospitals in rural areas will

be less incentivized to reduce readmissions.

Second, the policy is less effective for hospitals with a low fraction of Medicare revenue. This

limitation is inherent to the government payment system, and may be difficult to change. One

could, however, utilize the penalties collected to reward hospitals with good performance. Absolute
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rewards (rather than those proportional to the revenue of a hospital from Medicare patients) may

increase the effect that HRRP has on these hospitals.

Third, hospitals with higher contribution margin ratios are less likely to reduce readmissions in

response to HRRP. Therefore, payment programs that lower the contribution margin ratio of worst

offenders would give those hospitals higher incentives to reduce readmissions, and in turn make

the policy more effective. Since those hospitals which have higher readmission rates tend to have

low quality of care, pay-for-performance programs can effectively achieves this.

Implication: Hospitals with lower divergence probability, low fraction of Medicare revenue, or

higher contribution margin ratio are less likely to be incentivized by HRRP.

7. Concluding Remarks

October 1, 2012 marked the nationwide initiation of the Hospital Readmissions Reduction Pro-

gram (HRRP), an effort by the Centers for Medicare and Medicaid Services (CMS) to reduce the

frequency of re-hospitalization of Medicare patients. According to CMS, approximately two thirds

of U.S. hospitals incur penalties of up to 1% of their reimbursement for Medicare patients, adding

up to $300 million, with an average $125,000 penalty per hospital in 2013.

The success of HRRP may be affected by various issues. In this paper we take the view that

hospitals are operating-margin maximizers. We show that, while competition among hospitals

introduced by HRRP often encourages more hospitals to reduce readmissions, it can only increase

the number of non-incentivized hospitals, which are hospitals that prefer paying penalties over

reducing readmissions in any equilibrium. Moreover, the unintended consequences of competition

are likely to become worse as CMS follows its plan to expand the set of monitored diseases (MedPAC

2013). We propose to localize the benchmarking process in order to mitigate the negative effect of

competition.

Predicting the effectiveness of policy regulations on individual decision makers is challenging.

With time, however, data will become available documenting actual hospital actions in response

to HRRP. Once such data is available we hope that our model can serve as a starting point for

estimating readmission reduction costs, hospitals incentives towards readmission reduction, and

other factors that affect the policy outcomes. Moreover, HRRP’s benchmarking is not unique

among health care policies. Recently, CMS introduced the Bundled Payments for Care Improvement

(BPCI) initiative in which parameters are also set through benchmarking against peers.8 We hope

that our findings (and our approach to the policy analysis) can be applied to evaluate these

programs and to minimize the unintended consequences introduced by competition.

8 http://innovation.cms.gov/initiatives/bundled-payments/
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A. CMS’s Estimation of readmission rates

CMS computes rh and reh for every hospital using patient level discharge and readmission data as follows:

Let Yilk be a binary variable indicating whether discharge l of disease i in hospital k is associated with

a readmission (either to the same hospital or to another hospital). For each discharge CMS collects the

corresponding patient case covariates, denoted by Zilk for discharge l in disease i and hospital k. The logistic

hierarchical generalized linear model is used to estimate the average and individual-hospital intercepts to

predict the readmission probability for each discharge:

log(P (Yilk = 1)) = αik +β′iZijk

αik = µi +ωik ωk ∈N(0, τ2)
(19)

where, for each disease i, αik is the hospital-level intercept for hospital k, µi is the average intercept, and βi

is the coefficient of case mix covariates.

With hospital-level and average intercepts as well as the coefficient of case mix covariates, CMS calculates

the risk-adjusted predicted and the expected readmission rate for each hospital k by taking the average of

the predicted readmission probabilities for all discharges of that hospital:

reik =
1

Nki

Nki∑
j=1

1

1 + e−µi−βiZilk

rpik =
1

Nki

Nki∑
j=1

1

1 + e−αik−βiZilk

(20)

where Nki is the number of Medicare discharge cases with disease i in hospital k.

