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Supplementary Issue: Integrative Analysis of Cancer Genomic Data

ABSTRACT: Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients’ clinical features
as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to iden-
tify the potential prognostic genes, alternative splicing — a posttranscriptional regulatory mechanism that affects the functional form of a protein due to
inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aber-
rations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but
also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic
exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of
all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The
Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and
found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognos-
tic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer
type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly
suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis.
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Introduction Genome Atlas (TCGA)™® (http://cancergenome.nih.gov/)

Survival analysis is a statistical approach to evaluate an event
or study where the outcome is based on the vital status of the
samples.! Cancer treatment and clinical trials are two common
use cases for analyzing the survival of the samples based on
the given treatment. However, over the recent years, several
major web servers that calculate the survival contribution of
mRNAs by employing publicly available clinically annotated
breast cancer microarray data have become available including
Kaplan-Meier plotter,? GOBO,* RecurrenceOnline,* and be-
GenExMiner.” PrognoScan® is one of the first studies integrat-
ing microarray expression data from Gene Expression Omnibus
(GEO) for multiple cancer types to predict the prognostic
mRNAs. As a result of increase in the availability of sequenc-
ing-based genomic data along with clinical annotations across
cancer types from various consortiums such as The Cancer

and the International Cancer Genome Consortium (ICGC)
(https://icgc.org/), cancer prognostic biomarker identification
and comparison among them has become the major outcomes
of various multi-omic studies. SurvExpress!® and PROGgene!!
have integrated multiple RNA sequencing (RNA-seq) expres-
sion profiles from GEO datasets and report the contribution of
an mRNA expression as a prognostic biomarker. SurvNet!? is
an online service for identifying the network-based biomark-
ers associated with clinical information. It is preloaded with
TCGA data and reports the survival significance in mRNA

and protein levels. cBioPortal'3

is a comprehensive web-based
platform that integrates several cancer genomic datasets includ-
ing those from TCGA. However, all of the listed services only
report the prognostic properties and survival contribution at

mRNA level. Alternative splicing is a posttranscriptional gene
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regulatory mechanism that contributes to different protein
products due to alterations in the combination of exons origi-
nating from the same gene.* Exon inclusion/skipping is a class
of a splicing event, wherein an exon is included or missed in
the final isoform product.’* Hence, identifying the potential
prognostically involved/missed exons in cancer genomes would
be beneficial for a better understanding of not only the involve-
ment of posttranscriptional regulatory alterations in cancers
but would also provide novel insights into potential exon-level
functions in tumor evolution. For example, SRSF2, an RNA-
binding protein, mutations drive recurrent mis-splicing of key
hematopoietic regulators such as EZH2 in patients with myel-
odysplastic syndromes.' Similarly, mutant U2AF1, an RNA-
binding factor, alters downstream gene isoform expression by
altering the splicing mechanism.!> A recent study'® analyzed
genome-wide patterns of RNA splicing across 805 matched
tumor and normal control samples from 16 distinct cancer
types to identify signals of abnormal cancer-associated splic-
ing. 'This study reports intron retention, a category of alterna-
tive splicing, to be common across cancers even in the absence
of mutations directly affecting the RNA splicing machinery. In
light of several recent studies providing support for extensive
rewiring of posttranscriptional regulatory networks in multiple
cancer types,'¢™ there is an immediate need for resources that
can enable rapid mining and validation of high-confident prog-
nostic alternative splicing events in cancer transcriptomes.

In this study, we present ExSurv (https://exsurv.soic.
iupui.edu/), which to our knowledge is the first online web
server that provides exon-level survival significance by using
the RNA-seq expression datasets and the associated clini-
cal metadata for four cancer types from the TCGA project””
(http://cancergenome.nih.gov/). We precalculated the prog-
nostic significance of more than 600,000 annotated exons in
Ensembl?® using survival package?! in R across the four can-
cer types. We stored the TCGA clinical data, exon survival
P-values, and the expression of significant exons, for visu-
alizing the survival curves per exon in a MySQL database.
A PHP/R backend and a JavaScript frontend were employed
for designing the interface and calling R visualization libraries.
We also compare the overlap in the prognostic exons and their
functional overlap across cancer types studied here.

