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A B S T R A C T

Purpose
To investigate the longitudinal relationship between chemotherapy-induced peripheral neuropathy (CIPN)
symptoms (sx) and brain perfusion changes in patients with breast cancer. Interaction of CIPN-sx perfusion
effectswith known chemotherapy-associated graymatter density decreasewas also assessed to elucidate
the relationship between CIPN and previously reported cancer treatment–related brain structural changes.

Methods
Patients with breast cancer treated with (n 5 24) or without (n 5 23) chemotherapy underwent
clinical examination and brain magnetic resonance imaging at the following three time points: before
treatment (baseline), 1month after treatment completion, and 1 year after the 1-month assessment.
CIPN-sx were evaluated with the self-reported Functional Assessment of Cancer Therapy/
Gynecologic Oncology Group–Neurotoxicity four-item sensory-specific scale. Perfusion and gray
matter density were assessed using voxel-based pulsed arterial spin labeling and morphometric
analyses and tested for association with CIPN-sx in the patients who received chemotherapy.

Results
Patientswho received chemotherapy reported significantly increasedCIPN-sx frombaseline to 1month,
with partial recovery by 1 year (P, .001). CIPN-sx increase from baseline to 1 month was significantly
greater for patients who received chemotherapy compared with those who did not (P 5 .001). At
1month, neuroimaging showed that for the group that received chemotherapy, CIPN-sxwere positively
associated with cerebral perfusion in the right superior frontal gyrus and cingulate gyrus, regions
associated with pain processing (P , .001). Longitudinal magnetic resonance imaging analysis in the
group receiving chemotherapy indicated that CIPN-sx and associated perfusion changes from baseline
to 1 month were also positively correlated with gray matter density change (P , .005).

Conclusion
Peripheral neuropathy symptoms after systemic chemotherapy for breast cancer are associated
with changes in cerebral perfusion and gray matter. The specific mechanisms warrant further
investigation given the potential diagnostic and therapeutic implications.

J Clin Oncol 34:677-683. © 2015 by American Society of Clinical Oncology

INTRODUCTION

Chemotherapy-induced peripheral neuropathy
(CIPN) is a common, potentially permanent ad-
verse effect of breast cancer treatment.1,2 In ameta-
analysis of CIPN across many cancer types in 31
studies, CIPN was observed in 61% of patients
1month after treatment, 60% of patients 3 months
after treatment, and 30% of patients 6months after
treatment, indicating high prevalence as well as per-
sistence of symptoms in a subgroup of patients.3

CIPN may necessitate cancer treatment alterations,

and currently, there are no effective treatments for
symptoms.4 Given the prevalence as well as
evidence that CIPN may interfere with survivor
quality of life,4 further characterization of the
biologic mechanisms driving CIPN may suggest
potential novel approaches to treatment.

Despite various studies reporting changes in
brain structure and function associated with other
types of pain,5-10 the impact of CIPN on brain
structure and function has not been well studied.
To date, there has been only one publication on this
topic, which compared patients with multiple myel-
oma with CIPN to controls and found significant
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differences in CIPN-associated brain activation during pain process-
ing.11 The relationship between CIPN and cerebral perfusion
has not been specifically studied to date but could be valuable
in identifying future CIPN treatment targets. We hypothesized that
CIPN symptoms (CIPN-sx) in patients with breast cancer would be
longitudinally associated with altered resting state cerebral perfusion.
In addition, in view of our previous observations of altered cerebral
perfusion and gray matter density after breast cancer chemotherapy
treatment,12-14 we investigated how these changesmight relate to any
CIPN-associated cerebral perfusion change.

METHODS

Participants
Written informed consent was obtained from all study participants

using a protocol approved by the Indiana University Institutional Review
Board in accordance with the Declaration of Helsinki. The female breast

