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Abstract 

This study tested the hypothesis that obesity alters the cardiac response to 

ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these 

differences are associated with alterations in the obese cardiac proteome and microRNA (miR) 

transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac 

function was assessed at baseline, during a 30-min coronary occlusion, and during 2 hours of 

reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies 

were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, 

and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I 

concentration (index of myocardial injury) was increased following ischemia/reperfusion and 

decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in 

systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at 

baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration 

increased systolic pressure in lean swine but did not affect blood pressure in obese swine. End-

diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These 

divergent physiologic responses were associated with obesity-related differences in proteins 

related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-

rich Ca2+ binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-

15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this 

discovery approach and reveal novel associations that suggest previously undiscovered 

mechanisms contributing to the effects of obesity on the heart and contributing to the actions of 

GLP-1 following ischemia/reperfusion. 
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New and Noteworthy 

Diet-induced obesity/metabolic syndrome in swine was associated with altered 

cardiovascular functional, miR transcriptome, and proteomic response to cardiac 

ischemia/reperfusion. The GLP-1 mimetic exendin-4 reduced myocardial damage, and altered 

these functional, miR and protein responses to ischemia/reperfusion differently in obese versus 

lean swine. These observations highlight known and novel mechanisms contributing to obesity-

related differences in the responses to cardiac ischemia/reperfusion, and in the responses to 

GLP-1 agonism. 
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Introduction 

Obesity is a complex disease state that is accompanied by a number of cardiac disease 

risk factors including hypertension and metabolic dysregulation (glucose intolerance, insulin 

resistance, dyslipidemia)[54] that are associated with pathologic changes in the heart (ventricular 

hypertrophy, heart failure)[6, 16, 34, 65] and in the vasculature (atherosclerosis, microvascular 

dysfunction)[8, 31, 60]. In prospective clinical studies, overweight or obese individuals have 

increased rates of cardiovascular diseases [1, 3, 41], contributing to a 2-3 fold increase in overall 

mortality relative to normal weight individuals[1, 7, 15, 32, 49, 51]. In addition to a direct link with 

occlusive vascular disease, obesity is strongly associated with impairment of systolic and diastolic 

function and the development of cardiac fibrosis (i.e. obesity cardiomyopathy) [3, 41]. Together 

these changes contribute to an obesity-related increased incidence of heart failure and associated 

morbidity and mortality [36, 41]. 

To date studies have investigated a broad set of potential contributors to this impaired 

function, such as alterations in -adrenoceptor signaling, oxidative stress, lipotoxicity, epigenetic 

changes, and autophagy responses[11], but the adverse effects of obesity on cardiac function 

remain incompletely understood. The recent discovery of the important regulatory effects of small 

non-coding ribonucleic acid sequences referred to as microRNAs (miRs)[62] presents novel 

opportunities for discovery in this area. Limited prior investigations suggest that obesity induces 

alterations in specific cardiac miRs (miR-34b, miR-34c, miR-199b, miR-210, miR-650, and miR-

223) in association with altered metabolism, hypertrophy and heart failure[23]. Improvements or 

exacerbations of various cardiovascular disease states have been described following 

experimental alterations of miRs using gene therapy or pharmacologic inhibitors of miRs 

(antimiR)[24], demonstrating the functional relevance of these molecules. Objectively, very little 

is known about the nature and contributions of miRs to cardiovascular disease in the obese heart. 

Regulatory changes ultimately exert effects by changes in the amount and/or activation of 

cellular proteins. In parallel with advances in techniques for miR profiling, tools for the evaluation 
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of whole-proteome have been developed. Such techniques have been used to demonstrate 

obesity-specific changes in abundance and phosphorylation of proteins related to ion transport, 

mitochondrial metabolism, antioxidant function and cardiac contractile function [13, 14, 17, 63]. 

Missing are studies exploring obesity-specific proteomic changes in response to cardiac ischemia 

and with reperfusion following relief of ischemia, and no published work has concurrently 

evaluated the changes in miRs and the proteome. Evaluating these changes in parallel under an 

experimental paradigm designed to produce an informative physiological context can produce 

novel observations of previously unknown factors and pathways associated with obesity-specific 

alterations in cardiac function and ischemic responses. 

Recent work from our laboratory and others indicates that obesity impairs the effects of 

glucagon like peptide-1 (GLP-1) to modify the cardio-metabolic response to exercise and to 

regional myocardial ischemia [20, 21, 44]. The underlying mechanisms remain largely 

unexplained. Here we have evaluated effects of obesity/metabolic syndrome on the cardiac 

functional response to ischemia/reperfusion injury with and without prior exposure to  GLP-1 

receptor activation. We tested the hypothesis that these responses differ in obese animals, and 

that these differences are associated with obesity-specific alterations in the cardiac proteome and 

microRNA (miR) transcriptome. We observed distinct alterations of functional responses (in vivo) 

accompanied by obesity-related differences in myocardial protein and miR expression profiles, 

including changes in previously unknown factors that could contribute to the development of 

obesity cardiomyopathy. 
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Methods 

Animal Models and Surgical Preparation. This protocol and use of animals were approved by 

the Indiana University School of Medicine Institutional Animal Care and Use Committee and were 

in accordance with the Guide for the Care and Use of Laboratory Animals (NIH Pub. No. 85-23, 

Revised 1996). Male Ossabaw swine were placed on a normal (lean; n = 10) or modified 

obesogenic diet (obese; n = 9) for 6 months beginning at 6 months of age as previously described 

[9]. These group sizes are historically sufficient to demonstrate important physiologic differences 

between animals. Briefly, lean control swine were fed ~2,200 kcal/day of standard chow (5L80, 

Purina Test Diet, Richmond, IN, USA) containing 18% kcal from protein, 71% kcal from complex 

carbohydrates, and 11% kcal from fat. Obese swine were fed an excess ~8,000 kcal/day high 

fat/fructose, obesogenic diet containing 17 % kcal from protein, 20% kcal from complex 

carbohydrates, 20% kcal from fructose, and 43% kcal from fat (mixture of lard, hydrogenated 

soybean oil, and hydrogenated coconut oil), and supplemented with 2.0% cholesterol and 0.7% 

sodium cholate by weight.   