B. Three-hospital Game

We consider a symmetric three-hospital model. In contrast to the two-hospital game, there may be here

multiple pure strategy equilibria. Suppose, for example, that ~r = (0.2,0.24,0.24). Then, we have the two

pure-strategy equilibria. The first (0.2,0.22,0.24)), i.e., hospital 2 reduces to re = 0.22, while hospital 3 does

not reduce. The second is (0.2,0.24,0.22), i.e, hospital 2 does not reduce, but hospital 3 reduces to re = 0.22.

To compute all pure-strategy equilibria in the game, we design a tatonnement algorithm (Cheng and

Wellman 1998). In principle, we search through all sequences of best-response plays. The number of possible

sequences of best responses exponentially increases since each period there are two possible outcomes (i.e.,

either Hospital 2 plays first or Hospital 3 plays first). However, for 3 hospitals, we can use branch-and-cut

techniques (Padberg and Rinaldi 1991) to avoid searching through certain sequences and reduce the execution

time.

Figure 7 displays the results of a numerical study based on this algorithm. We vary the readmission

dispersion a. For each value of a, we draw 100 random samples ((x1(n), x2(n), x3(n));n = 1, . . . ,100) from

three independent uniform [0,1] random variables. The initial readmission vector in the nth simulation is

set to [0.2 + a ∗ x1(n),0.2 + a ∗ x2(n),0.2 + a ∗ x3(n)]. For each realization we compute the average (across

pure-strategy equilibria) number of NPE hospitals, and the average number of SNPE hospitals. We then

average these across the 100 realizations.

Since the number of SNPE hospitals is a lower bound on the number of NPE hospitals the blue curve

should indeed be above the green curve. The average number of SNPE hospitals is relatively close to the
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Figure 7: Number of SNPE Hospitals v.s. Number of NPE Hospitals (3-Hospital Model)

average expected number of NPE hospitals in all cases supporting the use of SNPE hospitals to evaluate the

policy effectiveness.

Next we vary both Pcap and the readmission dispersion. Given a readmission dispersion x and Pcap, we

generate the 100 readmission vectors ~r0 = [0.2− 2x,0.2 + u ∗ x,0.2 + (1− u) ∗ x] where u is drawn from a

uniform distribution on [0,1]. For each realization we compute the average number (across equilibria) of

SNPE hospitals and the average number of NPE hospitals. We then average across realizations to obtain a

point for each pair (x,Pcap).

Figure 8 displays the results for three value different maximum penalty caps. We see, again, that to achieve

to target a given average number of NPE hospitals, the penalty cap has to be increased as the dispersion

increases.

C. Disease-level divergence

For the clarity and simplicity of our model, we assume that the readmission divergence probability between

different diseases is 0. In practice, disease-level divergence is quite common. As Jencks et al. (2009) suggests,

more than half of the patients are readmitted with different diseases for the three monitored diseases. In this

section, we propose a two-disease model and investigate, under what conditions, our bound on the number

of NPE hospitals remains valid.

There is a single hospital h with two diseases: disease 1 and disease 2. Disease 1 is the only monitored

disease under HRRP with exogenous arrival rate λ1. The original readmission rate of disease 1 is r0, and

the expected readmission rate for disease 1 is re. The average payments of one admission of disease 1 and 2

are p1 and p2 respectively. The disease-level divergence rate from d1 to d2 is denoted as dd. Without loss of

generosity, suppose that the contribution margin ratio is 100%, and the percentage of revenue from Medicare

patients is 100%.



Zhang et al.: Hospital Readmissions Reduction Program: An Economic and Operational Analysis
38 00(0), pp. 000–000, c© 0000 INFORMS

Figure 8

If dd = 0, the operating margin of the hospital for readmission r1 of disease 1 is:

R0(r0, r1, r
e) = p1

λ1

1− r1

(
1−min

(
max

(r1
re
− 1,0

)
, Pcap

))
−C(r0, r1)

.