Materials and Methods

Cancer types and the corresponding number of can-
cer samples analyzed in this study from the TCGA project.
We selected four cancer types, namely, breast invasive carci-
noma (BRCA), liver hepatocellular carcinoma (LIHC), glio-
blastoma (GBM), and kidney renal papillary cell carcinoma
(KIRP), and quantified the exon expression levels for patients
with accessible raw RNA-seq data. It is important to note
that TCGA is a collaborative effort; hence, the generated data
could be from different dates and platforms. However, it is not
suggested to do batch effect correction since it may bring addi-
tional noises to the analysis. The majority of TCGA cancer

patients are White males (except breast cancer patients) and
aged from 40 to 80 years at the time of first time cancer diag-
nosis (see Table 1). While there are several clinical features
available for each cancer type, to simplify the calculations and
increase the performance of the web server given the large
number of annotated human exons employed in the analysis,
we only considered the prognostic effect of exons among all
the samples of a cancer type without controlling for covari-
ates such as gender, age, or grade for a given cancer type. It
is important to note that most existing web servers perform-
ing survival analysis for multiple cancer types also employ a
similar approach to avoid sample size artifacts when multiple
covariates are considered.

Workflow for processing RNA-seq data and quantifi-
cation of exonic expression levels. Hierarchical indexing for
spliced alignment of transcripts (HISAT)?? is a highly effi-
cient alignment tool for aligning short reads from RNA-seq
experiments onto reference genome. HISAT claims to be the
fastest alignment system currently available, with better accu-
racy than most other methods. We ran HISAT with — dta
parameter options to align each of the RNA-seq samples to
generate corresponding Binary Alignment/Map (BAM) files
using the human genome reference 38 annotations obtained
from Ensembl.?> We then quantified the expression of exons
using StringTie,?* a computational method that applies a net-
work flow algorithm together with optional de novo assembly,
and estimated the multimap corrected number of reads for
every annotated exon in human genome build 38. To normal-
ize the number of reads mapped to genomic regions, transcript
per million is proposed by Li and Dewey,? which corresponds
to normalized read count value based on the length of the
transcript isoform under consideration and the total number
of mapped reads in the whole genome. We employed a similar
approach to quantify the exon expression, normalized by the
length of exon and the total number of the reads mapped to the
whole genome. Here, E(x) is the expression of ith exon. Cand
L functions for an exon represent the number of multimap
corrected reads mapping to the exon and length of the exon,
respectively, across the complete transcriptome of a sample.

E(xi.)zc(xi) L |x108

Clinical metadata from TCGA samples employed
for survival analysis in ExSurv. Clinical data are crucial
for survival analysis. TCGA (http://cancergenome.nih.gov/)
provides both sequencing data and the corresponding clinical
information for most of the patients for each cancer type
included in ExSurv. The clinical data included the vital status
of a patient, number of days from the first day of medication
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Table 1. Number of cancer patient samples employed for each cancer type in ExSurv.

CANCER NUMBER OF ANALYZED NUMBER OF PATIENTS GENDER
SAMPLES WITH CLINICAL DATA (M/F)
Breast invasive carcinoma (BRCA) 1040 1099 12/1087 W:758 >80: 55
B:183 60-80: 438
A:61 40-60: 508
<40: 98
Glioblastoma (GBM) 174 594 365/229 W:505 >80: 22
B:51 60-80: 246
A:13 40-60: 249
<40:70
Kidney renal papillary cell carcinoma (KIRP) 287 287 211/76 W:207 >80: 14
B:61 60-80: 138
A5 40-60: 119
<40: 16
Liver hepatocellular carcinoma (LIHC) 368 368 250/118 W:180 >80: 10
B:17 60-80: 184
A:160 40-60: 143
<40: 27

Notes: Other clinical parameters and the corresponding composition of the cancer cohorts are shown. We also categorized the age of patients into four categories

with intervals of 20 years for reference.
Abbreviations: (Race column represents) W, White; B, Black; A, Asian.

till the last follow-up, gender, cancer subtypes, and other
cancer-specific information. We included vital status and the
number of days since last follow-up in our survival analysis.

Survival analysis for exons to identify prognostic
markers in a cancer type. We employed survival package in
R26:%7 to estimate the contribution of a given exon to survival
of patients in a cancer type based on their expression. We
divided the cancer patients based on the expression of a given
exon into two groups (ie, High and Low). The group that was
labeled as High are the patients where the expression of the
exon is above the median expression of the same exon among
all the specific cancer type patients. Similarly, we labeled the
patients Low if the expression of the exon is below the median
expression level of that exon, among all the patients studied in
a cancer type. We applied Kaplan—Meier estimate of survival
with log-rank test and Cox proportional regression model to
measure the significance of difference between the High and
Low groups in a given cancer type. To increase the stringency
and to reduce the potential false positives, we introduced an
additional approach by redefining the High group as patients
where the expression of an exon is more than the third quartile
expression of the same exon, among all the specific cancer
types, and Low group if the expression of the exon is less than
the first quartile expression level of that exon, among all the
patients studied in a cancer type. We applied similar statistical
models to evaluate the survival contribution of the exons in
every cancer type. We corrected the results for the false dis-
covery rate (FDR) using Benjamini-Hochberg procedure. The
exons that exhibited a survival probability of at least 0.05 as
a result of the test were considered as significant prognostic
biomarkers for downstream analysis, and the corresponding
FDR values are also provided as output on the web server for
each exon and the same results are available in the MySQL
dump for local use.

Construction of the database backend for serving
the user interface of ExSurv. We aligned the raw RNA-seq
datasets from the cancer samples against HG38 and used the
exon annotations from Ensembl database,?® as discussed above.
The exon survival information and metadata associated with
cancer patients were organized into separated tables. Likewise,
the genomic annotations were organized into separate tables
(Supplementary Fig. 1 for a schema of the ExSurv database).
The design of the database enables updating either the anno-
tations or precomputed datasets or both without extensive
dependencies, thereby speeding up updates to the ExSurv
when there are changes in the datasets without the need for a
structural change in the database. We stored the data required
for our service in a MySQL database. We also developed PHP
scripts to handle user queries and generate exon-level survival
plots by integrating preprocessed data from the database to
perform dynamic survival analysis using the queried data in R
with survival package.?

Framework employed for building the user interface
of ExSurv. We implemented a simple interface for users to
search for their gene of interest and visualize the exon-level
survival analysis results in the selected cancer type. We use
JavaScript integrated with PHP scripts to query the database
and retrieve the expression results that are then provided as
input for survival analysis in R. ExSurv provides the users
to not only search for genes of interest and naturally all the
exons associated with it but to also limit to certain level of
significance. The results of the search are listed as survival
plots for each exon corresponding to the gene that matches
the query (eg, a gene symbol or Ensembl gene ID). The meta-
data related to that exon in the context of the cancer samples
analyzed is also given next to its survival plot. The users can
export the exon-level survival plots for storing them locally.
We also implemented an export functionality for downloading
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Figure 1. Major steps involved in the generation of exon-level survival estimates in the ExSurv database and visualization engine. As outlined in the
flowchart, our analysis pipeline comprises obtaining the raw RNA-seq datasets for more than 1800 patients spanning four different cancer types along
with their clinical metadata. Raw RNA-seq was processed using HISAT?? aligner to generate BAM formatted files, and StringTie?* was used for exon-
level expression quantification. Exon expression level across patients in a given cancer type along with clinical information on the follow-up time periods
were used to generate Kaplan—Meier plots and corresponding P-values from log-rank tests. A MySQL database was developed to store the exon-level
expression as well as the results of the survival analysis to facilitate dynamic querying and dissemination of the data. A web server was developed to
show the Kaplan—Meier plots and corresponding expression data employed for generating them.

raw expression data as well as the associated metadata across
cancer samples analyzed for each exon. ExSurv does not
require users to log in, and it is freely available on https://
exsurv.soic.iupui.edu/.

Results and Discussion

Overview of datasets and approach employed for building
ExSurv. Figure 1 shows the major steps involved in the genera-
tion of exon-level survival estimates as implemented in ExSurv
database and visualization engine. Briefly, we obtained the raw
RNA-seq datasets for individual patients from CGHub portal
(https://cghub.ucsc.edu/) after an approval process from the
dbGaP (http://dbgap.ncbi.nlm.nih.gov/) to access the raw
datasets for various cancer types. Grouping of the patients
based on exon levels together with the vital information of
the patients and the time-to-event information for each can-
cer type were used for survival modeling by employing the
Kaplan-Meier estimate with log-rank test (see “Materials
and methods” section). Resulting datasets were stored in

a MySQL database as described below and a visualization
engine built for dynamic access to the underlying data.

Four tables were designed to store the gene—transcript—exon
relationship (Supplementary Fig. 1). “Gene” table has Ensembl
gene IDs, their corresponding symbols, and gene synonyms to
facilitate searches when users query for alternate gene names in
addition to those reported as standard HUGO Gene Nomen-
clature Committee (HGNC) gene symbols (http://www.gene-
names.org/). “Transcript” and “Transcript_Exon” tables show
the transcript IDs associated with each gene and exons that are
associated with each transcript, respectively. Since exons are the
building blocks of ExSurv, their genomic coordinates, associ-
ated chromosomes, and strand information are organized in
the “Exon_Info” table that is connected with the “Transcript_
Exon” table. “Cancer_Patient_Info” table stores the clinical
information retrieved from TCGA portal such as vital status,
number of days from the first day of medication till the last
follow-up, and gender for all the patients analyzed in this study
for each cancer type. Table 1 shows the composition and the
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Figure 2. Screenshots from ExSurv user interface. (A) The search box with a text box for gene symbol or Ensembl gene ID entry, P-value text box that
defaults to 0.05 and cancer name select box. (B) A sample results table that shows the first two exons obtained. Identifiers are linked to their sources such
as Ensembl and GeneCards, and the survival plot can be zoomed in by clicking it. The first button under “Export” column for exporting the survival plot as
SVG file and the second one is for exporting a matrix of expression levels of the exons across the patient cohort of a cancer along with several available

metadata variables for the patient group as TSV file.

number of patients with various clinical attributes for the four
cancer cohorts employed in this study. We stored the precalcu-
lated survival probability of each exon across every cancer type
in “Cancer_Exon_Survival” table. “Exon_Survival_Data” con-
tains the generated expression data for each exon along with
its corresponding expression group, needed for survival analysis
and for generating the survival plots (Supplementary Fig. 1 for
the complete database schema).

ExSurv provides a rapid means of visualizing the exon-
level survival contributions for all exons in a given gene.
ExSurv has a user friendly web interface for querying and visu-
alizing the exon-level survival contributions for all exons asso-
ciated with a given gene symbol or Ensembl gene ID. It has
a search form placed next to its main navigation bar to make
it accessible from everywhere, and the form includes P-value
threshold and cancer name selection for narrowing down the
query (Fig. 2A). When a search request is received by ExSury,
it queries the database for matching exons to the given gene
and the exons that are significant under a given P-value thresh-
old and are detected in a given cancer type. If any exon is avail-
able for visualization, the survival plots for each of them are
prepared using survival package in R and returned to the user
as portable network graphics (PNG) formatted images, which
are supported by all browsers. Generated plots along with the
identifiers such as exon ID, transcript ID, gene ID, and gene
symbol, as well as P-value, are provided as a resulting table
(Fig. 2B). Each plot can be exported as resolution-independent
scalable vector graphics (SVG) images. Moreover, the raw data
used to generate the visualization of the survival plots can be
exported as a table in Tab-Separated Values (TSV) format.

These export options are given in the results table under
“Export” column.

Most prognostic exons are cancer specific. We extracted
the high-confident prognostic exon biomarkers across each of
the cancer types studied here at a survival probability <0.01 to
study their overlap across cancer types. A comparison of the
prognostic exons revealed that while more than 40,000 exons
were significant for BRCA, only 4000-7000 significant exons
were found for other cancer types. This can be due to a number
of reasons including the variability in the sample sizes such as
the higher coverage for BRCA compared to the other cancer
types and heterogeneity in the cancer samples for all cancer
types may not be the same. Nevertheless, a comparison of the
number of exons, which were found to be significant across
two or more cancer types, clearly revealed a surprising trend
(Fig. 3). We calculated the pairwise significance of the overlap
among the cancers using hypergeometric test and found that
the reported overlap values between all the pairs are indeed
significant (P-value < 0.01). We found that only a small frac-
tion of the exons were shared among different cancer types.
One might argue that the primary reason for observing cancer-
specific prognostic exons is due to the difference in tissue of ori-
gin.To further validate this hypothesis, we analyzed the overlap
between KIRP and kidney renal clear cell carcinoma (KIRC)
to verify that cancers originated from the same anatomical con-
text would also exhibit small overlap; hence, the origin of the
dissimilarity between the set of prognostic exons is indeed not
associated with tissue of origin rather it is related to cancer-
specific mechanism. The analysis suggests that there is indeed
small overlap between the two cancer types (hypergeometric,
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Figure 3. Venn diagram showing the number of prognostic exons

in four different cancer types. Significant majority of the exons
contributing to patients’ survival were found to be cancer specific. Only
exons that were found to be significant at a P-value threshold of 0.05
from the log-rank test were included in this plot. At these thresholds,
no exons were found to be significant for prognosis in all the cancer
types studied here.

P-value <0.001) (Supplementary Fig. 2). This observation
suggests that most prognostic exons are likely to be cancer spe-
cific, indicating a potential for extensive differences in the post-
transcriptional alterations seen across cancer types.
Functional analysis of genes associated with survival-
associated exons reveals unique as well core functional signa-
tures of cancer types. Performing a functional analysis of the
prognostic exons against the current literature is not yet possible
as very few studies have attempted to analyze the exon-level
contributions to cell growth phenotypes. However, it is possible
to analyze the genes associated with the prognostic exons, and
hence, we extracted the list of top 500 genes with highest num-
ber of prognostic exons, contributing to patients’survival in each
cancer type to understand the biological processes associated with
such exons. Figure 4 shows the analysis of the enriched biologi-
cal processes associated with the extracted genes for each cancer
type using ClueGO? against Gene Ontology database?” with a
P-value <0.01. Extracted biological processes suggest that exons

A

Tefiere

Sar mhfinkes oo (@)
ton /[ organizaton ¥

i intraellular
£\ mouster N i
ghomatid Afafisport _protein
P O = fochization
L) aregaion . o /
o P ol BT s )/ o
telomels, /7 oraninsil ar (ot inicalolac érganelle
maintenanch \ Fovonse o ansppit (y
G oot/ @ mecomuln |\, dpier | @
foar ¥ positive  localizatigh Iatalization
a obtionof R st by i,
chromosome | I |
- organization /o garizaion )\ dmane
organate i establshimaih, 9rsanizafan roteln peptcyiisparagine
s 5| Prodess o R ] Nl it
0 o sl | )\ givcosyltien
" i Cellar incal} w:r‘fgm
D1 cycle phage N gémponen, 0 P
()| /vansitgh \rganzaién
kot 3
e AN establish onele
vigion of protein W localization
! O e () edeaion =¥ fon
g et o S oprmsmiz
e séguiation of bwveur e oS Transport Goigivesicle
< ¢promosome e orsanieaion regulaton o
\ it ‘organelle protein
= N
\ negative Oganization cellular
sogregation rofuiatan of cGon of reguiation of protein %8 .
ONA toper reulon of regultion o e proten ocalzation
Q el omostm P B N,
celloycie organizaton {_) maintenance organization
single-organism
organelle
cellular  reguiation organization macromolecular
response  of ™ Complex
tostress  organelle macromoicular - subunit

organization

regultionof catabyic

maintenan: trarisiation i ‘magforfiolecular  Process
@ minenance Dagtiranscrptional ol
caulaon e
polarity 9 embl
expracglon

transladen

protein  profein

9 Toguiation o Gmpiox complox cellular
celluar subunit  biogenesis ‘macromolecule
sommiere M @ catabollc
process . microiubuia o process
process eytoskeleton .
spindle ‘organizatior ‘:;Z:’g‘c

organization

cellylar
respiration
nuclear]di \~orgarelle nondrial
fission 4 oratory
aerobic | ™~ ohain complex
respiration assembly

tricarboxylic

o

mitotic cel acid cycle ® AT synthesis
cycle coupled
electron
o . transport
mitotic sister oxidation-reduction
chromatid regulation of process  mitochondrial
segregation  mitotic cell cell cycle respiratory
cycle process chain complex
I biogenesis
A“ . protein
prock Tatty acid Indl complex
oxidation spindle subunit
fatty acid organization  organization

beta-oxidation

lipid oxidation

single-organism
biosynthetic
process

@

° oac'\ti - d carboxylic acid
* ! N\ Qrganicaci biosynthetic
leuko metabolic\small synthetic process
cell-ca)| process \Mmetabolic
adhesio rocess
gation \
\
\\ cofactor
\ | /mefabolic
i single-organism carbokylic
adaptive organonitrogen atabote i process
i lymphocyte compound I
immune i proeess\ metabplic
N aggregation catabolic \
response single \
process \
cell-cell organism cell \ /
cell activation adhesion adhesion glucose N
catabolic
carbohydrate
process catabyolic pyfuvate
metabolic
positive process rocess
oxidation-reduction regulation of ;i i .
process Tecell metabolic re_sponse_ to mtrog;en
receptor inorganic cycle )
ignali Process  substance  metabolic monocarboxylic
signaling process acid metabolic
pathway process

establishment regulation of

of protein protein
localization transport
extracellular
Str“_Ct“:? extracellular
organization matrix
organization

Figure 4. Functional enrichment using ClueGO for genes associated with exons found to be significant in (A) BRCA, (B) LIHC, (C) KIRP, and (D) GBM.
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contributing to GBM patients’ survival are involved in extracel-
lular matrix organization and regulation of protein transport
(Fig. 4D). In contrast, prognostic exons in breast cancer patients
are primarily active in critical cell functions such as intracellular
and cytoplasmic transport, organelle and chromosome organiza-
tion, mitotic cell cycle, response to stress, protein localization to
organelle, and posttranscriptional regulation of gene expression
(Fig. 4A and Supplementary Fig. 3). In KIRP patients, survival-
associated exons were found to be enriched for cellular respira-
tion, oxidation—reduction process, and fatty acid beta-oxidation,
perhaps indicating kidney-specific alterations. Similarly, oxoacid
and organic acid metabolic processes together with cell—cell
adhesion processes were enriched in liver cancer with promi-
nent contribution of immune response-related pathways such as
T-cell activation and aggregation, which are already documented
to be implicated in liver disorders (see Fig. 4, Supplementary
Fig. 3, and Supplementary Table 1).3° We also performed func-
tional enrichment analysis of genes whose exons are signifi-
cantly contributing to patients’ survival in at least two cancer
types. These results suggest that cell adhesion, carboxylic and
fatty acid metabolic process, and positive regulation of T-cell
signaling pathway are few major biological processes that were
enriched among the significant exons associated with KIRP,
LIHC, and BRCA (P-value <0.05; Supplementary Fig. 4).

Conclusions

Cancer is a complex multifactorial disease with our under-
standing of the posttranscriptional mechanisms contributing
to or causal to the cancer phenotypes being very limited. Most
approaches currently focus on identifying prognostic markers
at the individual gene or transcript level within a cancer type or
across cancer types; however, our understanding of the post-
transcriptional mechanisms altered in cancer transcriptomes
or the resulting splicing biomarkers are limited. Hence, iden-
tifying and understanding the function of cancer type-specific
prognostic biomarkers based on such poorly characterized lay-
ers of regulation is challenging and has recently gained lot of
attention in precision medicine field. Alternative splicing is a
posttranscriptional mechanism that might change the expres-
sion level of the resulting mRNA isoform and hence the final
protein product consequently, thereby causing aberrations in
the downstream interactome and disease phenotypes. In par-
ticular, exon inclusion/exclusion is one of the well-studied
alternative splice forms that results in different protein prod-
ucts. While a complete and comprehensive understanding of
the functions of exons in the context of their corresponding
functional transcripts is still premature, with the availability
of novel CRISPR/Cas9 genome editing screens, it might be
increasingly possible to study the impact of individual exons on
cancer phenotypes in order to rationally design exon-specific
therapeutics to decrease the off-target effects and to increase
specificity towards more personalized treatment options for
cancers. To address this gap and to provide a platform for
rational identification of prognostic exons, in this study, we

developed ExSurv, a database and web server for exon-level
survival significance for four cancer types. ExSurv is a web-
based platform where a user can query a gene of interest in a
cancer type, resulting in the expression levels of all the exons
associated with the gene along with their survival significance
and associated plots to be visualized online or for local use.
Our analysis of the resulting prognostic exons across four
cancer types clearly revealed that most of the survival-asso-
ciated exons are unique to a cancer type with few associated
processes common across cancer types, possibly suggesting
significant differences in the posttranscriptional regulatory
pathways contributing to prognosis. ExSurv is a fully func-
tional proof-of-concept platform that will be improved by
adding additional cancer types and other functionalities in
future versions. Current version of ExSurv performs the sur-
vival analysis of exons among the patients of a selected cancer
type without employing additional clinical features such as
gender and subtype. We will also improve the current plat-
form to facilitate exon survival analysis only among patients
who match specific clinical features. Currently, such filtering
frequently limits the number of samples, thereby decreasing
the power of the analysis for most cancer types. In addition,
RNA-seq data for most of the cancer types from TCGA proj-
ect have been sequenced from multiple sequencing centers or
platforms, which could potentially add batch effects to the
downstream analysis. However, since such postprocessing and
stratification can further reduce the power of the data, care-
ful considerations should be included in the pipelines. This
becomes especially important as the number, source, and het-
erogeneity of the samples increase due to contributions from
initiatives such as the ICGC.3! We anticipate that future ver-
sions of ExSurv, which can accommodate such stratifications
and controls, could serve to become very powerful for studying
the impact of prognostic exons even in subtypes of cancers.
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Supplementary Material
Supplementary Table 1. List of GO terms significantly
associated with single or a pair of cancer types (P-value <0.01).
GO associations are extracted from the latest Gene Ontology
database using ClueGO and results are ordered by P-value.
Supplementary Figure 1. The database schema of
Exsurv: Genomic annotations from ENSEMBL are stored
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in Gene, Transcript, Exon_Info, and Transcript_Exon tables.
This enables the updating of annotations without changing
the whole database structure. Patients’ clinical information
are stored in Cancer_Patient_Info. Precomputed survival sig-
nificance values and the exon expression values required for
survival plots are stored in Cancer_Exon_Survival and Exon_
Survival_Data, respectively.

Supplementary Figure 2. Prognostic exons in kidney
renal papillary cell carcinoma (KIRP) and kidney renal clear
cell carcinoma (KIRC) exhibit small but significant overlap
(P-value <0.001).

Supplementary Figure 3. Pie charts for each cancer type
shows the relative significance of GO terms among the associ-
ated genes. Bigger pie implies a higher significance GO term
related to the cancer genes compared to other terms.

Supplementary Figure 4. Functional enrichment analysis
using ClueGO for genes associated with exons found to be sig-
nificant in at least two cancer types. Carboxylic acid metabolic
process and positive regulation of T-cell receptor signaling
pathway are two major pathways enriched in the gene sets.
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