Following 6 months of their respective diets, animals were anesthetized with isofluorane 

for placement of a jugular venous catheter. The degradation-resistant GLP-1 analogue Exendin-

4 (30 fmol/kg/min; lean; n= 5, obese; n= 5) or an equivalent volume of saline (lean; n= 5, obese; 

n= 4) was then infused systemically through the jugular venous catheter for 24 hours via an 

elastomeric balloon (MILA International Inc, Erlanger, Kentucky; 2 mL/hr).  Immediately following 

this 24 hour infusion, swine were anesthetized with telazol (5 mg/kg, sc), ketamine (3 mg/kg, sc), 

and xylazine (2.2mg/kg, sc) cocktail IM and anesthesia maintained with morphine (3 mg/kg) and 

α-chloralose (100 mg/kg, i.v). The exendin-4 or saline infusion continued throughout the 

remaining period of the experimental protocol. Depth of anesthesia was monitored by observing 

continuous measurements of arterial blood pressure and heart rate as well as regular (15 minute 

intervals) reflex tests (corneal, jaw, limb withdrawal), beginning after induction of anesthesia and 

continuing throughout the experimental protocol. Prophylactic supplementation with chloralose 
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was performed every 1.5 hour to maintain a level, stage 3 plane of anesthesia. The right femoral 

artery and vein were isolated and cannulated to allow measurement of systemic arterial pressure 

and venous access, respectively. Next, the heart was exposed by a left lateral thoracotomy. The 

left circumflex artery was isolated for placement of a perivascular flow probe and a snare occluder. 

A catheter was then placed in the great cardiac vein to enable sampling of coronary venous blood 

from the area supplied by the left circumflex artery. A Sci-Sense pressure/volume admittance 

catheter (Transonic Technologies, London Ontario, Canada) was then placed directly into the left 

ventricle via an apical transmural stab and secured with a purse-string suture. The pressure-

volume system requires input of an estimated stroke volume. This estimate was based on 

manufacturer’s recommendation of 0.9L/g of body weight and produced baseline cardiac 

performance values consistent with those established in swine using other measurement 

modalities. Heparin was administered intravenously at a bolus dose of 500 U/kg to prevent 

clotting. All data were recorded using IOX acquisition software (EMKA Technologies, Falls Church 

VA. USA).  

 

Experimental Protocol. Following surgical instrumentation, swine were allowed to recover for 

~20 min. Hemodynamic parameters (blood pressure, heart rate, coronary blood flow, left 

ventricular volume and pressure) were continuously monitored throughout the experimental 

protocol. Baseline arterial and coronary venous blood samples were obtained at the end of the 

stabilization period. Next the left circumflex artery was transiently occluded for 30 min with a 

reversible snare occluder. The snare was then released to allow reperfusion of the circumflex 

perfusion territory. Hemodynamic parameters were recorded and blood samples were obtained 

at the end of 30 min of coronary occlusion, and then at 60 min intervals following release of the 

occlusion (i.e. following coronary reperfusion). At the end of the experimental protocol, while still 

anesthetized, animals were euthanized by fibrillation (by application of a 9 volt battery placed near 

the apex in the heart) with subsequent rapid excision of the heart. The heart was reverse perfused 
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with cold calcium free Krebs solution and transmural left ventricular biopsies were flash frozen in 

liquid nitrogen for protein mass spectrometry. The biopsies were taken from both the left anterior 

descending coronary artery perfused region (i.e. normal, non-ischemic territory) and left 

circumflex coronary artery perfused region (i.e. ischemia-reperfusion territory) taking care to avoid 

visible vasculature.  

 

Metabolic analysis and troponin measurements. An Instrumentation Laboratories automatic 

blood gas analyzer (GEM Premier 3000) and CO-oximeter (682) system was used to measure 

arterial and venous pH, PCO2, PO2, hematocrit, hemoglobin, oxygen saturation, and oxygen 

content. Baseline blood samples were also analyzed commercially (Antech Diagnostics; Fishers, 

Indiana) for measurements of insulin, triglycerides and cholesterol. Mass of left circumflex 

perfusion territory was estimated to be 20% of total heart weight, which approximates the “area 

at risk” in this study. Troponin measures were made using a i-STAT1, model 300-G (Abbott, 

Illinois, USA), using systemic blood samples taken at baseline prior to coronary occlusion, and 

120 min following release of the occlusion. 

 

RNA isolation, quantification and micro-RNA array. Total RNA from myocardial core biopsies 

was isolated using PureLink RNA Micro Kit (Life Technologies) according to the manufacturer’s 

instructions. Total RNA was eluted from the column in RNase-free water and stored at -80°C. The 

Agilent 2100 Bioanalyzer Small RNA kit was used by the Center for Genetics in Indiana University 

School of Medicine to assess quantity and quality of miRNA. 

To perform the arrays, total RNA samples were labeled using the Genisphere FlashTag 

HSR kit. The labeled samples were individually hybridized to Affymetrix GeneChip miRNA 3.0 

arrays. They were stained and washed using the standard miRNA protocol. Affymetrix GeneChip 

Command Console Software (AGCC) was used to scan the arrays and generate CEL files. CEL 
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files were imported into Partek Genomics Suite (Partek, Inc., St. Louis, Mo). RMA (robust multi-

array average) signals were generated for all probe sets using the RMA background correction, 

quantile normalization and summarization by Median Polish[30]. Summarized signals for each 

probe set were log2 transformed. These log-transformed signals were used for Principal 

Components Analysis, hierarchical clustering and signal histograms to determine if there were 

any outlier arrays. No outliers were detected in this analysis. Untransformed RMA signals were 

used for fold change calculations. Contrasts were calculated as required. Fold changes were 

calculated using the untransformed RMA signals. Probe sets with log2 expression levels < 1.0 

were considered very close to background. Probe sets with average expression levels < 1.0 were 

removed before the False Discovery Rate (FDR) was calculated using the Storey method[57].  

Fold change of miRs whose expression was significantly different (P < 0.05) from lean saline-

treated normally perfused controls were used to generate heat maps using the NCI CIMminer tool 

(http://discover.nci.nih.gov/cimminer). Euclidean distance and average linkage were used to 

create heat maps. To produce similar scales for both heat maps minimum (min) and maximum 

(max) fold change was added to each heat map. 

 

Proteome Analysis. Myocardial biopsies were transported to the Ohio State University 

Proteomics Core. Protein was extracted from transmural myocardial biopsies from perfused and 

ischemia-reperfusion regions, prepared for capillary-LC-nanospray-MS/MS and subsequent label 

free quantitation. Proteomic quantifications were performed in accordance with previous studies 

[42, 53] In brief mass spectrometry methodology that is detailed in the online supplement. In brief, 

protein quantification and identification was accomplished using the NCBInr Other Mammalia 

Database (version 20150104, 1,412,788 sequences). A decoy database was also searched to 

determine the false discovery rate (FDR) and peptides were filtered according to the FDR. The 

significance threshold was set at P < 0.05. Percolator score was used to further validate the 

search results and the actual FDR was less than 1% after using percolator scores. Label-free 
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quantitation was performed using the spectral count approach, in which the relative protein 

quantitation is measured by comparing the number of MS/MS spectra identified from the same 

protein in each of the multiple LC/MSMS datasets. Scaffold was used for quantitation analysis. 

