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Abstract

It has become widely accepted in forensics that, owing to a lack of sensible priors, the evidential value of
matching DNA profiles in trace donor identification or kinship analysis is most sensibly communicated in
the form of a likelihood ratio (LR). This restraint does not abate the fact that the posterior odds (PO)
would be the preferred basis for returning a verdict. A completely different situation holds for Forensic
DNA Phenotyping (FDP), which is aimed at predicting externally visible characteristics (EVCs) of a trace
donor from DNA left behind at the crime scene. FDP is intended to provide leads to the police
investigation helping them to find unknown trace donors that are unidentifiable by DNA profiling. The
statistical models underlying FDP typically yield posterior odds (PO) for an individual possessing a certain
EVC. This apparent discrepancy has led to confusion as to when LR or PO is the appropriate outcome of
forensic DNA analysis to be communicated to the investigating authorities. We thus set out to clarify the
distinction between LR and PO in the context of forensic DNA profiling and FDP from a statistical point of
view. In so doing, we also addressed the influence of population affiliation on LR and PO. In contrast to
the well-known population dependency of the LR in DNA profiling, the PO as obtained in FDP may be
widely population-independent. The actual degree of independence, however, is a matter of (i) how
much of the causality of the respective EVC is captured by the genetic markers used for FDP and (ii) by
the extent to which non-genetic such as environmental causal factors of the same EVC are distributed
equally throughout populations. The fact that an LR should be communicated in cases of DNA profiling
whereas the PO are suitable for FDP does not conflict with theory, but rather reflects the immanent
differences between these two forensic applications of DNA information.
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1. Introduction

For decades, DNA profiling has served in forensic practice to facilitate the identification of trace donors.
A trace DNA profile, typically comprising a selected number of highly-polymorphic short tandem repeats
(STRs), is either compared to the DNA profiles of one or more suspects, or is gauged against one or more
databases of DNA profiles of previously convicted persons. When a perfect match is found, i.e. when
trace and target individual are of the same genotype at every STR considered, the forensic expert reports
the evidential value of their result in the form of a likelihood ratio (LR).

In a forensic context, likelihoods allow weighing of the prosecution and defense hypotheses (Hp and Hd)
against each other, which is not feasible by way of probabilities owing to a lack of sensible priors [1, 2].
With G denoting the genetic evidence (i.e. the match between trace and target DNA profile), each
likelihood is defined by the conditional probability of G given the respective hypothesis, i.e.
L(Hp|G)=P(G|Hp) and L(Hd|G)=P(G|Hd). The likelihood ratio LR=L(Hp|G)/L(Hd|G) then quantifies the
relative evidential value of G with a view to decide between Hp and Hd. It must be emphasized, however,
that likelihoods are not probabilities because they are not additive (i.e. the joint likelihood of some
mutually exclusive hypotheses usually does not equal the sum of the individual likelihoods) and
therefore fail a critical formal requirement of probability theory. Instead, the likelihoods of Hp and Hd as
well as the resulting LR should be viewed as a measure of rationale belief in either of the two hypotheses.

The primary interest of the court, of course, should be in posterior odds (PO) P(Hp|G)/P(Hd|G). However,
this quantity is difficult to grasp in the context of DNA profiling because of its dependence upon the prior
odds P(Hp)/P(Hd) which are usually difficult to specify. Prior odds, moreover, are solely in the domain of
the judge or jury. Therefore, a consensus has been reached among forensic experts that likelihoods and
the LR should constitute the only case-relevant outcome of their experimental work.

In the simplest situation, a case of interest involves a single suspect and a single trace donor. Under Hd,
the former would be presumed to have been drawn at random from a certain suspect population. Under
Hp, the suspect is the trace donor. If the trace and suspect DNA profiles match, the LR simplifies to the
inverse of the so-called ‘(random) match probability’. The forensic expert would then report this
probability and would leave it to the court to evaluate whether the suspect left the trace or not. In
principle, the same reasoning can be applied to any courtroom evidence that does not exclude a suspect
or a group of suspects from trace donorship.