If dd > 0, the operating margin of the hospital for readmission r1 of disease 1 is:

R1(r0, r1, r
e) = p1

λ1

1− (1− dd)r1

(
1−min

(
max

(r1
re
− 1,0

)
, Pcap

))
−C(r0, r1) + p2

λ1dd
1− (1− dd)r1

.

Obviously, if p1 ≈ p2 and dd > 0, the contribution from each readmission remains the same, while the

penalty becomes less. Suppose that p1 ≈ p2, a hospital which does not reduce readmissions when dd = 0, will

not reduce readmissions if dd > 0.

Jencks et al. (2009) carefully examines the readmissions of more than 2.9 million patients and conclude

that the average payment index, for the three monitored diseases, is 1.41 while it is 1.35 for the 30-day

readmissions of the monitored diseases. Their analysis also suggests that the average length of stay for 30-day

readmission (of the monitored disease) is 0.6 (13.2%) days longer. Combining these two observations, it is

evident that the average payments of each initial admission and its 30-day readmission are comparable. In

other words, p1 ≈ p2. Therefore, our characterization of SNPE hospitals remain valid when we incorporate the

disease-level divergence. Hence, our implications based on SNPE hospitals are robust towards the assumption

that the disease-level divergence is 0.

D. Proof of Proposition 1

Recall the maximization problem in Equation 8:

x∗ = arg max
x≤r

R(r,x, re) = arg max
x≤r

Πh(r)(1−Ph(x, re))−C(r,x) (21)
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where Πh(x), Ph(x, re), and C(r,x) are defined as:

Πh(x) = Πh(0)
1

1−x
,

Ph(x, re) =
φmed
Cm

min(max(
x

re
− 1,0), Pcap),

C(r,x) =Cv(r
α−xα).

Notice that Π′h(x) =− 1
(1−x)2 > 0 and that, by assumption, C ′(r,x)< 0, and Ph(x, re) = 0. This means that

a hospital’s revenue is an increasing function of its readmission rate for values less than re. Therefore, the

hospital’s optimal solution in this region is re.

Let

xm = inf{x : Ph(x, re) = Pcap}.

If r > xm, for x ∈ [xm, r], R(r,x, re) is strictly increasing in x, and C(r,x) is decreasing in x. Therefore, the

optimal readmission rate in the region [xm, r] is r. Finally, for x∈ [re, xm]:

R′(r,x, re) =
Cm

(1−x)2
Πh(0)

[
Pmed

Cm
(1− re)− re
re

]
− dC(r,x)

dx
. (22)

Since, by assumption, dC(r,x)

dx
< 0 then dR(r,x,re)

dx
> 0 ∀x ∈ [re, xm], if Pmed

Cm
> re

1−re
, so that the optimal choice

is xm. If, on the other hand, Pmed

Cm
< re

1−re
, then since | dC

2(r,x)

dx2
| ≤ 1

(1−x)3 ∀x ∈ (0,1), it must be the case that

dR(r,x,re)

dx
has the same sign ∀x∈ (re, xm). Therefore, the optimal choice must be between re and xm.

We have proved, then, that for all values x of initial readmissions, a hospital’s optimal decision is either

to reduce to the expected readmission rate re or to remain at the current readmission rate x. �

E. Proof of Corollary 1

By Equation (11), f(rh0, r
e
h) is defined as:

R(f(rh0, r
e
h), reh, r

e
h) =R(f(rh0, r

e
h), f(rh0, r

e
h), reh), (23)

or equivalently,

ΠP
h (re)−ΠP

h (f(rh0, r
e
h)) +Ph(f(rh0, r

e
h), re)−C(f(rh0, r

e
h), re) = 0 (24)

Recall that Ph(x, re) = φmed

Cm
min(max( x

re
−1,0), Pcap). Thus, as φmed increases, Ph(f(rh0, r

e
h), re) increases.