cancer cohort used for this study has been extensively described in previous
publications.13,14 For the current analyses, the sample consisted of patients
treated with (n 5 24) or without (n 5 23) common, standard-dose
chemotherapy regimens. Baseline assessment data were collected after
surgery and before chemotherapy treatment for most individuals. Eight
patients received neoadjuvant chemotherapy after their baseline assess-
ment but before any definitive surgical treatment; these individuals did not
differ significantly from the other patients who received chemotherapy
regarding demographic factors, depression, or anxiety. The same assess-
ments were also collected 1 month (1M) after chemotherapy treatment
completion and 1 year (1Y) later (13 months after treatment), with yoked
intervals for patients who did not receive chemotherapy. Group sizes were
smaller (chemotherapy, n5 18; no chemotherapy, n5 19) for 1Yanalyses
as a result of missing CIPN-sx data and participant exclusion (discussed
later). Only patients with noninvasive (stage 0) or nonmetastatic invasive
(stage I, II, or III) disease were included. Besides metastatic disease,
additional exclusion criteria for all participants included prior cancer,
substance abuse, and other medical, neurologic, and psychiatric risk
factors that might affect cerebral structure or function, as described in
McDonald et al.13

Table 1. Cohort Demographic and Clinical Characteristics, Rating Scales, and Cancer Treatment Data

Characteristic
Patients Who Received Chemotherapy

(1M, n 5 24; 1Y, n 5 18)

Patients Who Did Not Receive
Chemotherapy (1M, n 5 23;

1Y, n 5 19) P

Mean BL age, years (SD) 49.4 (7.9) 52.0 (9.1) .312*
Mean BL education, years (SD) 15.3 (2.9) 15.4 (2.3) .985*
Mean BL estimated full-scale IQ, Barona Index,15 (SD) 109.9 (6.9) 111.2 (5.7) .501*
White non-Hispanic, No. (%) 19 (79%) 21 (91%) .226†
CES-D score, mean (SD)
BL 9.2 (7.8) 7.3 (7.7) .392*
1M 13.9 (8.4) 9.4 (9.6) .088*
1Y 10.9 (7.5) 8.3 (9.9) .401*

STAI-S score, mean (SD)
BL 33.4 (13.9) 27.8 (7.7) .098*
1M 34.8 (12.0) 31.2 (12.7) .332*
1Y 30.8 (8.2) 28.8 (9.4) .498*

Mean BL to 1M interscan interval, days (SD) 152.2 (63.1) 178.7 (74.1) .192*
Mean 1M to 1Y interscan interval, days (SD) 379.5 (20.7) 371.8 (11.8) .170*
Cancer stage, No. of patients (%)
0 (DCIS) 0 (0) 5 (22) .002†
I 11 (46) 16 (70)
II 9 (38) 2 (9)
III 4 (17) 0 (0)

Therapy, No. of patients (%)
Received radiotherapy by 1M 2 (8) 15 (65) , .001†
Received radiotherapy by 1Y 11 (61) 12 (63) .020†
On antiestrogen therapy at BL‡ 0 (0) 1 (4) .498†
On antiestrogen therapy at 1M‡ 3 (13) 16 (70) , .001†
On antiestrogen therapy at 1Y‡ 8 (44) 15 (79) .033†

Chemotherapy regimen§
DOX/CYC/paclitaxel 7 (29)
DOC/CYC 6 (25)
DOC/carboplatin 6 (25)
DOC/DOX/CYC 2 (8)
DOC/cisplatin 1 (4)
DOX/CYC 1 (4)
Paclitaxel 1 (4)

NOTE. Values calculated at BL unless otherwise noted.
Abbreviations: 1M, 1 month after chemotherapy treatment completion; 1Y, 1 year after 1M time point; BL, baseline (prechemotherapy treatment); CES-D, Center for
Epidemiologic Studies–Depression; CYC, cyclophosphamide; DOC, docetaxel; DOX, doxorubicin; STAI-S, State Trait Anxiety Inventory–State.
*Analysis of variance.
†x2 test.
‡Antiestrogen therapies included tamoxifen (majority), anastrozole, letrozole, exemestane, raloxifene, and leuprolide acetate.
§Eight patients were also treated with trastuzumab, one was also treated with sunitinib, and one was also treated with bevacizumab.
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Demographic and treatment characteristics are listed in Table 1. The
Center for Epidemiologic Studies–Depression Scale16 and the State Trait
Anxiety Inventory–State subscale17 were used to measure depressive
symptoms and anxiety. Between-group comparisons including analysis of
variance (ANOVA), general linear models, and x2 tests were run with SPSS
Statistics 21 (IBM Corporation, Somers, NY).