The protein filter was set at 99% to ensure the false discovery rate is less than 1% and the peptide 

filter was set at 95%. 

 

Proteome and miR Analysis via Ingenuity Pathway Analysis. Ingenuity Pathway Analysis 

(IPA) (a Qiagen® product) was used to assist with interpretation and target discovery of proteome 

and microarray data. As IPA does not query porcine databases, all array and proteomics results 

were converted to the nearest bovine (protein) or human or mouse (miR) homologs. The 

proteomics data set was used in conjunction with the miR data set for the miR Target Finder 

Feature. Proteins and miR thresholds for inclusion in IPA analyses were set for P<0.05. 

 

Microarray and Proteomic Database Locations. MiR microarray results were uploaded to GEO 

(accession GSE77378). Complete microarray and proteomics results are also provided as online 

supplements. 

 

Statistical Analyses. Data were analyzed using the SigmaPlot statistical package (version 11 

Systat Software Inc, San Jose, CA) and SPSS (version 22 IBM, Chicago, IL). Data are presented 

as mean ± standard error. Comparisons were assessed by two-way repeated measures ANOVA; 

(Factor A = treatment (saline/exendin-4); Factor B = condition (baseline/occlusion/reperfusion 60 

min/ reperfusion 120 min)). When significance was established with ANOVA, Student-Newman-

Keuls posthoc testing was performed to identify pairwise differences between groups and 

conditions. For Table 1 and Figure 3A comparisons were assessed by one way ANOVA. The 

troponin data (Table 2) were significantly right-skewed, particularly for the reperfusion values; 
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therefore the effect of reperfusion was assessed using the Wilcoxon signed rank test, and to 

evaluate effects of obesity and treatment on this response generalized linear mixed modeling was 

applied in parallel to the ANOVA as above, specifying a gamma distribution without assumptions 

of equal error distributions between groups in order to correctly model this data distribution. 

Statistical significance was declared when p<0.05. Statistical comparisons of proteomic results 

were performed on proteins which met Scaffold false discovery rate (FDR) criterion by Student’s 

t-test. In accordance with our discovery-based approach, proteins and miRs with P < 0.05 after 

passing this FDR threshold were considered significantly different between conditions. Proteins 

with average spectral counts of zero for a group were not statistically analyzed. 

  



12 

Results 

Phenotypic characteristics and hemodynamics. Phenotypic characteristics of swine at 

baseline on the day of the physiologic studies following diet ± exendin-4 treatment, are presented 

in Table 1. The excess calorie high fat/fructose obesogenic diet significantly increased body 

weight (~39%; P = 0.006) and cholesterol (525%; P = 0.005) relative to the lean-control diet. 

Obese animals were significantly hyperglycemic and hyperinsulinemic, fulfilling criteria for the 

metabolic syndrome. Exendin-4 for 24 hours did not produce any statistically significant changes 

in the metabolic characteristics of lean or obese swine at baseline, including no detectable 

reduction in glycemia. 

The ischemia/reperfusion protocol produced marked elevations in troponin I (Table 2). 

The reperfusion data were markedly skewed necessitating nonparametric analytic approaches as 

described in the Methods. The effect of reperfusion to increase troponin (P = 0.0002) did not 

differ between lean and obese animals (P = 0.09), though troponin concentrations were skewed to 

higher values in obese vs lean swine (i.e. larger injuries in obese animals, not reaching statistical 

significance). Exendin-4 reduced troponin values overall (P = 0.004) but the effect to reduce 

reperfusion-induced increase in troponin did not achieve significance (P = 0.09), and this effect 

did not differ between lean and obese animals (P = 0.85). Nevertheless it is noteworthy that the 

difference in median troponin level in exendin-4 vs. saline following reperfusion was larger in 

obese than in lean swine, owing to the higher values in the saline-treated obese animals (Table 

2). Ischemia/reperfusion produced sequential reductions in mean blood pressure in lean (P < 

0.001) and obese (P = 0.005) swine (Tables 3 and 4). Administration of exendin-4 increased 

mean blood pressure ~30% in lean swine at baseline and during ischemia/reperfusion (P = 0.06; 

Table 3), while exendin-4 had no effect on blood pressure in obese swine (P = 0.61; Table 4). 

Heart rate was elevated at baseline in exendin-4 treated lean swine relative to lean controls 

(~30%), and decreased in both treatment groups during ischemia/reperfusion (P = 0.02; Table 

3). Exendin-4 had no effect on heart rate in obese swine. These data are also presented in a 
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format that allows direct comparison of hemodynamics and cardiovascular function in lean versus 

obese animals in Supplement Table 1 (saline-control) and Supplement Table 2 (exendin-4). 

Cardiac function. In lean swine, ischemia/reperfusion caused progressive reductions in end-

diastolic volume (P = 0.002), stroke volume (P < 0.001), cardiac output (P = 0.003) and ejection 

fraction (P < 0.001) (Table 3). Under baseline conditions, exendin-4 administration reduced 

ejection fraction ~35% (P = 0.03) in lean swine, likely related to the ~30% increase in resting heart 

rate in exendin-4 vs. control-saline treated swine (Table 3). While ejection fraction declined with 

ischemia/reperfusion in obese control and exendin-4 treated swine, end-diastolic volume, stroke 

volume, and cardiac output were not significantly altered by ischemia/reperfusion and/or exendin-

4  in obese swine (Table 4). Of note, however, ejection fraction and cardiac output (untreated 

only) were higher during ischemia/reperfusion in obese vs. lean swine (Supplement Tables 1 

and 2). 

Left ventricular pressure volume loops representative of average group responses for lean 

and obese swine are presented in Figure 1. In response to ischemia/reperfusion, lean swine 

exhibited reductions in end-diastolic volume, systolic pressure development, and stroke volume, 

evident by comparing pressure-volume relationships for saline-treated lean swine at baseline 

(Figure 1A) and following reperfusion (Figure 1B). In contrast, obese swine maintained pressure 

development and stroke volume during ischemia/reperfusion via a relative right-ward shift 

(increase in end-diastolic volume) of the pressure-volume relationship, observed by comparing 

saline-treated obese swine at baseline (Figure 1C) and following reperfusion (Figure 1D). In lean 

swine under baseline conditions, exendin-4 treatment increased systolic pressure development 

and decreased stroke volume (~35%) with essentially no change in diastolic filling (Figure 1A). 

However, the ~30 mmHg increase in systolic pressure in exendin-4 treated lean swine following 

ischemia/reperfusion was associated with an ~25% increase in end-diastolic volume relative to 

control (Figure 1B). In obese swine, exendin-4 had relatively little effect on the pressure-volume 
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relationship at baseline (Figure 1C), but produced a marked left-ward shift of the loop (decrease 

in end-diastolic volume with similar pressure development) following ischemia/reperfusion 

(Figure 1D). Overall the effect of exendin-4 was to mitigate the response to ischemia/reperfusion, 

although these were directionally opposite in lean versus obese swine. 