Forensic DNA Phenotyping (FDP) is a relatively recent development in forensic genetics. It aims at
predicting selected externally visible characteristics (EVCs) of a trace donor from their DNA as left behind
at the crime scene. We will continue to use the expression ‘predict’ in this context despite the fact that
some scholars have argued that ‘prediction’ should only be used for future events [3]. This is because
any resulting (true or perceived) logical problems can be resolved by referring to the future disclosure of
the EVC of the trace donor once they have been identified. The FDP approach bears great potential in
cases where DNA profiling failed, for example, because the police have no suspect at all or neither
suspect DNA profile matches the trace DNA profile [4-7].



There are some major conceptual differences between DNA profiling and FDP. First, whereas
identification by DNA profiling involves at least two DNA samples, namely from trace and suspect, FDP
usually works with just the trace DNA. Second, FDP is not meant to yield courtroom evidence but rather
to guide the police investigations in cases where DNA profiling failed or was not feasible in the first place.
Most notably, from a statistical perspective, FDP yields posterior probabilities of trait phenotypes (i.e.
EVCs) from genotypes by way of statistical techniques such as, for example, logistic regression analysis
[8-15]. Since this seems to contradict the forensic genetics paradigm of only reporting likelihood ratios,
however, some forensic experts have felt uncomfortable about reporting the PO that somebody has a
certain EVC level (such as blue eye color).

Currently, practical FDP is feasible only for eye and hair color. In fact, two dedicated DNA systems have
been developed and forensically validated for these EVCs, namely IrisPlex for eye color alone [12, 16, 17]
and HlrisPlex for simultaneous eye and hair color prediction [11, 18]. For skin color, efficient predictive
DNA markers have been proposed as well [19], but these have not been forensically validated yet. For all
other EVCs, studies to understand their genetic basis are not advanced enough to allow practical
implementation of FDP [7]. This is not to say that no genetic associations have been documented yet for
non-pigmentation traits such as male pattern baldness [20, 21], hair structure [22] and extreme body
height [23]. Rather, their prediction accuracies are not yet high enough for FDP, which would require
more predictive DNA markers to be identified and added to the respective models. Moreover, for any
other EVC, genetic studies have only identified the first few genes, providing very limited prediction
information, or genetic studies are lacking completely (see recent overview in [7]).

In the following, we will discuss the apparent discrepancy between DNA profiling and FDP from a
statistical perspective. In so doing, we will focus upon the dependency, or not, of LR and PO on
population affiliation. For DNA profiling, the role of the source population of the trace donor has been
well worked out before, not least including a considerable debate about the appropriateness of the so-
called ‘random man’ assumption. Thus, it has been argued repeatedly that the population of a potential
donor is rarely if ever identical to the database population used for obtaining the match probability [24,
25], and a mathematical procedure known as the ‘theta correction’ was proposed to address this
problem analytically [26-29]. So, whilst presenting a general framework of the relationship between LR
and PO, we will nevertheless put our considerations into the specific context of FDP. We also propose
some recommendations as to how forensic experts should report the results of their experimental work
in the courtroom (DNA profiling) or to the investigating authorities (FDP).



2. Material and Methods

For the present study, the performance of IrisPlex-based FDP for eye color [17] was assessed empirically
in eight previously published European population samples from Norway (n=547), the United Kingdom
(n=498), Estonia (n=579), France (n=616), Italy (n=542), Greece (n=547), Spain (n=511) — all from the
EUREYE Study [12] — and the Netherlands — from the Rotterdam Study (n=2364) [17]. Sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV) and area under the receiver
operating curve (AUC) were estimated for a prediction model obtained before from a Dutch training set
[9] that did not overlap with the Dutch sample used here. All analyses were performed with the R
statistics software [30], particularly packages ROCR [31] and caret [32].

3. Probabilistic Models

3.1 General set-up

Couched in probability theoretical terms, every forensic application of DNA typing draws upon the causal
relationship between at least two random variables, say X and Y. We will henceforth assume that X is
causal for Y in the sense that the factual entity represented by X has a biological effect on that
represented by Y, and that X is not merely statistically associated with Y. Various methods have been
proposed in the scientific literature to arrive at a reasonable degree of belief in causality [33] and we will
stipulate that, in the following, sufficient evidence for a causal relationship between X and Y exists.

In DNA profiling, X is an indicator of the identity, or not, of suspect and trace donor whereas Y is an
indicator of matching DNA profiles. In FDP, X is a composite genotype whereas Y denotes the EVC of
interest expressed by the unknown trace donor. Usually, composite genotype X will comprise both causal
and merely associated variants so that its causality for Y is only partly warranted.

