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Abstract

Introduction—African Americans’ (AAs) late-onset Alzheimer’s disease (LOAD) genetic risk 

profile is incompletely understood. Including clinical covariates in genetic analyses using 

informed conditioning might improve study power.

Methods—We conducted a genome-wide association study (GWAS) in AAs employing informed 

conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior 

liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, 

and affection status, with parameters informed by external prevalence information. We assessed 

association between the posterior liability and a genome-wide set of single-nucleotide 

polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD 

GWAS of AAs.

Results—Two SNPs at novel loci, rs112404845 (P = 3.8 × 10−8), upstream of COBL, and 

rs16961023 (P = 4.6 × 10−8), downstream of SLC10A2, obtained genome-wide significant 

evidence of association with the posterior liability.

Discussion—An informed conditioning approach can detect LOAD genetic associations in AAs 

not identified by traditional GWAS.
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1. Introduction

Late-onset Alzheimer’s disease (LOAD) in African Americans (AAs) is influenced by 

multiple genetic, clinical, and environmental factors [1–3]. AAs are at increased risk of 

LOAD compared with non-Hispanic whites [4–6]. Nonetheless, knowledge about the 

genetic architecture of LOAD comes disproportionately from studies of non-Hispanic 

whites. The relative lack of data presents a substantial barrier to understanding LOAD 
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mechanisms in AAs [3]. The APOE ε4 allele is a well-established genetic risk factor for 

LOAD in AAs [7]. Whereas >20 LOAD risk genes have been identified from genome-wide 

association studies (GWASs) for non-Hispanic whites, only two loci have been identified 

from GWAS for AAs [1,8]. A GWAS by Reitz et al. [1] found that, in addition to the APOE 
ε4 allele, a variant in the ABCA7 gene (rs115550680) was significantly associated with 

LOAD in AAs.

Most genetic association studies in LOAD, including those of AAs, adjust for age, sex, and 

population substructure (PC) only. For quantitative traits analyzed by linear regression, 

introducing other nonconfounding covariates into a genetic study could enhance detection of 

additional loci by accounting for some of the variance in the outcome. However, for case-

control association studies, including nonconfounding covariates in a logistic regression 

model can actually reduce power to detect an association because case-control ascertainment 

can create an artificial correlation between the genetic variant and a covariate, and each 

additional covariate reduces the precision of estimates [9,10]. Zaitlen et al. [11] recently 

showed that using an informed conditioning approach, nonconfounding covariates could be 

included in a case-control study with an increase in power compared with models that do not 

include covariates. Informed conditioning is based on the liability threshold model with 

parameters informed by external prevalence information. In this approach, first a liability 

model is constructed using covariates’ independent effect estimates, in the form of trait 

prevalences at different covariate levels. Next, an association is tested between a genetic 

variant and the residuals from the liability model [11]. Informed conditioning has been 

applied with success to other phenotypes including stroke, type-2 diabetes, prostate cancer, 

lung cancer, breast cancer, reheumatoid arthritis, age-related macular degeneration, and end-

stage kidney disease [11,12]. In the present study, we conducted a GWAS in the AA cohort 

of Reitz et al. [1], employing informed conditioning on LOAD status and several well-

established LOAD risk factors, obtaining genome-wide significant evidence of association at 

two novel loci.

2. Methods

2.1. Study population

Study population included 1825 well-characterized AA LOAD cases and 3784 cognitively 

normal AA controls from 9 Alzheimer’s Disease Genetic Consortium (ADGC) datasets: 

Adult Changes in Thought, Alzheimer’s Disease Centers 1&2 (ADC1&2), ADC3, ADGC, 

Chicago Health and Aging Project (CHAP), Indianapolis, Genetic and Environmental Risk 

Factors for Alzheimer Disease Among AAs (GenerAAtions), Multi-Institutional Research 

on Alzheimer Genetic Epidemiology (MIRAGE) 300k, and MIRAGE 660k. The ADGC 

dataset contained participants from several studies including the AA AD Genetics Study, the 

ADCs, CHAP, Mayo Clinic, Mount Sinai School of Medicine, Religious Orders Study/

Memory and Aging Project/Minority Aging Research Study (MARS)/Rush Clinical Core 

(CORE), University of Miami (UM)/Vanderbilt University (VU), University of Pittsburgh, 

Washington Heights Columbia Aging Project, and Washington University. A detailed 

description of subject recruitment and phenotyping has been described previously [1]. Two 

of these studies were family based (i.e., contained related participants: MIRAGE and 
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GenerAAtions), whereas the other studies included only unrelated participants. Age of 

symptom onset was available for most cases. For the remaining cases, surrogate age 

information was available (age at ascertainment for Indianapolis, age at diagnosis for CHAP 

and MARS/CORE, and age at death for autopsy cases from UM/VU). Age of last 

examination or age of death was available for controls. We excluded cases younger than age 

60. Ascertainment of additional risk factor data (educational attainment, diabetes status, and 

current smoking status) in each parent study has been described previously [13–20]. For the 

present study, we defined low educational attainment as ≤8 years of education. Because only 

a subset of the subjects from the ADGC dataset had additional risk factor data available, we 

divided the dataset into those with new risk factor data (ADGC1) and those without new risk 

factor data (ADGC2). Individuals were recruited under protocols approved by the 

appropriate institutional review boards.

