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IODNE: An Integrated Optimization Method for
Identifying the Deregulated Subnetwork for
Precision Medicine in Cancer

S Mounika Inavolu1,2, J Renbarger3, M Radovich1,2, V Vasudevaraja1,2, GH Kinnebrew1,2, S Zhang1,2 and L Cheng1,2,3*

Subnetwork analysis can explore complex patterns of entire molecular pathways for the purpose of drug target identification. In
this article, the gene expression profiles of a cohort of patients with breast cancer are integrated with protein-protein interaction
(PPI) networks using, simultaneously, both edge scoring and node scoring. A novel optimization algorithm, integrated
optimization method to identify deregulated subnetwork (IODNE), is developed to search for the optimal dysregulated subnetwork
of the merged gene and protein network. IODNE is applied to select subnetworks for Luminal-A breast cancer from The Cancer
Genome Atlas (TCGA) data. A large fraction of cancer-related genes and the well-known clinical targets, ER1/PR and HER2, are
found by IODNE. This validates the utility of IODNE. When applying IODNE to the triple-negative breast cancer (TNBC) subtype
data, we identified subnetworks that contain genes such as ERBB2, HRAS, PGR, CAD, POLE, and SLC2A1.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 168–176; doi:10.1002/psp4.12167; published online 7 March 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� The topic was to design an optimization-searching

algorithm, IODNE, which uses the intersection of

gene and protein networks to obtain a dysregulated

subnetwork for drug target selection in a cohort of

patients.
WHAT QUESTION DID THIS STUDY ADDRESS?
� How to combine networks information of gene-gene

and protein-protein? How to search an optimum

gene subnetwork for drug treatment for a cohort of

patients?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Networks’ combination between gene regulatory net-
works and PPI networks (PPIs). A gene subnetwork
searching of drug targets for breast cancer subtypes
Luminal-A and TNBC.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� Integrating gene and protein network and pharmacol-
ogy, an optimizing subnetwork searching for drug tar-
gets selection holds the promise of expanding the
current opportunity space and a cohort of patient’s ther-
apeutics in the clinic systematically.

Systematic network analysis on cancer has multiple potential

biological and clinical applications. A better understanding of

the effects of gene/protein interaction may lead to the identifica-

tion of cancer genes and correlated pathways, which, in turn,

may offer better targets for drug development in cancer treat-

ment.1 Genomewide mRNA expression data provide a rich

resource for studying the molecular mechanisms of cancer.2

The reconstruction or “reverse engineering” of gene regulatory

networks, which aim to find the underlying network of gene–

gene interactions from the measurement of gene expression, is

considered one of most important goals in systems biology.3–5

Gene expression products are most often proteins. Large scale

statistical analysis shows that the single gene signal transduc-

tion from gene expression to protein amount is not synchro-

nous, but random.6 The protein-protein interaction (PPI)

network provides a fundamental basis for understanding the

role of proteins within the cell by examining their physical and/or

functional associations. Pathway Commons7 is a comprehen-

sive public pathway database (http://www.pathwaycommons.

org/), integrating Human IntAct,8 BioGrid,9 human protein

reference database,10 Kyoto Encyclopedia of Genes and

Genomes,11 and 10 more famous PPI datasets. A large amount

of gene network research is based on either gene or protein

data.12 However, according to literature,13 the protein pairs

encoded by coexpressed genes interact with each other more

frequently than random proteins. This suggests that if gene-

gene and PPIs are taken into account simultaneously in one

computational method, it will increase the accuracy of identifica-

tion of interactions of both types as well as allow the recognition

of overlapping patterns between gene and protein networks. In

this article, the gene expression profile of a cohort of patients

with cancer is used to generate coexpression networks, which

are then integrated with PPI networks for observing gene varia-

tion systematically.
Gene/protein interaction networks can guide us in under-

standing the gene module molecular mechanisms in a system
biology level.14 However, an exhaustive dataset that holds
all of the interactions between genes or proteins in major
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biological pathways in cancer is difficult to find. Searching for

condition-specific subnetworks can help us identify the most

significant subsets of the holistic cancer genome. In general,
subnetwork search algorithms can be broadly classified into

two types15–18: (1) seed-initiated algorithms; and (2) scoring

search algorithms.19 Seed-based algorithms involve a set of
predefined significant genes that aid in the detection of the

subnetworks, such as SubNet,20 which uses a version of Goo-

gle’s PageRank algorithm for seed detection. Scoring search
algorithms work by treating all genes as having equal signifi-

cance initially, deploy a scoring function to rank the genes, and

finally use a search algorithm to extract the subnetworks. The

typical scoring strategies include edge-based scoring, node-
based scoring, and combined edge and node-based scoring.