CIPN-sx were assessed using the self-report, validated Functional
Assessment of Cancer Therapy/Gynecologic Oncology Group–Neurotoxicity
(FACT/GOG-Ntx) four-item sensory-specific subscale.18 Summed scores for
each time point were generated. Given the specific nature of each included
question, missing data were not imputed; if any question was unanswered,
CIPN-sx total score was counted as missing. Exclusions from the cohort
presented in Nudelman et al14 comprised the following: for patients who
received chemotherapy, two individuals were missing baseline CIPN-sx, and
an additional six individuals were missing 1Y CIPN-sx; for patients who
did not receive chemotherapy, two individuals were missing baseline or 1M
CIPN-sx, and an additional four individuals were missing 1Y CIPN-sx. Two

additional individuals were excluded based on high baseline CIPN-sx: one
patient who received adjuvant chemotherapy had CIPN-sx more than 4
standard deviations from the groupmean at baseline, whereas one patient who
did not receive chemotherapy with the highest CIPN-sx baseline score was
noted to have a pinched nerve, requiring pain medication. Exclusion of these
individuals yielded the final group sizes, presented earlier as well as in the
CONSORT diagram (Fig 1).

Repeated measures ANOVA in SPSS was used to analyze CIPN-sx
change over all three time points. In addition, ANOVA analyses at each
time point contrasted CIPN-sx means between treatment groups. Finally,
1M – baseline CIPN-sx scores were analyzed in a two-way ANOVA to test
for treatment group differences in change from baseline to after treatment.

Magnetic Resonance Imaging Acquisition
Cerebral perfusion scans were acquired with a Siemens Tim Trio 3T

whole-body magnetic resonance imaging scanner (Siemens, Munich,
Germany) using a 12-channel receiver-only head coil. During scan acqu-
isition, patients were in a conscious resting state with closed eyes. Details of
the scanning protocol used to obtain cerebral perfusion measurements have
been previously published.19 Briefly, a Q2TIPS pulsed arterial spin labeling
sequence was applied using the proximal inversion with a control for off-
resonance effects labeling scheme. Labeling was performed with an adiabatic
inversion pulse with a 10-cm labeling region and 25-mm spacing from the
distal edge of the labeled region to the image section, followed by optimized
inversion time delays (TI1 5 700 milliseconds and TI2 5 1,800
milliseconds). These time delays were chosen to minimize 3-T intravascular
signal intensity. Images were acquired using a gradient-echo single shot echo
planar imaging readout with the following acquisition parameters: repetition
time/echo time 5 3,000/13 milliseconds, field of view 5 224 mm, and
matrix5 643 64. The imaging region consisted of 16 contiguous ascending
axial slices of 7-mm thickness. Each perfusion measurement consists of 100
dynamic images (50 control and label image pairs) plus one M0 image (the
equilibrium brain tissue magnetization used to normalize the difference
perfusion map), requiring a scan time of about 5 minutes. Head motion
artifact was minimized using the scanner’s built-in three-dimensional online
prospective acquisition correction. High-resolution T1-weighted magnet-
ization prepared rapid gradient echo (MPRAGE) images and high-resolution
echo planar imaging whole-brain scans were acquired for subsequent ref-
erence and normalization. T2-weighted and fluid-attenuated inversion
recovery sequences were acquired to check for incidental pathology. The
high-resolution MPRAGE series for the analysis of gray matter density was
acquired as previously described.13

Image Processing
Pulsed arterial spin labeling magnetic resonance imaging scan process-

ing was performed using previously described methods.19 Briefly, matched
control images were subtracted from labeled images to create a perfusion-
weighted time series; the results were used to create quantitative regional
perfusionmaps for each scan, whichwere normalized toMontréal Neurologic
Institute space using SPM8 (Wellcome Department of Cognitive Neurosci-
ence, London, United Kingdom; http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). Scans were resampled to 2-mm3 voxels and smoothed with a 6 3 6

Starting cohort
)72=n(+xtC
)62=n(−xtC
)62=n(CH

Individuals with BL/1M perfusion imaging
data, as described in Nudelman et al, 2014

1Y Ctx−
(n = 19)

Excluded
  HC: not assessed for CIPN (n = 26)
  Ctx+: missing BL CIPN assessment (n = 2)
  Ctx+: BL CIPN > 4 SD from mean (n = 1)
  Ctx−: missing BL/1M CIPN  (n = 2)
    assessment
  Ctx−: pinched nerve (n = 1)