2.2. Procedures

Details of genotyping (including platforms), quality control (including call rates, Hardy-

Weinberg equilibrium, discordance with ascertained sex and latent relatedness), and 

derivation of principal components to adjust for PCs were described previously [1]. Briefly, 

we used directly measured APOE genotypes. We estimated haplotypes using SHAPEIT [21] 

and then imputed allele dosages for each dataset separately using IMPUTE2 [22] and 1000 

Genomes reference haplotypes (March 2012). We excluded imputed single-nucleotide 

polymorphisms (SNPs) with an imputation quality estimate of R2 ≤0.40. In the unrelated 

cohorts, we did not exclude SNPs based on minor allele frequency (MAF) because their 

inclusion did not lead to P-value inflation. In the family-based cohorts, we excluded SNPs 

with MAFs <0.05. We derived principal components using EIGENSTRAT [23] separately 

for each dataset using a set of genotyped SNPs common to all genotyping platforms.

2.3. Calculation of the posterior mean residual liability score

An informed conditioning approach leverages external conditional prevalence data from the 

epidemiological literature. AA-specific prevalences of LOAD conditioned on LOAD risk 

factors (age, sex, education, current smoking status, and diabetes) have not been presented in 

the epidemiological literature. Therefore, we estimated the prevalences of LOAD in AAs 

>65 years of age, conditioned on a given LOAD risk factor (RF), based on published 

ancestry-nonspecific relative risks (RRs) of LOAD with respect to the RF [4–6,24,25], 

published prevalence of each RF (P(RF)) in AAs [26–29] (Supplementary Table 1), and 

estimated prevalence of LOAD in AAs (P(LOAD)) (Table 1). We assumed that RRs do not 

differ by ancestry [3,30–34]. The conditional prevalence of LOAD for a given RF, P(LOAD|

RF), is related to the RR as follows:

(1)

where ~ RF is the absence of the RF.

The law of total probability,
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(2)

can be used to rewrite the conditional prevalence as follows:

(3)

We used equation 3 to calculate the LOAD conditional prevalences in AAs for each of the 

five LOAD risk factors (Table 1).

An informed conditioning approach, described by Zaitlen et al. [11], models an unobserved 

underlying quantitative trait, ϕ, called the liability:

(4)

where cj is a parameter estimating the effect of a given covariate j on the liability scale, tj is 

the value of covariate j, and m is a parameter that determines the population prevalence p of 

LOAD at the covariate mean t̄j such that ϕ is the normal cumulative distribution function and 

ϕ (−m) = P (x > −m) = p. Finally, ε = γg + N (0,1) where γ is the effect size of the 

candidate SNP with genotype g normalized to mean 0 and N (0,1) is the standard normal 

distribution. Multiple covariates are treated independently, but parameters are estimated 

jointly. A subject is a case if ϕ ≥ 0 and is a control otherwise.

We estimated parameters for two models because the additional risk factor data were 

missing for a subset of study subjects. The first model included all LOAD risk factors and 

their corresponding external conditional prevalence estimates, whereas the second model 

included only age and sex as LOAD risk factors and their corresponding external conditional 

prevalence estimates. We used these models to calculate the posterior mean residual liability 

score (hereafter called the LOAD liability score) for each subject given their LOAD and risk 

factor status. We used the LTSOFT computer program [11,35] for modeling the LOAD 

liability and for generating the LOAD liability score.

2.4. Association analyses

For mean age, sex, current smoking status, diabetes status, mean education level, APOE ε4 

genotype, and rs115550680 MAF, we compared cases with controls in unadjusted models by 

meta-analyzing the ln odds ratio for categorical variables and standardized mean difference 

for continuous variables using a fixed-effects model with inverse variance weights. We 

conducted genome-wide association with the LOAD liability score using linear regression in 

each of the unrelated cohorts and linear generalized estimating equations (GEEs) in each 

family-based cohort, as the GEE method is robust to nonindependence of error terms within 

a family [36]. Association tests were adjusted for three PCs, APOE ε4 dosage, and dosage 

Mez et al. Page 5

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the minor allele of ABCA7 SNP rs115550680. Association tests were carried out using R 

version 3.1.2 software [37]. Results were combined across datasets by meta-analyzing the 

regression estimates after applying genomic control adjustments using a fixed-effects model 

with inverse variance weights, as implemented in METAL [38]. The test statistic was the 

meta-analyzed regression estimate divided by its standard error. Several post hoc analyses 

were conducted for top-ranked loci. We evaluated several logistic regression models using 

LOAD case-control status as the outcome with different sets of covariates. In addition, we 

analyzed a liability model that included the full set of clinical variables but that did not 

include APOE ε4 genotype and rs115550680 minor allele dosage as covariates.