3.2 Likelihood ratio (LR) and posterior odds (PO)

Statistical inference is tantamount to the deduction from sample data of the characteristics of a so-called
‘random variable’, a concept borrowed from probability theory to relate chance experiments (e.g. the
roll of a die or a blood pressure measurement) to their possible outcome (e.g. a label or a number).
When considering two random variables X and Y at a time, it may be relevant to distinguish whether the
variable of interest (henceforth termed the ‘inference variable’) is causal (i.e. X is the inference variable)
or consequential (i.e. Y is the inference variable). The other variable, henceforth referred to as the ‘lead
variable’, corresponds to the data used for inference making. Note that, in the context of forensic
genetics, the different levels of the inference variable are often termed ‘hypotheses’ and the lead
variable itself is called ‘evidence’.

DNA profiling clearly aims at characterizing a causal inference variable X, namely trace donor-suspect
identity, whereas FDP is concerned with a consequential inference variable Y, namely the EVC of interest.
It should be pointed out here that, in both cases, the lead variable is a (composite) genotype, which
confines the validity of the inference making process to a so-called ‘random man’ scenario. This means
that the predicted phenotype in FDP is the phenotype of an individual randomly drawn from the



population of interest. If additional lead variables, such as eye witness reports or CCTV footage, were to
be taken into account for FDP, then the underlying mathematical model would have to be changed
accordingly (which, admittedly, can be very complicated).

If X is the inference variable and Y is the lead variable then P(X=x|Y=y) is the posterior probability, and
the conditional probability P(Y=y|X=x) can be interpreted as the likelihood L(X=x|Y=y) in generalization
of the likelihood concept alluded to in the introduction. Similarly, P(Y=y|X=x) is the posterior probability
and P(X=x|Y=y) equals the likelihood L(Y=y|X=x) if Y is the inference variable and X is the lead variable.
Note that, in both cases, the posterior probability is the sought-after quantity and the likelihood is only
of indirect interest, if any.

Bayes’ theorem connects PO and LR via the prior odds. For dichotomous random variables X and Y, of
which Y is the inference variable, the theorem takes the form

P(Y =1|X =1) L(Y =1|X =1) P(Y =2)
P(Y=0|X=1) L(Y=0|X=1)P(=0)

Whilst PO and LR can take widely different values per se, Bayes’ theorem allows one to be calculated
from the other if the prior odds P(Y=1)/P(Y=0) are fixed. In this sense, PO and LR are two sides of the
same coin. As was pointed out above, this relationship between LR and PO is particularly important in
the context of trace-donor identification by DNA profiling, where the forensic expert only reports the LR
and lets the court specify the prior odds necessary to turn LR into PO.

In principle, both P(X=x|Y=y) and P(Y=y|X=x) can be estimated empirically by measuring X and Y in a
population-representative sample. In many cases, however, it may be either inefficient, or impracticable,
or both, to involve a population-representative sample. In this situation, the sample may be stratified by
to the lead variable and still allow valid characterization of the inference variable, i.e. estimation of the
sought-after posterior probabilities. In some settings, however, even the measurement of the random
variables itself may be intricate. For example, empirical estimation of P(X=0|Y=1) in the case of DNA
profiling would require a set of persons, representative for the case at hand, with DNA profiles that
match each other (i.e. Y=1) but originated from different persons (X=0). Without doubt, such a sample
would be very hard to come by.

Fortunately, the possibility of appropriate mathematical modeling obviates the necessity of empirical
data in the case of DNA profiling. The conditional probability of a match given a lack of trace donor-
suspect identity, i.e. P(Y=1|X=0), can be readily calculated under the random man assumption as the
population frequency of the shared genetic profile. Since X is the inference variable, however, P(Y=1|X=0)
would still have to be transformed into a posterior probability using Bayes’ theorem, which in turn would
require knowledge of P(X=0). As has been mentioned above, priors such as this are outside the domain
of the forensic experts so that they have to make do, in DNA profiling, with 1/P(Y=1|X=0) as the inverse
conditional probability-turned-LR.



3.3 Cofactor Z

The dependency of LR and PO upon population affiliation will be addressed more generically in the
following by way of considering a cofactor Z that is associated with Y, and possibly also with X. We will
specify two mathematical models relevant to forensic genetics in which Z is explicitly lacking a role in
inference making about either X (model A) or Y (model B).