BL/1M Ctx+
(n = 24)

Ctx+ excluded 1Y
  Missing 1Y CIPN data (n = 5)
  Missing 1Y perfusion  (n = 2)
    scan

1Y Ctx+
(n = 18)

BL/1M Ctx−
(n = 23)

Ctx− excluded 1Y
  Missing 1Y CIPN data (n = 4)

Fig 1. CONSORT diagram. Number of individuals considered at each stage of
the study, as well as number and reasons for excluded individuals. 1M, 1 month
after chemotherapy treatment completion (or yoked interval for patients who did
not receive chemotherapy and controls); 1Y, 1 year after 1M time point; BL,
baseline (before chemotherapy treatment for the majority of patients); CIPN,
chemotherapy-induced peripheral neuropathy; Ctx1, patients with breast cancer
treated with chemotherapy; CTx–, patients with breast cancer treated without
chemotherapy; HC, healthy controls; SD, standard deviation.
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Fig 2. Chemotherapy-induced peripheral
neuropathy symptoms (CIPN-sx) positively
associated with perfusion. Surface ren-
dering of the positive association of
1-month post-treatment perfusion with
level of CIPN-sx reported at 1 month after
treatment (Pcrit , .001, k 5 25); colored
regions indicate increasing statistical sig-
nificance, as shown on the color scale.
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3 8 mm full width at half maximum kernel. Image processing of the
MPRAGE series for analysis of gray matter density was performed as pre-
viously described.13

Image Analysis
To examine the potential roles of cerebral perfusion and gray matter

in CIPN-related pain processing, all imaging analyses were limited to the
group that received chemotherapy. First, time point analysis was per-
formed to test for association of cerebral perfusion at 1M and 1Y with
CIPN-sx at 1M and 1Y, respectively. For each time point, whole-brain
perfusion scans were tested for association with the CIPN-sx variable using
voxel-wise multiple regression imaging analysis in SPM8. A mask of
regions of CIPN-sx–related perfusion at 1M was created for later use.

Second, baseline to 1M longitudinal analysis was performed to test for
association of cerebral perfusion changes with CIPN-sx. Perfusion changes
(1M – baseline scan images, obtained using the ImCalc utility in SPM8) were
tested for association with CIPN-sx at 1M covarying for baseline, using voxel-
wise multiple regression imaging analysis in SPM8. CIPN-sx scores at 1M
covaried for baseline were used to examine the relationship between perfusion
change and symptom severity, controlling for variance related to higher
baseline symptom report unrelated to chemotherapy treatment. Mean values
for the cluster identified in this analysis were extracted usingMarsBar in SPM8,
and 1M – baseline values were computed in SPSS to obtain CIPN-sx–
associated perfusion cluster value changes20 for later use.

Third, correlation analysis was performed for CIPN-sx and related
perfusion changes with gray matter density frontal changes (reported in
McDonald et al13). Mean values for the two frontal gray matter density
clusters were obtained for each participant using MarsBar in SPM8. SPSS
was then used to create an average of the two clusters for each participant,
and 1M – baseline values were computed to obtain a single value for
combined cluster change over time for each individual. Gray matter
density cluster value changes were tested using SPSS for Pearson corre-
lation with baseline to 1M changes in both CIPN-sx scores and perfusion
cluster values (obtained in the second imaging analysis).

Fourth, image masking of the previously reported gray matter density-
associated frontal perfusion decrease14 observed in this cohort was performed
to determine whether it occurred in CIPN-sx–related regions identified in the
first imaging analysis. Multiple regression analysis of perfusion changes (1M –

baseline scans, as in the second imaging analysis) with gray matter density
cluster value baseline to 1M changes in SPM8 was masked with 1M CIPN-
sx–related perfusion (from the first imaging analysis).

For the first three imaging analyses, to determine statistical significance
and reduce noise, the voxel-wise critical significance threshold (Pcrit) was set
to .001 uncorrected, with a minimum cluster extent (k) of 25 voxels. For the
fourth analysis, the uncorrected voxel-wise critical significance thresholdwas
relaxed toPcrit, .01, k5 25, to identify any changes within themasked area. As
presented in Nudelman et al,14 demographic and other confounding vari-
ables such as caffeine consumption were previously considered for their

potential impact on imaging analyses. These variables were not shown to be
significant and are not included in the current analyses.

