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Abstract 

The eukaryotic 26S proteasome is a large protease comprised of two major sub assemblies, the 

20S proteasome, or core particle (CP), and the 19S regulatory particle (RP). Assembly of the 

CP and RP is assisted by an expanding list of dedicated assembly factors. For the CP, this 

includes Ump1 and the heterodimeric Pba1–Pba2 and Pba3–Pba4 proteins. It is not known how 

many additional proteins that assist in proteasome biogenesis remain to be discovered. Here, 

we demonstrate that two members of the Hsp70 family in yeast, Ssa1 and Ssa2, play a direct 

role in CP assembly. Ssa1 and Ssa2 interact genetically and physically with proteasomal 

components. Specifically, they associate tightly with known CP assembly intermediates, but not 

with fully assembled CP, through an extensive purification protocol. And, in yeast lacking both 

Ssa1 and Ssa2, specific defects in CP assembly are observed. 
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1. Introduction 

 Protein quality control in eukaryotes is maintained via several evolutionarily conserved 

machineries, including the ubiquitin-proteasome system (UPS) and the molecular chaperone 

network (MCN) [1,2,3]. The former provides a major route of protein degradation, removing 

damaged, misfolded, and no-longer-needed proteins. The latter assists in proteins attaining their 

native state following synthesis, and in returning misfolded proteins to the native state following 

stress. How the UPS and MCN interact is a topic of considerable interest. 

 The MCN is comprised of a number of highly conserved protein families, many of which 

are nucleotide-driven machines. Perhaps the best studied of these include members of the 

Hsp60, Hsp70, and Hsp90 protein families [3]. One way in which the MCN interacts with the 

UPS is via proteins destined for degradation [4]. However, MCN proteins could also function in 

the biogenesis of the UPS components themselves, such as the 2.5 MDa proteasome, yet this 

role remains underexplored.  

 The 26S proteasome is an intricate assembly of 33 distinct proteins in multiple copies 

[2]. It can be subdivided into two major sub-assemblies, the 19S regulatory particle (RP) and the 

20S core particle (CP), also known as the 20S proteasome. The CP consists of four heptameric 

rings stacked on top of each other. Seven distinct α subunits (α1 to α7) make up each 

outermost ring and seven distinct β subunits (β1 to β7) make up the two inner rings [5]. 

Proteolytic activity resides in the β1, β2 and β5 subunits which are synthesized as proproteins 

[6,7]. CP assembly begins with the formation of an α−ring which becomes a platform for the 

incorporation of β subunits [8,9]. Addition of β subunits occurs in stages defined by a number of 

intermediates:  the 13S intermediate (which includes β2, β3, and β4); the 15S intermediate 

(which includes all β subunits except β7); and the half-proteasome (which contains a completed 

β–ring) [9,10,11]. Two half-proteasomes dimerize to produce the preholoproteasome (PHP), a 

fleeting species that looks like a CP but whose β subunits retain their propeptides [10]. As the β 
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subunits undergo autocatalytic processing to reveal their N-terminal threonine nucleophiles, the 

PHP matures into the fully functional CP.  

 CP assembly is regulated by features intrinsic to the subunits themselves and by 

extrinsic factors in the form of dedicated assembly chaperones. The latter include Ump1, Pba1–

Pba2, and Pba3–Pba4 (also known as hUmp1, PAC1–PAC2, PAC3–PAC4 in mammals) [2]. 

Whether any additional proteins participate in CP assembly remains an open question. Using 

the yeast Saccharomyces cerevisiae as a model system, we demonstrate that two members of 

the Hsp70 family, Ssa1 and Ssa2, are directly involved in CP biogenesis.  

 

2. Materials and Methods 

2.1 Strains, Plasmids, and Yeast Techniques 

Yeast strains used are listed in Supplementary Table 1. Plasmids used are listed in 

Supplementary Table 2. Yeast manipulations were carried out according to established 

protocols [12]. Dilution series were carried out as described [13]. Yeast strain numbers (AKY) 

are shown in brackets. 

2.2 Protein Purification 

The lysis of yeast pellets and subsequent Flag purification was carried out as described [14] 

except equal amounts of soluble lysate were bound to 150 µl of anti-Flag agarose (Sigma) for 3 

hours then eluted.  For each sample, the 300 µl Flag eluate was divided as follows: 100 µl 

aliquot reserved for native PAGE; 50 µl aliquot reserved for SDS-PAGE; and the remaining Flag 

eluate (150 µl) was subjected to depletion via immobilized-cobalt affinity resin (ICAR). Depletion 

was carried out as described [14] with the following modifications. The samples were applied to 

50 µl of cobalt resin (Talon resin; Clontech) for 1 hour at 4 °C with gentle rocking. The flow 

through from the first round of ICAR depletion was subjected to a second round of ICAR 

depletion using a fresh 50 µl aliquot of resin. The flow-through from the second round of ICAR 
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depletion was split into a 100 µl aliquot reserved for native PAGE and a 50 µl aliquot reserved 

for SDS-PAGE.  The Flag eluate and the second ICAR flow through were analyzed via native 

PAGE (40 µl), and loading controls were analyzed by reducing SDS-PAGE (15 µl).  

2.3 Electrophoresis and Blotting 

SDS-PAGE, on 12% gels, and native PAGE, on 4–15% Mini-PROTEAN TGX precast gradient 

gels (Bio-Rad), were carried out as described except native gels were electrophoresed for 11 

hours [14]. Native gels were stained with Imperial Protein Stain (ThermoScientific) and SDS-

PAGE gels were stained with GelCode blue (ThermoScientific). Prior to staining, some native 

gels were subjected to substrate overlay assay carried out as described [15]. The migration of 

size standards is indicated to the left of each gel. Western blotting was carried out as described 

[14] using anti-Express antibodies (Invitrogen). 

2.4 Proteomic Analysis 

Gel slices were submitted to the Indiana University School of Medicine Proteomics Core Facility 

(IUSM-PCF) on a fee-for-service basis and protein contents identified by LC-MS/MS as 

described [16]. Summarized and annotated data is presented in the main text and 

supplementary figures; only proteins identified on the basis of more than one unique peptide are 

included to decrease the likelihood of false-positives [17]. Data from IUSM-PCF is also 

permanently archived here [18].    

 

3. Results 

 Our initial interests lay in determining whether additional extrinsic factors exist that assist 

in proteasome biogenesis. We focused our search on the CP and employed a depletion scheme 

[14] to enrich for CP assembly intermediates. We generated a series of yeast strains: “WT”; 

“PHP”; and “2/3-PHP” (Supplementary Figure 1). The PHP strain is the key experimental strain 

and should allow the isolation of CP assembly intermediates up until, and including, the 
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preholoproteasome (PHP). The PHP strain expresses all three mutant β subunits β1(T1A), β 

(T1A), and β5(T1A), as well as a wild-type β5 to keep the strain alive [6]. The 2/3-PHP strain 

expresses two mutant β subunits, β1(T1A) and β2(T1A).   

 We prepared soluble lysates from cultures of all three strains, isolated CP species via 

the Flag epitope on β4, and analyzed the purified material by native and SDS-PAGE (Figures 

1A,B lanes 1 to 3). We’ve reported the need to overload native gels to visualize assembly 

intermediates [14] and did so again here. CP was the major species in each sample, migrating 

near the 670 kDa size standard (Figure 1 and Supplementary Figure 2). Species migrating 

slower than CP were Blm10-bound CP [19]. More Blm10-bound species were present in the 

2/3-PHP sample (Figures 1A,B asterisk). Species migrating faster than CP were likely assembly 

intermediates (Figure 1A, lanes 1 to 3, bands 1 and 2).  

 Next, the hexahistidine tag on the β5 subunit (β5-his) enabled a depletion strategy to 

remove CP via sequential passage of Flag-purified material over immobilized-cobalt affinity 

resin (ICAR) [14]. Aliquots of the second flow-through were analyzed by native and SDS-PAGE 

(Figures 1A,B lanes 4 to 6).  A number of observations were made. First, in the WT and 2/3-

PHP samples, the CP band was almost completely absent suggesting that the depletion 

strategy was effective. A small amount of CP remained, as judged by a faint residual CP band 

and weakly detectable activity on the overlay assay (Supplementary Figure 2). However, 

additional rounds of ICAR depletion did not reduce this residual CP band further and only 

decreased the overall yield of protein (not shown); we suggest that the residual CP may be due 

to some β5 subunits losing their his-tag to proteolysis post-lysis. Second, the pair of putative 

assembly intermediates (bands 1 and 2) was still present following depletion. Finally, the PHP 

sample retained a considerable band migrating at the position of the CP (band 4). Given that 

β5(T1A) was not his-tagged, this suggested we were able to isolate the PHP. A fainter band 

migrating below the putative PHP was also observed (band 3). 
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 Bands 1 to 4 were excised and analyzed by LC-MS/MS (Supplementary Figures 3 to 

10). Band 4 was actually a series of three closely spaced bands (Figure 1A, enlarged). It was 

not possible cut these bands apart, thus the analysis of band 4 reflects material from all three 

bands. Band 4 contained all α and β subunits, as well as the assembly factors Ump1 and Pba1–

Pba2 (Table 1). We also recovered peptides from the β5 propeptide (not shown). This 

composition is consistent with band 4 containing PHP. Interestingly, band 4 exhibited some 

catalytic activity (Supplementary Figure 2) but the resolution was not sufficient to determine 

which of the three bands was active. Consequently, band 4 must also contain some species 

with wild-type β5. We offer a plausible explanation for the three bands in Supplementary Figure 

11. Band 3 had identical composition to band 4 (Table 1), including peptides from the β5 

propeptide (not shown), but it displayed no activity (Supplementary Figure 2). Band 3 likely 

represents a half-proteasome.  

 Band 2 migrated similarly across all three samples, as did band 1, suggesting two 

identical species were present. Indeed, band 2 from each sample returned considerable peptide 

spectral matches (PSMs) from all α subunits plus β2, β3, β4 and the assembly factors Ump1 

and Pba1–Pba2 (Table 1). Some peptides for other β subunits were also recovered. However, 

these were either not uniformly present in all bands, or were present in considerably lower 

PSMs, suggesting they were not stoichiometric components of band 2 – which most likely 

contained the 13S intermediate. Band 1 was similar to band 2 except that we observed 

comparatively fewer PSMs for α5 and α6 in all three samples, and fewer PSMs for α7 in the 

2/3-PHP and WT samples (Table 1). As above, this suggests that these subunits may not be 

stoichiometric components of the complex in band 1. Furthermore, we recovered no peptides for 

Pba2. We conclude that band 1 likely contains a species we refer to as “sub-13S” (i.e. a 13S 

intermediate lacking Pba2, α5, α6, and probably α7).  
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 Each of the bands analyzed gave rise to peptides from a number of additional proteins 

(Supplementary Figures 3 to 10). Most of these were not likely candidates for assembly factors 

because they were recovered with only a few peptides, and/or were derived from highly 

abundant metabolic enzymes (e.g. Eno2, Pfk26, Adh1) which are likely contaminants. However, 

two proteins from the Hsp70 family, Ssa1 and Ssa2, emerged as possible candidates. We shall 

refer to these proteins as Ssa1/2 because they share 97% amino acid identity, making it difficult 

to definitively assign all observed peptides to either isoform. Ssa1/2 were identified with 

considerable PSMs in bands 1 and 2 from all three strains, but not in the more highly abundant 

band 4, arguing that they were not just binding to CP subunits non-specifically.  

 Physical association of Hsp70 proteins with proteasomes has been observed [20,21,22]. 

But these high-throughput studies only considered chaperone binding to intact proteasomes 

(see Supplementary Notes). To strengthen the case for a role in assembly, we first carried out a 

series of genetic experiments. When yeast were grown at 36º C (Figure 2), we observed 

synthetic sick interactions between deletion of SSA1, or SSA2, and proteasome mutants that 

affect assembly of CP (pre9∆)  and the lid subcomplex of the RP (sem1∆ or rpn12-234∆) 

[13,23,24]. This was not due to a general decrease in cytoplasmic Hsp70 activity because no 

effects were observed when another Hsp70 gene, SSB1, was deleted (Supplementary Figure 

12A). No obvious synthetic sick interaction was seen with a mutant affecting assembly of the 

base subcomplex of the RP (nas2∆nas6∆rpn14∆) [25]. However, this mutant already grows 

quite weakly at 36º C (Figure 2A); repeating the experiment at 33 º C, we instead observed a 

slight suppression when SSA1 was deleted (Supplementary Figure 12B).  

 Overexpression of Ssa1 suppressed growth defects of CP, but not RP, assembly 

mutants in the presence of the amino acid analog canavanine (Figure 3 and Supplementary 

Notes). Western blots verified that protein was expressed from the introduced overexpression 

plasmids (Supplementary Figure 12C and not shown). The pattern of suppression with 
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overexpression of Ssa1 differed from that observed with overexpression of Ssb1, a known 

suppressor of CP mutants [26]. Here, Ssb1 suppressed both CP and RP base defects. Taken 

together, the genetic results support the link between Ssa1/2 and CP assembly. 

 If Ssa1/2 proteins have a direct role in CP assembly, one should observe assembly 

defects biochemically if these proteins are absent. Since Ssa1 and Ssa2 likely have a redundant 

role in CP assembly (see Discussion), we looked for assembly defects in an ssa1∆ssa2∆ strain. 

We purified proteasomes from wild-type and mutant strains, via a Flag-tag on α4, and analyzed 

them by native PAGE (Figure 4A). CP was again the major species and two faster migrating 

bands were observed in the WT sample; again, they were easier to visualize when the gel was 

overloaded (Figure 4B). We excised the indicated bands and analyzed them by LC-MS/MS. 

Because this experiment did not involve a depletion, bands 5 and 6 each likely contained a 

mixture of assembly intermediates [14]. Nevertheless, the relevant result is that considerable 

PSMs were observed for Ssa1/2 in bands 5 and 6 but none in bands 7 and 8, corresponding to 

fully assembled CP (Supplementary Figures 13 to 16). This is consistent with our previous 

results showing Ssa1/2 associating with assembly intermediates (Figure 1). Most importantly, 

bands 5 and 6 were greatly reduced in the ssa1∆ssa2∆ mutant, as would be expected for an 

assembly defect. 

 We also observed what appeared to be more doubly-Blm10 capped CP in the 

ssa1∆ssa2∆ mutant (Figure 4B asterisk). Blm10 plays an undefined role in CP maturation and 

increased binding of Blm10 to CP can indicate a maturation defect [11].  Consistent with this, we 

recovered peptides derived from the β2 propeptide from CP in the ssa1∆ssa2∆ strain (band 8) 

but not CP in the wild-type strain (band 7). The lack of β2 propeptide-derived peptides in band 7 

was not due to a detection sensitivity issue; we readily recovered β2 propeptide-derived 

peptides from bands 5 and 6 (as expected for CP assembly intermediates) despite these two 

bands being much less abundant than band 7 (Supplementary Figure 17).   
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 Finally, the Ssa1/2 band observed by SDS-PAGE in the purified material from the wild-

type strain (Figure 4A) was replaced by a slightly slower migrating doublet in the ssa1∆ssa2∆ 

mutant. LC-MS/MS analysis identified this doublet as containing Ssa3, Ssa4 and Kar2 (not 

shown but see Supplementary Notes).  

 

4. Discussion 

 We present evidence that Ssa1/2 proteins function as CP assembly factors. First, these 

chaperones associate with assembly intermediates in purifications from four independent yeast 

strains utilizing two different Flag-tagged CP subunits (Table 1 and Figure 4B). Depletion 

analysis confirms association with the 13S intermediate, and a novel species we refer to as sub-

13S, though Ssa1/2 likely associate with intermediates up to the half-proteasome 

(Supplementary Figures 3–5, 13, 14). Second, the physical association of Ssa1/2 with CP 

intermediates is corroborated by genetic association between ssa  mutants and proteasome 

assembly mutants. Moreover, phenotypic suppression often indicates physical interaction, and 

the suppression by SSA1 of CP (but not RP) assembly mutants is entirely consistent with a 

physical role for this chaperone in CP biogenesis. Third, our depletion strategy involves multiple 

purification steps with extensive washing. The ability of Ssa1/2 to remain bound to CP assembly 

intermediates throughout our depletion protocol, and their absence from bands corresponding to 

the PHP and fully assembled CP (Table 1, Supplementary Figures 15, 16), argues that they 

dissociate prior to completion of assembly; this is a key component of the definition of an 

assembly factor. Finally, strains lacking Ssa1/2 have greatly reduced levels of assembly 

intermediates and likely exhibit a weak defect in β2 propeptide processing (Figure 4). Two 

previous observations are consistent with our findings. First, upregulation of RPN4, encoding 

the transcription factor that regulates expression of proteasome subunits [27], has been 

observed in an ssa1∆ssa2∆ double mutant [28]. A greater need for proteasomes would be 
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expected if assembly is impacted by a loss of Ssa1/2. Second, the rpn4∆ssa1∆ssa2∆ triple 

mutant grows worse than the ssa1∆ssa2∆ double mutant [29]. This is reminiscent of the 

synthetic sick (or lethal) phenotypes that result when deletion of RPN4 is combined with a 

deletion of any CP assembly factor [30]. 

 The precise role of Ssa1/2 in CP assembly remains to be determined. They may help 

stabilize assembly intermediates. For instance, the 13S intermediate contains a full α-ring and 

three out of seven β subunits (β2, β3, β4). Recently we reported that Ssa1/2 bind to high 

molecular weight complexes of α4 in vivo, which are most likely rings [14]. Thus, perhaps 

Ssa1/2 assist the formation of α subunit rings, or stabilize them once formed. Also, Ssa1/2 

appear to be involved in the formation (or stabilization) of a novel complex we call the sub-13S 

species. This complex probably contains a subset of α and β subunits (most likely α1–α4, and 

β2–β4) but whether or not it is a true assembly intermediate remains to be determined. On the 

one hand, it could be the result of a 13S intermediate falling apart during purification and/or 

electrophoresis. On the other hand, it could be a precursor to the 13S intermediate, suggesting 

the existence of an assembly pathway that does not involve an isolated α-ring. We’ve 

demonstrated such α-ring independent pathways for archaeal proteasomes, which serve as 

models for eukaryotic proteasome assembly [31].  

 Regardless of the status of the sub-13S species, it is likely that CP assembly has 

multiple redundancies built in. There is the obvious redundancy between Ssa1 and Ssa2, as 

evidenced by the recovery of peptides for both Ssa1 and Ssa2 from assembly intermediates 

and by the similar synthetic phenotypes observed when deletion of either SSA1 or SSA2 is 

combined with assembly mutants. Consistent with this redundancy, whereas the 

rpn4∆ssa1∆ssa2∆ triple mutant grows worse than the ssa1∆ssa2∆ double mutant [29], we 

observe no obvious phenotypes when rpn4∆ is combined with only ssa1∆ or ssa2∆ 

(Supplementary Figure 12D). Redundancy is also seen in the ssa1∆ssa2∆ mutant where levels 
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of assembly intermediates (bands 5 and 6) are reduced but overall CP levels are not 

appreciably affected. Clearly, the subunits are still capable of coming together to form CP 

species, even if a small fraction of them has incompletely matured β2 subunits. Taking a 

broader view, the simple observation that none of the CP or RP assembly factor genes are 

essential [2] is strongly suggestive of assembly redundancy.  

 Although our purification/depletion analysis did not identify additional candidates beyond 

Ssa1/2, the stringency of our method means that weakly/transiently bound assembly factors 

could have been washed away. The existence of redundancy in assembly, which implies 

multiple assembly pathways, makes it more probable that additional factors assisting 

proteasome assembly await discovery. That some of these are likely to be members of the MCN 

now has considerable precedent given our results here and the reported, though incompletely 

understood, role of Hsp90 in proteasome biogenesis [32].  
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Figure Legends 

Fig. 1. Depletion analysis to isolate CP assembly intermediates. (A) Native PAGE analysis 

of Flag-purified CP (β4-Flag) from the indicated yeast strains (lanes 1 to 3). The Flag-purified 

material was subjected to two rounds of depletion by ICAR to remove his-tagged proteins. 

Aliquots of the flow through from the second ICAR round were analyzed on the same native 

PAGE gel (lanes 4 to 6). Arrowheads denote CP and other bands of interest. Asterisk denotes 

position of Blm10-bound CP. (B) Aliquots in (A) analyzed by SDS-PAGE; asterisk denotes 

position of Blm10.  

Fig. 2. Phenotype analysis of ssa mutants. Dilution series were prepared and the yeast 

spotted onto SD plates (top). Alternatively, yeast from individual colonies were struck out onto 

YPD plates (bottom). The temperature and duration of plate incubation are indicated.  

Fig. 3. Suppressor analysis. Dilution series of CP mutants (A), and RP mutants (B), 

transformed with Hsp70-containing plasmids, or vector-only controls. Plates were incubated for 

3 days.  
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Fig. 4. Assembly defects in a mutant lacking Ssa1 and Ssa2. (A) Equal amounts (8 µg) of 

Flag-purified CP material (α4-Flag) from the indicated yeast strains were analyzed by native 

PAGE (left). An SDS-PAGE loading control is also shown (right). (B) Same native PAGE 

analysis as in (A) except a larger amount of protein (25 µg) was loaded. In all gels, arrowheads 

denote bands of interest. Asterisk denotes migration of Blm10-bound CP (singly and doubly 

capped).  

 

Table 1. Select composition of excised bands. Excised native PAGE bands from Figure 1 

were analyzed by LC-MS/MS. For each protein, the number of peptide spectral matches (PSMs) 

is shown. 
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Table 1: Select composition of excised bands. 
 

 PHP 2/3-PHP WT 
4 3 2 1 2 1 2 1 

α1 328 66 95 109 112 134 201 195 
α2 124 28 39 36 58 60 72 78 
α3 170 42 57 59 85 74 110 104 
α4 223 35 72 98 92 131 558 314 
α5 124 20 26 8 34 13 64 15 
α6 222 40 54 6 56 12 132 5 
α7 85 21 37 67 50 19 74 11 
β1 109 13 4     5 
β2 157 42 49 58 75 94 99 125 
β3 62 24 31 37 44 54 57 51 
β4 53 17 20 26 33 35 36 39 
β5 253 47 6 6 5  7 6 
β6 209 28       
β7 277 74 10      

Ump1 80 5 7 30 36 31 34 54 
Pba1 78 19 25 7 34 9 114 9 
Pba2 38 4 11  17  44  

Ssa1/2  6 63 29 56 16 40 11 
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Highlights 
 

• CP assembly is assisted by Hsp70 molecular chaperones, Ssa1 and Ssa2 
• Ssa1/2 are genetically linked to CP assembly  
• Ssa1/2 are physically linked to specific assembly intermediates  
• Expands known interactions between chaperone machinery and the proteasome 
• Suggests list of known factors assisting in proteasome assembly is not complete 