Guo et al.21 introduce an edge-based scoring and search

approach for extraction of a PPI subnetwork responsive to con-
ditions related to some investigated gene expression profiles.

However, the node (gene) function is ignored in the algorithm.

Node-based scoring has also been used to identify disease-
specific genes. Dezso et al.22 score each node by the number

of paths traversing that node in the disease-specific network in

relation to the number of paths going via the same node in the

global network. However, edge weights are not taken into
account. Amgalan & Lee23 proposed the weighted maximum

clique method to identify a condition-specific subnetwork by

both edge-based scoring and node-based scoring. However,
drug targets are not discussed. So far, there is still a lack of a

tool for extracting subnetworks from integrated gene-gene and

PPI networks for the most significant dysregulated network in
cancer, especially with regard to drug treatment in a specific

condition. We propose a novel integrated optimization method

for identifying the dysregulated subnetwork (IODNE) for a can-

cer cohort. Edge and node scoring jointly measure condition-
specific changes to both gene-gene coexpressions and PPIs.

Unfortunately, the derivation of a computational model that

extracts the optimum subnetwork is a nondeterministic polyno-
mial time-hard problem24 and biomolecular networks are mas-

sive in scale. This huge dimension makes it tedious to extract

globally optimum subnetworks. The Kruskal tree algorithm is a
fast searching strategy to find the most connecting significant

genes by the shortest spanning subtree of a gene connection

network.25

Breast cancer is one of the most common cancer types

and is the second leading cause of cancer deaths in wom-

en.26 Nearly 40% of patients with breast cancer lack specific

gene biomarker identification and have to receive chemother-

apy over-treatment and suffer from its strong side effects in

the clinic.27,28 The estrogen receptor (ER) or progesterone

receptor (PR) positive tumors (i.e., Luminal-A) usually receive

endocrine (hormone) therapy as the standard treatment.29

The HER2 amplified tumor responds well to HER2 targeted

trastuzumab, which is currently the standard. However, triple-

negative breast cancer (TNBC; ER2/PR2, HER22) is the

most aggressive tumor type and has a much shorter overall

survival than the other tumor types. Currently, chemotherapy

is still the main therapy for TNBC.30 The Cancer Genome

Atlas (TCGA)31 provides comprehensive cancer genome pro-

files for more than 14,000 cancers, including gene expression

profiles. This rich source of data provides us an opportunity

to detect the molecular variation in subtype-specific breast

cancer.
In this article, an integrated optimization method (IODNE)

is proposed for the identification of the maximum dysregu-

lated subnetwork for drug treatment in a subtype of patients.

We use a strategy of subnetwork retrieval, which depends on

the gene-gene control network merged with PPIs and rank

subnetworks by scoring both edges and nodes. Comparison

of transcriptomes between a subtype of patients with breast

cancer and a corresponding normal group is used to con-

struct the gene-gene control network. A modified Kruskal

minimum spanning tree search strategy determines the maxi-

mum dysregulated subnetwork for drug treatment in a cohort

of patients. The novel algorithm is validated by its ability to

select previously known drug target genes in Luminal-A

breast cancer from TCGA. IODNE is applied to TNBC for

drug-target subnetwork identification.

METHODS
Materials
We attempted to find the major differences in network pat-

terns between two groups from their specific gene regulatory

networks and a prior knowledge of a protein-protein network.

The gene expression profiles pertaining to Luminal-A and

TNBC were collected from TCGA,27 including tumor samples

and their adjacent normal tissue. The expression data was

derived from the Agilent-G450-2A Array-based platform,

which consisted of 17,815 genes. There are nine pairs of

TNBC samples with their respective adjacent-normal sam-

ples. The Luminal-A expression set consisted of 43 pairs of

tumors and corresponding adjacent-normal samples.

Supplementary File S1 provides clinical information and

subtypes of breast cancer. Pathway Commons 2 (version

7)10 (http://www.pathwaycommons.org) is a well-known col-

lection of biological pathways and PPI network knowledge.