RESULTS

Demographic Analysis
Comparison of treatment factors, including radiation, antiestrogen

therapy, and chemotherapy, as well as cancer stage, identified significant
group differences (Table 1); given current treatment protocols, these
differences are typical for this type of study. At baseline, there were no
significant differences between groups in terms of age, education, intelli-
gence quotient, and race/ethnicity. In addition, although a trend was
observed for increased post-treatment depression in the chemotherapy

Table 2. CIPN-sx FACT/GOG-Ntx Four-Item Subscale Group Mean Values

Time Period

Mean (SD)

P*
Patients Who Received Chemotherapy

(1M, n 5 24; 1Y, n 5 18)
Patients Who Did Not Receive Chemotherapy

(1M, n 5 23; 1Y, n 5 19)

BL CIPN-sx 0.46 (0.9) 1.09 (2.8) .250
1M CIPN-sx 4.71 (5.0) 0.91 (1.4) .001
1Y CIPN-sx 4.06 (3.4) 1.79 (2.5) .027
P† , .001 .301

Abbreviations: 1M, 1 month after chemotherapy treatment completion; 1Y, 1 year after 1M time point; BL, baseline (prechemotherapy treatment); CIPN-sx,
chemotherapy-induced peripheral neuropathy symptom; FACT/GOG-Ntx, Functional Assessment of Cancer Therapy/Gynecologic Oncology Group–Neurotoxicity; SD,
standard deviation.
*P value for analysis of variance, between groups at each time.
†P value for repeated measures analysis of variance, within-treatment group change over three time points.
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Fig 3. Chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx)
associated with perfusion increase. Colored regions of brain sections show areas
with statistically significant association of baseline (before chemotherapy treat-
ment) to 1-month post-treatment perfusion increase and 1-month post-treatment
CIPN-sx covarying for baseline (Pcrit , .001, k 5 25); colored regions indicate
increasing statistical significance, as shown on the color scale.
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group, there were no significant between-group differences for
both baseline and 1M measures of depression and anxiety.
Interscan intervals (approximately 5.5months for baseline to 1M and
1 year for 1M to 1Y) did not differ significantly between groups.
Finally, comparing patients who received adjuvant chemotherapy
and those who received neoadjuvant chemotherapy, the eight
patients who received neoadjuvant chemotherapy did not
demonstrate any significant demographic differences.

Treatment Group CIPN-sx Analysis
At baseline, CIPN-sx for the chemotherapy and no chemo-

therapy groups were not significantly different (Table 2). At 1M and
1Y, patients in the chemotherapy group reported significantly more
CIPN-sx than patients in the no chemotherapy group (1M, P5.001;
1Y, P5 .027). Repeated measures analysis of all three time points for
the chemotherapy group showed that these patients experienced
significantly increased CIPN-sx over time (P , .001). In contrast,
CIPN-sx did not increase significantly over time in patients who did
not receive chemotherapy (P 5 .301). Finally, analysis of group
differences in change in CIPN-sx from baseline to 1M showed that
CIPN-sx increased significantly in chemotherapy patients compared
with patients not treated with chemotherapy (P 5 .001).

CIPN-sx–Associated Perfusion in Chemotherapy-
Treated Patients

Time point analysis at 1M demonstrated that more CIPN-sx
were associated with higher perfusion in several frontal region
clusters, including bilateral superior frontal and cingulate gyri and
left middle and medial frontal gyri (Punc., .001; Fig 2; Appendix
Table A1, online only). However, at 1Y, analysis of CIPN-sx with
perfusion did not demonstrate any significant associations.

Longitudinal analysis indicated that more CIPN-sx at 1M,
covaried for baseline, were also associated with increased perfusion
from baseline to 1M. This increase was observed in several clusters
including two regions identified in the 1M analysis, the left cin-
gulate gyrus and left superior frontal gyrus (Fig 3, Table A1).

Gray Matter Density Correlation in
Chemotherapy Patients

Baseline to 1M gray matter density change was positively
associated with both baseline to 1M CIPN-sx change and perfusion
cluster change (Fig 4), indicating that individuals with more baseline to
1Mgraymatterdensity decrease didnot tend to show increasedperfusion
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Fig 4. Gray matter density (GMD), perfusion, and chemotherapy-induced peripheral neuropathy symptom (CIPN-sx) change correlations. (A) Scatter plot of baseline
(prechemotherapy treatment) to 1-month post-treatment (1M) change in GMD frontal clusters (as seen in McDonald et al13; x-axis) and the CIPN-sx–associated perfusion
change cluster in the left cingulate gyrus (LCG). These variables showed a Pearson correlation (r5 0.598, P5 .002), as labeled on the fit line. (B) Scatter plot of baseline to
1M change in GMD frontal clusters (x-axis) and CIPN-sx change. These variables showed a Pearson correlation (r 5 0.704, P , .001), as labeled on the fit line.
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Fig 5. Cerebral perfusion decrease associated with gray matter density
decrease in chemotherapy-induced peripheral neuropathy symptom–related
regions of interest. A mask of regions where chemotherapy-induced peripheral
neuropathy symptoms correlated with perfusion at 1 month after chemotherapy
completion superimposed on the analysis presented in Nudelman et al14 of gray
matter density frontal cluster change (baseline to 1 month after treatment) with
perfusion change identifies clusters of overlap (Pcrit , .01, k 5 25) in the cingulate
gyrus and superior frontal gyrus; colored regions indicate increasing statistical
significance, as shown on the color scale.
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and report increased CIPN-sx. Examination of the intersection of
gray matter density-associated perfusion decrease and the mask of
regions of perfusion associated with CIPN-sx at 1M showed
overlap in the right superior frontal gyrus and left cingulate gyrus
(Fig 5, Table A1).

DISCUSSION

To our knowledge, this is the first study to identify an association
between cerebral resting state perfusion and CIPN-sx. Compared
with patients who did not receive chemotherapy, patients with
breast cancer treated with standard-dose chemotherapy exhibited
significant post-treatment CIPN-sx. In the chemotherapy group,
a significant association was observed between post-treatment
CIPN-sx and perfusion in brain regions previously associated
with pain processing in other populations. Specifically, the anterior
cingulate region is known to be involved in pain processing, and
this effect has been demonstrated in other pain populations and
animal models.7,8,21-26 Preliminary evidence in the literature shows
that therapies targeting this region may alleviate pain, suggesting a
potential future intervention.27-30

Although a significant association between cerebral perfusion
and CIPN-sx was identified at 1M, a similar association was not
observed at 1Y, which may be partly a result of a trend toward
decreased CIPN-sx at this time. Alternatively, the changes in cerebral
perfusion at 1M may reflect an acute pain processing mechanism,
perhaps distinctly different from long-term chronic pain processing
mechanisms.

Given the previously reported results of frontal gray matter
density decrease and associated perfusion decrease observed in this
cohort,14 the impact of graymatter density change onCIPN-associated
perfusion was also investigated. The association between gray matter
density change, CIPN-sx, and perfusion change indicates that indi-
viduals showing gray matter density decrease may report less severe
CIPN-sx while showing less CIPN-sx–related perfusion change. In
this study, we also found that regions where perfusion correlated with
CIPN-sx 1 month after chemotherapy completion overlapped with
the previously reported14 regions where decreased gray matter density
was associated with decreased perfusion. Specifically, this overlap was
apparent in the left cingulate gyrus and right superior frontal gyrus,
where more CIPN-sx were associated with higher perfusion and
where perfusion and gray matter density were positively correlated.
This suggests that decreases in gray matter density may potentially
interfere with CIPN-associated perfusion increase and reduce patient
symptom report. This is particularly important because symptoms
such as pain, numbness, and tingling are just one component of CIPN;
deficits in motor reflexes, loss of dexterity, and issues with balance are
also common. If chemotherapy-treated patients with gray matter
density decrease do experience (and report) fewer symptoms com-
pared with their non–gray matter density–affected counterparts, it

may mask identification and preclude intervention for potential
threats to patient quality of life, occupational concerns, and CIPN-
related safety concerns such as falls and accidents in the home,
particularly in the elderly population.