3. Results

Table 2 shows characteristics for each dataset. In unadjusted models, older age, lower 

educational attainment, APOE ε4 genotype, and rs115550680 minor allele (G) dosage were 

associated with LOAD risk. Current smoking and diabetes were associated with reduced 

risk. Female sex was not associated with LOAD status. The conditional prevalence estimates 

of LOAD in AAs >65 years of age that were calculated based on published LOAD RF 

prevalences and LOAD RRs with respect to the RFs (Supplementary Table 1) are listed in 

Table 1.

A total of 19,725,427 SNPs passed quality control and were included in the GWAS. For 

individual datasets, the genomic inflation factor λ ranged from 0.984 to 1.127. There was no 

evidence of inflation of test statistics in the meta-analyzed LOAD liability model (λ = 0.993, 

Supplementary Fig. 1). We found genome-wide significant associations (P < = × 10−8) using 

informed conditioning in two distinct regions, 200-kb upstream of cordon-bleu WH2 repeat 

protein (COBL) and 30-kb downstream of solute carrier family 10, member 2 (SLC10A2) 

(Table 3). For the top SNP in each region (COBL: rs112404845, SLC10A2: rs16961023), 

the effect was in the same direction for all datasets (Figs. 1 and 2) and the final liability 

model showed a smaller P value than the logistic models by one to two orders of magnitude 

(Table 3).

Because both variants were imputed and relatively rare, we compared allele dosages from 

imputation with direct genotyping. For rs112404845 (imputation quality range [using the 

IMPUTE2 information metric]: 0.905–1.039), we Sanger sequenced 20 predicted risk-allele 

carriers and an equal number of noncarriers. We found perfect correlation between the 

imputed dosage and direct genotype. For rs16961023 (imputation quality range: 0.598–

0.917), we used a Taqman assay to directly genotype 35 predicted risk allele carriers and 

1720 noncarriers from the ADGC1 and ADGC2 datasets. As expected based on the 

imputation quality (ADGC1 = 0.704, ADGC2 = 0.679), the correlation between direct 

genotype and imputed dosage (ADGC1 = 0.736, ADGC2 = 0.565) was adequate. When we 

repeated our association analysis across all datasets, among subjects with imputed posterior 

probabilities >0.8, using best-guess genotype, there was a reduction in effect size from 0.41 

to 0.33.

Supplementary Table 2 shows SNPs with suggestive associations (P < = × 10−6) using 

informed conditioning. No loci identified as risk factors for LOAD in GWAS in white non-

Mez et al. Page 6

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hispanics showed suggestive associations. As a positive control, we compared the effect of 

the ABCA7 rs115550680 variant in a logistic model that controlled for age, sex, current 

smoking status, diabetes status, educational attainment, and PCs with the liability model. 

Using the informed conditioning approach, the P value decreased by a half order of 

magnitude in the liability model compared with a logistic model (Supplementary Table 3).

4. Discussion

In this study, we conducted a GWAS in AAs, employing informed conditioning on LOAD 

status and well-established LOAD risk factors including age, sex, diabetes status, current 

smoking status, and educational attainment. Our model is informed by external prevalence 

data from the epidemiological literature. Using this approach, which has been shown to 

outperform standard case-control association tests [11,12], we identified two genome-wide 

significant novel LOAD loci, upstream of COBL and downstream of SLC10A2.

COBL is predominantly expressed in brain, and its protein product regulates neuron 

morphogenesis. It mediates actin nucleation, ensuring that neurites form, elongate, and 

branch correctly to produce functional neuronal networks. In Cobl-deficient dissociated 

hippocampal neurons, neurite and dendritic branch point numbers were significantly reduced 

[39]. An SNP approximately 500-kb upstream of COBL was implicated in posttraumatic 

stress disorder in cohorts with European [40] and African ancestry [41]. Rs112404845, the 

top SNP in the COBL region in our study, is located 200-kb upstream of COBL and is 

present only in persons with African ancestry (MAF = 0.012 in the 1000 Genomes reference 

panel). This may explain why COBL has not been recognized previously as an AD risk 

gene. Variation at rs112404845 leads to a Pax-4 regulatory motif change. Rs113739092, an 

SNP in linkage disequilibrium with rs112404845 (r2 = 0.64) and which achieved a P value 

of 1.3 × 10−5, is an enhancer histone mark in brain [42].

SLC10A2 encodes a sodium/bile acid cotransporter that is essential for cholesterol 

homeostasis. Mutations in SLC10A2 have been found in cases of familial 

hypercholesterolemia [43]. Several other genes implicated by GWAS in LOAD pathogenesis 

function in cholesterol metabolism include APOE, CLU, ABCA7, and SORL1 [44]. 

