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Multiple system atrophy (MSA) is a sporadic orphan neurodegen-
erative disorder. No treatment is currently available to slow down
the aggressive neurodegenerative process, and patients die within
a few years after disease onset. The cytopathological hallmark of
MSA is the accumulation of alpha-synuclein (α-syn) aggregates in
affected oligodendrocytes. Several studies point to α-syn oligomer-
ization and aggregation as a mediator of neurotoxicity in synuclei-
nopathies including MSA. C-terminal truncation by the inflammatory
protease caspase-1 has recently been implicated in the mechanisms
that promote aggregation of α-syn in vitro and in neuronal cell models
of α-syn toxicity. We present here an in vivo proof of concept of the
ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn
pathology and to mediate neuroprotection in proteolipid protein
α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and
age-matched wild-type mice were treated for a period of 11 wk with
VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice
compared with placebo controls. More importantly, VX-765 was able
to limit the progressive toxicity of α-syn aggregation by reducing its
load in the striatum of PLP-SYN mice. Not only did VX-765 reduce
truncated α-syn, but it also decreased its monomeric and oligomeric
forms. Finally, VX-765 showed neuroprotective effects by preserv-
ing tyrosine hydroxylase-positive neurons in the substantia nigra
of PLP-SYN mice. In conclusion, our results suggest that VX-765, a
drug that was well tolerated in a 6 wk-long phase II trial in pa-
tients with epilepsy, is a promising candidate to achieve disease
modification in synucleinopathies by limiting α-syn accumulation.
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Multiple system atrophy (MSA) is a sporadic adult-onset
orphan neurodegenerative disorder clinically characterized

by a combination of parkinsonism, cerebellar impairment, and au-
tonomic dysfunction (1). The cytopathological hallmark of MSA is
the accumulation of alpha-synuclein (α-syn) aggregates in oli-
godendrocytes, forming glial cytoplasmic inclusions (GCIs) (2, 3).
The 14-kDA protein α-syn can exist in vitro as an unfolded

monomer; although other oligomeric species have been reported
(4). Full-length α-syn undergoes several posttranslational modi-
fications such as phosphorylation, tyrosine nitration, and trun-
cation, any of which could promote the formation of toxic α-syn
aggregates (5–7). Although the precise toxic species of α-syn have
not been firmly established, several studies point to α-syn oligo-
merization and aggregation as a mediator of neurotoxicity in
synucleinopathies (6, 8–10). Hence, decreasing aggregation
might be an effective approach to disease modification. Among
the mechanisms that promote aggregation of α-syn, C-terminal
truncation has been identified as an enhancer/promoter of
α-syn oligomerization and fibrillization (11–14). Accordingly,
inhibiting α-syn truncation could alter the disease course in

MSA (and other synucleinopathies) (15) by decreasing α-syn olig-
omerization and aggregation. Interestingly, the inflammatory pro-
tease caspase-1 cleaves α-syn at Asp121, promoting its aggregation
into amyloid fibrils similar to those previously found both in vitro
and in vivo (16). In turn, the caspase-1 inhibitor prodrug VX-765
decreases α-syn truncation and aggregation in vitro and rescues
cells from α-syn–induced toxicity (16). Therefore, VX-765 could
exert neuroprotective effects on MSA pathogenesis by reducing
α-syn cleavage, hence limiting its toxicity and its ability to form ag-
gregates. VX-765 is an orally active, well-tolerated, brain-penetrant
prodrug that is hydrolyzed by esterases in vivo to produce a potent
and selective caspase-1 inhibitor (17, 18), an activity supported by
the in vivo demonstration of reduced cleavage of pro–Interleukin-
1β (IL-1β) to its activated form IL-1β, a proinflammatory process
under control of caspase-1 (18–20).
Here we show that the brain-penetrant VX-765 mitigates

progressive synucleinopathy and neurodegeneration in a trans-
genic mouse model of MSA.