The relationship between stroke volume and end-diastolic volume (i.e. Frank-Starling 

relationship as an index of cardiac contractility) revealed a markedly lower slope in obese 

compared to lean swine under saline-treated control conditions (Figure 2; P < 0.001). Exendin-4 

treatment significantly reduced stroke volume at a given end-diastolic volume in lean animals 

(Figure 2A), changing the intercept (P < 0.001) but not the slope (P = 0.21) of the relationship. 

Exendin-4 shifted the slope (P < 0.001) of this relationship in obese animals (Figure 2B); 

however, the final slopes were not different between lean and obese exendin-4 treated swine. 

Protein and miR Expression Patterns. We performed capillary-lc ms/ms proteomic and miR 

microarray analyses on myocardial biopsies from the ischemic and non-ischemic zones from the 

same lean and obese swine ± exendin-4 treatment utilized for the in vivo studies described above. 

A complete list of all 678 quantified proteins, and their differences by physiologic and treatment 

states, is provided in the online supplement. Among all the conditions we observed significant 

changes in expression of 218 proteins. These proteins were overall related to cell structure, 

contractile apparatus and calcium handling proteins, cellular metabolism and mitochondrial 

function. 

Figure 3 illustrates the changes in proteins related to cardiac function and calcium 

handling. An important novel observation is that obesity was associated with increases in multiple 

isoforms of the myocardial “molecular-spring” and signaling integrator protein, titin (Figure 2A). 

The abundance of titin was further elevated following ischemia/reperfusion in hearts from obese 

but not lean swine. Exendin-4 decreased the abundance of titin in lean and obese swine, in both 

normally perfused (P = 0.02 for lean, and P < 0.001 for obese) and ischemic (P = 0.01 for lean, P 
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< 0.001 for obese) tissues. In addition, the abundance of the sarcoplasmic reticulum ATPase 

SERCA2A was augmented in hearts from obese but not lean swine following 

ischemia/reperfusion (Figure 3C). This increase in SERCA2A abundance was mitigated by 

exendin-4. Obesity also altered expression of other Ca2+ binding proteins including calsequestrin-

2 (Figure 3B), S100A1 (Figure 3D), and histidine rich calcium binding protein (Figure 3E). 

Differences in expression of Protein Kinase A, a key signaling protein in cardiomyocyte 

contractility, were also noted across diet and treatment conditions (Figure 3F). 

Bioinformatics analysis of changes in protein expression using Ingenuity Pathway Analysis 

(IPA) software identified a number of effects of obesity and exendin-4 treatment on proteins 

related to cell death and survival. Selected cell death and apoptosis related proteins are presented 

in Figure 4 (pro-apoptotic A-D, anti-apoptotic E,F). Individual proteins were identified to exhibit 

altered amounts related to ischemia (Figures 4A and 4E) or exendin-4 treatment (Figures 4B, 

4C, 4D and 4F).  However, no differences in overall expression patterns of these proteins were 

attributable to obesity and no systematic effect of exendin-4 was evident. 

A listing of all miRs detected by microarray, and their differences in expression in each 

sample group, are provided in the online supplement. The heat maps shown in Figures 5 and 

6 illustrate that several groups of miRs are concordantly altered by obesity, ischemia/reperfusion 

and exendin-4 treatment (regions marked A-D on Figure 5 and A-I on Figure 6). For example, 

miRs 378,423-3p, 133a-5p, 361-3p, and 423-5p (Group A in Figure 5) were all down-regulated 

by ischemia/reperfusion in lean control swine whereas a different group of miRs (miRs 652, 143-

5p, 17-3p, 26a, 24, 214, 140-star, 143-3p, 199a, and 152) were down-regulated by 

ischemia/reperfusion in obese swine (Group D, Figure 6). Interestingly, exendin-4 treatment 

prevented the downregulation of Group A miRs in lean swine during ischemia/reperfusion and 

resulted in altered expression of a distinct group of miRs (Group D, Figure 5). Obesity alone 

resulted in decreased expression of miRs 378, 130b, 1307, 331-5p, 2320, 129a, 30b-3p, 30e-3p 

(Group B, Figure 6) and upregulation of miRs 497, 494, 30c, 105-1, 331-3p. Interestingly some 
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of the miRs downregulated in obese hearts (Group B, Figure 6) were also downregulated by 

ischemia/reperfusion in the lean swine (e.g. Group A Figure 5, miR 378, and 133a-59). Exendin-

4 prevented the alterations observed in obese swine (Groups A and B, Figure 6), and resulted in 

upregulation of miRs 491, and 146a (Group E, Figure 6) which were unchanged in all other 

comparisons. Obese exendin-4 treated hearts during ischemia/reperfusion had the greatest 

number of miR changes, with 26 of the 36 total unique to the comparison. In particular, miRs 

decreased in group H (Figure 6) (miRs 140, 122,424-star, 345-3p, 15a, 324, let 7 a/f/g/i, 362, 

151-5p/3p, 16, 126, 106a, 425-5p, 365-3p, 181-5p, 221, 28-3p, and 199a-3p). The functional or 

regulatory significance of these differences is not currently known, but can be inferred from 

bioinformatics analyses that apply known associations between miR species and specific 

categories of biological function. Therefore the differentially expressed groups of miRs were 

evaluated using IPA software for analysis of predicted molecular and cellular function (Table 5 

and Supplemental Table 4). The most discernable finding of this analysis was that significantly 

more miRs were altered in obese relative to lean swine and that IPA identified numerous potential 

links of these miRs to known pathways of injury and disease (Table 5 and Supplemental Table 

4). 

To determine if any of the observed changes in miR expression could account for 

alterations in protein expression that we identified from our proteomic analysis we used the Target 

Finder feature within IPA software. A summary of these results and other is presented in 

Supplemental Table 4. 11 miRs were identified for which the change in their expression inversely 

correlated with expression of their predicted target proteins. These proteins were not readily 

categorized into a single functional group although they are important metabolic, structural and 

signaling molecules. 
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Discussion 

Experiments in this study were designed to explore obesity-associated differences in 

myocardial function in response to ischemia/reperfusion, and how these responses are modified 

by pharmacologic treatment (i.e. with the GLP-1 agonist exendin-4). Admittance pressure volume 

catheter technology, the gold standard measure for cardiac function [12, 58], was used in in-vivo 

experiments to provide highly-sensitive, real time measures of cardiac pressures and volumes. 