Several limitations to this study should be noted. First, as with
many neuroimaging studies in breast cancer, heterogeneous cancer
stage and treatment modalities were an unavoidable limitation that
must be addressed in future research. Second, although the study
protocol asked participants to self-report CIPN-sx using a validated
tool, the protocol did not include CIPN evaluation and grading by a
clinician. Although this information would have aided in clinical
interpretation of the results and their implications, the FACT/GOG-
Ntx has been shown to be sensitive to treatment differences and
change over time18 and is comparable to other currently used
scales.31 The association of CIPN-sx with perfusion change in
known pain processing regions reported here provides some con-
vergent validation for the FACT/GOG-Ntx. A related limitation of
this study is the absence of objective peripheral assessments of CIPN
(eg, neurophysiologic testing, skin biopsy); filling this knowledge
gap will be vital to a more comprehensive understanding of CIPN-
related neuroanatomic and functional changes.

In summary, these results identify an objective cerebral neu-
roimaging perfusion measure associated with CIPN-sx. Identifying
functional brain regions important to pain processing in this
population may suggest future intervention targets for CIPN.
Furthermore, these results suggest that gray matter density decrease
and associated perfusion decrease may interfere with CIPN-sx–
associated perfusion change and patient symptom perception, which
are potentially clinically relevant findings because this could result in
patient under-reporting of CIPN-sx. Future research should use
objective peripheral measures of CIPN along with neuroimaging to
further elucidate this mechanism and explore potential CIPN
diagnostic and clinical implications.
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Appendix

Table A1. Clusters of Significant* CBF

Test x† y† z†
k (cluster
extent) T Statistic

Z Statistic (derived
from P value) P‡ BA Region

1M CBF, 1M CIPN-sx 240 12 56 103 6.49 4.80 .131 6 L MiFG
1M CBF, 1M CIPN-sx 4 18 56 273 6.08 4.61 .020 8 R SFG
1M CBF, 1M CIPN-sx 26 0 62 218 5.82 4.48 .035 6 L MFG
1M CBF, 1M CIPN-sx 232 26 54 113 5.55 4.34 .115 8 L SFG
1M CBF, 1M CIPN-sx 220 230 74 36 4.89 3.98 .364 4 L PCG
1M CBF, 1M CIPN-sx 210 18 42 157 4.89 3.98 .067 32 L CG
1M CBF, 1M CIPN-sx 20 24 62 25 4.41 3.69 .453 6 R SG
1M CBF, 1M CIPN-sx 16 230 42 25 4.39 3.68 .453 31 R CG
1M CBF, 1M CIPN-sx 226 22 66 30 4.39 3.68 .409 6 L MiFG
1M CBF, 1M CIPN-sx 24 214 32 37 4.06 3.47 .357 23 L CG
1M CBF, 1M CIPN-sx 214 8 16 25 3.97 3.41 .453 NA L Cau
1M-BL CBF, 1M c BL CIPN-sx 216 24 42 179 4.76 3.87 .040 32 L CG
1M-BL CBF, 1M c BL CIPN-sx 36 298 212 27 4.72 3.85 .402 18 R IOG
1M-BL CBF, 1M c BL CIPN-sx 44 22 36 25 4.18 3.53 .420 9 R MiFG
1M-BL CBF, 1M c BL CIPN-sx 24 6 54 31 4.06 3.45 .368 6 L SFG
1M-BL CBF, 1M–BL GMD 240 10 58 67 5.06 4.13 .436 6 L MiFG
1M-BL CBF, 1M–BL GMD 230 30 54 39 3.38 3.03 .561 8 L SFG
1M-BL CBF, 1M–BL GMD 26 22 40 55 3.22 2.91 .483 32 L CG
1M-BL CBF, 1M–BL GMD 4 16 54 63 2.92 2.67 .451 8 R SFG

Abbreviations: 1M, 1month after chemotherapy treatment completion; 1M c BL, 1M covarying for BL; BA, Brodmann area; BL, baseline (prechemotherapy treatment);
Cau, caudate; CBF, cerebral blood flow; CG, cingulate gyrus; IOG, inferior occipital gyrus; L, left; MFG, medial frontal gyrus; MiFG, middle frontal gyrus; NA, not available;
PCG, precentral gyrus; R, right; SFG, superior frontal gyrus; SG, subgyral.
*Chemotherapy-induced peripheral neuropathy symptom (CIPN-sx) –associated perfusion tests used voxel-wise Pcrit , .001, k 5 25; GMD-associated perfusion tests
used Pcrit , .01, k 5 25.
†Montreal Neurological Institute and Hospital coordinates.
‡Cluster-level uncorrected P values.
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