(A) Causal variable X is the inference variable (Fig. 1A) and the conditional distribution of Y given X is
independent of Z, i.e. P(Y=y|X=x,Z=2)=P(Y=y | X=x)=L(X=x]|Y=y). This means that the association between Y
and X is not modified by Z, and that all information included in Z that is relevant to Y is already included
in X. In this case, the make-do likelihoods L(X=x|Y=y) are independent of the actual level z of cofactor Z.

(B) Consequential variable Y is the inference variable (Fig. 1B) and the conditional distribution of Y given
X is again independent of Z, i.e. P(Y=y|X=x,Z=z)=P(Y=y|X=x). Then, the sought-after posterior
probabilities P(Y=y|X=x) are independent of the actual level z of cofactor Z.

3.4 Additional Cofactors

In reality, more than one cofactor will be associated with consequential variable Y. For the sake of
simplicity, we will consider only one such cofactor Z’ and assume that P(Y=y|X=x,2'=2")#P(Y=y| X=x) for at
least one level triplet (x,y,Z’), i.e. Z’ modifies the conditional distribution of Y given X. We will confine our
considerations to model B, but the conclusions drawn from this can be generalized to multiple cofactors
or to model A as well.

3.4.1 7’ is not associated with Z

If Z' is not associated with Z, then Z does not itself modify the conditional distribution of Y given X (Fig.
2A), i.e. model B applies and the sought-after posterior probabilities P(Y=y|X=x) are independent of
cofactor Z. For example, if Z denotes population affiliation and Z’ is a population-independent cofactor,
such as sex, this means that the above posterior probabilities can be estimated in any population. This
notwithstanding, since Z’ modifies the conditional distribution of Y given X, including Z’ in a statistical
model used to estimate the above posterior probabilities would improve the precision of the latter, and
hence their predictive utility. The expanded model would also be applicable in all populations.
Generalizing this statement to multiple cofactors, we may conclude that model B applies, i.e.
P(Y=y|X=x,Z=2)=P(Y=y | X=x) for any triplet (x,y,z), if all causes Z’ of Y, other than Z, are independent of Z.

3.4.2 7’ is associated with Z

If Z’ is associated with Z, then the conditional distribution of Y given X is modified by Z under virtually all
realistic assumptions about their stochastic relationship (Fig. 2B). In other words, model B no longer
applies. For a discrete cofactor Z such as, for example, population affiliation, this would imply that the
sought-after conditional probabilities P(Y=y|X=x) must be estimated separately in each Z-defined
stratum. Again, the results would be more precise if Z’ was included in the underlying model and, under
certain conditions, consideration of Z’ may even render the posterior probabilities independent of Z.



3.4 Examples
3.4.1 Example 1: Diagnosis of a disease using a classical biomarker [model A]

Although the prediction of disease phenotypes from forensic DNA samples is ethically problematic,
legally banned in most countries, and therefore typically not considered in FDP, we nevertheless chose a
medical example to illustrate model A. We assume that the presence of a certain disease X is causal for
some biomarker Y, and that this causal relationship is independent of the population Z in which the
biomarker is measured, i.e. P(Y=y|X=x,Z=z)=P(Y=y|X=x). For example, the immunoassay-based HIV
screening test is sensitive to detect HIV infection because the presence of viral antigen (i.e. X=1) is causal
for the presence of antibody (i.e. Y=1), which is the biomarker in question.

For medical diagnostic purposes, infection status X is the inference variable and biomarker status Y is the
lead variable. The quantities of interest are the posterior probabilities P(X=x|Y=y). Since model A applies,
the likelihoods L(X=x|Y=y)=P(Y=y|X=x) are population-independent which implies that the LR is
population-independent as well and can be estimated from case-control or population-representative
data (prospective, cross-sectional). The LR also does not depend upon the prior probability (i.e. the
prevalence) of HIV infection. Estimation of the PO, on the other hand, would require prevalence
information which can only be obtained from population-representative data. Moreover, if the
prevalence of HIV infection in population z is known, then the sought-after PO can also be calculated
from the LR using Bayes’ theorem.

In a medical diagnostic context, such as HIV detection, likelihoods P(Y=1|X=1) and P(Y=0|X=0) would be
referred to as ‘sensitivity’ and ‘specificity’ of the test. Both parameters are thus population-independent
if model A applies. The positive and negative predictive values P(X=1|Y=1) and P(X=0]|Y=0), on the other
hand, depend upon the prevalence of HIV infection and, therefore, upon the population in which the test
is applied.