Although its function is best understood in the small intestine [45], SLC10A2 also is 

expressed in brain [46]. Resveratrol, a chief constituent of red wine, inhibits SLC10A2 
expression and function through a Sirt1 (sirtuin 1)–independent manner [47]. Potentially an 

exciting therapy for LOAD, resveratrol reduces amyloid plaque pathology in AD animal 

models [48] and has been shown to be safe and well-tolerated in a large phase 2 LOAD 

clinical trial [49]. Although resveratrol’s antiamyloidogenic effects have been suggested to 

be mediated by Sirt1 [50], our findings indirectly suggest that resveratrol may affect AD 

through multiple mechanisms. Rs16961023, the most significantly associated SNP in the 

SLC10A2 region in our study, is located 30-kb downstream of SLC10A2. Variation at 

rs16961023 leads to an Egr-1 regulatory motif change [42]. In the 1000 Genomes reference 

panel, the rs16961023 minor allele is infrequent among persons with African ancestry (MAF 

= 0.02) and rare among persons with European ancestry (MAF = 0.004), but is common in 

East Asians (MAF = 0.15).We previously conducted a GWAS for LOAD case/control status 

in a Japanese cohort [51] but did not find any nominally associated SNPs at this locus. 

Mez et al. Page 7

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Genetic association findings may be specific to a particular ethnic background, especially 

when variants are rare [52].

Current smoking has been found to increase LOAD risk in meta-analyses [24]; however, in 

this study, it was more frequent in LOAD controls than in LOAD cases when we combined 

the datasets. Ascertainment bias may explain this finding because our datasets are a mixture 

of clinic-and community-based studies. Cases disproportionately come from the clinic-based 

studies, whereas controls disproportionately come from the community-based studies. 

Typically, clinic-based cohorts have fewer vascular risk factors, including smoking, than 

their community-based counterparts [53]. Alternatively, survival bias may explain this 

finding, as smokers with LOAD may have died before entering the study [54]. Although 

early cross-sectional case-control studies observed that smoking was associated with a 

reduced risk of LOAD, a meta-analysis that included 23 longitudinal studies found that 

smoking increased risk [55]. That smoking occurs in our combined cohort at such a different 

relative rate than what is observed in the epidemiological literature emphasizes the 

importance of the informed conditioning approach, which makes use of external prevalence 

data.

Our study has several potential caveats. Because LOAD conditional prevalence data for AAs 

have not been reported, we estimated these values using available relative risk data that are 

not ancestry specific and therefore assumed that LOAD relative risks do not differ by 

ancestral population. Support for this assumption comes from review of the literature that 

shows the relative risks of dementia, LOAD, and/or cognitive decline for age, sex, diabetes 

status, smoking status, and educational attainment do not appear to differ significantly by 

ancestry [3,30–34]; however, this warrants further investigation. This concern is further 

lessened by a simulation study showing that moderate misspecification of model parameters 

did not reduce power and that even when parameters were misspecified by a large amount 

(up to 100%), the model still performed at least and logistic regression [11].

It should also be noted that the genome-wide significant variants near COBL and SLC10A2 
have low frequency (0.01–0.02). By comparison, SNPs with MAF <0.05 were not analyzed 

in the GWAS of Reitz et al. [1] because genotype imputation quality was poor for low-

frequency SNPs using the older 1000 Genomes reference panel. Using a newer reference 

panel, we were able to include low-frequency variants with improved imputation quality. For 

rs112404845, the top SNP in the COBL region, imputation quality, and correlation between 

imputed and direct genotype dosages were excellent, suggesting that our association findings 

were unlikely to be influenced by imputation quality. However, for rs16961023, the top SNP 

in the SLC10A2 region, imputation quality, and correlation between imputed and direct 

genotype dosages were similar, but only adequate, and there was a reduction in effect size 

when we repeated our association analysis among subjects with imputed posterior 

probabilities >0.8. It appears that subjects with less certain genotype probabilities may 

contribute disproportionately to the association signal, and, therefore, the SLC10A2 finding 

warrants cautious optimism. Finally, inclusion of low-frequency variants in GWAS can 

increase genomic inflation [56]. However, despite inclusion of low-frequency variants in our 

study, we did not see evidence of inflation (λ = 0.993, Supplementary Fig. 1).
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Although COBL and SLC10A2 are attractive candidate genes, variants identified through 

GWAS may not be causal and do not necessarily act at the gene closest to them. Therefore, it 

is only speculative that these genes are the causal risk factors for LOAD in AAs and that the 

identified variants have an effect on AD via the proposed regulatory mechanisms. Finally, 

our findings should be regarded with measured enthusiasm until they are confirmed in 

independent samples of AAs. Unfortunately, to our knowledge, additional large AA LOAD 

cohorts with genotype data are not currently available. Therefore, validation of the role of 

these loci in AD will likely require experimental evidence.

Taken together, these findings suggest that an informed conditioning approach can be used 

to identify new genetic associations for complex genetic traits where risk is a mix of genetic 

and environmental factors. Our success in using informed conditioning to identify new risk 

loci for AD mirrors the success of informed conditioning in GWASs of other phenotypes 

[11,12]. This work furthers our understanding of the biological underpinnings of AD in 

AAs. Functional studies are needed to determine whether COBL and SLC10A2 are suitable 

targets for development of novel therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

1. Systematic review: The authors are members of the Alzheimer’s Disease 

Genetics Consortium and therefore are familiar with emerging pertinent 

literature. PubMed searches were conducted to identify other relevant 

publications. References that informed the novel approach and that support 

the significance of the identified risk loci are cited.