In turn, Equation (24) guarantees that f(rh0, r
e
h) must increase (for a fixed reh). Similarly, if dh increases or

l decreases, ΠP
h (re)−ΠP

h (f(rh0, r
e
h)) +Ph(f(rh0, r

e
h), re) increases, and f(rh0, r

e
h) increases for a fixed reh.

If Cm increases, ΠP
h (re)−ΠP

h (f(rh0, r
e
h)) decreases. Therefore, Ph(f(rh0, r

e
h), re)−C(f(rh0, r

e
h), re) increases,

which means–using again (24)–that f(rh0, r
e
h) decreases for a fixed reh. Finally, if there are two cost functions

C(·, · · · ) and C̃(·, · · · ) such that C̃(x, r)≥C(x, r) for all x, r then, ΠP
h (re)−ΠP

h (f(rh0, r
e
h))+Ph(f(rh0, r

e
h), re)

is higher when the cost function is C̃ relative C which implies, in particular, that f(rh0, r
e
h) decreases for a

fixed reh. �
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F. Proof of Lemma 1

Notice that the payoff function described in Equation 8, is continuous in the hospital’s readmission rate

except at rh0, when there is a fixed cost to implement readmission reduction programs. Moreover, the strategy

set for each hospital [0, rh0] is convex. According to a variant of Glicksberg’s Theorem (Dasgupta and Maskin

1986), this game has at least one Nash Equilibrium in mixed strategies.

For counter examples we use the updating function where r̄eh1 is the average readmission rates of {rh1, ∀h}
weighted by the number of patients in each hospital. If all H hospitals have the same number of patients,

reh1 reduces to 1
H

∑
k
rh1. We denote this updating mechanism by r̄eh1 = g(~r1), where ~r1 = {r11, r21, ..., rH1}.

The first example shows that the game may not have pure-strategy Nash Equilibria:

There are 3 hospitals with initial readmission rates ~r0 = {0.24,0.244,0.249}. Assume that all hospitals

have all revenue from Medicare patients (∀h ∈ {1,2,3}, Pmed,h = 1). Also assume that there is no cost to

reduce readmissions (α= 0), and the maximum penalty is 1% (Pcap = 1%). Let the updating mechanism be

g1(~r0), with all hospitals having same number of patients. In order words, g(~r0) = (r01 + r02 + r03)/3.

By Proposition 1, each hospital chooses between reducing to the average (g(~r0)) or remaining at current

readmission rates (rh0). Therefore, we only have four candidates for pure-strategy Nash Equilibria: (1)

hospital 2 does not reduce, and hospital 3 reduces: {0.24,0.244,0.242}, (2) both hospitals 2 and 3 reduce:

{0.24,0.24,0.24}, (3) neither hospital 2 nor hospital 3 reduce: {0.24,0.244,0.249}. In (1), hospital 2 is better

off reducing to 0.241, indicating that (1) is not an equilibrium. In (2), hospital 3 is better off staying at

0.249. In (3), hospital 3 increases its revenue by reducing to the average (expected) readmission rate 0.242.

Therefore, there is no pure-strategy Nash Equilibrium in the game described above.

The following example shows that there may be multiple pure-strategy Nash equilibria:

Consider the same game but with ~r0 = {0.2,0.24,0.24}. There are four candidate pure-strategy Nash

Equilibria: (1) hospital 2 does not reduce, and hospital 3 reduces: {0.2,0.22,0.24}, (2) hospital 2 reduces

while hospital 3 does not reduce: {0.2,0.24,0.22}, (3) both hospitals 2 and 3 reduce: {0.2,0.2,0.2}, (4) neither

hospital 2 nor hospital 3 reduce: {0.2,0.24,0.24}. Using Equation 8 it is easily verified that both (1) and (2)

are pure-strategy Nash Equilibria. �

G. Proof of Proposition 2

By definition, a hospital h is SNPE hospital if

rh0 > fh(rh0, gh(~r0, r
e
h0)). (25)

By the definition of fh(rh0, gh(~r0, r
e
h0)) (see Equation 11), fh(rh0, gh(~r0, r

e
h0))> reh0. Thus, in particular, rh0 >

fh(rh0, gh(~r0, r
e
h0))> reh0 indicating that SNPE hospitals have readmissions that exceed their CMS-expected

rates and hence pay penalties.