Pathway Commons consists of 31,698 pathways, 1,912,848

edges (PPI), and 14,863 nodes (genes), which were used

for this analysis. Drug-targeted genes were annotated by

DrugBank database version 4.032 (http://www.drugbank.ca/

drugs). We collected 1,623 US Food and Drug Administration

(FDA) approved drugs and their 1,770 targets (Supplementary

File S8). According to the National Cancer Institute and the

National Comprehensive Cancer Network annotation,33 134

FDA approved cancer drugs and 322 target genes are “signed,”

which are annotated as either enhancing or repressing the

target (Supplementary File S9).
The preprocessing pipeline of IODNE is well structured

to organize the bulk gene expression data into the desired

input format suited for the main run, as shown in Table 1.

The rows show each gene’s expression and the columns

show different samples. The first row shows the information

of the group samples, such as tumor or adjacent normal

group; and the second row shows the subtypes of tumors.

IODNE is capable of recognizing the various subtypes

of cancers and the type of tissue each sample pertains

to from a single file. The PPI data can be simply a two-

column comma-separated file with each row containing the

names of interacting genes.
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Integrated optimization algorithm
IODNE achieves detection of the subnetworks based on two
groups’ transcriptome comparison and existing PPIs, such as
the tumors and the adjacent tumor normal groups. Figure 1
shows the IODNE algorithm workflow. It consists of four
modules: (1) gene expression-based scoring; (2) protein
interaction-based scoring; (3) two networks node and edge
scores integration; and (4) identification of the maximal scor-
ing subnetwork algorithm. The genes are first scored based
on the gene-expression data. For this, the concept of Pearson
correlation is applied. Second, the protein interaction network
scoring is based on the influence of the genes and gene pairs
on the PPI network at large. This strategy is a partial adapta-
tion of the Vandin et al.34 HotNet algorithm. Third, edge scores
and the node scores from the gene control network and the
PPIs network score sets are scaled by an associated scale
value for each network and combined by summation. The
scoring functions that evaluate the edge scores of gene pairs
and the node scores of individual genes are given below.
Fourth, the scored network is subjected to the search strategy
for the maximal edge-scoring subnetwork, with a size below a
user-defined threshold number of genes. The search strategy
uses a customized version of the modified minimum spanning
tree Kruskal algorithm.35,36 Each of the steps are described
below, after descriptions of the data required for the analysis
and the preprocessing.

Step 1. Gene-expression based scoring strategy on
nodes and edges in construction gene regulatory
network
Node score. To compare two groups’ transcriptomes, such
as tumor and normal groups, a two group t-test with equal
variance for unequal sample sizes is performed to find dif-
ferentially expressed genes (DEGs) as follows:

t5
�Xn 2 �Xt

SXt Xn :
ffiffiffiffiffiffiffiffiffiffiffiffi
1
nt

1 1
nn

q

where SXt Xn
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nt 21ð ÞSXt

22 nn21ð ÞSXn
2

nt 1nn22

r
; �Xt 5 mean of the tumor

samples; �Xn 5 mean of the normal samples; nt 5 number of
tumor samples; nn 5 number of normal samples; SXt

5

standard deviation of the tumor samples; and SXn
5 stan-

dard deviation of the normal samples. Given the degrees of
freedom: df 5nt 1nn22, checking the P value p associated
with a t-value t for two-tailed t-test in the t-distribution. The
sign of t means the gene is down (t >0) or up (t <0)

regulation in tumors comparing with normal group. Here,
we set gene (node) score as abstract t-value t in gene-
gene interaction network: NS1 5 |t|.

Edge score. The scoring pipeline of IODNE starts with the
scoring of the gene-expression profiles. For every pair of
gene x and gene y, we calculate Pearson correlation coeffi-
cients between x and y as follows:

r5
X x2 �xð Þ y2�yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x 2 �xð Þ2
P

y2�yð Þ2
q

where x ; y 5 individual values of the gene in the cohort
(tumor or normal group); �x , �y 5 average of the gene
across the samples in tumor or normal group. Thus, Pear-
son correlation coefficient of the gene pair (x, y) is calculat-
ed in the tumor group as rt x ; yð Þ and the normal group as
rn x ; yð Þ, respectively. The differential correlation of gene
pair (x, y) shows the control distance difference between
the tumor group and the normal group denote as:

Dr5 jrn2rt j:

This represents the edge score of each gene pair (x, y) in
the gene-gene interaction network: ES1 5 Dr .