2. Interpretation: Although >20 late-onset Alzheimer’s disease (LOAD) risk 

genes have been identified from genome-wide association studies (GWASs) 

for non-Hispanic whites, this report identifies only the third and fourth loci 

from GWAS associated with LOAD for African Americans (AAs). The 

COBL and SLC10A2 loci provide further evidence that axonal integrity and 

cholesterol homeostasis underlie LOAD pathophysiology.

3. Future directions: The study findings should be confirmed in independent AA 

samples. Unfortunately, additional large AA LOAD cohorts with genotype 

data are not currently available. Functional studies are needed to determine 

whether COBL and SLC10A2 are suitable targets for development of novel 

therapies.
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Fig. 1. 
(A) Regional association plot of the COBL region on chromosome 7 and (B) forest plots for 

rs112404845, the top single-nucleotide polymorphism in the region. Abbreviations: ACT, 

Adult Changes in Thought; ADC, Alzheimer’s Disease Center; ADGC, Alzheimer’s Disease 

Genetics Consortium; CHAP, Chicago Health and Aging Project; CI, confidence interval; 

COBL, Cordon-Bleu WH2 Repeat Protein; GenerAAtions, Genetic and Environmental Risk 

Factors for Alzheimer Disease among African Americans; and MAF, minor allele frequency.
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Fig. 2. 
(A) Regional association plot of the SLC10A2 region on chromosome 13 and (B) forest 

plots for rs16961023, the top single-nucleotide polymorphism in the region. Abbreviations: 

ACT, Adult Changes in Thought; ADC, Alzheimer’s Disease Center; ADGC, Alzheimer’s 

Disease Genetics Consortium; CHAP, Chicago Health and Aging Project; CI, confidence 

interval; GenerAAtions, Genetic and Environmental Risk Factors for Alzheimer Disease 
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among African Americans; MAF, minor allele frequency; and SLC10A2, solute carrier 

family 10, member 2.
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Table 1

Estimated conditional prevalence of AD in African Americans .65 years of age

Trait Conditional prevalence

Age

    65–74 0.062

    75–84 0.326

    ≥85 0.598

Sex

    Male 0.172

    Female 0.242

Education

    Low 0.305

    High 0.192

Current smoker

    No 0.190

    Yes 0.302

Diabetes

    No 0.188

    Yes 0.275

Overall 0.215

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mez et al. Page 18

Ta
b

le
 2

C
ha

ra
ct

er
is

tic
s 

of
 d

at
as

et
s

D
at

as
et

N
 (

%
)

M
ea

n 
ag

e 
(S

D
)

W
om

en
 (

%
)

C
ur

re
nt

sm
ok

er
 (

%
)

D
ia

be
te

s 
(%

)

M
ea

n
ed

uc
at

io
n

le
ve

l (
SD

)
A

P
O

E
−/

−*
 (

%
)

A
P

O
E

−/
4*

 (
%

)
A

P
O

E
 4

/4
 (

%
)

rs
11

55
50

68
0

M
A

F
†

(I
N

F
O

)

A
C

T
C

as
e

32
 (

32
.9

9)
83

.1
6 

(5
)

24
 (

75
)

4 
(1

2.
5)

0 
(0

)
11

.8
5 

(3
.6

7)
15

 (
46

.8
8)

12
 (

37
.5

)
4 

(1
2.

5)
0.

16
(0

.9
4)

C
on

tr
ol

65
 (

67
.0

1)
79

.2
3 

(6
.2

1)
38

 (
58

.4
6)

33
 (

50
.7

7)
20

 (
30

.7
7)

13
.6

4 
(3

.5
6)

42
 (

64
.6

2)
20

 (
30

.7
7)

0 
(0

)
0.

06

A
D

C
1&

2
C

as
e

59
 (

44
.7

)
75

.6
9 

(7
.3

)
36

 (
61

.0
2)

1 
(1

.6
9)

0 
(0

)
12

.4
3 

(3
.6

8)
17

 (
28

.8
1)

33
 (

55
.9

3)
8 

(1
3.

56
)

0.
08

(0
.9

1)

C
on

tr
ol

73
 (

55
.3

)
72

.9
5 

(7
.5

8)
58

 (
79

.4
5)

36
 (

49
.3

2)
26

 (
35

.6
2)

14
.9

4 
(2

.9
7)

42
 (

57
.5

3)
25

 (
34

.2
5)

2 
(2

.7
4)

0.
05

A
D

C
3

C
as

e
16

2 
(5

9.
12

)
79

.8
8 

(7
.2

2)
11

8 
(7

2.
84

)
60

 (
37

.0
4)

37
 (

22
.8

4)
12

.1
3 

(3
.1

5)
39

 (
24

.0
7)

78
 (

48
.1

5)
17

 (
10

.4
9)

0.
08

(0
.9

9)

C
on

tr
ol

11
2 

(4
0.

88
)

74
.2

8 
(7

.5
5)

91
 (

81
.2

5)
58

 (
51

.7
9)

27
 (

24
.1

1)
15

.0
6 

(3
.0

5)
62

 (
55

.3
6)

39
 (

34
.8

2)
4 

(3
.5

7)
0.