By Equation 11, fh(x, y) is increasing in y. By the monotonicity of gh gh(~r′, reh0)≥ gh(~r, reh0) if ~r′ ≥ ~r for

i= {1,2, ...,H}. Moreover, since hospital h’s strategy set is [0, rh0], it must be that, at any equilibrium of the

game, the equilibrium readmission vector is less than or equal to the initial readmission vector, i.e., ~r1 ≤ ~r0.

Therefore, given any equilibrium π and a readmission vector ~rπ1 that has a positive probability under π,

we have

h∈ SNPE => rh0 > fh(rh0, gh(~r0, ~re0))≥ fh(rh0, gh( ~rπ1, ~re0)) (26)
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Therefore, for SNPE hospitals reducing readmissions is a strictly dominated strategy, and they do not reduce

readmission at any equilibrium, i.e.,

∀π, ∀h∈ SNPE, πh(rh0) = 1. (27)

�

H. Proof of Proposition 3

In step 2 of the algorithm, rh,n 6= rh,n−1 if rh,n−1 > gh(~rn−1, r
e
h,n−1) and h 6∈ SNPE. This means that if

h ∈ SNPE, rh,n = rh,n−1 ∀n. Therefore, by construction, the set of SNPE hospitals and the set of SPE

hospitals are mutually exclusive.

To show that the number of SPE hospitals is an upper bound on the number of hospitals that reduce

readmissions in some equilibrium with positive probability, let us consider the readmission vector ~rN , that

the algorithm generates. By Proposition 3, at any equilibrium π SNPE hospitals do not reduce readmissions.

Fix one such equilibrium π. Then any hospital h that reduces readmissions in this equilibrium must satisfy:

h 6∈ SNPE, and rh0 > gh( ~rπ, ~re0).

By the assumed monotonicity of gh, if we could show that ~rN ≤ ~rπ for all equilibrium π, then we would

in particular have that a hospital h with rh0 > gh( ~rπ, r
e
h0) also has rh0 > gh( ~rN , r

e
h0). In turn, the number of

hospitals that reduce readmissions in some equilibrium is bounded by the number of SPE hospitals generated

by the algorithm.

It remains then to prove that ~rN ≤ ~rπ for any equilibrium π. Suppose, to reach a contradiction, that

∃π s.t. ~rN > ~rπ. Then there must exist h such that rh,N > rh,π and rh0 > gh( ~rN , r
e
h0). Indeed, we claim that

if every hospital that has rh,N > rh,π also has rh0 ≤ gh( ~rN , r
e
h0) then rπ could not be an equilibrium.

To see this let H be the set of hospitals with rh,N > rh,π. Assume that ∀h ∈ H, rh0 ≤ gh( ~rN , r
e
h0). Since

rN > rπ, rh0 ≥ gh( ~rπ, r
e
h0) ∀h∈H. So it must be that

∑
h∈H rh0− gh( ~rπ, r

e
h0)>

∑
h∈H gh( ~rN , r

e
h0)− gh( ~rπ, r

e
h0),

which is a contradiction to the assumption that rh0 ≤ gh( ~rN , r
e
h0) for all h∈H.