We found that obese and lean swine produced divergent physiologic responses to 

ischemia/reperfusion, and that the effects of exendin-4 treatment on ischemia/reperfusion were 

dramatically different between lean and obese swine. We performed unbiased analyses of 

changes in protein and miR expression associated with these differing responses as a platform 

for discovery of novel underlying molecular changes that could contribute to the observed 

physiologic effects and differences between groups. The distinctive in vivo responses to 

ischemia/reperfusion and exendin-4 were associated with informative and interestingly different 

expression profiles of proteins and miRs, including in factors known to be associated with 

regulation of cardiac function (validating the approach) but also including factors not previously 

known to play a regulatory or functional role in relation to obesity. 

Obesity and cardiac function in response to ischemia/reperfusion. We found that obesity is 

associated with a number of important functional differences in the regulation of cardiac 

contractile function and systemic hemodynamics. In particular, under normal baseline conditions 

obesity tended to produce a leftward shift of the left ventricular pressure-volume relationship 

relative to lean swine (Figure 1, panels A and C solid lines). Such reductions in end-diastolic 

filling volumes with similar systolic pressure generation have been previously observed in animal 

models[47] and in obese humans[48]. These changes are likely attributable in part to augmented 

sympathetic tone, which is well documented in the setting of obesity [28, 31, 66]. While the 

difference in the pressure-volume relationship between the lean and obese swine was relatively 
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modest at baseline, more distinct effects were noted following ischemia/reperfusion (Figure 1 

Panels B and D solid lines). These differences were not likely attributable to differing infarct size; 

on strict statistical criteria the ischemia/reperfusion-induced increase in troponin did not differ 

between lean and obese animals, but moreover the trend in troponin values suggested if anything 

greater myocardial injury among the obese saline-treated animals (Table 2) whereas the 

observed responses suggest reduced function with left-shifted pressure-volume loops in lean animals but 

preserved or augmented function in obese animals with right-shifted pressure-volume loops (Figure 1, 

comparing solid lines within lean or obese animals). Our data demonstrate that 

regional ischemia/reperfusion produced marked reductions in indices of global contractile function 

in lean swine, namely significant reductions in arterial pressure, ejection fraction (Table 3), and 

end-diastolic volume (Figures 1 and 2). Thus, lean swine exhibited post-ischemic contractile 

dysfunction consistent with myocardial stunning [55]. In contrast, indices of cardiac function 

(stroke volume, cardiac output, ejection fraction) were relatively maintained throughout 

ischemia/reperfusion in obese swine and thus, were significantly higher in obese vs. lean swine 

(Table 3). Again, this preservation of ventricular stroke volume and pressure generation was 

observed despite the nonsignificantly greater infarct size as measured by troponin I (Table 2) as 

well as the presumed presence of an obesity cardiomyopathy phenotype which one might predict 

to observe in these animals a priori [3, 54]. Overall these data suggest that the relative preservation 

of ventricular function under ischemia/reperfusion in our model of early obesity was achieved via a 

Frank-Starling mechanism (increase end-diastolic filling volume) to maintain cardiac output in 

response to an ischemia/reperfusion insult (Figures 1 and 2). While the lack of 

post-ischemic contractile dysfunction in obese hearts seems unexpected, particularly with troponin 

data suggesting material myocardial injury, we do see evidence of underlying myocardial dysfunction in 

the baseline pressure-volume loops (Figure 1) and in that the slope of the 

relationship between stroke volume and end-diastolic volume was significantly lower in 

obese relative to lean swine (Figure 2); furthermore, the observed increases in blood 

pressure, stroke 
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volume, and ejection fraction would act to augment myocardial energy demand, increase 

ventricular wall stretch, and exacerbate underlying ischemic injury (and may have contributed to 

the greater injury suggested by higher troponin-I values under saline-reperfusion conditions) [55]. Prior 

echocardiographic studies in humans are in accordance with these findings and suggest that 

the cardiac effects of obesity occur over a continuum and are directly dependent on the 

degree and duration of obesity and the degree of underlying metabolic risk factors [8, 31, 40]. 

Effects of exendin-4 on cardiac responses to ischemia/reperfusion. The current study is the 

first to describe the functional consequences of altered GLP-1 responses relative to 

cardiovascular effects of regional ischemia/reperfusion in a large animal model of obesity. There 

is considerable experimental evidence supporting beneficial cardiovascular effects of treatment 

with GLP-1 based therapies. In animal models, GLP-1 therapeutics have been associated with 

increased cardioprotective capacity related to myocardial substrate selection, heart rate effects, 

blood pressure effects, reduction in myocardial infarct size, and improved cardiac function[21]. In 

contrast, large clinical trials of GLP-1 based therapies in humans with obesity and type 2 diabetes 

have failed to show the expected cardiovascular benefits to date [64, 70]. Recent work from our 

laboratory suggests that cardiometabolic effects of GLP-1 are impaired in the setting of obesity, 

raising the possibility of “cardiovascular GLP-1 resistance” in the population being treated with 

these agents [20, 22, 44]. The troponin measures (Table 2) support that exendin-4 may diminish 

infarct size in lean and obese swine, with reductions in the median values in both groups although overall 

variability in this injury marker produced non-significant p values for this comparison (p=0.09). This 

protective effect of exendin-4 did not differ significantly between lean and obese animals. Despite these 

parallel GLP-1 therapeutic responses to ischemia/reperfusion, and contrary to what might have 

been predicted based on greater mass of injured myocardium, obese exendin-4 treated swine 

maintained pressure like their untreated counterparts, and did so despite marked reductions in 

end-diastolic volume (i.e. increases in cardiac contractility). Several 
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questions arise relating to whether differing initial state and/r differing responses in autonomic, 

metabolic, or circulating factors contribute to these different responses in obese hearts. Lean 

treated swine responded to ischemia/reperfusion with increases in pressure generation and end-

diastolic volume (Figure 1), despite overall reductions in stroke volume at a given ventricular 

filling volume (Figure 2).These observations contribute to the growing body of experimental and 

clinical literature supporting marked differences in cardiovascular responses to GLP-1 

therapeutics in the setting of obesity [20, 44, 46, 64].  

Proteomic and miR expression profile in obese hearts. To explore potential molecular 

changes that could contribute to the differential cardiac phenotype of obese hearts, we performed 

proteomics and miR microarray analyses on myocardial biopsies from the lean and obese swine 

following completion of the in vivo ischemia/reperfusion protocols, sampling tissue from ischemic 

and non-ischemic zones. In parallel with our physiological analyses, protein and miR expression 

analyses revealed obesity-related differences, and differences in changes with exendin-4 

treatment, in protein and miR expression. Of particular note we observed increased abundance 

of titin in the myocardium of obese swine under control conditions, which was mitigated with GLP-

1 therapy. The giant protein titin plays multiple roles within the cardiomyocyte including providing 

structure in the sarcomere (binding myosin to the z-disk); contributing significantly to the passive 

and restoring force of the cardiac sarcomere; fine-tuning myocardial stiffness (via differential 

splicing of titin transcripts as well as titin phosphorylation); and mediating hypertrophic signaling 

[33, 69]. It is known that modulating titin (via altering the predominant isoform or the 

phosphorylation status) is associated with cardiac pathophysiology [59], but little prior work has 

evaluated the role of titin in obesity-associated cardiomyopathy. Hamdani et al. found altered 

phosphorylation status of titin of in the setting of metabolic risk [25, 26]. Also, therapeutics that 

increase GLP-1 signaling have been associated with alterations in titin phosphorylation status[26]. 