08

C
H

A
P

C
as

e
11

4 
(2

0.
84

)
81

.8
2 

(5
.9

3)
71

 (
62

.2
8)

60
 (

52
.6

3)
24

 (
21

.0
5)

10
.9

8 
(3

.5
7)

67
 (

58
.7

7)
41

 (
35

.9
6)

5 
(4

.3
9)

0.
09

(0
.8

8)

C
on

tr
ol

43
3 

(7
9.

16
)

78
 (

6.
62

)
29

0 
(6

6.
97

)
23

0 
(5

3.
12

)
50

 (
11

.5
5)

12
.8

1 
(2

.8
7)

26
1 

(6
0.

28
)

15
3 

(3
5.

33
)

12
 (

2.
77

)
0.

05

In
di

an
ap

ol
is

C
as

e
17

3 
(1

4.
72

)
83

.6
 (

6.
74

)
10

8 
(6

2.
43

)
90

 (
52

.0
2)

43
 (

24
.8

6)
9.

43
 (

3.
47

)
78

 (
45

.0
9)

75
 (

43
.3

5)
20

 (
11

.5
6)

0.
10

(0
.9

4)

C
on

tr
ol

10
02

 (
85

.2
8)

82
.8

8 
(5

.3
1)

66
3 

(6
6.

17
)

62
5 

(6
2.

38
)

41
0 

(4
0.

92
)

11
.2

5 
(2

.7
1)

67
0 

(6
6.

87
)

29
8 

(2
9.

74
)

34
 (

3.
39

)
0.

06

A
D

G
C

1‡
C

as
e

26
7 

(5
2.

56
)

79
.2

9 
(7

.2
4)

18
5 

(6
9.

29
)

12
3 

(4
6.

07
)

50
 (

18
.7

3)
10

.9
1 

(3
.8

3)
61

 (
22

.8
5)

49
 (

18
.3

5)
10

 (
3.

75
)

0.
08

(0
.8

8)

C
on

tr
ol

24
1 

(4
7.

44
)

80
.6

8 
(6

.8
7)

16
9 

(7
0.

12
)

12
1 

(5
0.

21
)

50
 (

20
.7

5)
13

.3
2 

(3
.4

)
13

8 
(5

7.
26

)
59

 (
24

.4
8)

3 
(1

.2
4)

0.
06

A
D

G
C

2‡
C

as
e

55
4 

(2
8.

4)
77

.8
6 

(8
.3

1)
41

5 
(7

4.
91

)
—

—
—

22
2 

(4
0.

07
)

24
8 

(4
4.

77
)

75
 (

13
.5

4)
0.

07
(0

.8
7)

C
on

tr
ol

13
97

 (
71

.6
)

73
.1

2 
(8

.2
2)

10
56

 (
75

.5
9)

—
—

—
90

3 
(6

4.
64

)
43

1 
(3

0.
85

)
41

 (
2.

93
)

0.
06

M
IR

A
G

E
 3

00
k

C
as

e
58

 (
57

.4
3)

72
.6

9 
(7

.4
6)

40
 (

68
.9

7)
27

 (
46

.5
5)

12
 (

20
.6

9)
11

.3
4 

(4
.7

)
15

 (
25

.8
6)

33
 (

56
.9

)
10

 (
17

.2
4)

0.
13

(0
.6

9)

C
on

tr
ol

43
 (

42
.5

7)
73

.1
2 

(8
.2

3)
30

 (
69

.7
7)

23
 (

53
.4

9)
9 

(2
0.

93
)

11
.2

1 
(4

.4
8)

20
 (

46
.5

1)
21

 (
48

.8
4)

2 
(4

.6
5)

0.
13

M
IR

A
G

E
 6

60
k

C
as

e
16

4 
(4

2.
82

)
72

.9
5 

(6
.8

2)
11

9 
(7

2.
56

)
56

 (
34

.1
5)

45
 (

27
.4

4)
9.

17
 (

5.
24

)
53

 (
32

.3
2)

77
 (

46
.9

5)
33

 (
20

.1
2)

0.
13

(0
.8

9)

C
on

tr
ol

21
9 

(5
7.

18
)

73
.3

9 
(8

.2
8)

15
9 

(7
2.

6)
72

 (
32

.8
8)

48
 (

21
.9

2)
10

.7
1 

(5
.1

)
12

1 
(5

5.
25

)
88

 (
40

.1
8)

9 
(4

.1
1)

0.
08

G
en

er
A

A
tio

ns
C

as
e

24
2 

(5
4.

88
)

80
.2

1 
(6

.6
)

13
8 

(5
7.

02
)

—
—

—
88

 (
36

.3
6)

11
2 

(4
6.

28
)

26
 (

10
.7

4)
0.

09
(0

.8
8)

C
on

tr
ol

19
9 

(4
5.

12
)

78
.4

9 
(6

.7
)

11
8 

(5
9.

3)
—

—
—

11
4 

(5
7.