Results
VX-765 Prevents Motor Impairments in Transgenic MSA Proteolipid
Protein α-Syn Mice. Transgenic MSA proteolipid protein α-syn
(PLP-SYN) mice display progressive motor impairment with
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aging, as shown with an increased number of errors on the tra-
versing beam task (21). Motor performance of wild-type (WT)
mice was not affected by VX-765 treatment (100 mg·kg·d over
11 wk; P = 0.99), whereas VX-765-treated PLP-SYN mice showed
significant improvement in the traversing beam task compared with
placebo-treated PLP-SYN mice (P = 0.01) (Fig. 1A).

VX-765 Decreases α-Syn Burden in the Striatum of PLP-SYN Mice.
GCIs are the cytopathological hallmark of MSA (3). PLP-SYN
mice overexpress α-syn under the PLP promoter, leading to the
formation of GCIs (21, 22). To investigate whether reducing
C-terminal truncation affects α-syn load in PLP-SYN mice, we
first measured the quantity of α-syn in the striatum (Fig. 1) and
the cortex (Fig. 2) of PLP-SYN mice by Western blot. VX-765
treatment decreased both oligomeric (–48%, P < 0.05) and
monomeric α-syn (–33%, P = 0.001) (Fig. 1 B–E) in the striatum
but not in the cortex (P = 0.72 and P = 0.23, respectively; Fig. 2
A–D) of PLP-SYN mice. Interestingly, VX-765–treated mice had
a 53% decrease in α-syn truncation in the striatum (P = 0.05)
(Fig. 1 B, C, and F), whereas no significant effect was found on
the formation of the C-terminally truncated protein in the cortex
of PLP-SYN mice (P = 0.4) (Fig. 2 A, B, and E). The amount of
oligomeric α-syn in the striatum positively correlated with trun-
cated α-syn (ρ = 0.73, P < 0.05) in the placebo group, whereas
VX-765 treatment abolished this correlation in PLP-SYN mice
(ρ = –0.08, P = 0.84) (Fig. S1).
To further assess the effect of VX-765 treatment on α-syn

load, we then used quantitative PCR (qPCR) to measure if
VX-765 treatment has an effect on α-syn mRNA expression in
PLP-SYN mice. Analysis of striatum samples showed no dif-
ference in mRNA levels of human α-syn (P = 0.08) (Fig. 1G)

between groups, thus indicating no effect of VX-765 treat-
ment on the transcription of human α-syn.
We then assessed the density of α-syn inclusions in PLP-SYN

mice and whether VX-765 affects α-syn aggregate solubility using
immunohistochemistry on adjacent sections, with or without
proteinase-K (PK) pretreatment, in the striatum (Fig. 1 H–M)
and in the cortex (Fig. 2 H–M). VX-765–treated PLP-SYN mice
showed a significant decrease in the density of α-syn–immuno-
positive GCIs in the striatum (–40%, P < 0.001) (Fig. 1 H–J) but
not in the cortex (P = 0.1) (Fig. 2 H–J) compared with placebo
PLP-SYN mice. The amount of PK-resistant α-syn aggregates was
also significantly lowered in the striatum of VX-765–treated PLP-
SYN compared with placebo PLP-SYN mice (–21%, P < 0.05)
(Fig. 1 K–M) but not in the cortex (P = 0.17) (Fig. 2 K–M).

VX-765 Decreases Activated IL-1β Levels in the Striatum of PLP-SYN
Mice. We then measured pro–IL-1β and IL-1β levels in the stria-
tum and cortex of PLP-SYN mice (Fig. 3) to further assess the
effect of VX-765 treatment within the targeted structures. We first
measured the quantity of pro–IL-1β in the striatum (Fig. 3 A–C)
and the cortex (Fig. 3 E–G) of PLP-SYN mice by Western blot.
VX-765 treatment had no significant effect on the amount of
pro–IL-1β in the striatum (P = 0.23) and cortex (P = 0.1) (Fig. 3 C
and G). Interestingly, VX-765–treated mice had decreased IL-1β
levels in the striatum (60%, P < 0.001) (Fig. 3 A, B, and D),
whereas no significant effect was found on the formation of IL-1β
in the cortex of PLP-SYN mice (P = 0.52) (Fig. 3 E, F, and H).