Our observations suggest a need for further studies to elucidate isoform switching and 
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phosphorylation status of titin in the setting of obesity, exendin-4 treatment, and 

ischemia/reperfusion response. 

The proteomic data confirm obesity-associated differences in calcium handling molecules 

predicted by prior work (e.g. SERCA2A [5, 19, 67, 68], calsequestrin [43]). Importantly these data 

also highlight the involvement of calcium handling proteins not previously associated with obesity-

related cardiac dysfunction (e.g. histidine-rich calcium binding protein). GLP-1 mimetics have 

been found to differently modulate calcium handling in vascular smooth muscle of swine 

depending on obesity [18], but, until now, have not been associated with direct changes in the 

level of calcium handling proteins in myocardium. Modulation of calcium handling and titin protein 

abundance has profound implications for signaling (whether by calcium as a second messenger, 

or titin hypertrophic signaling e.g. via NFAT [33]), cardiac stiffness, and cardiac contractility. 

Taken together, it appears that significant insights into the cardiac effects of obesity can be gained 

from more in depth investigation of these proteins, including for example splice variants of titin 

(e.g. N2B, N2Ba, FCT)[37], phosphorylation of specific titin residues[2, 25], down-stream NFAT 

signaling[10, 27, 45] and the interplay with altered calcium handling[38, 59]. [26]. These 

discoveries underscore the value of the proteomic approach as we have applied it, in the context 

of a specific set of studies that produce physiologically relevant states. 

MicroRNAs are recognized for their widespread regulatory roles (which are predominantly 

inhibitory). These ancient systems influence multiple pathways concurrently, allowing for 

coordinated alterations in multiple components of cellular physiology in response to stimuli. 

Microarray results demonstrate that global miR regulation is different in obese hearts in response 

to ischemia/reperfusion and drug intervention with exendin-4. Studies investigating miR 

expression changes in pathology or therapeutic treatment in the setting of underlying metabolic 

abnormalities are lacking. In this study, we observed different patterns of miR expression between 

lean and obese animals, and with ischemia/reperfusion injury with and without exendin-4 

treatment. Further, the expression patterns associated with combinations of these conditions were 
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themselves different from the effects of the individual factors (Figure 5 and 6), and therefore not 

predictable based on knowledge of the effects of individual factors. We see important 

contributions in particular from a relatively small set of miRs (let 7 family, 10a, 15, 30 family,199 

family, and 214), some of which have been previously associated with heart disease. In mice, 

ischemia was found to upregulate miR 15 family members[29, 39, 50], miR 30 family 

members[56], and miR 214[4]. In contrast to our observations, in that study ischemia/reperfusion 

did not alter expression of any of these miRs in lean hearts. In our data in obese swine, these 

miRs were significantly downregulated during ischemia/reperfusion (while miR-30c was 

upregulated in obese normally perfused myocardium compared to lean). A prior observation of 

diminished expression of miR-199a in early ischemia in isolated porcine cardiomyocytes[52] is 

also consistent with our observed tissue level changes, perhaps acting via increases in cardiac 

Hif-1α expression. Previous studies have demonstrated that GLP-1 mimetics induce miR 

expression changes in various non-cardiac tissues [35, 61]. However, our study is the first to 

demonstrate GLP-1-induced miR expression changes in myocardium, and that those effects differ 

considerably depending on obesity status. Furthermore, miR expression response to 

ischemia/reperfusion is both GLP-1 and obesity dependent. These changes in miRs thus mimic 

the different physiological changes and responses to ischemia/reperfusion that occur in response 

to exendin-4 in lean and obese swine, suggesting that they may be contributing to the 

pathophysiological changes. Growing evidence suggests that GLP-1 receptor activation alters 

DNA transcription in addition to the expected direct signaling effects [35, 61], suggesting the 

potential for a relatively unexplored mechanism through which GLP-1 may impart direct and/or 

indirect effects. Further investigation into the mechanisms of GLP-1 mimetic-induced 

transcriptome changes are needed. IPA software was used to generate literature associated 

predictions of processes effected by changed proteins and miRs (Table 5, Supplemental tables 

3 and 4) and provide some context in which experimental validation of the effects of these miRs, 

or miR groups, might be further explored. Again, the value of these observations is primarily 
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related to the experimental paradigm under which the tissues were collected, which provides a 

physiological context to allow interpretation of the differences observed.  

Limitations. Owing to the resource-intensive nature of these studies and some animal loss during 

the ischemia/reperfusion event, sample sizes were relatively low in this study. Nevertheless, we 

noted statistically significant group- and treatment-related differences in key physiologic end 

points which were consistent with recent data from our laboratory [21, 22, 44] and directly 

associated with marked differences in the cardiac proteome and miR transcriptome between lean 

and obese swine both at baseline and in response to ischemic injury. These observations 

therefore are not compromised on statistical power overall. 

Unusually for this model, the group of animals fed the obesogenic diet were also 

hyperglycemic, hyperinsulinemic, and hypertriglyceridemic, and furthermore they failed to lower 

glucose values with the 24 hour exposure to exendin-4. Our current data do not allow post-hoc 

analyses that separate obesity from obesity plus dysglycemia/metabolic syndrome. These factors 

may have contributed to the observed differences between groups. However, this does not detract 

from the observations of significant group differences associated with a high-fat, obesogenic diet. 

Although our experimental protocol included progressive reductions in venous return using a 

central venous balloon for gold-standard assessments of contractility (i.e. end-systolic pressure 

volume relationship (ESPVR)), we were unable to acquire adequate reductions in end-diastolic 

volume in a sufficient number of animals for adequate statistical analysis of cardiac contractility 

per se. Statistical analysis of troponin I measures were associated with highly variable values in the 

separate groups, contributing to insufficient power to definitively identify differences in response due to 

obesity that are suggested by the median values. Nevertheless, the observed trends suggested increased 

infarct in obese swine, in association with observed increases in cardiac function in these animals. This 

apparently greater magnitude of infarct in obese animals may not in itself explain the observed 

differences in function. Moreover, it is unclear whether the 
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increased injury is possibly a consequence of the obesity-specific paradoxical response. Further 

work will be needed to understand the directionality of causality in these responses.   