Pick then h that has rh,N > rh,π and rh0 > gh( ~rN , r
e
h0). By the termination condition of the algorithm, no

hospitals (in particular h) have incentive to reduce and hence

rh0 6∈ [gh( ~rN , r
e
h0), f(rh0, gh( ~rT , ~re0))] (28)

with f(rh0, gh( ~rN , r
e
h0)) defined in Equation 11. Since f(rh0, gh(~r, reh0)) is increasing in gh(~r, reh0), we have:

~rN ≥ ~rπ => gh( ~rN , r
e
h0)≥ gh( ~rπ, r

e
h0) => f(rh0, gh( ~rN , ~re0))≥ f(rh0, gh( ~rπ, ~re0)) (29)

Therefore,

rh0 > f(rh0, gh( ~rN , ~re0)) => rh0 > f(rh0, gh(~rπ, ~re0)) => rh0 6∈ [gh( ~rπ, ~re0), f(rh0, gh( ~rπ, ~re0))]. (30)

Hence it is not optimal for the hospital h to reduce its readmissions. We reach a contradiction to the

assumption that ~rN > ~rπ. �
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I. Proof of Proposition 4

We first prove that the set of SNPE hospitals in the single-year game where Pcap = Pmax
cap is a lower bound

on the number of NPE hospitals in the multi-year game. We rewrite equation 8 as:

R(Pcap, rh0, rh, r
e
h) = ΠP

h (rh)−Ph(rh, r
e
h, Pcap)−C(rh0, rh), (31)

where Ph(rh, r
e
h, Pcap) is the penalty under Pcap. By construction, the penalty function Ph(r, reh, Pcap) is

increasing in Pcap. Therefore, if r1 > r2 ≥ reh and P 1
cap >P

2
cap:

R(P 1
cap, rh0, r1, r

e
h)−R(P 1

cap, rh0, r2, r
e
h)> 0 =>R(P 2

cap, rh0, r1, r
e
h)−R(P 2

cap, rh0, r2, r
e
h)> 0 (32)

In other words, R(Pcap, rh0, r, r
e
h) is super-modular in (Pcap, r).

Denote the set of SNPE hospitals under Pmax
cap as SNPEmax. Suppose that there exists a Sub-game Perfect

Nash Equilibrium (SGPNE) π in the game (with the readmission vector, in the last period, given by rTh,π). Let

h be a hospital with h∈ SNPEmax and rTh,π < rh0. Since h is an SNPEmax hospital, it holds, in particular,

that

R(Pmax
cap , rh0, rh0, gh(rTh,π, r

e
h0))>R(Pmax

cap , rh0, r, gh(rTh,π, r
e
h0)) ∀r < rh0, (33)

which implies, by the argued supermodularity, that for all Pcap <P
max
cap ,

R(Pcap, rh0, rh0, gh(rh,π, r
e
h0))>R(Pcap, rh0, r, gh(rh,π, r

e
h0)) ∀r < rh0. (34)

Moreover, R(P 1
cap, rh0, r1, r

e
h)−R(P 1

cap, x, r1, r
e
h)> 0 if x< rh0 since the action set under x ([0, x]) is a subset

of the action set under rh0 ([0, rh0]). Therefore, with ~rπ
t being the readmission vector at the end of stage t,

the total operating margin of hospital h in this sub-game perfect Nash Equilibrium (SGPNE) is less than

the total operating margin collected under the no-action strategy:

T∑
t=1

R(P t
cap, r

t−1
h,π , r

t
π, gh(rtπ, r

e
h0))<

T∑
t=1

R(P t
cap, rh0, r

t
π, gh(rtπ, r

e
h0))

<

T∑
t=1

R(P t
cap, rh0, rh,0, gh(rtπ, r

e
h0)).

(35)

The first inequality above follows from the restriction to reductions in readmissions (rtπ ≤ rh0 ∀t). This then

shows that hospital h’s no-action strategy is optimal, and in turn the SGPNE is not a valid equilibrium.

We next prove that the set of SPE hospitals under the maximum penalty cap is an upper bound on the

number of hospitals that reduce readmissions relative to rh0 in any equilibrium of the multi-year game.