VX-765 Protects Tyrosine Hydroxylase Neurons in the Substantia
Nigra Pars Compacta of PLP-SYN Mice. Oligodendroglial α-syn
overexpression in PLP-SYN mice induces a loss of tyrosine

Fig. 1. VX-765 treatment reversed α-syn–induced pathology in PLP-SYN mice by decreasing α-syn load in the striatum and rescuing motor performance.
(A) Placebo-treated PLP-SYN mice produced more errors per step compared with VX-765–treated PLP-SYN mice in the challenging beam test. (B–F) Repre-
sentative immunoblot levels of oligomeric (D), monomeric (E), and truncated (F) α-syn in placebo- (B) and VX-765– (C) treated PLP-SYN mice. (G) Analysis of
human α-syn mRNA levels in VX-765–treated PLP-SYN mice compared with placebo-treated mice. (H–M) Immunohistochemical analysis of α-syn load (H–J) and
insolubility (K–M) in the striatum of placebo- (I and K) and VX-765– (J and L) treated PLP-SYN mice. In all panels, n = 8 per experimental group—except for
mRNA α-syn (G), n = 5 for placebo-treated and n = 6 for VX-765–treated PLP-SYN mice. Error bars indicate SE. *P < 0.05, **P < 0.01, ***P < 0.001. FL, full
length; Hmw, high molecular weight; PK, proteinase-K; Trc, truncated.
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hydroxylase (TH)-positive neurons in the substantia nigra pars
compacta (SNc) (21, 23). Accordingly, post hoc analysis of ste-
reological counts of dopaminergic neurons in the SNc revealed a
significant loss of TH-positive neurons (–39%, P < 0.05) in pla-
cebo PLP-SYN mice compared with placebo WT mice [significant
effect of treatment (P < 0.05) and interaction between genotype

and treatment (P < 0.05)] (Fig. 4 A–C). More importantly, VX-765
treatment reduced dopaminergic neuron loss in the SNc of
PLP-SYNmice, as demonstrated by a 41% difference in TH-positive
neuron counts compared with placebo-treated PLP-SYN mice
(P < 0.01; Fig. 4 A–C). The analysis of Nissl counts confirmed a
significant effect of VX-765 treatment (P < 0.05; Fig. S2).

Fig. 3. Representative immunoblot levels of pro–IL-1β (A–C and E–G) and IL-1β (A, B, D–F, and H) in the striatum (A–D) and cortex (E–H) showing pro–IL-1β in
placebo- (A) and VX-765– (B) treated PLP-SYN mice in the striatum and placebo- (E) and VX-765– (F) treated PLP-SYN mice in the cortex. (C and E) Pro–IL-1β
levels were not different between groups in striatum and cortex. (D) VX-765–treated PLP-SYN mice showed lower IL-1β levels in the striatum than placebo-
treated PLP-SYN mice, whereas (H) no differences between groups was observed in the cortex. In all panels, n = 8 per experimental group. Error bars indicate
SE. **P < 0.01.

Fig. 2. (A–E) Representative immunoblot levels of oligomeric (C), monomeric (D), and truncated (E) α-syn in the cortex showing no significant difference
between placebo- (A) and VX-765– (B) treated PLP-SYN mice. (F–K) α-syn immunohistochemistry assessing the load (F–H) and insolubility (I–K) of α-syn in
placebo- (G and I) and VX-765– (H and J) treated PLP-SYN mice. In all panels, n = 8 per experimental group. Error bars indicate SE. FL, full length; Hmv, high
molecular weight; PK, proteinase-K; Trc, truncated.
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VX-765 Crosses the Blood–Brain Barrier in Both WT and PLP-SYN Mice.
Because no other preclinical study showed brain penetrance of
VX-765, we quantified the amount of VX-765 in the brain of WT
and PLP-SYN mice. Mass spectrometry analysis showed that the
brain content of VX-765 in treated animals is identical between
WT and PLP-SYN mice (P = 0.86; Fig. S3).

Discussion
In the current study, PLP-SYN mice, a transgenic mouse model
of MSA, and age-matched WT mice were treated for a period of
11 wk with VX-765 or placebo. VX-765 prevented motor deficits
in PLP-SYN mice compared with placebo controls. More im-
portantly, VX-765 was also able to limit the progressive toxicity
of α-syn aggregation by reducing its load in the striatum of PLP-
SYN mice. Not only did VX-765 reduce truncated α-syn, but it
also decreased its monomeric and oligomeric forms without al-
tering the transcription of α-syn. Finally, VX-765 showed neu-
roprotective effects by preserving TH-positive neurons in the
SNc of PLP-SYN mice.
Transgenic models have been developed to support studies on

the underlying mechanisms of MSA pathogenesis and preclinical
drug screening. These models are based on overexpression of
α-syn in oligodendrocytes and replicate several aspects of MSA
pathology (24, 25). The PLP-SYN mouse model used in this
study displays motor deficits, neuroinflammation, and loss of
TH-positive neurons in the SNc in addition to the presence of
α-syn inclusions in oligodendrocytes (23, 26). We show here that
these mice also show C-terminal truncated α-syn.
Intracellular α-syn inclusions are the pathological hallmark of

several neurodegenerative disorders known as synucleinopathies
that include dementia with Lewy bodies (DLB), Parkinson’s
disease (PD) and MSA (27). Most of the work done to assess
α-syn toxicity and to describe the relationships between α-syn
burden, spreading, and disease severity has, however, been done
in PD models (28, 29). The precise mechanism by which α-syn
aggregate formation leads to neurodegeneration remains unclear
(28, 30). Recent research efforts have focused on limiting α-syn–
induced neurodegeneration by inhibiting α-syn oligomerization
and aggregation (31–35). Several studies have shown that
C-terminal truncated α-syn is prone to form fibrils (36–39). In
turn, α-syn fibrillization is toxic when overexpressed in animal
models of PD (14, 40). More importantly, C-terminal trunca-
tion elicits the production of toxic α-syn aggregates and pro-
motes neurodegeneration (10–14, 34, 38–47). Some studies
have shown that C-terminally truncated α-syn is found in GCIs
in MSA (48, 49) as well as in Lewy bodies of PD and DLB
patient brains (11, 12, 39, 50, 51). Several proteases such as
calpain, matrix metalloproteases (MMPs), cathepsin D, and
plasmin have been implicated in α-syn truncation, subsequently
resulting in increased levels of protein aggregates; however,
none has been established as a major producer of C-terminally

truncated α-syn in vivo, especially in response to inflammation
(12, 39, 42, 52–55).
VX-765 is a prodrug that in vivo produces a potent and se-

lective inhibitor of caspase-1, an inflammatory protease that has
recently been shown to cleave α-syn in its disordered C-terminal
region following residue Asp-121 (16). This same study showed
that VX-765 decreases C-terminal truncation and aggregate
formation in vitro. Here, we demonstrate the ability of VX-765
to mitigate MSA-like neuropathology together with a concomi-
tant reduction in C-terminal truncation and aggregation of α-syn
as well as dopaminergic neurodegeneration in PLP-SYN mice.
Recent efforts targeting α-syn truncation have shown that

the overexpression of a calpain-specific inhibitor reduces α-syn
aggregation and other neuropathological features in the
[A30P]α-syn–Thy-1 PDmouse model (44), whereas immunotherapy
directed against the C-terminal region of α-syn proved to be bene-
ficial in the mThy1–α-syn PD mouse model (45) and the transgenic
DLB mouse model using the PDGF β promoter (34). These studies
have shown that targeting α-syn truncation in vivo decreases α-syn
aggregation and neurotoxicity. Interestingly, Games et al. (45)
reported that decreasing α-syn truncation and the resultant effects
could well be explained by blocking α-syn propagation from neurons.
We cannot rule out the possibility that the preservation of

dopaminergic neurons reported here might also involve caspase-
1–dependent mechanisms other than the inhibition of α-syn
truncation and the resultant decrease in oligomeric species (e.g.,
a reduced proinflammatory response due to decreased IL-1β
activation) (56).
VX-765 treatment also reduced monomeric α-syn in oligo-

dendrocytes. This might be due to the decrease in truncated and
oligomeric α-syn load, which allowed the clearance systems in
oligodendrocytes to better handle the overexpressed monomeric
α-syn. Truncated and oligomeric α-syns are both products of
monomeric α-syn modification (4, 6, 30, 38, 51). Thus, a marked
decrease in both forms might well be secondary to the decrease
in monomeric α-syn. This might not be the case with VX-765
treatment, as it cancelled the correlation between truncated and
oligomeric α-syn observed in placebo-treated mice. Moreover,
VX-765 treatment had no effect on human α-syn mRNA levels,
ruling out the potential implication of VX-765 on α-syn expression.
VX-765 treatment had no effect on α-syn levels in the cortex

compared with the striatum, where it decreased truncated α-syn
levels. Such difference was also found for IL-1β levels, as VX-765
only decreased IL-1β levels in the striatum but not in the cortex.
VX-765 is an inhibitor of caspase-1, the primary cleaving and
activating mechanism of IL-1β from its precursor, pro–IL-1β
(17–19). These results further support the hypothesis that the
effects of VX-765 in the brain are structure and region de-
pendent. Moreover, we also show the ability of VX-765 to pass
the blood–brain barrier and its presence in the brain. Future
studies should focus on measuring the bioavailability of VX-765

Fig. 4. PLP-SYN mice treated with VX-765 showed no loss of TH-positive neurons in the SN. (A and B) Representative nigral sections from placebo- (A) and
VX-765– (B) treated PLP-SYN mice. (C) Statistical analysis of TH+ stereological counting showing a loss of nigral TH+ neurons in placebo-treated PLP-SYN mice
compared with VX-765–treated PLP-SYN mice, as well as placebo- and VX-765–treated WTmice. In all panels, n = 8 per experimental group. Error bars indicate
SE. *P < 0.05, placebo PLP-SYN vs. VX-765 PLP-SYN; #P < 0.05, placebo PLP-SYN vs. VX-765 WT; $P < 0.05, placebo PLP-SYN vs. placebo WT.
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in several structures, thereby assessing if VX-765 efficacy is
structure/region-dependent in the brain. More importantly,
studies assessing α-syn pathology in the brain should assess the
structure-dependent weight/contribution of different proteases
known to cleave α-syn in the brain, thereby leading to a better
understanding of the effect of protease inhibitors in the brain.
In this regard, we have previously shown a region-dependent
alteration/expression of MMPs in the putamen and cortex of
MSA patients (55). MMPs have been previously shown to
cleave α-syn, thereby producing truncated forms (52, 54).
We here present an in vivo proof of concept of the ability of

the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pa-
thology and to mediate neuroprotection in an MSA mouse model.
Our results show that VX-765, a drug that was well tolerated in a
phase II trial in patients with epilepsy (20), is a promising candi-
date to achieve disease modification in synucleinopathies by lim-
iting α-syn accumulation.

Materials and Methods
Animals. Mice expressing human WT α-syn in oligodendrocytes under the
control of the proteolipid promoter (PLP-SYN) were previously generated on
a C57BL/6 background (22). For histopathological and biochemical analysis,
PLP-SYN (n = 16) and WT littermates (n = 16) aged 6 wk at the beginning of
the treatment period were randomly allocated into two groups, placebo
(8 WT, 8 PLP-SYN) and VX-765 (8 WT, 8 PLP-SYN). For the qPCR and VX-765
brain dosing experiments, PLP-SYN (n = 11) and WT littermates (n = 8) aged
6 wk were randomly allocated to groups and treated accordingly with pla-
cebo (4 WT, 5 PLP-SYN) and VX-765 (4 WT, 6 PLP-SYN). All experiments were
performed in accordance with French guidelines (87-848, Ministère de
l’Agriculture et de la Forêt) and the European Community Council Directive
(2010/63/EU) for the care of laboratory animals. All experiments were ap-
proved by The Institutional Animal Care and Use Committee of Bordeaux
(CE50, license #50120100-A). Mice were maintained in a temperature- and
humidity-controlled room on a 12:12 light–dark cycle with food and water
ad libitum.

Pharmacological Treatment. Mice were treated via gavage (VetTech solutions
Ltd., Dosing Catheter: 4.5fg, length 60 mm) once a day with VX-765 (MedKoo
Biosciences), which was prepared daily and dissolved in deionized water
containing 0.5% methylcellulose and 0.1%Tween-80 at a dose of 100 mg/kg.
The same solution without VX-765 was administered to the placebo group.
VX-765 is an orally absorbed prodrug of VRT-043198, a potent and selective
inhibitor of caspases in the ICE/caspase-1 subfamily of cysteine proteases.
VX-765 is converted to the cell permeable inhibitor VRT-043198 in vivo by
the action of plasma and liver esterases. Although brain penetrance of the
active drug is modest, it has been shown to inhibit caspase-1 in mouse brain
at the doses used here (57). This dose is lower than the dose that was well-
tolerated over a 6-wk period in a phase II clinical trial in patients with
epilepsy (20).

Behavioral Test.Motor coordination andbalancewere assessedwith amodified
version of the traversing beam task that was adapted from a previously de-
scribed method (58). This test measures the ability to traverse a narrow beam
to reach a goal box.

Tissue Processing. At the end of the 11-wk treatment period, mice were
anesthetized with pentobarbital (100 mg/kg i.p.) and intracardially perfused
with 0.9% saline. Brains were quickly removed and cut in half between the
two hemispheres. The right hemisphere was frozen directly for biochemical
analysis, and the left hemisphere was postfixed for 5 d in 4% (wt/vol) PFA,
then cryoprotected in 20% (wt/vol) sucrose in 0.1 M PBS, frozen on pow-
dered dry ice, and stored at –80 °C.

qPCR. Striatum tissue samples were homogenized in Trireagent (Euromedex).
RNAwas isolated using a chloroform/isopropanol protocol (59) and processed
and analyzed following an adaptation of published methods (60). cDNA was
synthesized using RevertAid Premium Reverse Transcriptase (Fermentas).
qPCR reactions were done with LightCycler 480 SYBR Green I Master using a
LightCycler 480 II system (Roche). For the determination of the reference
genes, the Genorm method was used (61), and the two reference genes
were Eef1a1 and NONO. The relative level of expression was calculated using
the comparative (2–ΔΔCT) method (61). Primer sequences for human α-syn were
as follows: forward, aaaggaccagttgggcaagaa; reverse, atccacaggcatatcttccag.