3.4.2 Example 2: DNA profiling for trace-donor identification [neither model A nor B]

As was mentioned above, in the context of trace-donor identification via DNA profiling, lead variable Y is
an indicator of a perfect DNA profile match and inference variable X indicates trace donor-suspect
identity. Clearly, X is causal for Y, and not vice versa. The likelihoods L(X=x|Y=y,Z=2)=P(Y=y|X=x,Z=2) can
be calculated provided that the necessary parameters are known for the population of origin z of the
trace donor. Since no priors for X can sensibly be specified, calculation of PO from the LR using Bayes’
theorem is not feasible, which is why the interpretation of DNA results in crime cases is usually confined
to the reporting by the forensic expert of the LR. Unfortunately, information on population affiliation z is
also rarely available in forensic practice, and several ways have been suggested to deal with this
uncertainty. The most frequently followed approach is to assume that trace donor and suspect belong to
the same population [26]. Another, more pragmatic but formally problematic suggestion has been to
maximize the likelihood over different populations [28].



4. Forensic DNA Phenotyping (FDP)

4.1 Example 3: Prediction of eye color as an idealized, fictional example of FDP [model B]

The FDP paradigm implies that the EVC of interest is determined by a (single-locus or multi-locus)
genotype and that all other determinants of the EVC are population-independent (model B, Fig. 1B). In
the following, prediction of blue eye color (Y) will be used as a generic example of FDP. For the sake of
simplicity, we will assume that blue eye color is caused by a single, haploid, biallelic marker X with alleles
1 and 0 knowing that, in reality, human eye color variation is due to diploid sequence variation at several
genes [9, 34]. Thus, the posterior probabilities P(Y=y|X=x) would be the same in all populations and one
study in one population would suffice to estimate these probabilities by a valid method. The results
would allow practical use of the genetic marker in any other population, provided that each possible
level of Y (i.e. blue and non-blue eye color) was sufficiently frequent in the original population to warrant
accurate parameter estimation.

In contrast to the PO, the LR would be population-dependent even in the present simplistic example
because it is tied to the prior odds by Bayes’ theorem. This matter of fact shall be illustrated by two
fictional populations with different frequencies of allele 1 of 0.1 and 0.4 (Table 1). The PO equal 9.00 in
both populations despite the different allele frequencies and the different prevalence of blue eye color
(0.54 in population 1, 0.66 in population 2). Due to the prevalence difference, however, the LR is
considerably higher in population 1 than in population 2.

4.2 General Forensic DNA Phenotyping [possibly model B]

The goal of FDP is to predict an EVC (Y) from a genetic profile (X). If X is causal of Y except for some
population-independent factors, then model B applies and P(Y=y|X=x,Z=z)=P(Y=y|X=x). The same holds
true, of course, when the genetic profile is the exclusive cause of the EVC level of interest. As illustrated
by fictional example 3 (section 4.1), the posterior probabilities can be estimated based on the premise of
model B from any sufficiently large sample, irrespective of whether this sample is population-
representative for the EVC or the genetic profile, or both. Moreover, no priors are required. The PO are
independent of the population whereas the LR is not.

For a dichotomous trait such as presence of a specific eye color level (e.g. blue or brown), FDP can be
viewed as a diagnostic test where the presence of a certain genotype is equivalent to a ‘positive’ test
result. In diagnostics terminology, likelihoods L(Y=1|X=1)=P(X=1|Y=1) and L(Y=0|X=0)=P(X=0]|Y=0)
correspond to sensitivity and specificity, respectively, of the FDP test whilst the posterior probabilities
P(Y=1|X=1) and P(Y=0|X=0) are the positive and negative predictive value, respectively. However, there
is a crucial difference between FDP and medical diagnostics as exemplified by the HIV example of section
4.1: Whereas sensitivity and specificity were population-independent and the predictive values were
dependent upon the population in which the test was to be applied (via the prevalence), it is just the
other way round with FDP. Here, as long as model B applies, the sought-after predictive values are
population-independent whereas sensitivity and specificity are not.

There are two main scenarios in which model B would be violated in the case of FDP (Fig. 3).



e The first scenario is concerned with the amount of causal genetic information captured by the
genetic markers used for EVC prediction. Even if the EVC is entirely genetic, i.e. without any
contribution by the environment at all, its genetic basis will rarely be fully covered by the DNA
markers used for FDP. Then, if the unknown part (Z’) of the genetic basis is distributed differently
in different populations, P(Y=y|X=x,Z'=2',Z=z)=P(Y=y | X=x) may hold for all populations z, but still
P(Y=y|X=x,Z=z) # P(Y=y | X=x) for at least one level triplet (x,y,z) (Fig. 2B, Fig.3).

e The other scenario relates to the possibility of a non-genetic (i.e. environmental) component Z”
that determines the EVC of interest in addition to its genetic component (Fig. 3) but that is not
incorporated in the EVC prediction model. Again, if such a non-genetic component exists, it must
be distinguished whether 2" is distributed differently in different populations or not (Fig. 2A and
2B). For example, there may be an influence of sex on the EVC but because the sex ratio is
virtually identical all over the world, this would not affect the validity of ‘exporting’ FDP from the
original to any other populations. However, if Z”’ has a different distribution in different
populations (e.g. temperature), this would render model B invalid and the predictive model must
be derived separately in each population.

Adding the unknown genetic component (scenario 1) or environmental component (scenario 2) to the
EVC prediction model would result in model B being correct again. In both scenarios, the possible degree
of violation of model B is critically dependent upon both the amount of causal information about the EVC
that is captured by the genetic markers used for FDP and the degree of variation of the remaining
(genetic or non-genetic) information between populations. The ensuing degree of population-
dependence of the PO therefore needs to be evaluated separately for each EVC and each genetic marker
system used for EVC prediction. If model B does not apply for the EVC in question, one possibility would
be to report a table of posterior probabilities calculated for different possible populations of origin of the
unknown sample donor.

4.3 Population dependence of eye color prediction using the IrisPlex System

Of all EVCs, eye color is currently the best to predict by way of FDP. The IrisPlex DNA test system, which
includes six SNPs in six different genes, was found to achieve high levels of prediction accuracy for blue
and brown eye color in eight European populations (Table 2). The respective performance measures
were obtained with the initial IrisPlex model [9] resulting from multinomial logistic regression analysis.

Note that, if model B were to apply, the positive (PPVs) and negative predictive values (NPVs) should not
vary between populations. For blue eye color, the predictive capability of IrisPlex is generally good and
there are only moderate population differences in terms of both the predictive values and sensitivity and
specificity (Table 2). The rather low specificity of 0.59 in Estonia may be regarded as an outlier. For
brown eye color, the predictive capability of IrisPlex is more varied. The PPV, in particular, ranges from
0.65 in Norway to 0.96 in Greece whilst the NPV was found to lie between 0.87 (France) and 0.98 (Spain).
Notably, the predictive capability was no better in the Dutch than in the other population samples
despite the fact that the model was developed in a Dutch sample (not overlapping the sample used here).
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In summary, model B does not fully apply for the IrisPlex DNA system but the violations seem to be
limited and the ensuing posterior probabilities (i.e. PPV and NPV) vary only moderately between
populations.

5. Discussion

5.1 Population-dependency of Forensic DNA Phenotyping (FDP)

We argued that the parameters of a DNA-based predictive model of an externally visible characteristic
(EVC) are likely population-dependent unless all causes of the EVC other than the genetic markers
included in the model are equally distributed in different populations. In the case of the IrisPlex DNA
system to predict blue and brown eye color, we noticed a modest level of variability between the eight
European populations tested, but this variation was not so strong as to impede the predictive capability
of the system. Nevertheless, since the predictive values were found to vary by up to 30% for brown eye
color, empirical adaption of the respective model to individual populations should represent a
worthwhile refinement for this particular EVC. With blue eye color, in contrast, the IrisPlex system seems
to be well suited for EVC prediction as is. One explanation for the exceptional predictability of blue eye
color is its strong heritability and the minor influence of environmental cofactors. In fact, a causal genetic
variant is known for this EVC, namely rs12913832 in the HERC2 gene, that has high predictive accuracy
on its own [8, 9, 17, 35-37]. This variant, which is also included in the IrisPlex and the HlrisPlex system, is
located in a long-distance enhancer regulating the expression of the nearby OCA2 pigmentation gene,
thereby rendering the variant itself a molecular switch between blue and brown/intermediate eye color
[36]. Another possible reason for the difference in predictive performance between blue and brown eye
color may be the higher outward complexity of the latter phenotype. If brown eye color is more difficult
to determine unambiguously in the field than blue eye color, and if this difficulty varies between
populations, then the ensuing uncertainty about an individual phenotype may well translate into a
population difference of the corresponding predictive values.

The other five SNPs included in the IrisPlex system are a mix of (likely) causal and non-causal albeit
statistically associated genetic variants of varying effect size. Depending upon the strength of the
individual genotype-phenotype association, some of the alleles predisposing to a certain eye color are
also present in populations where this eye color is absent (see Figure 4 in [17]). Thus, alleles associated
with non-brown eye color in Europeans were also found in populations where non-brown eye color is
rarely if ever observed, a phenomenon also documented at the world-wide level using the CEPH-HGDP
samples analyzed by Walsh et al. [17]. That very same study also revealed, however, that non-brown eye
color is almost never predicted by IrisPlex in populations lacking non-brown eye color, as was attested
for East Asians, Oceanians, Sub-Saharan Africans and Native Americans [17]. On the other hand, both
brown and non-brown eye color was predicted in Europeans and in neighboring populations where the
latter EVC level is indeed prevalent (see Figure 5 in [17]). These results led the authors to tentatively
conclude that IrisPlex-based eye color prediction is not strongly population-dependent [16, 17], a notion
essentially concurring with our own data from eight European populations as presented here (Table 2).
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At present, the second best predictable EVC after eye color is hair color. Thus, the HlrisPlex DNA test
system [11] was devised and forensically validated [18] to predict blond, brown, red and black hair color
on the basis of 22 causal and non-causal DNA variants of up to medium effect. This includes four of the
six IrisPlex SNPs, particularly the previously mentioned SNP rs12913832 in HERC2, an eye color predictor
that is also associated with light and dark hair color. In addition, the MCIR gene was found to contain
several DNA variants that are causal for red hair color, and 11 of these were included in HirisPlex. Similar
to eye color, some alleles associated with non-black hair color in Europeans were found to occur in non-
European populations, where this phenotype level is absent [11]. On the other hand, the combination of
all 22 HirisPlex SNPs again predicted nothing but black hair in East Asians, Oceanians, Sub-Saharan
Africans and Native Americans, where black is indeed the only hair color. Both non-black and black hair
was predicted in European and surrounding populations [11]. This notwithstanding, the conclusion that
HirisPlex-based hair color prediction was mostly population-independent [11] requires further validation
in independent samples.

In contrast to eye color, hair color is determined to some degree by non-genetic component(s). Some
people are blond as children but grow dark blond or brown as adults. This age-dependent hair color
change is not addressed by HlrisPlex or any other currently known molecular markers so that it would
escape predictability for now. Moreover, the loss of hair color with advanced adult age in some (but not
all) individuals is not currently predictable from DNA sequence data. This is because the genetic basis of
hair greying or whitening is still mostly unclear despite the recent finding of a gene with significant but
small effect [38].

Whether EVCs other than eye and hair color can also be predicted from DNA variation with sufficient
accuracy and reliability still needs to be determined. With the possible exception of skin color, the
genetic basis of other candidate EVCs has not yet been characterized well enough to yield practically
useful levels of predictive accuracy and further research to find more and more strongly associated
genes is required [7].

5.2 Forensic DNA profiling versus Forensic DNA Phenotyping

The mathematical models underlying DNA profiling and FDP are fundamentally different in terms of the
causal relationship between the available genetic data and the target of inference making. In the case of
DNA profiling, the inference variable is the identity, or not, of trace donor and suspect, which in turn
determines the nature of their DNA profiles. With FDP, in contrast, the inference variable is the EVC,
which is (causally) influenced by the genotype(s) used to infer the EVC. As a consequence, only LR should
be calculated for DNA profiles whereas PO should be calculated in FDP. The two approaches also differ
regarding the relevance of population affiliation. The fact that match probabilities and, hence, the LR
depend upon the reference population considered has always been recognized by the forensic
community. With FDP, in contrast, the sought-after PO may be widely independent of population
affiliation, although the actual degree of independence is likely to vary between EVCs and needs to be
investigated empirically. At least for eye and (possibly) hair color, the PO do not appear to be strongly
dependent upon the population in which FDP is carried out.
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5.3 Use of either LR or PO in forensic genetics

For genetic matches in DNA profiling, it has become standard to report LR rather than PO. Since this has
been advocated by scientists for decades, a certain kind of mistrust to use PO in the first place has arisen
in the forensic genetics community. Part of this view on PO may be due to the fact that forensic
geneticists often think of the LR as the only quantity that can be calculated without making assumptions
outside their field of expertise. We hope that we have been able to clarify that, whilst LR is the outcome
of choice in the case of DNA profiling, there are other applications of DNA typing in forensics, such as
FDP, where the sought-after PO can be calculated and therefore should be reported. Use of different
statistical measures for different practical purposes is not in conflict with theory. Instead, it reflects that
there may be immanent differences between different forensic uses of DNA information.

The same argument, of course, also applies to other, non-genetic information. Thus, it may well be
sensible to complement DNA-based inference measures by LR or PO values derived from other sources
of information, such as eye witnesses or CCTV. Whether and how these numerical figures can be
combined with the genetics-based results depends upon the complexity of the underlying mathematical
relationships. In any case, when communicating statistical results, the forensic expert should aim at
clarifying this issue to the investigating authorities.
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8. Figure Legends

Figure 1: Schematic representation of mathematical models A and B of the relationship between three
forensically relevant variables (for details, see text). X: causal variable, Y: consequential variable, Z:
cofactor, red arrow: causal relationship, orange arrow: statistical association, blue arrow: direction of
statistical inference, green arrow: modification of the statistical association between X and Y.

Figure 2: Schematic representation of the influence of an additional cofactor Z’ on the conditional
distribution of Y given X (for details, see legend to Figure 1)

Figure 3: Scenario of Forensic DNA Phenotyping (FDP) with cofactors (for details, see legend to Figure 1).

16



Figure 2

A B

17



ACCEPTED MANUSCRIPT

Figure 3

phenotype

4= additional genotypes

population

=1 environment

genotype

18



9. Tables

Table 1: Fictional example of FDP for blue eye color in two different populations

Y (eye color)
X (allele) frequency (population 1) frequency (population 2)

1 (blue) | 0 (non-blue) | total | 1 (blue) | 0 (non-blue) | total

1 0.09 0.01 0.10 | 0.36 0.04 0.40

0 0.45 0.45 0.90 | 0.30 0.30 0.60

total 0.54 0.46 1.00 | 0.66 0.34 1.00
P(Y=1|X=1) 0.900 0.900
P(Y=0|X=1) 0.100 0.100
P(X=1]Y=1) 0.167 0.545
P(X=1]Y=0) 0.022 0.118
PO 9.00 9.00
prior odds 1.17 1.94
LR 7.59 4.62

PO: posterior odds P(Y=1|X=1)/P(Y=0|X=1)
LR: likelihood ratio L(Y=1|X=1)/L(Y=0|X=1) = P(X=1|Y=1)/P(X=1|Y=0)

Table 2: Capability of the IrisPlex system to predict blue and brown eye color in eight European
populations

eye color
sample blue brown
AUC Se Sp PPV NPV AUC Se Sp PPV NPV

Norway (n=547) | 0.93 |0.95 |0.81 |094 |0.83 |093 |0.88 |0.90 0.65 0.97

Estonia (n=579) |0.89 |0.95 |0.59 |090 |0.78 |0.89 |0.71 |0.94 0.69 0.95

UK (n=498) 094 |094 (082 |093 |084 |09 |085 |0.89 0.67 0.96
France (n=616) |0.96 |0.90 |0.93 |0.84 |096 |092 |094 |0.77 0.88 0.87
Italy (n=542) 095 |08 |095 |0.87 |094 |092 |0.98 | 0.68 0.82 0.95

Greece (n=547) | 098 | 088 |098 |087 |098 |096 |0.99 |0.76 0.96 0.91

Spain (n=511) 097 |0.87 |097 |0.87 |097 |095 |1.00 |O0.70 0.92 0.98

NL (n=2364) 091 |094 |077 |090 |085 |092 |0.87 |O0.88 0.68 0.96

UK: United Kingdom, NL: Netherlands, AUC: area under the receiver operating characteristic (ROC) curve,
Se: sensitivity, Sp: specificity, PPV: positive predictive value, NPV: negative predictive value
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