Following our strategy in the proof of Proposition 4, we must prove that for any SGPNE π, and at any

period t, ~rπ
t ≥ ~rN as generated by the algorithm with Pcap = Pmax

cap . Since rtπ is monotone decreasing in t

(because readmissions can only be decreased), it suffices to show that rπ = rTπ ≥ ~rN (where N is the terminal

step of the algorithm). We can restrict attention to non-SNPE hospitals since we have shown above that the

SNPE hospitals do not reduce readmission in any equilibrium π.

Suppose that there exists an equilibrium π such that ~rTπ < ~rN , then ∃h such that rh,N > ~rTh,π and, in

particular, rh0 > gh( ~rN , r
e
h0). The initial condition of stage T is rT−1h,π . If we can now show that rT−1h,π 6∈
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[ ~rN , f(rh0, gh( ~rN , r
e
h0))] (which is the analogue of Equation 28) then we can follow the proof in Proposition

4 to reach a contradiction.

To prove that rT−1h,π 6∈ [gh( ~rN , r
e
h0), f(rh0, gh( ~rN , r

e
h0))] we use induction. For n= 1, this relationship holds

trivially since (recall) R(Pcap, rh0, r, r
e
h) is super-modular in (Pcap, r). Now, let us assume this relation holds

for all k≤ T −1 and show it prove that rTh,π 6∈ [gh( ~rN , r
e
h0), f(rh0, gh( ~rN , r

e
h0))]. If this were not the case then:

rth,π = gh( ~rπ
t, reh0)< f(rh0, gh( ~rN , r

e
h0)) (36)

Since rT−1h,π 6∈ [gh( ~rN , r
e
h0), f(rh0, gh( ~rN , r

e
h0))], there exist a set of hospitals, H, such that each h in this set

has rT−1h,π > f(rh0, gh( ~rN , r
e
h0)), and reduce readmissions to to gh( ~rπ

T , reh0) in equilibrium. By definition, both

g1(~r, reh0) and g2(~r, reh0) are contraction mapping of ~r component-wise, in other words:

|gh(~r, reh0))− gh(~r′, reh0))|< |r− r′| (37)

we know that
∑

h∈H (rth,π − rt−1h,π ) >
∑

h∈H [gh( ~rπ
t, reh0)− gh( ~rπ

t−1, reh0)]. However, based on the optimal-

ity condition of the game,
∑

h∈H r
t
h,π =

∑
h∈H gh( ~rπ

t, reh0). This is a contraction, and therefore rth,π 6∈

[gh( ~rN , r
e
h0), f(rh0, gh( ~rN , r

e
h0))]. This concludes the proof. �

J. Proof of Corollary 2

If Hospital 2 never reduces its readmissions beyond Hospital 1’s current readmission rate r10, then Hospital

1’s dominant strategy is simply staying at its current readmission rate r10. Therefore, the analysis of the

equilibrium becomes a static analysis of Hospital 2’s optimal decision when the expected readmission rate is

r10+r21
2

where r21 is the readmission decision of Hospital 2.

The objective function of Hospital 2 in this case is:

1

1− r21

(
1−min

(
max

(
2r21

r21 + r10
,0

)
, Pcap

))
.

It can be easily seen that Hospital 2’s optimal decision is simply to reduce readmissions to r10 if r20 <

r10 + Pcap(1− r10), and not reduce if r20 > r10 + Pcap(1− r10). Therefore, if Hospital 2 never reduces its

readmissions beyond r10, there is a unique pure-strategy equilibrium (r1 = (r10, r10) or r1 = (r10, r20)).

If r20 > r10 + Pcap(1− r10), reducing beyond r10 is a strictly dominated strategy for Hospital 2. If r20 <

r10 +Pcap(1− r10), Hospital 2 could potentially reduce to r′ such that r′ < r10. This is only an equilibrium

if and only if the best response of Hospital 1 is also to reduce to r′. In this case, the equilibrium is (r′, r′),

which is strictly Pareto dominated by the equilibrium (r10, r10).

Hence, there is a unique Pareto-dominant pure-strategy equilibrium. �


