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ABSTRACT 

Virtual screening consists of docking libraries of small molecules to a target protein followed by 

rank-ordering of the resulting structures using scoring functions. The ability of scoring methods to 

distinguish between actives and inactives depends on several factors that include the accuracy 

of the binding pose during the docking step and the quality of the three-dimensional structure of 

the target. Here, we build on our previous work to introduce a new scoring approach (SVMGen) 

that uses machine learning trained with features from statistical pair potentials obtained from 

three-dimensional crystal structures. We use SVMGen and GlideScore to explore how enrichment 

or rank-ordering is affected by binding pose accuracy. To that end, we create a validation set that 

consists strictly of proteins whose crystal structure was solved in complex with their inhibitors. For 

the rank-ordering studies, we use crystal structures from PDBbind along with corresponding 

binding affinity data provided in the database. In addition to binding pose, we investigate the effect 

of using modeled structures for the target on the enrichment performance of SVMGen and 

GlideScore. To accomplish this, we generated homology models for protein kinases in DUD-E for 

which crystal structures are available to enable comparison of enrichment between modeled and 

crystal structure. We also generate homology models for kinases in SARfari for which there are 

many known small-molecule inhibitors but no known crystal structure. These models are used to 

assess the ability of SVMGen and GlideScore to distinguish between actives and decoys. We 

focus our work on protein kinases considering the wealth of structural and binding affinity data 

that exists for this family of proteins. 



INTRODUCTION 

Structure-based virtual screening is commonly used to enrich chemical libraries to identify active 

compounds that can serve as tools in chemical biology or as leads for drug discovery.1 A library 

of small molecules is first docked to a binding site on the structure of a protein followed by the re-

scoring and rank-ordering of the resulting protein-compound structures in a process known as 

scoring. Several docking methods have been implemented in widely-used computer programs 

such as AutoDock,2, 3 Glide,4, 5 and Gold.6 Algorithms and scoring methods to predict the binding 

mode of small molecules have matured significantly, but there is a need for better scoring methods 

to rank-order protein-compound structures.7 The performance of scoring methods is often target-

specific. This has led to a constant need to develop better scoring methods. Several scoring 

approaches have been developed ranging from empirical,5, 8 force field,6, 9 and knowledge-

based.10, 11 Increasingly, scoring methods are using machine learning techniques to improve 

database enrichment and rank-ordering.12, 13 

The performance of scoring approaches in enriching compound libraries is often explored using 

validation sets such as DUD-E,14 DEKOIS,15 and others.16, 17 These datasets provide a set of 

actives and matching decoys that are used to test the ability of scoring methods to distinguish 

actives from decoys. Both actives and decoys are docked to their corresponding target, and the 

resulting complexes are re-scored. Performance is evaluated using enrichment or receiver 

operating characteristic (ROC) plots. One limitation of these datasets is that there is generally no 

crystal structure of the active compounds bound to their corresponding targets. Molecular docking 

is used to predict the binding mode of active compounds. Considering that docking results in high-

quality binding modes in only a fraction of binding sites, it is difficult to determine whether 

limitations in re-scoring methods are due to lack of accuracy in the binding mode, or inherent 

limitations in the re-scoring method. The lack of accuracy in docking can also impact the re-

scoring of compounds during virtual screening. Ideally, a re-scoring method should favor 

compounds with correct binding poses.  

Despite the exponentially-growing list of crystal structures, a majority of proteins of the 

human proteome have yet to be solved. For example, among the 518 kinases of the human 

kinome, less than half have been solved by crystallography. This poses a significant impediment 

to the rational design of selective small-molecule kinase inhibitors. Recent studies have shown 

that even FDA-approved drugs often have a large number of additional targets.18-20 These off-

targets may be responsible for the failure of the majority of kinase inhibitors in the clinic, despite 

the often overwhelming evidence to support a role of their target in the disease of interest. To 



address this limitation, recent efforts have concentrated on building homology models for all 

unsolved kinases of the human kinome.21 A question of interest is how these modeled structures 

affect scoring and re-scoring performance during virtual screening. Understanding how homology 

models affect rank-ordering could help to develop better ranking methods for these modeled 

structures. This will enable the use of all structures of a protein family during virtual screening, 

which could enhance our ability to identify selective kinase ATP-competitive inhibitors and reduce 

the failure of drugs in the clinic. 

Recently, we introduced an innovative approach for re-scoring protein-compound 

structures. The method combines knowledge-based potentials with machine learning.22 We called 

the scoring method SVMSP to highlight the fact that information from the target of interest is used 

to derive the scoring function. The approach consisted of training Support Vector Machine (SVM) 

using knowledge-based potentials as features. These potentials were determined using three-

dimensional co-crystal structures from the Protein Databank (PDB) for the positive set. This was, 

to the best of our knowledge, the first attempt to develop a re-scoring method using machine 

learning trained on three-dimensional structures of proteins and small molecules. The negative 

set consisted of randomly-selected small molecules docked to the target of interest.12 Generally, 

SVMSP performed well in database enrichment, particularly among proteins for which a large 

number of structural data is available, such as protein kinases.13 Since SVMSP is target-specific, 

a scoring approach must be developed for every target. While this feature resulted in rank-

ordering that was consistently high even among different protein families, a scoring method has 

to be developed separately for each target. 

Here, we report a general scoring approach, namely Support Vector Machine General 

(SVMGen), a significant departure from previous work since it can be used in virtual screening to 

any binding site. We investigate how the accuracy of the binding pose of compounds affect the 

enrichment power and rank-ordering ability of SVMGen and GlideScore. To explore how sensitive 

the scoring methods are to the binding mode, we create a validation set that consists of proteins 

whose structure was solved with all the actives of the set. To investigate the effect of using 

homology models in enrichment, we create validation sets using SARfari, which is a repository 

that includes known kinase compounds with screening data. Throughout, SVMGen is compared 

to GlideScore, and both Vina and Glide are used for docking. We focus this work on protein 

kinases, which are ideal for developing and testing scoring methods considering the wealth of 

binding and inhibition data as well as the large number of structures that are available. 

METHODS 



Generation of Scoring Approach. SVMGen uses pairwise potentials of docked protein-ligand 

pairs for classification and rank-ordering. The previously described knowledge-based potentials 

12, 23 were derived from crystal structures of protein-ligand complexes using SYBYL atom types. 

Pairs between these atom types are used to generate the 76 features of the SVM model. Like the 

previously-described SVMSP model,22 SVMGen uses 763 kinase structures from the sc-PDB 

database (v2012)24 for the positive training set. The main innovation in SVMGen is that the scoring 

approach is trained on potentials of 5000 randomly selected receptor-ligand pairs.22, 25 Unlike the 

previous SVMSP models, which featured a negative training set of ligands docked to the pocket 

of interest, SVMGen uses a generalized approach, which can be applied to any pocket without 

regenerating the SVM model for each target. Features in the training set were normalized using 

LIBSVM26 onto a 0 to 1 scale. The generalized model was generated using the computer program 

SVMlight27 using a radial basis function kernel and a cost function of 1. Other parameters were set 

to default values. 

Docking and Rescoring. Kinase structures were retrieved from the Protein Data Bank (PDB)28 

and solvent molecules and bound ligands were removed. Selenomethonine residues were 

converted to methionine using the Protein Preparation Wizard29 workflow in Schrödinger 

(Schrödinger LLC, New York, NY, 2014). Missing sidechains and loops were added with the 

Prime30 module in Schrödinger. Disulfide bonds were added and each crystal structure was 

protonated using PROPKA31 at pH 7.0. The prepared structures were saved as Sybyl Mol2 files 

and PDB formatted-files for further analysis. 

Structures were docked with AutoDock Vina3 and Glide.32 Gasteiger charges were added 

to the PDB structures using the MGLTools package.2 A 21 Å box centered on the ATP binding 

pocket or co-crystallized inhibitor was used for both docking methods. In addition, a 14 Å inner 

box was used for the Glide grids. All other parameters were set to default values. The GlideSP 

method was used for all Glide-related docking with the exception of the crystal structures and 

high-quality homology models for the DUD-E targets, which used GlideHTVS. The binding pose 

of protein-ligand complexes obtained either from co-crystallized structures or from docked 

complexes were assessed using a combination of GlideScore33 and SVMGen. Structures re-

scored using Glide were minimized in place from the original binding pose to allow for slight 

variations in the docking functions between the different approaches. 

Co-crystallized Kinase Complexes. A set of well-characterized kinase-compound complexes 

was retrieved from both the PDBbind refined and general sets (v2014).34 Kinase structures were 

identified using Enzyme Commission (EC) codes and were limited to protein-tyrosine kinases (EC 



2.7.10), protein-serine/threonine kinases (EC 2.7.11), and dual-specificity kinases (EC 2.7.12). 

Structures that featured short peptides or that were part of the SVMGen training set were 

discarded. In addition, small molecules that did not bind within the conserved ATP binding site 

were discarded. A set of 1000 potentially redundant binding poses was generated for each 

structure by iterating over a series of 50 runs generating 20 poses each in AutoDock Vina.3 In 

these runs, exhaustiveness was set to 16, the energy range to 10, and the number of modes to 

20. The root-mean-squared deviation (RMSD) of heavy atoms in the ligand between each of the

1000 binding poses was determined to form a distance matrix between each pose. These 

distances were hierarchically clustered to 20 clusters using average linkage. The pose 

corresponding to the cluster center was used as the representative structure for each cluster and 

was retained for docking and rescoring. 

Homology Modeling. Kinases for homology modeling were retrieved from two sources: DUD-E14 

and SARfari.35 All 26 targets from the kinase subset of DUD-E were collected and mapped to their 

respective UniProt entries in UniProtKB. Kinases from SARfari were selected based on the 

number of known inhibitors with activity (IC50, Kd, or Ki) of 1 µM or better. Those with available 

human crystal structures or that were present in DUD-E were discarded. The top 20 kinases were 

used to generate the SARfari kinase set. The FASTA sequence of the protein kinase domain was 

retrieved from UniProt and used as the initial query template for homology modeling in Prime.30 

Two strategies were used to select the template for constructing the homology models. 

The first strategy uses the highest scoring crystal structure of a different kinase from the BLAST 

search as the template for the subsequent modeling. The second strategy identifies a template 

with low sequence identity, i.e. between 20 and 50%. The ClustalW36 alignment method was used 

to calculate the alignment between the query and template. The homology models were built 

using knowledge-based models. In this approach, insertions and gaps are added using segments 

from existing structures. All other parameters were kept to default values during the modeling 

process. Following the modeling process, hydrogen atoms on the protein were removed and 

reintroduced using the Protein Preparation Wizard tool in the Schrödinger package. In addition, 

bond orders were assigned, disulfide bonds were created, and missing side chains were added. 

For each of the DUD-E kinases, the structures of compounds and matched decoys were 

retrieved from DUD-E. For each of the selected SARfari kinases, bioactivity data for kinase 

inhibitors was retrieved and filtered for human biochemical data reporting activities in IC50, Kd, or 

Ki. SMILES strings for compounds with inhibition at 1 µM or better were collected. Selected 

compounds were prepared using Canvas. For each of the SARfari kinases, compounds were 



clustered using Tanimoto similarity and the Leader-Follower algorithm. Only compounds 

representing cluster centers were used to generate decoys for each kinase using the DUD-E 

webserver. 

Statistical analysis. Values are expressed as mean ± 95% confidence intervals, unless 

otherwise specified. ANOVA and t-test analyses were performed in R.37 Correlation analysis and 

ROC analyses was performed using the SciPy38 and scikit-learn39 packages in Python, 

respectively. 

RESULTS 

Enrichment Power using Crystal Structures in the Validation Set. We first assess the ability 

of SVMGen and GlideScore to distinguish between known inhibitors and decoys from the DUD-E 

validation set. Performance of a scoring function can be evaluated with ROC plots.40 A ROC curve 

is constructed by ranking the docked complexes, selecting a set of compounds starting from the 

highest scoring compounds, and counting the number of active compounds. In a ROC plot, the 

farther away the curve is from the diagonal, the better the performance of the scoring function. 

The area under the ROC curve, which we refer to as ROC-AUC, can also be used as a 

representation of the performance of the scoring function. A perfect scoring function will result in 

an area under the curve of 1, while a random classification will have an ROC-AUC of 0.5. 

A commonly used validation set is DUD-E, which provides a set of actives and decoys for 

a large number of proteins. One limitation of validation sets like DUD-E is that the binding mode 

of most actives has not been solved by crystallography. Considering that molecular docking often 

does not lead to correct binding poses, it is often challenging to evaluate enrichment performance 

of the rank-ordering method. This is due to inherent approximations in the method. First, 

molecular docking is often carried out on a fixed structure of the target. However, molecular 

recognition is a dynamic process that leads to conformational changes in both receptor and small 

molecule.41-43 Second, the scoring methods that are used to drive the docking process do not 

capture the complexity of the intermolecular interaction between small molecule and receptor. 

Third, it is often the case that water molecules play a role in the binding process, while most 

docking methods ignore explicit solvent molecules.44 Finally, while the algorithms that are used 

to drive the molecular process have become very sophisticated, they often can get trapped in 

local minima that correspond to binding poses that are different than the true binding pose of the 

small molecule. Collectively, these factors can often lead to binding poses that may not be 

accurate. 



To overcome this challenge, we resorted to creating a validation set that consists strictly 

of active compounds whose structure was solved by X-ray crystallography. We confined our 

analysis to protein kinases, a family of 518 proteins that have been the focus on intense drug 

discovery efforts considering their role in normal and pathological processes. The large number 

of kinase small-molecule inhibitors along with the substantial number of three-dimensional 

structures makes this family of proteins ideal for developing and testing computational methods. 

First, we identified a set of 940 co-crystallized inhibitors across 26 unique kinase targets from the 

PDBbind general set that bind to the conserved ATP binding pocket of kinases. A set of 50 decoys 

was generated for each inhibitor using DUD-E’s Web server. The decoys were docked against 

the kinase binding pocket with either AutoDock Vina or GlideSP to compare the two methods. 

The binding poses from each docking method were rescored using either GlideScore or SVMGen. 

The ability of each scoring method to distinguish between the known inhibitor and the decoys was 

assessed using ROC-AUC (Table 1). To calculate the ROC-AUC for each kinase, we pooled 

together all corresponding n actives and 50 × n decoys for that kinase. GlideScore re-scoring of 

GlideSP- and Vina-docked poses achieved mean ROC-AUCs of 0.88 ± 0.02 and 0.89 ± 0.02, 

respectively. SVMGen re-scored Vina and GlideScore poses led to ROC-AUCs of 0.82 ± 0.04 

and 0.83 ± 0.04, respectively. Poses scored with GlideScore performed slightly better overall than 

those scored with SVMGen for both GlideSP docked (paired t-test, p = 0.01) and Vina docked 

(paired t-test, p = 0.01) methods. Despite this, both scoring methods are complementary in their 

performance. There are several examples where SVMGen performs better than GlideScore such 

as for BRAF, EGFR, and SRC. There are also examples where GlideScore performs better than 

SVMGen, such as for CHEK1, CHEK2, and MAP2K1.   

It is worth noting that generally, studies that evaluate enrichment power of scoring 

methods dock compounds to multiple crystal structures of the target protein, a process that is 

known as cross-docking. We did not perform cross-docking to ensure that the active set used in 

the training did not include any docked poses but rather consisted strictly of crystal structures. It 

is possible that the lack of cross-docking may have resulted in higher ROC-AUC values for both 

SVMGen and GlideScore.       

 

 

 

 



Table 1. Enrichment of Select Kinase Targets in PDBBind’s General Set 

Kinase 

GlideSP Vina 

GlideScore SVMGen GlideScore SVMGen 

AURKA 0.90 0.81 0.90 0.82 

BRAF 0.84 0.96 0.84 0.96 

CDK2 0.90 0.78 0.91 0.82 

CDPK1 0.98 0.98 0.99 0.99 

CHEK1 0.91 0.73 0.94 0.79 

CHEK2 0.86 0.62 0.90 0.64 

CSNK2A1 0.97 0.88 0.98 0.91 

EGFR 0.81 0.95 0.78 0.97 

GSK3B 0.89 0.82 0.91 0.83 

ITK 0.78 0.75 0.77 0.74 

JAK2 0.84 0.81 0.86 0.83 

KDR 0.93 0.91 0.93 0.91 

LCK 0.92 0.92 0.92 0.91 

MAP2K1 0.85 0.60 0.89 0.61 

MAPK10 0.82 0.84 0.82 0.85 

MAPK14 0.81 0.70 0.82 0.69 

MET 0.92 0.76 0.92 0.76 

NEK2 0.92 0.83 0.93 0.77 

PDPK1 0.89 0.80 0.91 0.83 

PIM1 0.88 0.63 0.91 0.68 

PLK1 0.92 0.96 0.90 0.96 

PRKACA 0.93 0.77 0.95 0.80 

PTK2 0.91 0.90 0.91 0.90 

SRC 0.77 0.92 0.74 0.90 

SYK 0.89 0.77 0.91 0.77 

TTK 0.93 0.86 0.93 0.86 

Mean 0.88 0.82 0.89 0.83 

95% CI 0.02 0.04 0.02 0.04 

 

Binding Pose Sensitivity. We next explored how SVMGen and GlideScore enrichment 

performance is affected by binding pose accuracy. Generally, it is desirable that a scoring function 

assigns the most favorable scores to compounds with a correct binding pose. To explore whether 

this is the case for GlideScore and SVMGen, we investigated how their scores change as the 

accuracy binding mode of a small molecule becomes progressively worse. Binding mode 

accuracy is measured using the root-mean-squared deviation (RMSD) of compounds to the 

crystal structure. We make use of the same set of actives and decoys that we used to evaluate 

enrichment performance above shown in Table 1. To produce binding poses with a range of pose 

accuracy, we re-docked all actives from Table 1 to their corresponding target 50 times using 

AutoDock Vina. For each run, we collected 20 unique binding poses for each active resulting in 

in 50 × 20 = 1000 poses. The RMSD between each of the 1000 poses was used to hierarchically 



cluster the poses into 20 clusters. A representative member of each cluster was selected and the 

RMSD to the crystal pose was determined and scored with both SVMGen and GlideScore. 

We first explored the effect of pose accuracy on enrichment power. For each of the 26 

kinases in Table 1, we divided the binding poses collected above into 6 different bins based on 

their RMSD to the crystal structure: 0-2, 2-4, 4-6, 6-8, 8-10, and greater than 10 Å. The enrichment 

performance across the 26 kinases was calculated for each bin (Fig. 1). For the poses scored 

with GlideScore (Fig. 1A and 1C), the mean ROC-AUC for near native pose (RMSD < 2 Å) was 

0.92 ± 0.04 in Glide and 0.93 ± 0.04 in Vina, which was higher than the 0.88 ± 0.02 and 0.89 ± 

0.02 that was obtained for the set of actives with binding poses from crystal structure. Enrichment 

became progressively worse for the subsequent sets as evidenced by a decrease of the ROC-

AUC from 0.92 (Glide, RMSD < 2 Å) and 0.93 (Vina, RMSD < 2 Å) to 0.31 ± 0.06 (Glide and Vina, 

RMSD > 10 Å). For SVMGen (Fig. 1B and 1D), the mean ROC-AUC for the bin of actives with 0-

2 Å RMSDs was 0.79 ± 0.05 and 0.80 ± 0.04 for Glide and Vina, respectively. Like GlideScore, 

the mean ROC-AUC decreased with increasing RMSD to 0.61 ± 0.07 and 0.63 ± 0.06. The 

decrease in performance for SVMGen was not as substantial as that observed for GlideScore. 

These results show that both SVMGen and GlideScore are sensitive to the accuracy of the binding 

pose, but GlideScore shows greater sensitivity. 



 

[Insert Fig. 1 Here] 

Next, we explored how binding pose accuracy affects SVMGen and GlideScore rank-

ordering by binding affinity. To that end, we used the crystal structure of 123 small-molecule 

kinase inhibitors bound to their target from the refined set of PDBBind. We generated 20 clustered 

poses for each of the 123 inhibitors using a similar approach described above. We then 

determined whether there was any correlation between the binding pose accuracy as measured 

by RMSD and SVMGen and GlideScore scores. We used three measures of correlation: 

Pearson’s r, Spearman’s ρ, and Kendall’s τ. For poses that were scored with GlideScore (Fig. 

2A), there is a positive correlation between RMSD and score (r = 0.57, ρ = 0.53, τ = 0.37). Similar 

but weaker correlation is observed between SVMGen scores and RMSDs as illustrated in Fig. 2B 

(r = 0.30, ρ = 0.31, τ = 0.21). It is worth noting that the scores in Fig. 2 are not absolute scores 

provided by each scoring function, but rather the difference in the scores of the crystal pose and 

the randomly docked pose. 



The funnel-like behavior observed in Fig. 2 is expected for a scoring function that can 

differentiate between a correct versus incorrect binding pose. An increase in the difference in 

score between the crystal poses and randomly docked poses versus RMSD indicates that a 

scoring function is favoring more accurate binding modes. A positive correlation indicates that as 

less accurate binding poses are sampled, a more accurate scoring function assigns these poses 

a worse score than the native crystal pose, and the difference in score between the crystal pose 

and docked pose increases. The lower correlations of SVMGen indicates the scoring function 

does not perform as well as GlideScore for high quality binding poses. However, SVMGen is less 

sensitive than GlideScore for non-native poses, which may be an advantage in virtual screening 

campaigns where docked structures may not be native-like. 

We further explored how these correlations may change with binding affinity of the 

compounds. The co-crystallized compounds were binned by their experimental binding affinities. 

For GlideScore, compounds with -pKd or -pKi values between 6-8 or 8-10, show stronger 

correlation between score and RMSD (6-8: r = 0.63, ρ = 0.59, τ = 0.42; 8-10: r = 0.64, ρ = 0.58, τ 

= 0.42). For SVMGen, compounds that fall in the 6-8 range exhibit the highest correlations (r = 

0.35, ρ = 0.37, τ = 0.25). Interestingly, there are docked poses that score better than the crystal 

structure pose in both scoring methods. In GlideScore, most of these structures are concentrated 

to those with RMSD that are less than 2 Å of the crystal pose as well as poses with RMSDs 

greater than 2 Å with binding affinities (-pKd or -pKi) in the 4-6 and 6-8 range. In SVMGen, 17% 

of the generated poses scored better than the crystal pose compared to 4% in GlideScore. 

 

[Insert Fig. 2 Here] 

Exploring the Effect of Target Structure Accuracy on Enrichment Using Homology Models. 

Despite the exponentially growing list of crystal structures at the PDB, the structure of the majority 

of proteins has yet to be solved. For many of these proteins, homology modeling can be used to 

predict a three-dimensional structure using the structure of other proteins with high sequence 

identity as a template. Homology models can potentially be used in virtual screening efforts to 



identify small-molecule inhibitors or activators of the target. This has been successfully done on 

several occasions.45-49 However, considering that homology models can generally reproduce the 

overall fold but lack accuracy in the position of sidechains, we wondered whether reasonable 

enrichment could be achieved with these models using either SVMGen or GlideScore. To explore 

this question, we resort again to protein kinases, considering the wealth of structural information. 

Although a large number of crystal structures exist, more than half of the 518 protein kinases do 

not have a crystal structure of the protein kinase domain.21 For those whose structure has not 

been solved, the conserved nature of the protein kinase domain makes it possible to explore the 

effect of model quality on enrichment. 

Here, we generate two sets of homology models for kinases with known inhibitors using 

different approaches for selecting the template. The first approach uses the template with the 

highest sequence identity of a different kinase or a non-human structure. For example, although 

many crystal structures are available for ABL1, the template that was selected was from ABL2, a 

closely related protein in the same family. Similarly, for PLK1, the crystal structure comes from a 

PLK1 homolog in zebrafish. The second approach uses a randomly selected template with a 

sequence identity between 20 and 50%. The first set of kinases were selected from DUD-E (Table 

2), which features 26 kinases with existing crystal structures. Among these kinases, nearly half 

belong to the tyrosine kinase subfamily. The second set of kinases were selected from SARfari, 

a database of known kinase inhibitors and their targets. We selected kinases whose kinase 

domain was not solved by X-ray crystallography, were not in the DUD-E dataset, and had a large 

number of small-molecule inhibitors (Table 3). In total, 20 kinases were selected with the majority 

belonging to the AGC serine/threonine family. 

 



Table 2. Kinase Targets in DUD-E 

DUD-E Symbol Name PDB Family 
Total 

Ligands 

Clustered 

Ligands 

Experimental 

Decoys 

Matched 

Decoys 

Resolution

(Å) 

AKT1 AKT1 RAC-alpha serine/threonine-protein kinase 3CQW AGC 585 293 53 16450 2.00

AKT2 AKT2 RAC-beta serine/threonine-protein kinase 3D0E AGC 234 117 23 6900 2.00

KPCB PRKCB Protein kinase C beta type 2I0E AGC 331 135 153 8700 2.60

ROCK1 ROCK1 Rho-associated protein kinase 1 2ETR AGC 216 100 15 6300 2.60

MAPK2 MAPKAPK2 MAP kinase-activated protein kinase 2 3M2W CAMK 184 101 81 6150 2.41

CDK2 CDK2 Cyclin-dependent kinase 2 1H00 CMGC 1310 474 136 27850 1.60

MK01 MAPK1 Mitogen-activated protein kinase 1 2OJG CMGC 79 79 35 4550 2.00

MK10 MAPK10 Mitogen-activated protein kinase 10 2ZDT CMGC 199 104 23 6600 2.00

MK14 MAPK14 Mitogen-activated protein kinase 14 2QD9 CMGC 2205 578 73 35850 1.70

MP2K1 MAP2K1 Dual specificity mitogen-activated protein kinase kinase 1 3EQH STE 308 121 12 8150 2.00

BRAF BRAF Serine/threonine-protein kinase B-raf 3D4Q TKL 317 152 28 9950 2.80

TGFR1 TGFBR1 TGF-beta receptor type-1 3HMM TKL 235 133 7 8500 1.70

ABL1 ABL1 Tyrosine-protein kinase ABL1 2HZI Tyr 409 182 84 10750 1.70

CSF1R CSF1R Macrophage colony-stimulating factor 1 receptor 3KRJ Tyr 385 166 5 12150 2.10

EGFR EGFR Epidermal growth factor receptor 2RGP Tyr 1612 542 407 35050 2.00

FAK1 PTK2 Focal adhesion kinase 1 3BZ3 Tyr 101 100 11 5350 2.20

FGFR1 FGFR1 Fibroblast growth factor receptor 1 3C4F Tyr 327 139 146 8700 2.07

SRC SRC Proto-oncogene tyrosine-protein kinase Src 3EL8 Tyr 1269 524 287 34500 2.30

VGFR2 KDR Vascular endothelial growth factor receptor 2 2P2I Tyr 2320 409 142 24950 2.40

IGF1R IGF1R Insulin-like growth factor 1 receptor 2OJ9 Tyr 370 148 75 9300 2.00

JAK2 JAK2 Tyrosine-protein kinase JAK2 3LPB Tyr 246 130 6 6500 2.00

KIT KIT Mast/stem cell growth factor receptor Kit 3G0E Tyr 378 166 8 10450 1.60

LCK LCK Tyrosine-protein kinase Lck 2OF2 Tyr 916 420 148 27400 2.00

MET MET Hepatocyte growth factor receptor 3LQ8 Tyr 333 166 17 11250 2.02

PLK1 PLK1 Serine/threonine-protein kinase PLK1 2OWB Other 227 107 46 6800 2.10

WEE1 WEE1 Wee1-like protein kinase 3BIZ Other 221 102 15 6150 2.20

  



Table 3. Kinase Targets in SARfari 

Symbol Name Family 

SARfari 

Compounds 

Clustered 

Compounds 

AKT3 RAC-gamma serine/threonine-protein kinase AGC 91 32 

CDK1 Cyclin-dependent kinase 1 CMGC 797 383 

CHUK Inhibitor of nuclear factor kappa-B kinase subunit alpha Other 92 49 

CLK4 Dual specificity protein kinase CL4 CMGC 70 32 

FLT4 Vascular endothelial growth factor receptor 3 Tyr 102 68 

GSK3A Glycogen synthase kinase-3 alpha CMGC 269 126 

LIMK2 LIM domain kinase 2 TKL 43 15 

MAP3K8 Mitogen-activated protein kinase kinase kinase 8 STE 122 47 

PDGFRA Platelet-derived growth factor receptor alpha Tyr 287 136 

PDGFRB Platelet-derived growth factor receptor beta Tyr 523 218 

PHKG1 Serine/threonine-protein kinase PHKG1 CAMK 43 9 

PRKACG cAMP-dependent protein kinase catalytic subunit gamma AGC 89 38 

PRKCD Protein kinase C delta type AGC 452 132 

PRKCE Protein kinase C epsilon type AGC 223 82 

PRKCG Protein kinase C gamma type AGC 204 64 

PRKCZ Protein kinase C zeta type AGC 104 34 

PRKD1 Serine/threonine-protein kinase D1 CAMK 104 40 

PRKD3 Serine/threonine-protein kinase D3 CAMK 101 38 

RAF1 RAF proto-oncogene serine/threonine-protein kinase TKL 269 129 

YES1 Tyrosine-protein kinase Yes Tyr 50 33 



[Insert Tables 2 and 3 Here] 

 Homology models were constructed using the Prime workflow in the Schrödinger package. 

Only the sequence of the protein kinase domain was used to identify a suitable template. The 

high and low identity homology models from the DUD-E set used templates from a variety of 

kinases (Table 4). Among the respective models that were constructed using the two strategies, 

there is a significant difference between the RMSDs of the high identity and low identity models 

(paired t-test, p = 5.1×10-7). Similarly, the RMSD of the heavy atoms within 8 Å of the ATP binding 

pocket center is significantly different (paired t-test, p = 1.3×10-4). In some targets, members of 

the same subfamily are used for both the high and low identity models. For example, the MAPK1, 

MAPK10, and MAPK14 models all use members of the MAPK family as templates for homology 

models, but they have 30 to 40% difference in sequence identity. Similarly, we built high and low 

identity models for the SARfari kinases (Table 5). In some instances, the sequence identity of the 

best available structure does not differ much from the template used in the low identity model. For 

example, the templates used in the PRKD1 and PRKD3 models only have sequence identities of 

38 and 39% compared to the 35 and 34% identities of their low identity models. 

  



Table 4. Kinase Targets in DUD-E and Parameters for Building Homology Models 

  High Identity Homology Model Low Identity Homology Model 

Symbo

l 

Temp

late 

PDB 

Template 

Symbol 
Scorea 

Identit

iesb 

Positi

vesc 

Ga

psd

Pocket 

RMSD 

(Å) 

RMSD 

(Å) 

Temp

late 

PDB 

Templat

e  

Symbol 

Scorea Identitiesb Positivesc Gapsd 

Pocket 

RMSD 

(Å) 

RMSD 

(Å) 

AKT1 1O6L AKT2 569.3 87% 94% 0% 1.26 0.97 3NAX PDPK1 195.7 37% 60% 2% 2.46 2.44 

AKT2 4GV1 AKT1 600.5 85% 92% 3% 1.96 1.05 2ACX GRK6 211.1 39% 57% 2% 3.77 2.26 

PRKCB 2I0E PRKCA 598.6 85% 93% 0% 1.05 1.28 2ACX GRK6 193.0 38% 59% 2% 3.85 1.87 

ROCK1 4L6Q ROCK2 712.6 85% 94% 0% 0.77 0.98 3A62 
RPS6KB

1 
186.0 34% 56% 5% 3.44 2.41 

MAPKA

PK2 
3FHR 

MAPKAPK

3 
449.5 69% 81% 8% 1.43 1.29 3NX8 PRKACA 114.0 29% 49% 17% 1.94 2.32 

CDK2 3O0G CDK5 305.8 55% 69% 8% 1.84 2.21 4FV7 MAPK1 185.7 36% 53% 10% 1.31 2.19 

MAPK1 2ZOQ MAPK3 631.3 78% 93% 0% 2.66 1.01 1CM8 MAPK12 286.2 41% 62% 3% 2.21 1.84 

MAPK1

0 
3O2M MAPK8 665.6 90% 92% 3% 1.06 1.63 

3GC

Q 
MAPK14 311.6 47% 63% 7% 2.41 2.38 

MAPK1

4 
3GP0 MAPK11 525.0 71% 84% 5% 5.90 1.76 4AWI MAPK8 302.8 45% 62% 9% 1.86 1.91 

MAP2K

1 
1S9I MAP2K2 550.4 80% 85% 9% 1.29 1.30 3HA6 AURKA 117.5 26% 49% 7% 3.74 2.73 

BRAF 
3OM

V 
CRAF 447.2 77% 86% 4% 1.22 0.90 

2VW

X 
EPHB4 135.2 29% 53% 11% 3.59 2.14 

TGFBR

1 
3MDY BMPR1B 426.4 66% 81% 1% 1.19 1.36 2G2H ABL1 80.1 23% 44% 18% 3.62 2.54 

ABL1 3HMI ABL2 528.1 92% 96% 0% 1.78 1.07 3SXS BMX 232.6 41% 63% 0% 5.24 1.50 

CSF1R 4HVS KIT 457.2 67% 79% 5% 2.26 1.48 3HMI ABL2 215.3 40% 62% 3% 4.43 1.95 

EGFR 3PP0 ERBB2 449.5 74% 84% 7% 0.96 1.49 2QOB EPHA3 183.7 36% 56% 6% 3.19 2.82 

PTK2 3FZS PTK2B 316.2 57% 71% 7% 2.71 1.72 3BKB FES 207.2 38% 58% 6% 4.16 2.22 



FGFR1 2PVY FGFR2 548.5 85% 91% 3% 3.15 1.20 3EKK INSR 222.6 39% 62% 3% 3.77 1.84 

SRC 2DQ7 FYN 466.8 79% 88% 4% 2.93 1.02 3PIX BTK 211.5 40% 60% 5% 3.09 1.57 

KDR 2PVY FGFR2 310.5 52% 68% 9% 4.79 2.00 1FVR TEK 190.7 37% 56% 6% 6.59 2.13 

IGF1R 1P14 INSR 510.0 78% 89% 2% 5.34 1.84 2PVY FGFR2 231.5 39% 61% 5% 8.93 2.36 

JAK2 4HVD JAK3 357.5 61% 76% 3% 1.32 1.12 3W33 EGFR 171.0 34% 56% 6% 1.95 2.26 

KIT 2I1M CSF1R 479.6 67% 79% 1% 3.15 1.82 3BU3 INSR 212.6 36% 56% 3% 6.74 2.35 

LCK 2C0T HCK 449.5 76% 89% 0% 1.21 1.84 4HCT ITK 245.7 42% 66% 0% 1.21 2.24 

MET 3PLS MST1R 342.8 58% 71% 7% 4.57 2.36 3KUL EHPA8 182.6 35% 54% 7% 5.34 1.89 

PLK1 3D5U PLK1 513.8 80% 93% 0% 1.29 0.65 3A8X PRKCI 141.4 30% 52% 3% 3.74 1.81 

WEE1 3P1A PKMYT1 142.9 35% 50% 
13

% 
6.65 2.47 2J0I PAK4 61.2 23% 45% 9% 8.53 2.19 

Mean     475.2 73% 83% 4% 2.45 1.45     193.4 36% 57% 6% 3.89 2.16 

 

a. BLAST bit score; 

b. Percentage of residues that are identical between the sequences; 

c. Percentage of residues that are positive matches according to the similarity matrix; 

d. Percentage of gaps in both query and homolog as returned by BLAST. 

  



Table 5. Kinase Targets in SARfari and Parameters for Building Homology Models 

 High Identity Homology Model Low Identity Homology Model 

Symbol 
Template 

PDB 

Template 

Symbol 
Scorea Identitiesb Positivesc Gapsd 

Template 

PDB 

Template 

Symbol 
Scorea Identitiesb Positivesc Gapsd 

AKT3 1GZN AKT2 485.3 87% 95% 0% 1UU9 PDPK1 186.4 39% 60% 0% 

CDK1 4EK4 CDK2 406.8 64% 78% 3% 4G6O MAPK1 184.1 36% 53% 5% 

CHUK 4KIK IKBKB 386.7 64% 77% 1% 4B9D NEK1 103.6 31% 52% 5% 

CLK4 1Z57 CLK1 584.7 86% 92% 0% 1UKI MAPK8 108.6 29% 46% 15% 

FLT4 3VID KDR 454.9 69% 79% 0% 4FOB ALK 165.2 33% 47% 19% 

GSK3A 1J1B GSK3B 607.1 86% 93% 0% 3R71 CDK2 177.9 36% 58% 10% 

LIMK2 3S95 LIMK1 408.3 69% 83% 2% 2J0L PTK2 105.1 27% 47% 15% 

MAP3K8 3GGF STK26 145.2 34% 56% 5% 4FZA STK26 141.8 34% 56% 5% 

PDGFRA 3HNG VEGFR1 340.1 47% 65% 9% 2RFN MET 43.5 31% 45% 9% 

PDGFRB 1Y6A VEGFR2 323.6 46% 61% 10% 4F64 FGFR1 104.0 45% 61% 1% 

PHKG1 2Y7J PHKG2 421.8 70% 85% 0% 3R2B MAPKAPK2 150.6 33% 52% 11% 

PRKACG 2F7E PRKACA 473.4 86% 94% 0% 4EL9 RPS6KA3 200.3 37% 63% 2% 

PRKCD 1XJD PRKCQ 512.3 72% 84% 0% 3NX8 PRKACA 191.0 40% 60% 1% 

PRKCE 3TXO PRKCH 525.8 69% 82% 0% 3AMB PRKACA 203.8 40% 60% 2% 

PRKCG 3IW4 PRKCA 559.7 75% 87% 1% 4L45 RPS6KB1 223.8 41% 63% 3% 

PRKCZ 3ZH8 PRKCI 497.7 88% 94% 0% 3OTU PDPK1 162.9 33% 54% 4% 

PRKD1 2W0J CHEK2 193.4 38% 60% 6% 4AE9 PRKACA 146.4 35% 57% 7% 

PRKD3 2W0J CHEK2 194.1 39% 61% 6% 2GNL PRKACA 141.7 34% 55% 7% 

RAF1 3D4Q BRAF 496.5 77% 89% 0% 2Y4I KSR2 162.9 35% 56% 5% 

YES1 2H8H SRC 485.0 89% 95% 0% 3K54 BTK 218.8 40% 64% 0% 

Mean   425.1 68% 81% 2% 156.1 35% 55% 6% 

 

a. BLAST bit score; 



b. Percentage of residues that are identical between the sequences; 

c. Percentage of residues that are positive matches according to the similarity matrix; 

d. Percentage of gaps in both query and homolog as returned by BLAST. 

 



[Insert Tables 4 and 5 Here] 

 We assessed the performance of the rank-ordering methods in enriching chemical 

libraries docked to the DUD-E set of homology models for 26 kinases. Both actives and matched 

decoys were docked to their corresponding models using either Vina or Glide and scored using 

SVMGen (Fig. 3A) and GlideScore (Fig. 3B). For the DUD-E kinases, the mean ROC-AUCs for 

SVMGen were 0.77 ± 0.05, 0.72 ± 0.05, and 0.70 ± 0.05 for crystal, high identity homology 

models, and low identity homology models, respectively (Table 6). In Glide docked poses, 

GlideScore resulted in mean ROC-AUCs of 0.67 ± 0.03, 0.62 ± 0.03, and 0.60 ± 0.03 for crystal, 

high homology, and low homology structures. Vina docked poses that were scored with 

GlideScore resulted in ROC-AUCs of 0.73 ± 0.03, 0.65 ± 0.04, and 0.62 ± 0.03. For the GlideScore 

scored models, the Vina docked poses resulted in significantly higher enrichment than the Glide 

docked poses in both the crystal structures (ANOVA, p = 0.002) and high identity model (ANOVA, 

p = 0.02), but not in the low identity models (ANOVA, p = 0.35). The average scores of the 

SVMGen poses were higher than their GlideScore counterparts (ANOVA, p = 5.4×10-11). Similarly, 

the quality of the kinase structure significantly impacts the overall enrichment (ANOVA, p = 

1.7×10-7), with the native crystal structure resulting in better rank-ordering both the high and low 

identities models. Similar to the enrichment of the PDBBind dataset, SVMGen excels at specific 

targets such as AKT1, MAPK14, and EGFR, while GlideScore does better in kinases such as 

MAPK1, MAP2K1, and PLK1. 

  





Table 6. Scoring Functions Enrichment Performance for DUD-E Kinases 

 

Symbol 

Glide Vina 

SVMGen GlideScore SVMGen GlideScore 

Crystal High Low Crystal High Low Crystal High Low Crystal High Low 

AKT1 0.84 0.86 0.81 0.65 0.68 0.60 0.84 0.85 0.80 0.70 0.79 0.71 

AKT2 0.79 0.79 0.82 0.63 0.64 0.63 0.79 0.79 0.82 0.72 0.66 0.64 

PRKCB 0.78 0.77 0.71 0.68 0.64 0.61 0.78 0.76 0.71 0.68 0.65 0.50 

ROCK1 0.69 0.70 0.61 0.70 0.66 0.69 0.69 0.70 0.61 0.74 0.80 0.71 

MAPKAPK2 0.61 0.59 0.45 0.78 0.78 0.51 0.62 0.59 0.45 0.75 0.77 0.63 

CDK2 0.73 0.61 0.58 0.75 0.55 0.55 0.73 0.61 0.57 0.78 0.61 0.61 

MAPK1 0.52 0.47 0.43 0.77 0.63 0.55 0.53 0.47 0.41 0.73 0.70 0.68 

MAPK10 0.79 0.69 0.72 0.72 0.69 0.42 0.79 0.69 0.72 0.68 0.63 0.62 

MAPK14 0.80 0.71 0.76 0.59 0.58 0.65 0.80 0.70 0.76 0.66 0.55 0.58 

MAP2K1 0.43 0.61 0.65 0.69 0.53 0.55 0.42 0.62 0.64 0.67 0.61 0.56 

BRAF 0.88 0.87 0.65 0.78 0.67 0.69 0.88 0.87 0.65 0.81 0.72 0.56 

TGFBR1 0.92 0.88 0.91 0.73 0.73 0.51 0.92 0.88 0.91 0.86 0.82 0.51 

ABL1 0.84 0.85 0.82 0.63 0.64 0.62 0.83 0.84 0.82 0.76 0.74 0.72 

CSF1R 0.71 0.62 0.68 0.53 0.56 0.65 0.70 0.61 0.68 0.66 0.60 0.54 

EGFR 0.80 0.75 0.86 0.68 0.56 0.58 0.80 0.75 0.86 0.57 0.61 0.72 

PTK2 0.95 0.93 0.87 0.64 0.49 0.62 0.95 0.94 0.86 0.83 0.52 0.70 

FGFR1 0.83 0.77 0.75 0.61 0.62 0.63 0.83 0.77 0.76 0.67 0.67 0.64 

SRC 0.88 0.85 0.86 0.60 0.59 0.57 0.88 0.85 0.86 0.75 0.59 0.59 

KDR 0.81 0.57 0.69 0.62 0.57 0.59 0.82 0.54 0.69 0.68 0.60 0.56 

IGF1R 0.74 0.69 0.72 0.64 0.54 0.53 0.75 0.69 0.73 0.74 0.62 0.62 

JAK2 0.86 0.86 0.85 0.78 0.72 0.72 0.86 0.86 0.86 0.77 0.71 0.64 

KIT 0.76 0.80 0.74 0.59 0.58 0.56 0.75 0.80 0.73 0.63 0.49 0.58 

LCK 0.82 0.80 0.76 0.75 0.67 0.57 0.81 0.79 0.76 0.75 0.59 0.59 

MET 0.92 0.59 0.49 0.66 0.55 0.77 0.92 0.58 0.48 0.87 0.57 0.54 

PLK1 0.54 0.53 0.53 0.78 0.66 0.67 0.55 0.54 0.53 0.77 0.68 0.67 

WEE1 0.76 0.59 0.47 0.54 0.53 0.48 0.75 0.60 0.44 0.70 0.49 0.57 

Mean 0.77 0.72 0.70 0.67 0.62 0.60 0.77 0.72 0.70 0.73 0.65 0.62 

95% CI 0.05 0.05 0.05 0.03 0.03 0.03 0.05 0.05 0.06 0.03 0.04 0.03 

 

 [Insert Fig. 3 and Table 6 Here] 

 For the SARfari set of kinases, we docked both active compounds and matched decoys 

to each model using Glide and Vina and rescored using GlideScore and SVMGen (Table 7). In 

the structures that were generated using Glide, the high and low identity models of the SVMGen 



scored poses had ROC-AUCs of 0.68 ± 0.07 and 0.63 ± 0.05, respectively. This shows that the 

quality of the structure has generally no impact on performance (paired t-test, p = 0.35). For 

GlideScore, the ROC-AUCs were 0.70 ± 0.05 and 0.63 ± 0.03, with slightly better enrichment for 

the high quality models (paired t-test, p = 0.02). Similarly in the Vina docked structures, the 

SVMGen ROC-AUCs were 0.75 ± 0.06 and 0.72 ± 0.04 and the GlideScore ROC-AUCs were 

0.61 ± 0.06 and 0.59 ± 0.06. Interestingly, SVMGen showed significantly better performance with 

compounds docked with Vina than with Glide (ANOVA, p = 2.5×10-4). Similarly, high identity 

models performed better overall than low identity models (ANOVA, p = 0.01). In some cases, the 

low identity model outperformed its high identity model counterpart, such as, for example, for 

MAP3K8, PDGFRB, and PRKD1. 

Table 7. Scoring Functions Enrichment Performance for SARfari Kinases 

Symbol 

Glide Vina 

SVMGen GlideScore SVMGen GlideScore 

High Low High Low High Low High Low 

AKT3 0.75 0.53 0.55 0.57 0.72 0.71 0.52 0.55 

CDK1 0.64 0.73 0.70 0.60 0.78 0.74 0.65 0.56 

CHUK 0.93 0.48 0.86 0.51 0.91 0.52 0.82 0.66 

CLK4 0.80 0.50 0.80 0.66 0.79 0.88 0.64 0.52 

FLT4 0.67 0.51 0.56 0.66 0.68 0.69 0.43 0.61 

GSK3A 0.55 0.64 0.68 0.57 0.79 0.62 0.61 0.58 

LIMK2 0.81 0.53 0.62 0.58 0.93 0.75 0.37 0.36 

MAP3K8 0.45 0.82 0.65 0.65 0.59 0.87 0.63 0.73 

PDGFRA 0.64 0.69 0.69 0.56 0.78 0.77 0.65 0.48 

PDGFRB 0.54 0.82 0.63 0.74 0.73 0.84 0.54 0.77 

PHKG1 0.83 0.67 0.68 0.62 0.97 0.70 0.90 0.53 

PRKACG 0.92 0.46 0.92 0.65 0.84 0.80 0.79 0.63 

PRKCD 0.67 0.71 0.81 0.66 0.76 0.69 0.74 0.59 

PRKCE 0.51 0.77 0.62 0.60 0.62 0.70 0.51 0.51 

PRKCG 0.78 0.70 0.77 0.57 0.73 0.64 0.57 0.48 

PRKCZ 0.77 0.57 0.81 0.62 0.70 0.68 0.59 0.67 

PRKD1 0.47 0.75 0.62 0.74 0.44 0.70 0.31 0.62 

PRKD3 0.71 0.52 0.69 0.73 0.64 0.67 0.60 0.64 

RAF1 0.56 0.78 0.69 0.60 0.83 0.74 0.68 0.56 

YES1 0.84 0.58 0.77 0.76 0.82 0.82 0.73 0.68 

Mean 0.68 0.63 0.70 0.63 0.75 0.72 0.61 0.59 

95% CI 0.07 0.05 0.05 0.03 0.06 0.04 0.06 0.04 

 

  



 [Insert Table 7 Here] 

Early Enrichment. The AUC under the ROC curve is a measure of the fraction of actives 

discovered over the fraction of inactives. However, only the top targets are further evaluated in 

virtual screening. One measure to evaluate early enrichment is ROC enrichment, which can be 

defined at any point on the ROC curve.50 At a given false positive rate, it is the fraction of 

discovered actives divided by the fraction of discovered inactives. Table 8 lists the mean ROC 

enrichment at various false positive rates in both the DUD-E and SARfari datasets. At a 0.5% 

false positive rate (FPR), SVMGen performs better or similarly to GlideScore at identifying actives 

compounds among inactives. Only in the Glide docked SARfari kinases does GlideScore perform 

better than SVMGen at each FPR. This general trend is similarly reflected in the overall ROC-

AUCs of each combination of docking and scoring methods. 

 

Table 8. Mean ROC Enrichment at Various False Positive Rates 

Kinase 

Set 

Docking 

Method 

Scoring 

Function 

Structure 

Type 

Mean 

ROC-AUC 95% CI 

Mean ROC Enrichments 

0.5% 1.0% 2.0% 5.0% 10.0% 

DUD-E 

Glide 

SVMGen 

Crystal 0.77 0.72 – 0.82 27.8 20.2 13.8 7.9 5.0 

High 0.72 0.67 – 0.77 20.6 15.2 10.6 6.3 4.1 

Low 0.70 0.65 – 0.75 19.2 13.7 9.6 5.5 3.7 

GlideScore 

Crystal 0.67 0.64 – 0.70 16.5 11.4 8.0 4.8 3.3 

High 0.62 0.59 – 0.65 15.3 10.4 7.0 4.1 2.9 

Low 0.60 0.57 – 0.63 14.0 8.8 5.5 3.6 2.4 

Vina 

SVMGen 

Crystal 0.77 0.72 – 0.82 27.6 20.3 13.8 7.8 5.0 

High 0.72 0.67 – 0.77 21.4 15.3 10.8 6.3 4.1 

Low 0.70 0.64 – 0.76 18.5 13.2 9.6 5.7 3.7 

GlideScore 

Crystal 0.73 0.70 – 0.76 28.6 17.4 11.2 6.1 4.0 

High 0.65 0.61 – 0.69 11.5 8.2 5.8 3.8 2.7 

Low 0.62 0.65 – 0.68 4.0 3.2 2.6 2.2 2.0 

SARfari 

Glide 

SVMGen 
High 0.68 0.61 – 0.75 17.0 10.8 7.7 4.7 3.4 

Low 0.63 0.58 – 0.68 10.1 7.4 6.1 3.8 2.7 

GlideScore 
High 0.70 0.65 – 0.75 20.9 15.5 9.5 5.4 3.6 

Low 0.63 0.60 – 0.66 8.3 5.9 4.7 2.8 2.3 

Vina 

SVMGen 
High 0.75 0.69 – 0.81 17.0 13.9 8.8 6.2 4.3 

Low 0.72 0.68 – 0.76 10.8 9.5 7.6 5.2 3.5 

GlideScore 
High 0.61 0.55 – 0.67 10.2 7.3 5.3 3.5 2.5 

Low 0.59 0.55 – 0.63 7.6 5.7 3.8 2.5 2.0 

  



 [Insert Table 8 Here] 

DISCUSSION 

Recently, we introduced an approach for rank-ordering protein-compound structures in virtual 

screening.12 The method known as SVMSP used a combination of machine learning and 

statistical pair potentials to develop a model for rank-ordering protein-compound structures. The 

results were promising, such that enrichment compared well with other well-established methods 

such as Glide. However, SVMSP is a target-specific approach and a model must be developed 

for individual targets. Here, we report a general approach (SVMGen) using the same strategy as 

SVMSP except that the negative set consists of a collection of randomly selected compounds 

docked to a diverse set of protein structures. We use SVMGen and GlideScore to explore the 

sensitivity of these scoring methods to the quality of binding pose or the three-dimensional 

structure of the target used during virtual screening. We find that SVMGen is sensitive to the 

quality of the binding pose as evidenced by progressively poorer enrichments with decreasing 

quality (high RMSDs) of the active compounds. GlideScore was more sensitive, showing a more 

substantial decrease in performance with increasing RMSDs. The fact that GlideScore is more 

sensitive may be attributed to the fact that the scoring function was developed strictly with crystal 

structures of protein-compound complexes, while SVMGen uses both crystal structures (positive 

set) as well as docked structures (negative set) to represent the negative set used in the training. 

GlideScore is expected to therefore perform better in situations where the test set contains high-

quality docked poses. SVMGen may not perform as well as GlideScore with the highest quality 

structures, but its lower sensitivity to the quality of binding pose may actually be an asset in virtual 

screening campaigns where the docking pose of active compounds are not always highly 

accurate. 

In addition to the binding pose, we investigated how the quality of the target structure 

affects enrichment using both SVMGen and GlideScore. Just like in the above studies, we 

focused our attention on protein kinases. Nearly half of the kinases in the human kinome do not 

possess a crystal structure. The use of homology models for these kinases could not only help in 

identifying novel inhibitors, but could also be used to predict the selectivity of compounds 

considering that most kinase inhibitors fail due to off-target effects. We selected targets from two 

datasets: DUD-E and SARfari. Targets from DUD-E featured kinase targets with solved 

structures, while targets from SARfari consisted of kinases with no crystal structure. Consistent 

with the above studies evaluating the effects of binding pose, we find that model quality has 

significant impact on enrichment. For both SVMGen and GlideScore, enrichment was better for 



high sequence identify homology models compared with homology models obtained with low 

sequence identity templates. These results are consistent with our studies evaluating the effect 

of binding mode accuracy on enrichment. The lower sensitivity for SVMGen may be useful in 

screening campaigns that use homology models, which will likely result in a larger number of less 

accurate binding poses for actives. 
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Table 1. Enrichment of Select Kinase Targets in PDBBind’s General Set 

Kinase 

GlideSP Vina 

GlideScore SVMGen GlideScore SVMGen 

AURKA 0.90 0.81 0.90 0.82 

BRAF 0.84 0.96 0.84 0.96 

CDK2 0.90 0.78 0.91 0.82 

CDPK1 0.98 0.98 0.99 0.99 

CHEK1 0.91 0.73 0.94 0.79 

CHEK2 0.86 0.62 0.90 0.64 

CSNK2A1 0.97 0.88 0.98 0.91 

EGFR 0.81 0.95 0.78 0.97 

GSK3B 0.89 0.82 0.91 0.83 

ITK 0.78 0.75 0.77 0.74 

JAK2 0.84 0.81 0.86 0.83 

KDR 0.93 0.91 0.93 0.91 

LCK 0.92 0.92 0.92 0.91 

MAP2K1 0.85 0.60 0.89 0.61 

MAPK10 0.82 0.84 0.82 0.85 

MAPK14 0.81 0.70 0.82 0.69 

MET 0.92 0.76 0.92 0.76 

NEK2 0.92 0.83 0.93 0.77 

PDPK1 0.89 0.80 0.91 0.83 

PIM1 0.88 0.63 0.91 0.68 

PLK1 0.92 0.96 0.90 0.96 

PRKACA 0.93 0.77 0.95 0.80 

PTK2 0.91 0.90 0.91 0.90 

SRC 0.77 0.92 0.74 0.90 

SYK 0.89 0.77 0.91 0.77 

TTK 0.93 0.86 0.93 0.86 

Mean 0.88 0.82 0.89 0.83 

95% CI 0.02 0.04 0.02 0.04 

  



Table 2. Kinase Targets in DUD-E 

DUD-E Symbol Name PDB Family 
Total 

Ligands 

Clustered 

Ligands 

Experimental 

Decoys 

Matched 

Decoys 

Resolution

(Å) 

AKT1 AKT1 RAC-alpha serine/threonine-protein kinase 3CQW AGC 585 293 53 16450 2.00

AKT2 AKT2 RAC-beta serine/threonine-protein kinase 3D0E AGC 234 117 23 6900 2.00

KPCB PRKCB Protein kinase C beta type 2I0E AGC 331 135 153 8700 2.60

ROCK1 ROCK1 Rho-associated protein kinase 1 2ETR AGC 216 100 15 6300 2.60

MAPK2 MAPKAPK2 MAP kinase-activated protein kinase 2 3M2W CAMK 184 101 81 6150 2.41

CDK2 CDK2 Cyclin-dependent kinase 2 1H00 CMGC 1310 474 136 27850 1.60

MK01 MAPK1 Mitogen-activated protein kinase 1 2OJG CMGC 79 79 35 4550 2.00

MK10 MAPK10 Mitogen-activated protein kinase 10 2ZDT CMGC 199 104 23 6600 2.00

MK14 MAPK14 Mitogen-activated protein kinase 14 2QD9 CMGC 2205 578 73 35850 1.70

MP2K1 MAP2K1 Dual specificity mitogen-activated protein kinase kinase 1 3EQH STE 308 121 12 8150 2.00

BRAF BRAF Serine/threonine-protein kinase B-raf 3D4Q TKL 317 152 28 9950 2.80

TGFR1 TGFBR1 TGF-beta receptor type-1 3HMM TKL 235 133 7 8500 1.70

ABL1 ABL1 Tyrosine-protein kinase ABL1 2HZI Tyr 409 182 84 10750 1.70

CSF1R CSF1R Macrophage colony-stimulating factor 1 receptor 3KRJ Tyr 385 166 5 12150 2.10

EGFR EGFR Epidermal growth factor receptor 2RGP Tyr 1612 542 407 35050 2.00

FAK1 PTK2 Focal adhesion kinase 1 3BZ3 Tyr 101 100 11 5350 2.20

FGFR1 FGFR1 Fibroblast growth factor receptor 1 3C4F Tyr 327 139 146 8700 2.07

SRC SRC Proto-oncogene tyrosine-protein kinase Src 3EL8 Tyr 1269 524 287 34500 2.30

VGFR2 KDR Vascular endothelial growth factor receptor 2 2P2I Tyr 2320 409 142 24950 2.40

IGF1R IGF1R Insulin-like growth factor 1 receptor 2OJ9 Tyr 370 148 75 9300 2.00

JAK2 JAK2 Tyrosine-protein kinase JAK2 3LPB Tyr 246 130 6 6500 2.00

KIT KIT Mast/stem cell growth factor receptor Kit 3G0E Tyr 378 166 8 10450 1.60

LCK LCK Tyrosine-protein kinase Lck 2OF2 Tyr 916 420 148 27400 2.00

MET MET Hepatocyte growth factor receptor 3LQ8 Tyr 333 166 17 11250 2.02

PLK1 PLK1 Serine/threonine-protein kinase PLK1 2OWB Other 227 107 46 6800 2.10

WEE1 WEE1 Wee1-like protein kinase 3BIZ Other 221 102 15 6150 2.20

 

  



Table 3. Kinase Targets in SARfari 

Symbol Name Family 

SARfari 

Compounds 

Clustered 

Compounds 

AKT3 RAC-gamma serine/threonine-protein kinase AGC 91 32 

CDK1 Cyclin-dependent kinase 1 CMGC 797 383 

CHUK Inhibitor of nuclear factor kappa-B kinase subunit alpha Other 92 49 

CLK4 Dual specificity protein kinase CL4 CMGC 70 32 

FLT4 Vascular endothelial growth factor receptor 3 Tyr 102 68 

GSK3A Glycogen synthase kinase-3 alpha CMGC 269 126 

LIMK2 LIM domain kinase 2 TKL 43 15 

MAP3K8 Mitogen-activated protein kinase kinase kinase 8 STE 122 47 

PDGFRA Platelet-derived growth factor receptor alpha Tyr 287 136 

PDGFRB Platelet-derived growth factor receptor beta Tyr 523 218 

PHKG1 Serine/threonine-protein kinase PHKG1 CAMK 43 9 

PRKACG cAMP-dependent protein kinase catalytic subunit gamma AGC 89 38 

PRKCD Protein kinase C delta type AGC 452 132 

PRKCE Protein kinase C epsilon type AGC 223 82 

PRKCG Protein kinase C gamma type AGC 204 64 

PRKCZ Protein kinase C zeta type AGC 104 34 

PRKD1 Serine/threonine-protein kinase D1 CAMK 104 40 

PRKD3 Serine/threonine-protein kinase D3 CAMK 101 38 

RAF1 RAF proto-oncogene serine/threonine-protein kinase TKL 269 129 

YES1 Tyrosine-protein kinase Yes Tyr 50 33 



Table 4. Kinase Targets in DUD-E and Parameters for Building Homology Models 

  High Identity Homology Model Low Identity Homology Model 

Symbol 
Template 

PDB 

Template 

Symbol 
Scorea Identitiesb Positivesc Gapsd 

Pocket 

RMSD (Å) 

RMSD 

(Å) 

Template 

PDB 

Template  

Symbol 
Scorea Identitiesb Positivesc Gapsd 

Pocket 

RMSD (Å) 

RMSD 

(Å) 

AKT1 1O6L AKT2 569.3 87% 94% 0% 1.26 0.97 3NAX PDPK1 195.7 37% 60% 2% 2.46 2.44 

AKT2 4GV1 AKT1 600.5 85% 92% 3% 1.96 1.05 2ACX GRK6 211.1 39% 57% 2% 3.77 2.26 

PRKCB 2I0E PRKCA 598.6 85% 93% 0% 1.05 1.28 2ACX GRK6 193.0 38% 59% 2% 3.85 1.87 

ROCK1 4L6Q ROCK2 712.6 85% 94% 0% 0.77 0.98 3A62 RPS6KB1 186.0 34% 56% 5% 3.44 2.41 

MAPKAPK2 3FHR MAPKAPK3 449.5 69% 81% 8% 1.43 1.29 3NX8 PRKACA 114.0 29% 49% 17% 1.94 2.32 

CDK2 3O0G CDK5 305.8 55% 69% 8% 1.84 2.21 4FV7 MAPK1 185.7 36% 53% 10% 1.31 2.19 

MAPK1 2ZOQ MAPK3 631.3 78% 93% 0% 2.66 1.01 1CM8 MAPK12 286.2 41% 62% 3% 2.21 1.84 

MAPK10 3O2M MAPK8 665.6 90% 92% 3% 1.06 1.63 3GCQ MAPK14 311.6 47% 63% 7% 2.41 2.38 

MAPK14 3GP0 MAPK11 525.0 71% 84% 5% 5.90 1.76 4AWI MAPK8 302.8 45% 62% 9% 1.86 1.91 

MAP2K1 1S9I MAP2K2 550.4 80% 85% 9% 1.29 1.30 3HA6 AURKA 117.5 26% 49% 7% 3.74 2.73 

BRAF 3OMV CRAF 447.2 77% 86% 4% 1.22 0.90 2VWX EPHB4 135.2 29% 53% 11% 3.59 2.14 

TGFBR1 3MDY BMPR1B 426.4 66% 81% 1% 1.19 1.36 2G2H ABL1 80.1 23% 44% 18% 3.62 2.54 

ABL1 3HMI ABL2 528.1 92% 96% 0% 1.78 1.07 3SXS BMX 232.6 41% 63% 0% 5.24 1.50 

CSF1R 4HVS KIT 457.2 67% 79% 5% 2.26 1.48 3HMI ABL2 215.3 40% 62% 3% 4.43 1.95 

EGFR 3PP0 ERBB2 449.5 74% 84% 7% 0.96 1.49 2QOB EPHA3 183.7 36% 56% 6% 3.19 2.82 

PTK2 3FZS PTK2B 316.2 57% 71% 7% 2.71 1.72 3BKB FES 207.2 38% 58% 6% 4.16 2.22 

FGFR1 2PVY FGFR2 548.5 85% 91% 3% 3.15 1.20 3EKK INSR 222.6 39% 62% 3% 3.77 1.84 

SRC 2DQ7 FYN 466.8 79% 88% 4% 2.93 1.02 3PIX BTK 211.5 40% 60% 5% 3.09 1.57 

KDR 2PVY FGFR2 310.5 52% 68% 9% 4.79 2.00 1FVR TEK 190.7 37% 56% 6% 6.59 2.13 

IGF1R 1P14 INSR 510.0 78% 89% 2% 5.34 1.84 2PVY FGFR2 231.5 39% 61% 5% 8.93 2.36 

JAK2 4HVD JAK3 357.5 61% 76% 3% 1.32 1.12 3W33 EGFR 171.0 34% 56% 6% 1.95 2.26 

KIT 2I1M CSF1R 479.6 67% 79% 1% 3.15 1.82 3BU3 INSR 212.6 36% 56% 3% 6.74 2.35 

LCK 2C0T HCK 449.5 76% 89% 0% 1.21 1.84 4HCT ITK 245.7 42% 66% 0% 1.21 2.24 

MET 3PLS MST1R 342.8 58% 71% 7% 4.57 2.36 3KUL EHPA8 182.6 35% 54% 7% 5.34 1.89 

PLK1 3D5U PLK1 513.8 80% 93% 0% 1.29 0.65 3A8X PRKCI 141.4 30% 52% 3% 3.74 1.81 

WEE1 3P1A PKMYT1 142.9 35% 50% 13% 6.65 2.47 2J0I PAK4 61.2 23% 45% 9% 8.53 2.19 

Mean     475.2 73% 83% 4% 2.45 1.45     193.4 36% 57% 6% 3.89 2.16 

 

a. BLAST bit score; 

b. Percentage of residues that are identical between the sequences; 

c. Percentage of residues that are positive matches according to the similarity matrix; 

d. Percentage of gaps in both query and homolog as returned by BLAST. 

  



Table 5. Kinase Targets in SARfari and Parameters for Building Homology Models 

 High Identity Homology Model Low Identity Homology Model 

Symbol 
Template 

PDB 

Template 

Symbol 
Scorea Identitiesb Positivesc Gapsd 

Template 

PDB 

Template 

Symbol 
Scorea Identitiesb Positivesc Gapsd 

AKT3 1GZN AKT2 485.3 87% 95% 0% 1UU9 PDPK1 186.4 39% 60% 0% 

CDK1 4EK4 CDK2 406.8 64% 78% 3% 4G6O MAPK1 184.1 36% 53% 5% 

CHUK 4KIK IKBKB 386.7 64% 77% 1% 4B9D NEK1 103.6 31% 52% 5% 

CLK4 1Z57 CLK1 584.7 86% 92% 0% 1UKI MAPK8 108.6 29% 46% 15% 

FLT4 3VID KDR 454.9 69% 79% 0% 4FOB ALK 165.2 33% 47% 19% 

GSK3A 1J1B GSK3B 607.1 86% 93% 0% 3R71 CDK2 177.9 36% 58% 10% 

LIMK2 3S95 LIMK1 408.3 69% 83% 2% 2J0L PTK2 105.1 27% 47% 15% 

MAP3K8 3GGF STK26 145.2 34% 56% 5% 4FZA STK26 141.8 34% 56% 5% 

PDGFRA 3HNG VEGFR1 340.1 47% 65% 9% 2RFN MET 43.5 31% 45% 9% 

PDGFRB 1Y6A VEGFR2 323.6 46% 61% 10% 4F64 FGFR1 104.0 45% 61% 1% 

PHKG1 2Y7J PHKG2 421.8 70% 85% 0% 3R2B MAPKAPK2 150.6 33% 52% 11% 

PRKACG 2F7E PRKACA 473.4 86% 94% 0% 4EL9 RPS6KA3 200.3 37% 63% 2% 

PRKCD 1XJD PRKCQ 512.3 72% 84% 0% 3NX8 PRKACA 191.0 40% 60% 1% 

PRKCE 3TXO PRKCH 525.8 69% 82% 0% 3AMB PRKACA 203.8 40% 60% 2% 

PRKCG 3IW4 PRKCA 559.7 75% 87% 1% 4L45 RPS6KB1 223.8 41% 63% 3% 

PRKCZ 3ZH8 PRKCI 497.7 88% 94% 0% 3OTU PDPK1 162.9 33% 54% 4% 

PRKD1 2W0J CHEK2 193.4 38% 60% 6% 4AE9 PRKACA 146.4 35% 57% 7% 

PRKD3 2W0J CHEK2 194.1 39% 61% 6% 2GNL PRKACA 141.7 34% 55% 7% 

RAF1 3D4Q BRAF 496.5 77% 89% 0% 2Y4I KSR2 162.9 35% 56% 5% 

YES1 2H8H SRC 485.0 89% 95% 0% 3K54 BTK 218.8 40% 64% 0% 

Mean   425.1 68% 81% 2%  156.1 35% 55% 6% 

 

a. BLAST bit score; 

b. Percentage of residues that are identical between the sequences; 

c. Percentage of residues that are positive matches according to the similarity matrix; 

d. Percentage of gaps in both query and homolog as returned by BLAST. 