Step 2. Protein-protein interaction based scoring
strategy in nodes and edges
A Laplacian matrix is used to discover the relationship
between network topological structure and its gene connec-
tion features in the PPI network, as in the literature.35 Giv-
en a simple PPI graph, G with n genes (nodes), the
symmetric normalized Laplacian matrix is defined as:

L5D2A

where A5 aij

� �
n3n

is the binary adjacency matrix of PPI
graph G, aij is equal to 1 or a value ranging from 0 to 1. If
gene i and j are linked in the network aij51, otherwise
aij 50; D5 dij

� �
n3n

is the degree matrix of graph G, where
dii 5

Pn
j51 aij , and dij50, for i 6¼ j.

A Hotness matrix is defined to reflect the influences of
one gene against other genes34 as follows:

H5e2Lc

where H5 hij

� �
n3n

represents the connection influence
between gene i and gene j, c is a constant, and default
value is c 5 0.1.

Node score. Node score rx is to evaluate the gene x
influence to the whole PPIs network. It is calculated as the
sum of all the influences of the genes with its connections,
which is the sum of row margins to Matrix A�H. For
instance, if a gene x has two connected genes y and z, the
node score of gene x would be:

rx 5 h x; yð Þ1h x ; zð Þ:

Edge score. The edge score for each of the gene pairs
(x, y) is calculated from the max node score of the individu-
al genes of the pair multiplied with the binary adjacency
score of the gene pair as follows:

Table 1 Samples input formats for two groups’ comparison

Groups

Adjacent

normal

Adjacent

normal Tumor Tumor

Subtypes Basal-like Luminal A Basal-like Luminal A

Samples

genes

TCGA-A7-

A0CE-11A-

21R-A089-07

TCGA-A7-

A0CH-11A-

32R-A089-07

TCGA-A7-

A0CE-01A-

11R-A00Z-07

TCGA-A7-

A0CH-01A-

21R-A00Z-07

FKBPL 20.92533 20.639 20.23283 0.324167

COL10A1 0.71875 2.121 4.655 6.3255

KIF26B 1.4585 0.28925 1.27575 2.76125
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w x ; yð Þ5 maxfrx; ryg � axy :

Denoted the node score and edge scores as NS2 5 r,

ES2 5 w .

Step 3. Node score and edge score integration of gene

regulatory network and protein-protein integration

network
In order to maintain the equal influences from the two net-

works in integration, scaling node score and edge score

need be done by the ratio of maximum scores from either

scoring to each of the genes in the two networks as
follows:

Node weights : NSnet5 NS11 / �NS2

Edge weights : ESnet5 ES11 b � ES2

where /5 {max NS1/max NS2}, b 5 {max ES1/max (ES2)}.
In the merged network, node weights (gene) carry two

messages, one is the gene expression difference of tumors
verse normal group, and another one is the gene influence

Figure 1 The overview of integrated optimization method for identifying the dysregulated subnetwork showing the scoring and search workflow.
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ability (connection degree) in PPIs. Meanwhile, edge weight

for a pair of genes carries the similar two messages: the

pair-gene connection difference of tumors vs. its normal

group in the gene regulatory network, and the gene con-

nection strength in PPIs.

Step 4. Search strategy
The IODNE algorithm uses both informative node weights

and edge weights derived from prior knowledge. It sorts all

the edge weights in a descending manner, and then

extracts subnetworks with k-connected genes in sequence

based on the modified Kruskal searching algorithm by

drug-target gene weight ranking. Given an undirected graph

G 5 (V, E, w(v),w(e)), where V is a set of nodes with weight

w(v), E is a set of edges with weight w(e). IODNE algorithm

is an integer linear programming-based optimum algorithm

described as follows. The minimum spanning tree by the

node and edge weight is used to search the subgraph to a

limited number size k:

min C=
Xk1

i51

w við Þ1
Xk2

j51

w ej
� � !

s:t: k1 � k

C is constant.
IODNE is used to extract a subset of the edges in a giv-

en undirected graph with three properties: (1) it includes k

vertices in the subgraph; (2) the total weight of all the

edges is as largest as possible; and (3) there is no cycle in

the subgraph. At the same time, two enforcing functions

that counteract and refine the subnetworks are added:

(1) orphan node pairs that are not connected to the parent

subnetwork are removed; (2) for the nodes with an abnor-

mally high number of leaves (greater than a declared

threshold – defaulted to 30), the five edges with the largest

weights are kept and the remaining are pruned out of the

subnetwork. A more elaborate explanation is as follows:

Additionally, it is sometimes necessary to filter out nonsig-
nificant genes before we use our algorithm on large datasets.
A typical experiment is to select the DEGs by comparing the
transcriptome profiles between an experimental group and its
control group. The dysregulated genes are then selected
using one of multiple possible criteria. For example, the dys-
regulated genes can be defined as those genes that surpass
a fold change threshold and P value threshold after a two-
group t-test. These genes will then be investigated for con-
nected subgraphs using the IODNE algorithm.