29
)

63
 (

31
.6

6)
6 

(3
.0

2)
0.

07

P 
va

lu
e§

—
7.

23
 ×

 1
0−

28
0.

11
5.

01
 ×

 1
0−

4
0.

11
1.

03
 ×

 1
0−

45
1.

43
 ×

 1
0−

53
5.

90
 ×

 1
0−

30
6.

12
 ×

 1
0−

5

A
bb

re
vi

at
io

ns
: A

C
T,

 A
du

lt 
C

ha
ng

es
 in

 T
ho

ug
ht

; A
D

C
, A

lz
he

im
er

’s
 D

is
ea

se
 C

en
te

r;
 A

D
G

C
, A

lz
he

im
er

’s
 D

is
ea

se
 G

en
et

ic
s 

C
on

so
rt

iu
m

; A
PO

E
, a

po
lip

op
ro

te
in

 E
; C

H
A

P,
 C

hi
ca

go
 H

ea
lth

 a
nd

 A
gi

ng
 

Pr
oj

ec
t; 

G
en

er
A

A
tio

ns
, G

en
et

ic
 a

nd
 E

nv
ir

on
m

en
ta

l R
is

k 
Fa

ct
or

s 
fo

r 
A

lz
he

im
er

’s
 D

is
ea

se
 a

m
on

g 
A

fr
ic

an
 A

m
er

ic
an

s;
 I

N
FO

, i
nf

or
m

at
io

n 
m

et
ri

c 
fo

r 
im

pu
ta

tio
n 

qu
al

ity
 f

ro
m

 I
M

PU
T

E
2;

 M
A

F,
 m

in
or

 a
lle

le
 

fr
eq

ue
nc

y;
 M

IR
A

G
E

, M
ul

ti-
In

st
itu

tio
na

l R
es

ea
rc

h 
on

 A
lz

he
im

er
 G

en
et

ic
 E

pi
de

m
io

lo
gy

; S
D

, s
ta

nd
ar

d 
de

vi
at

io
n.

* (–
) 

re
fe

rs
 to

 a
ll 

no
n–

A
PO

E
 ε

4-
co

nt
ai

ni
ng

 g
en

ot
yp

es
 (

A
PO

E
 3

/3
, A

PO
E

 2
/3

, A
PO

E
 2

/2
).

† Im
pu

te
d 

si
ng

le
-n

uc
le

ot
id

e 
po

ly
m

or
ph

is
m

, m
in

or
 a

lle
le

 =
 G

, m
aj

or
 a

lle
le

 =
 A

.

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mez et al. Page 19
‡ Sa

m
pl

es
 g

en
ot

yp
ed

 b
y 

th
e 

A
D

G
C

 f
or

 th
is

 p
ro

je
ct

 w
er

e 
re

ce
iv

ed
 f

ro
m

 th
e 

A
fr

ic
an

 A
m

er
ic

an
 A

lz
he

im
er

’s
 D

is
ea

se
 G

en
et

ic
s 

St
ud

y,
 th

e 
A

D
C

s,
 C

H
A

P,
 M

ay
o 

C
lin

ic
, M

ou
nt

 S
in

ai
 S

ch
oo

l o
f 

M
ed

ic
in

e,
 

R
el

ig
io

us
 O

rd
er

s 
St

ud
y/

R
us

h 
M

em
or

y 
an

d 
A

gi
ng

 P
ro

je
ct

/M
in

or
ity

 A
gi

ng
 R

es
ea

rc
h 

St
ud

y/
R

us
h 

C
lin

ic
al

 C
or

e,
 U

ni
ve

rs
ity

 o
f 

M
ia

m
i/V

an
de

rb
ilt

 U
ni

ve
rs

ity
, U

ni
ve

rs
ity

 o
f 

Pi
tts

bu
rg

h,
 W

as
hi

ng
to

n 
H

ei
gh

ts
 

C
ol

um
bi

a 
A

gi
ng

 P
ro

je
ct

, a
nd

 W
as

hi
ng

to
n 

U
ni

ve
rs

ity
.

§ C
om

pa
ri

so
n 

of
 c

as
es

 w
ith

 c
on

tr
ol

s;
 r

es
ul

ts
 w

er
e 

co
m

bi
ne

d 
ac

ro
ss

 d
at

as
et

s 
by

 m
et

a-
an

al
yz

in
g 

th
e 

ln
 o

dd
s 

ra
tio

 f
or

 c
at

eg
or

ic
al

 v
ar

ia
bl

es
 a

nd
 s

ta
nd

ar
di

ze
d 

m
ea

n 
di

ff
er

en
ce

 f
or

 c
on

tin
uo

us
 v

ar
ia

bl
es

 u
si

ng
 a

 
fi

xe
d-

ef
fe

ct
s 

m
od

el
 w

ith
 in

ve
rs

e 
va

ri
an

ce
 w

ei
gh

ts
.

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mez et al. Page 20

Ta
b

le
 3

L
og

is
tic

 a
nd

 li
ab

ili
ty

 m
od

el
s 

fo
r 

th
e 

to
p 

in
de

pe
nd

en
t S

N
Ps

 to
 a

ch
ie

ve
 g

en
om

e-
w

id
e 

si
gn

if
ic

an
ce

 in
 th

e 
lia

bi
lit

y 
m

od
el

C
hr

om
G

en
e

SN
P

B
P

M
in

or
al

le
le

*
M

aj
or

al
le

le
M

A
F

M
od

el
C

ov
ar

ia
te

s
E

ff
ec

t
si

ze
†

95
%

 C
I

P
 v

al
ue

7
C

O
B

L
rs

l1
24

04
84

5
51

57
80

22
T

A
0.

01
L

og
is

tic
A

ge
, s

ex
, t

hr
ee

 p
ri

nc
ip

al
 c

om
po

ne
nt

s
3.

28
1.

71
–4

.8
5

1.
22

 ×
 1

0−
6

L
og

is
tic

A
ge

, s
ex

, s
m

ok
in

g,
 d

ia
be

te
s,

 e
du

ca
tio

n,
th

re
e 

pr
in

ci
pa

l c
om

po
ne

nt
s

3.
59

1.
76

–5
.4

1
8.

70
 ×

 1
0−

7

L
ia

bi
lit

y:
 a

ge
, s

ex
, s

m
ok

in
g,

di
ab

et
es

, e
du

ca
tio

n
T

hr
ee

 p
ri

nc
ip

al
 c

om
po

ne
nt

s
0.

46
0.

28
–0

.6
4

1.
28

 ×
 1

0−
7

L
ia

bi
lit

y:
 a

ge
, s

ex
, s

m
ok

in
g,

di
ab

et
es

, e
du

ca
tio

n
A

PO
E

 ε
4,

 r
sl

 1
55

50
68

0,
 th

re
e 

pr
in

ci
pa

l
co

m
po

ne
nt

s
0.

47
0.

29
–0

.6
5

3.
82

 ×
 1

0−
8

13
SL

C
10

A
2

rs
l6

96
10

23
10

36
63

94
5

G
C

0.
02

L
og

is
tic

A
ge

, s
ex

, t
hr

ee
 p

ri
nc

ip
al

 c
om

po
ne

nt
s

2.
77

1.
65

–3
.8

9
8.

01
 ×

 1
0−

7

L
og

is
tic

A
ge

, s
ex

, s
m

ok
in

g,
 d

ia
be

te
s,

 e
du

ca
tio

n,
th

re
e 

pr
in

ci
pa

l c
om

po
ne

nt
s

2.
68

1.
52

–3
.8

4
7.

92
 ×

 1
0−

6

L
ia

bi
lit

y:
 a

ge
, s

ex
, s

m
ok

in
g,

di
ab

et
es

, e
du

ca
tio

n
T

hr
ee

 p
ri

nc
ip

al
 c

om
po

ne
nt

s
0.

41
0.

25
–0

.5
7

1.
03

 ×
 1

0−
7

L
ia

bi
lit

y:
 a

ge
, s

ex
, s

m
ok

in
g,

di
ab

et
es

, e
du

ca
tio

n
A

PO
E

 ε
4,

 r
sl

 1
55

50
68

0,
 th

re
e 

pr
in

ci
pa

l
co

m
po

ne
nt

s
0.

41
0.

27
–0

.5
5

4.
59

 ×
 1

0−
8

A
bb

re
vi

at
io

ns
: A

PO
E

, a
po

lip
op

ro
te

in
 E

; B
P,

 b
as

e 
pa

ir
 p

os
iti

on
; C

hr
om

, c
hr

om
os

om
e;

 C
I,

 c
on

fi
de

nc
e 

in
te

rv
al

; C
O

B
L

, c
or

do
n-

bl
eu

 W
H

2 
re

pe
at

 p
ro

te
in

; M
A

F,
 m

in
or

 a
lle

le
 f

re
qu

en
cy

; S
L

C
10

A
2,

 s
ol

ut
e 

ca
rr

ie
r 

fa
m

ily
 1

0,
 m

em
be

r 
2;

 S
N

P,
 s

in
gl

e-
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m
.

* E
ff

ec
t a

lle
le

.

† O
dd

s 
ra

tio
s 

(O
R

s)
 f

or
 lo

gi
st

ic
 m

od
el

s 
an

d 
be

ta
 c

oe
ff

ic
ie

nt
s 

fo
r 

lia
bi

lit
y 

m
od

el
s.

 N
ot

e 
O

R
s 

an
d 

be
ta

 c
oe

ff
ic

ie
nt

s 
ar

e 
no

t o
n 

th
e 

sa
m

e 
sc

al
e 

an
d 

ca
nn

ot
 b

e 
co

m
pa

re
d.

 E
ff

ec
t i

s 
fo

r 
th

e 
m

in
or

 a
lle

le
.

Alzheimers Dement. Author manuscript; available in PMC 2017 February 20.


	Abstract
	1. Introduction
	2. Methods
	2.1. Study population
	2.2. Procedures
	2.3. Calculation of the posterior mean residual liability score
	2.4. Association analyses

	3. Results
	4. Discussion
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2
	Table 3