VX-765 Brain Assay with Mass Spectrometry. The brain was homogenized in
water using an IKA T25 Ultra-Turrax. A volume of 400 μL of acetonitrile was
added to a 100-μL aliquot of homogenate, then vortexed 10min using a multi-
Reax (Dutcher), and centrifuged. Supernatant was evaporated to dryness using
a Turbovap LV evaporator (Biotage) and resuspended with 100 μL of initial
mobile phase. VX-765 was quantified using linear regression with 1/X weigh-
ing, and a range from 0.33 to 150 ng/g brain was used for calibration. We
injected 10 μL extract into the liquid chromatography with tandem mass
spectrometry detection analytical system, which consists of a Waters ACQUITY
UPLC System with an Acquity UPLC BEH Shield RP18 1.7 μm, 2.1 × 50 mm
column, and a reversed phase gradient over a run time of 5 min. Initial con-
ditions consisted of mobile phase A (0.1% formic acid in water) and mobile
phase B (0.1% formic acid in acetonitrile) with a column temperature of 50 °C
and a flow rate of 0.500 mL/min. The gradient conditions ramped from 10%
B to 80% B between 0.5 and 2.5 min and maintained up to 3.0 min, then
ramped to 100% and maintained up to 3.5 min, and ramped to 10 and
maintained up to 5.0 min for re-equilibration. The MS analysis was performed
on a Waters XEVO TQ-S Mass Spectrometer operating in positive ion electro-
spray multiple reaction monitoring mode. Multiple reaction monitoring tran-
sition was m/z 509.1 > 243 for VX-765, which displayed a mean retention time
around 2.0 min.

Immunoblotting. For Western blot analysis, patches were taken from the
motor cortex and striatum of PLP-SYN. Protein extraction and sample
preparation was done as previously described (62). A total of 30 μg of protein
were loaded and run on 4–15% gradient gels (Bio-Rad Laboratories) to
measure oligomeric forms of α-syn using anti-human–specific antibodies
Syn-211 (1:1,000, Thermo Fisher Scientific). Truncated forms of α-syn were
assessed on 18% SDS/PAGE gels and incubated with human-specific antibody
Syn-204 (1:500, Abcam). For IL-1β and pro–IL-1β levels, proteins were run on
12% SDS/PAGE gels and incubated with anti–IL-1β (1:1,000; R&D) as pre-
viously described (63). Proteins were normalized to actin (1:2,000; Sigma) or
tubulin (1:4,000; Sigma) as a loading control.

Histopathological Analysis. We collected 40 μm free-floating coronal sections
for histopathological analysis. To assess the solubility of α-syn inclusions in
oligodendrocytes, sections from PLP-SYN mice were first incubated with and
without PK at 10 μg/mL (Sigma-Aldrich) for 10 min at room temperature as
previously described (21, 64). PK-treated and nontreated adjacent sections
were then processed for α-syn immunohistochemistry using the primary anti-
body against α-syn (clone LB509, Invitrogen Laboratories, 1:500) as previously
described (21). For TH immunostaining, every fourth section was processed for
TH immunohistochemistry with the primary antibody against TH (MAB318,
Millipore, 1:10000) as previously described (21).

Quantification. The distribution of α-syn–immunopositive inclusions was
assessed in the cortex and striatum of PLP-SYN mice as previously described
(21). For SNc TH counts, stereological sampling was performed as previously
described (64).

Statistical Analysis. Data were compared between placebo and VX-765–
treated PLP-SYN mice (behavior, biochemical analysis of α-syn load and pro–
IL-1β/IL-1β a levels, mRNA expression of human α-syn, and histopathological
assessment of α-syn inclusions) and between WT and PLP-SYN mice (brain
assay of VX-765) by using t tests. If data were not normally distributed, a
Mann–Whitney U test was used instead. Histopathological data for TH and
Nissl staining were analyzed using a two-way ANOVA with genotype and
treatment as independent variables. ANOVAs were followed by post hoc t
tests corrected for multiple comparison by the method of Bonferroni
whenever appropriate. A Pearson correlation was performed between
striatal levels of truncated and oligomeric α-syn. Statistical analyses were
performed with Sigma Plot 12 software (Systat Software Inc.). For all sta-
tistical tests, the level of significance was set at P < 0.05. All data are
expressed as mean ± SEM.
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