The molecular associations presented do not represent direct experimental 

manipulations of these systems to evaluate causality. This does not diminish the overall power 

of our hypothesis-free approach as a discovery platform, evident in our novel and unexpected 

observations. In particular the approach we applied allows us to make observations about the highly 

integrated and multi-factorial changes in molecular and integrated physiology in response to clearly 

described experimentally induced physiologic circumstances (in the same animals). These 

observations provide novel and valuable insights into the functioning of these systems in 

ischemia, and provide the first ever description of these changes in response to GLP-1 agonist 

treatment. 

Conclusions and Implications. Taken together, these observations validate this discovery 

approach and reveal novel associations that suggest previously undiscovered mechanisms 

contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following 

ischemia/reperfusion. Further experimental studies will be needed to understand the causal 

relationships between transcriptome and proteome changes such as those we have observed 

and the associated changes in myocardial function.  
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Tables and Figures 

Table 1. Phenotypic characteristics of lean and obese swine 

Lean Saline 

n=5 

Lean Exendin-4 

n=5 

Obese Saline 

n=4 

Obese Exendin-4 

n=5 

Body Weight (kg) 75 ± 6 67 ± 8 104 ± 6* 106 ± 4* 

Heart Weight (g) 212 ± 16 194 ± 18 247 ± 9 224 ± 11 

Glucose (mmol/L) 8.6 ± 2.3 6.8 ± 1.8 13.3 ± 1.1 14.1 ± 1.9* 

Insulin (pmol/L) 73 ± 13 52 ± 11 111 ± 57 129 ± 35 

Triglycerides (mmol/L) 0.6 ± 0.1 0.5 ± 0.1 1.0 ± 0.4 0.9 ± 0.1 

Total cholesterol (mmol/L) 1.6 ± 0.4 1.4 ± 0.4 10.0 ± 3.3* 10.1 ± 2.0* 

Table 1 Phenotypic characteristics of lean and obese swine. Measurements were performed 

before at baseline after 24 hours Exendin-4 or saline infusion. Values are mean ± SE. * P ≤ 0.05 

vs. lean same treatment. Measurements were performed after 24 hours Exendin-4 or saline 

infusion. 
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Table 2. Troponin-I measurements. 

Lean Obese 

Saline Exendin-4 Saline Exendin-4 

Baseline 0.30 [0.18 – 0.67] 0.37 [0.15 – 0.57] 0.35 [0.03 – 0.66] 0.10 [0.04 – 0.33] 

Reperfusion 0.88 [0.39 – 17.53] 0.55 [0.28 – 0.93] 5.05 [0.27 – 15.22] 0.84 [0.41 – 4.30] 

Table 2. Systemic troponin-I concentrations (ng/mL) expressed as median [25th – 75th percentile]. 

Troponin measures were acquired at the end of each experimental time point. Due to the skewed 

distributions, values are expressed as median [range] and non-parametric analyses were 

performed (see Methods). Reperfusion values were significantly increased compared to baseline 

(P = 0.0002). Exendin-4 significantly reduced the troponin values overall (P = 0.004), although 

the effect of exendin-4 to reduce the reperfusion-induced increase in troponin did not achieve 

significance (P = 0.09). Obese animals were not statistically different in these effects (P = 0.85 

overall; P = 0.09 comparing reperfusion-induced increase between groups). 
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Table 3. Hemodynamics and cardiovascular measurements of lean swine  

      
 Saline Exendin-4 

 

ndin 

Condition Treatment Interaction 

Mean Blood Pressure (mmHg)    

Baseline     101  21     131  5 

P < 0.001 P = 0.06 P = 0.89 Occlusion       89  23     127  6† 

Reperfusion 60 min       75  11     108  8 

Reperfusion 120 min       63  11*       91  6* 

Heart Rate (beats/min)  

Baseline       87  20     113  4 

P = 0.02 P = 0.96 P = 0.67 Occlusion       72  8       68  12 

Reperfusion 60 min       83  13       84  8 

Reperfusion 120 min       85  14       80  7 

End Diastolic Volume (ml)  

Baseline       83  15       82  7 

P = 0.002 P = 0.34 P = 0.42 Occlusion       60  8*       77  7 

Reperfusion 60 min       58  7*       65  6 

Reperfusion 120 min       49  8*       64  6 

Stroke Volume (ml)  

Baseline       41  10       26  5 

P < 0.001 P = 0.727 P = 0.13 Occlusion       18  7*       21  4 

Reperfusion 60 min       12  4*       14  3 

Reperfusion 120 min       11  3*       13  4 

Cardiac Output (L/min)  

Baseline      2.2 0.5       1.7  0.5 

P = 0.003 P = 0.97 P = 0.52 Occlusion      1.2 0.4*      1.3  0.2 

Reperfusion 60 min      0.9 0.2*      1.1  0.2 

Reperfusion 120 min      0.9 0.2*      1.0  0.3 

Ejection Fraction (%)  

Baseline       47  6       31  4† 

P < 0.001 P = 0.40 P = 0.04 Occlusion       27  8*       26  3 

Reperfusion 60 min       20  5*       20  3* 

Reperfusion 120 min       21  4*       20  4* 

   

Values are mean ± SE for lean (n = 4) and lean + exendin-4 (n = 5) swine. By two way repeated 
measures ANOVA: * = P < 0.05 vs. Baseline, same treatment; † = P < 0.05 vs. lean control, same 
condition. Condition denotes effect of sequential ischemia/reperfusion 
(baseline/occlusion/reperfusion periods), evaluated as a repeated measure comparison of the 4 
experimental stages; Interaction tests whether this ischemia/reperfusion effect differs by 
treatment.  
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Table 4. Hemodynamics and cardiovascular measurements of obese swine 

      
 Saline   Exendin-4 Condition Treatment Interaction 

Mean Blood Pressure (mmHg)     

Baseline 99  10 89  5 

P = 0.005 P = 0.61 P = 0.45 Occlusion 91  8 86  4 

Reperfusion 60 min 85  11* 86  4 

Reperfusion 120 min 83  8* 77  6 

Heart Rate (beats/min)     

Baseline 83  8 74  12 

P = 0.80 P = 0.35 P = 0.28 Occlusion 90  11 68  8 

Reperfusion 60 min 87  11 75  11 

Reperfusion 120 min 86  7 77  10 

End Diastolic Volume (ml)     

Baseline 66  8 59  5 

P = 0.68 P = 0.25 P = 0.25 Occlusion 76  10 65  3 

Reperfusion 60 min 97  32 55  7 

Reperfusion 120 min 89  30 48  8 

Stroke Volume (ml)    

Baseline 26  5 28  4 

P = 0.30 P = 0.33 P = 0.43 Occlusion 32  3 31  4 

Reperfusion 60 min 23  8 23  3 

Reperfusion 120 min 28  7 17  4 

Cardiac Output (L/min)    

Baseline 2.1  0.4 1.9  0.1 

P = 0.54 P = 0.18 P = 0.72 Occlusion 2.9  0.5 2.0  0.2 

Reperfusion 60 min 2.9  0.9 1.8  0.5 

Reperfusion 120 min 2.4  0.6 1.4  0.5 

Ejection Fraction (%)    

Baseline 39  5 46  6 

P = 0.04 P = 0.32 P = 0.80 Occlusion 42  3 47  6 

Reperfusion 60 min 36  4 41  1 

Reperfusion 120 min 35  3 35  2 

 
Values are mean ± SE for obese (n = 4) and obese + exendin-4 (n = 4) swine. * = P < 0.05 vs. 
Baseline, same treatment. The analytic approach is identical to that presented for Table 3. 
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Table 5. IPA predictions of molecular and cellular functions associated with miR changes 

Heat Map Effect of Group IPA Associations: Molecular and Cellular Function 

4 

I/R in Lean A cell death and survival 

EX-4 in Lean B 

cellular movement 

development 

growth and proliferation 

EX-4 and I/R in 

Lean 

C 

cell-to-cell signaling and interaction 

cellular development 

cellular growth and proliferation 

cell death and survival 

cell morphology 

D N/A 

5 

Obesity 

A 

cell morphology 

cellular function and maintenance 

DNA replication/ recombination/repair 

cellular assembly and organization 

A + B cell death and survival 

B 

cellular compromise 

cell cycle 

cellular development 

cell-to-cell signaling and interaction 

I/R and Obesity C cell cycle 
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C + D 

cellular development  

cellular growth and proliferation 

D 

cell death and survival 

cell-to-cell signaling and interaction 

small molecule biochemistry  

Ex-4 and Obesity E 

cell-to-cell signaling and interaction 

cellular assembly and organization 

cellular compromise 

cellular movement 

cell death and survival 

EX-4, I/R and 

Obesity 

F 

cell-to-cell signaling and interaction 

cellular assembly and organization  

cellular function and maintenance 

F +  H cell death and survival 

H 

cell cycle 

cellular movement 

H + I cellular growth and proliferation 

F + H + I cellular development 

G N/A 
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Figure 1. Representative pressure-volume loops for lean and obese swine at baseline, following 

ischemia-reperfusion injury, in the absence and presence of the GLP-1 receptor agonist exendin-

4.  
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Figure 2. Effects of obesity and exendin-4 on the relationship between stroke volume and end-

diastolic volume (i.e. Frank-Starling relationship). Solid lines represent best fit lines for saline 

(circles); dashed lines are the fit lines for exendin-4 (triangles). Filled symbols are measurements 

from the baseline pre-occlusion state; gray symbols are measurements during occlusion; and 

open symbols are measurements at 120 minutes of reperfusion. The slope of this relationship 

was significantly diminished in obese-control vs. lean-control swine (P < 0.0001). Exendin-4 

treatment significantly reduced stroke volume at a given end-diastolic volume in lean animals 

(Panel A), changing the intercept (P < 0.001) but not the slope (P = 0.21) of the relationship. 

Exendin-4 shifted the slope (P = 0.003) of this relationship in obese animals (Panel B); however, 

the final slopes were not different between lean and obese exendin-4 treated swine (P = 0.92). 
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Figure 3. Effects of obesity and exendin-4 on proteins underlying myocardial function and calcium 

handling in normally perfused hearts and in myocardium following ischemia/reperfusion injury. 

Bars represent average percent relative to lean normally perfused value and error bars represent 

standard error. * = P<0.05 for comparison of diet within the same treatment and condition; † = 

P<0.05 for comparison of treatment within the same condition and diet; ‡ = P<0.05 for condition 

within the same diet and treatment. # = P > 0.05 for comparison relative to Lean Perfused 

Untreated myocardium. Panel A shows an aggregate of all titin proteins identified in mass 

spectrometry. Comparison for panel A by ANOVA All other comparisons by t-test. n=3 for lean 

perfused saline, n=4 lean perfused exendin-4, n=4 obese perfused saline, n= 4 obese perfused 

exendin-4, n=4 lean ischemic saline, n= 4 lean ischemic exendin-4, n=3 obese ischemic saline, 

n=4 obese ischemic exendin-4. 
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Figure 4. Effects of obesity and exendin-4 on proteins underlying cell death in normally perfused 

hearts and in myocardium following ischemia/reperfusion injury. Bars represent average percent 

relative to lean normally perfused value and error bars represent standard error. * = P<0.05 for 

comparison of diet within the same treatment and condition; † = P<0.05 for comparison of 

treatment within the same condition and diet; ‡ = P<0.05 for condition within the same diet and 

treatment. # = P > 0.05 for comparison relative to Lean Perfused Untreated myocardium All 

comparisons by unpaired T-test. n= 3 for lean perfused saline, n=4 lean perfused exendin-4, n=4 

obese perfused saline, n= 4 obese perfused exendin-4, n=4 lean ischemic saline, n= 4 lean 

ischemic exendin-4, n=3 obese ischemic saline, n=4 obese ischemic exendin-4. 
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Figure 5. Heat map of miRs changed in lean left ventricular myocardium. n = 5 for all groups 

within comparisons. Differently regulated clusters of miRs in each comparison were ascribed to a 

group (indicated by letters A-D), based on common differences within comparisons. For each 

group the fold change and p-values were submitted to IPA for analysis of each cluster. Results of 

IPA analysis are presented in Table 5 and Supplement Table 4. Rows titled “min” and “max” 

were added to create similar scales for Figures 5 and 6. LSI = Lean Saline Ischemic. LEN = Lean 

EX-4 Normally Perfused. LEI = Lean EX-4 Ischemic. LSN = Lean Saline Normally Perfused 
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Figure 6. Heat map of miRs changed in obese left ventricular myocardium. For lean saline 

perfused (n = 5) . n = 4 obese saline, n = 5 obese exendin-4 ischemic and normally perfused. 

Differently regulated clusters of miRs in each comparison were ascribed to a group (indicated by 

letters A-I). For each group the fold change and p-values were submitted to IPA for analysis of 

each cluster. Results of IPA analysis are presented in Table 5 and Supplement Table 4. Rows 

titled “min” and “max” were added to create similar scales for Figures 4 and 5. OSN = Obese 

Saline Normally Perfused. OSI = Obese Saline Ischemic. OEN = Obese EX-4 Normally Perfused. 

OEI = Obese exendin-4 ischemic. LSN = Lean Saline Normally Perfused 