  



Table 6. Scoring Functions Enrichment Performance for DUD-E Kinases 

 

Symbol 

Glide Vina 

SVMGen GlideScore SVMGen GlideScore 

Crystal High Low Crystal High Low Crystal High Low Crystal High Low 

AKT1 0.84 0.86 0.81 0.65 0.68 0.60 0.84 0.85 0.80 0.70 0.79 0.71 

AKT2 0.79 0.79 0.82 0.63 0.64 0.63 0.79 0.79 0.82 0.72 0.66 0.64 

PRKCB 0.78 0.77 0.71 0.68 0.64 0.61 0.78 0.76 0.71 0.68 0.65 0.50 

ROCK1 0.69 0.70 0.61 0.70 0.66 0.69 0.69 0.70 0.61 0.74 0.80 0.71 

MAPKAPK2 0.61 0.59 0.45 0.78 0.78 0.51 0.62 0.59 0.45 0.75 0.77 0.63 

CDK2 0.73 0.61 0.58 0.75 0.55 0.55 0.73 0.61 0.57 0.78 0.61 0.61 

MAPK1 0.52 0.47 0.43 0.77 0.63 0.55 0.53 0.47 0.41 0.73 0.70 0.68 

MAPK10 0.79 0.69 0.72 0.72 0.69 0.42 0.79 0.69 0.72 0.68 0.63 0.62 

MAPK14 0.80 0.71 0.76 0.59 0.58 0.65 0.80 0.70 0.76 0.66 0.55 0.58 

MAP2K1 0.43 0.61 0.65 0.69 0.53 0.55 0.42 0.62 0.64 0.67 0.61 0.56 

BRAF 0.88 0.87 0.65 0.78 0.67 0.69 0.88 0.87 0.65 0.81 0.72 0.56 

TGFBR1 0.92 0.88 0.91 0.73 0.73 0.51 0.92 0.88 0.91 0.86 0.82 0.51 

ABL1 0.84 0.85 0.82 0.63 0.64 0.62 0.83 0.84 0.82 0.76 0.74 0.72 

CSF1R 0.71 0.62 0.68 0.53 0.56 0.65 0.70 0.61 0.68 0.66 0.60 0.54 

EGFR 0.80 0.75 0.86 0.68 0.56 0.58 0.80 0.75 0.86 0.57 0.61 0.72 

PTK2 0.95 0.93 0.87 0.64 0.49 0.62 0.95 0.94 0.86 0.83 0.52 0.70 

FGFR1 0.83 0.77 0.75 0.61 0.62 0.63 0.83 0.77 0.76 0.67 0.67 0.64 

SRC 0.88 0.85 0.86 0.60 0.59 0.57 0.88 0.85 0.86 0.75 0.59 0.59 

KDR 0.81 0.57 0.69 0.62 0.57 0.59 0.82 0.54 0.69 0.68 0.60 0.56 

IGF1R 0.74 0.69 0.72 0.64 0.54 0.53 0.75 0.69 0.73 0.74 0.62 0.62 

JAK2 0.86 0.86 0.85 0.78 0.72 0.72 0.86 0.86 0.86 0.77 0.71 0.64 

KIT 0.76 0.80 0.74 0.59 0.58 0.56 0.75 0.80 0.73 0.63 0.49 0.58 

LCK 0.82 0.80 0.76 0.75 0.67 0.57 0.81 0.79 0.76 0.75 0.59 0.59 

MET 0.92 0.59 0.49 0.66 0.55 0.77 0.92 0.58 0.48 0.87 0.57 0.54 

PLK1 0.54 0.53 0.53 0.78 0.66 0.67 0.55 0.54 0.53 0.77 0.68 0.67 

WEE1 0.76 0.59 0.47 0.54 0.53 0.48 0.75 0.60 0.44 0.70 0.49 0.57 

Mean 0.77 0.72 0.70 0.67 0.62 0.60 0.77 0.72 0.70 0.73 0.65 0.62 

95% CI 0.05 0.05 0.05 0.03 0.03 0.03 0.05 0.05 0.06 0.03 0.04 0.03 

  



Table 7. Scoring Functions Enrichment Performance for SARfari Kinases 

Symbol 

Glide Vina 

SVMGen GlideScore SVMGen GlideScore 

High Low High Low High Low High Low 

AKT3 0.75 0.53 0.55 0.57 0.72 0.71 0.52 0.55 

CDK1 0.64 0.73 0.70 0.60 0.78 0.74 0.65 0.56 

CHUK 0.93 0.48 0.86 0.51 0.91 0.52 0.82 0.66 

CLK4 0.80 0.50 0.80 0.66 0.79 0.88 0.64 0.52 

FLT4 0.67 0.51 0.56 0.66 0.68 0.69 0.43 0.61 

GSK3A 0.55 0.64 0.68 0.57 0.79 0.62 0.61 0.58 

LIMK2 0.81 0.53 0.62 0.58 0.93 0.75 0.37 0.36 

MAP3K8 0.45 0.82 0.65 0.65 0.59 0.87 0.63 0.73 

PDGFRA 0.64 0.69 0.69 0.56 0.78 0.77 0.65 0.48 

PDGFRB 0.54 0.82 0.63 0.74 0.73 0.84 0.54 0.77 

PHKG1 0.83 0.67 0.68 0.62 0.97 0.70 0.90 0.53 

PRKACG 0.92 0.46 0.92 0.65 0.84 0.80 0.79 0.63 

PRKCD 0.67 0.71 0.81 0.66 0.76 0.69 0.74 0.59 

PRKCE 0.51 0.77 0.62 0.60 0.62 0.70 0.51 0.51 

PRKCG 0.78 0.70 0.77 0.57 0.73 0.64 0.57 0.48 

PRKCZ 0.77 0.57 0.81 0.62 0.70 0.68 0.59 0.67 

PRKD1 0.47 0.75 0.62 0.74 0.44 0.70 0.31 0.62 

PRKD3 0.71 0.52 0.69 0.73 0.64 0.67 0.60 0.64 

RAF1 0.56 0.78 0.69 0.60 0.83 0.74 0.68 0.56 

YES1 0.84 0.58 0.77 0.76 0.82 0.82 0.73 0.68 

Mean 0.68 0.63 0.70 0.63 0.75 0.72 0.61 0.59

95% CI 0.07 0.05 0.05 0.03 0.06 0.04 0.06 0.04

 

  



Table 8. Mean ROC Enrichment at Various False Positive Rates 

Kinase 

Set 

Docking 

Method 

Scoring 

Function 

Structure 

Type 

Mean 

ROC-AUC 95% CI 

Mean ROC Enrichments 

0.5% 1.0% 2.0% 5.0% 10.0% 

DUD-E 

Glide 

SVMGen 

Crystal 0.77 0.72 – 0.82 27.8 20.2 13.8 7.9 5.0 

High 0.72 0.67 – 0.77 20.6 15.2 10.6 6.3 4.1 

Low 0.70 0.65 – 0.75 19.2 13.7 9.6 5.5 3.7 

GlideScore 

Crystal 0.67 0.64 – 0.70 16.5 11.4 8.0 4.8 3.3 

High 0.62 0.59 – 0.65 15.3 10.4 7.0 4.1 2.9 

Low 0.60 0.57 – 0.63 14.0 8.8 5.5 3.6 2.4 

Vina 

SVMGen 

Crystal 0.77 0.72 – 0.82 27.6 20.3 13.8 7.8 5.0 

High 0.72 0.67 – 0.77 21.4 15.3 10.8 6.3 4.1 

Low 0.70 0.64 – 0.76 18.5 13.2 9.6 5.7 3.7 

GlideScore 

Crystal 0.73 0.70 – 0.76 28.6 17.4 11.2 6.1 4.0 

High 0.65 0.61 – 0.69 11.5 8.2 5.8 3.8 2.7 

Low 0.62 0.65 – 0.68 4.0 3.2 2.6 2.2 2.0 

SARfari 

Glide 

SVMGen 
High 0.68 0.61 – 0.75 17.0 10.8 7.7 4.7 3.4 

Low 0.63 0.58 – 0.68 10.1 7.4 6.1 3.8 2.7 

GlideScore 
High 0.70 0.65 – 0.75 20.9 15.5 9.5 5.4 3.6 

Low 0.63 0.60 – 0.66 8.3 5.9 4.7 2.8 2.3 

Vina 

SVMGen 
High 0.75 0.69 – 0.81 17.0 13.9 8.8 6.2 4.3 

Low 0.72 0.68 – 0.76 10.8 9.5 7.6 5.2 3.5 

GlideScore 
High 0.61 0.55 – 0.67 10.2 7.3 5.3 3.5 2.5 

Low 0.59 0.55 – 0.63 7.6 5.7 3.8 2.5 2.0 



FIGURE LEGENDS 

Figure 1. Enrichment power versus binding pose accuracy across 26 kinase targets. A set of 20 unique binding poses was generated for 940 

co-crystallized inhibitors across 26 kinase targets in PDBBind’s general set. The RMSD to the native crystal pose was used to separate 

the binding poses into the following bins: <2, 2-4, 4-6, 6-8, and >10 Å. ROC-AUC performance are shown in a box-and-whisker plot for 

each of the docking method and scoring function combinations: (A) Glide/GlideScore; (B) Glide/SVMGen; (C) Vina/GlideScore; (D) 

Vina/SVMGen. 

Figure 2.  Binding pose accuracy versus deviation in predicted scores. A set of 20 unique binding poses was generated for 123 co-crystallized 

kinase inhibitors from PDBBind’s refined set. For each pose, the difference between the crystal and docked scores was plotted against the 

RMSD between the docked and crystal poses. Compounds were binned based on their experimental binding affinities into ranges of 2-4, 

4-6, 6-8, 8-10, and 10+. Pearson, Spearman, and Kendall correlations were calculated overall and for each bin for (A) GlideScore and (B) 

SVMGen. 

Figure 3.  Enrichment of structures generated through homology modeling. Box-and-whisker plots of ROC-AUC scores for different quality 

homology models docked using Glide and Vina, and scored using GlideScore and SVMGen for kinases from (A) DUD-E and (B) SARfari. 
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