Step 5. Software developing and code
IODNE code is written in Java and compiled with Java Devel-
opment Kit version 1.7. Its installation and run notes are
available in the Supplementary Code File. The original pro-
gram is accessible to: https://drive.google.com/open?id50B9-
cfjp2iWgONjU4a3hwQ2RKcW8.

RESULTS

Here, we show that IODNE selects subnetworks, which
contain ER1/PR and HER2, the well-known targets in clini-
cal Luminal-A breast cancer subtypes, validating our
results. In addition, IODNE is applied to TNBC, providing
potentially novel gene targets for drug selection.

Subnetwork identification for Luminal-A subtype of
breast cancer
DEGs to 43 pairs of TCGA tumor and corresponding
adjacent-normal samples are calculated by unpaired two-
group t-test in the tumor vs. the normal group first (Supple-
mentary File S2). IODNE begins with the application of
t-value or P value thresholds filters to the gene list that is
input into the algorithm by user desired. In the analysis,
nondysregulated genes were filtered by P value P< 0.15 to
reduce the noise in the output as well as substantially
increase the runtime performance of the algorithm. A rela-
tively high P value threshold is selected here in order to
keep many of the transcription factors and enzymes in
IODNE, such as well-known genes ESR1 and PGR. These
genes exert important control over the gene network,
despite that they do not show statistically significant expres-
sion variation between tumor vs. normal samples.

Our aim here was to use the DEG characteristics to iden-
tify possible targets for drug development in integrated
gene and protein network. Genes that are expressed more
strongly in tumors than the adjacent normal tissue (t-value
t <0 upregulation gene in tumors, P< 0.05) can potentially
serve as drug targets. Supplementary Files S4 and 5 pro-
vide the gene list of potential cancer drugs and FDA
approved drugs, respectively. However, we need discover
which targets are the optimum ones and the hub genes
(the nodes with high degree in the network), which are
yielded with the correspondingly high edge weights in the
integrated gene and protein networks.

The highest edge weight subnetwork in Luminal-A breast
cancer was obtained using the IODNE algorithm with size
k 5 36 and the FDA approved drug target list used for rank-
ing nodes’ weights. The analysis retrieved the subnetwork
containing 36 genes connected with 58 edges. Cytoscape

Algorithm: Modified Kruskal minimum spanning tree algorithm.
Input: (1) A weighted, undirected graph G 5 (V, E, w(v), w(e))
and (2) the maximum allowed nodes per graph k.
Output: A maximally edge-weighted tree T.
Procedure: Sort the nodes (drug target genes) in V in decreas-
ing order by node-based score (weight).

Select the largest score node vlargest in V.
T  Select the largest edge (u, v) for node vlargest

in its edge list.
Sort the edges in E in decreasing order by edge-
based score (weight) around nodes u, v.
For each edge (u1, v1), in sorted order:

Determine the closest neighbor of the selected
edge.
x  Find u1ð Þ:
y  Find v1ð Þ:

If x 6¼ y then:

T  T [ u1; v1ð Þf g
Union (x, y)

Until the total node size in the network is k.
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3.437 was used to visualize these selected genes’ interac-

tion networks and denote the drug targeted genes from

DrugBank annotations (Figure 2). Here, the nodes are col-

ored according to degree to make obvious the hubs of the

subnetwork. The subnetwork contains two very prominent

biomarkers – PGR and ERBB,38 as well as some new

genes never reported as drug targets before, including

HRAS, POLE, AFG3L2, and SLC2A1.

Subnetwork identification for the triple-negative breast

cancer subtype of the breast cancer application
We analyzed the gene expression profiles of nine pairs of

cancer and adjacent normal samples of patients with TNBC

from TCGA. A listing of DEGs by unpaired two-group t-test

for the tumors vs. the normal samples is provided in Sup-

plementary File S3. IODNE was used to select the dysre-

gulated optimum subnetwork for the TNBC subtype of

breast cancer with the FDA approved drug target list used

for ranking nodes’ weights in the integrated gene and protein

networks. The genes were filtered by P values (< 0.05) and

the t-value (<0) for significant DEGs between the case and

adjacent-normal groups. These significant DEGs were input

into the IODNE algorithm, with a k value of 59. Supplemen-

tary Files S6 and S7 list the target genes of potential can-

cer drugs and FDA approved drugs, respectively, for TNBC.

Figure 3 shows the subnetwork for the TNBC subtype of

breast cancer consisting of 59 genes and 112 edges by

Cytoscape 3.4 visualization. The network contains 12 drug

targets by DrugBank annotation39 that are highlighted in

green in the subnetwork. The most connected hub is glycer-

aldehyde 3-phosphate dehydrogenase, which has been

shown to play a crucial role in cancer regulation,40 although

it does not show significant differential expression between

TNBC tumor samples vs. their adjacent-normal samples.

The other targets include HSP90B1, ME2, TUBB3, APRT,

AXIN1, CAD, RDH13, POLE, DAPK1, HDAC6, and

SLC2A1.

DISCUSSION

Subnetwork analysis can explore complex patterns in the

entire network of molecular pathways for the purpose of

cancer genes and drug target identification. IODNE is a

robust and powerful algorithm for the identification of sub-

networks for cancer genes and drug targets. The applica-

tion of the IODNE for subnetwork selection of drug target in

breast cancer subtypes Luminal-A show well-known targets

PGR and ERBB2 in clinical are found. In addition, our

results show IODNE can find genes in the subnetwork,

which play a significant role in breast cancer. The HRAS

gene is directly related to the tumor aggressiveness in

Figure 2 Subnetwork of subtype Luminal-A breast cancer.

IODNE: An Integrated Optimization Method
Mounika Inavolu et al.

173

www.psp-journal.com



breast cancer41 and the POLE gene has been linked to the
increased risk of colorectal cancer.42 The most connected
hub genes in the subnetwork are DHX15 and CCT2. CCT2
is found to be necessary for growth/survival of breast can-
cer cells in vitro.43 All of these results would seem to vali-
date the utility of the IODNE algorithm. TNBC treatment is
centered on chemotherapy. The discoveries in the molecu-
lar profiling of TNBC press the need to explore new targets
in TNBC at the intersection of precision medicine and

molecular profiling. IODNE is applied to TNBC data for the
drug-target subnetwork identification. The genes ERBB2,
HRAS, PGR, CAD, POLE, and SLC2A1 are identified as
significant in TNBC, which strong research evidence28 iden-
tifies as drug-target candidates.

IODNE has many advantages, some of which include:
(i) the scoring strategy takes into account both gene
expression and PPI profiling. This gives a multidimensional
assessment in finding the most significant subnetwork.

Figure 3 Subnetwork for triple-negative breast cancer subtype of breast cancer.
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(ii) The node scores and edge scores are rationally com-

bined through scaling parameters. This scaling is crucial in

balancing both the gene expression and PPI metrics with-

out a bias. (iii) The search algorithm is tailored to consider

every edge in the network while deriving the most signifi-

cant network with the largest connection. The final subnet-

works are free from orphan edges increasing the

comprehensiveness of the output. Unfortunately, the

IODNE approach has limitations too. We did not define a

re-sampling subnetwork mechanism to remove potential

false-positive issues under these huge sets of gene interac-

tions. In addition, IODNE cannot extend network-based

drug target selection to precision medicine on an individual

patient basis. Two potential avenues for extending the cur-

rent algorithm include: (1) incorporating mutational and

copy number variation profiling data along with gene

expression profile and drug targets under a systems biology

framework may lead to significant improvements in preci-

sion oncology.44 Driver gene mutations tend to have a

selective growth advantage in tumor cells and play a dis-

proportionate role in cancer biology. The possibility of tar-

geting driver mutations in a gene control network, which

can be further studied in the emerging field of precision

cancer medicine.44–46 (2) Extending the IODNE algorithm

to an individualized systems medicine approach to optimize

precision cancer therapies to be more safe and effective for

individual patients is another important direction for preci-

sion cancer medicine.47 That would enable IODNE to

extend its function to a single-patient level as well.
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