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Abstract

Objective:  This study evaluated selected properties of a prototype root repair cement containing 

surface pre-reacted glass ionomer fillers (S-PRG) in comparison to mineral trioxide aggregate 

(MTA) and intermediate restorative material (IRM).

Materials and methods: The antibacterial effect of S-PRG, MTA and IRM cements were tested 

against Porphyromonas gingivalis and Enterococcus faecalis after one and three-days of aging of 

the cements. Set cements were immersed in distilled water for 4 hours to 28 days and ion 

releasing ability was evaluated. Initial and final setting times of all cements were evaluated using 

Gilmore needles. The push-out bond strength between radicular dentin and all cements was 

tested at different levels of the roots.  

Results: S-PRG and IRM cements but not MTA cement demonstrated significant antibacterial 

effect against Porphyromonas gingivalis. All types of cements exhibited significant antibacterial 

effect against Enterococcus faecalis without being able to eliminate the bacterium. S-PRG 

cement provided continuous release of fluoride, strontium, boron, sodium, aluminum and zinc 

throughout all tested time points. Both initial and final setting times were significantly shorter for 

S-PRG and IRM cements in comparison to MTA. The push-out bond strength was significantly 

lower for S-PRG cement in comparison to MTA and IRM at coronal and middle levels of the 

roots.  

Conclusions: S-PRG cement demonstrated significant antibacterial effects against endodontic 

pathogens, multiple ion releasing ability, relatively short setting time and low bonding strength. 

Clinical relevance: S-PRG cement can be used as a one-visit root repair material with promising 

antibacterial properties and ion releasing capacity. 

Keywords: IRM, Ion release, MTA, setting time, Push-out bond strength, 
S-PRG fillers  
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Introduction 

Various endodontic repair cements have been used in different procedures such as root-

end fillings during endodontic microsurgical techniques, perforation repairs, and artificial apical 

barriers in necrotic teeth with immature roots. The most widely used root-end filling material is a 

mineral trioxide aggregate (MTA), which is a calcium-silicate cement. MTA possesses several 

advantages, such as good sealing ability [1], acceptable mechanical properties [2], 

biocompatibility [3], and some antibacterial properties [4, 5]. However, the main drawbacks of 

MTA are its high cost, low radiopacity, difficult manipulation and long setting time [2, 6]. The 3-

4 hour setting time of MTA might increase the risk of wash-out of the freshly applied cement in 

excessively wet environments [7]. Other dental materials, such as dental amalgam, intermediate 

restorative material (IRM), and Super EBA have also been used as root-end filling materials. 

Indeed, the clinical success rate of MTA root-end filling was found to be comparable to IRM [8, 

9] and Super-EBA [10].

Recently, various dental materials containing surface pre-reacted glass-ionomer fillers (S-

PRG) were introduced by Shofu Inc. [11]. Multiple S-PRG-based dental materials are 

commercially available and have been collectively categorized as Giomer (Glass ionomer + 

polymer) [12]. The S-PRG fillers are prepared by the initiation of an acid-base reaction between 

fluoroboroaluminosilicate glass and aqueous polyacrylic acid. These bioactive S-PRG particles 

are thought to promote remineralization [13] and induce antibacterial effects [14, 15] through the 

release of multiple ions such as fluoride, strontium, sodium, boron, aluminum and silicon [16, 

17]. The aim of this study was to evaluate selected antibacterial, physiochemical and bonding 

properties of a prototype S-PRG filler-based root repair cement in comparison to commercially 

available materials used as root repair cements, namely MTA and IRM. 
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Materials and methods

Root cement materials

A prototype of S-PRG filler containing root repair cement was provided by Shofu (S-

PRG root cement, Lot No. 14315, SHOFU, Kyoto, Japan). Furthermore, MTA (ProRoot MTA, 

Lot No. 201404-01, Dentsply Tulsa, TN, USA) and IRM (Intermediate Restorative Material, Lot 

No. 130605, Dentsply Caulk, DE, USA) were also used in this study. 

Bacterial strains and culture conditions

Porphyromonas gingivalis (ATCC 33277) and Enterococcus faecalis (ATCC 29212) 

were selected because they are the most frequent endodontic pathogens present in primary [18, 

19] and secondary root canal infections [20, 21], respectively.  The selected bacteria were

individually grown on blood agar plates (CDC; BioMerieux, Durham, NC, USA). Colonies of 

both bacteria were then suspended separately in brain-heart infusion (BHI) broth supplemented 

with 5 g yeast extract/L and 5% v/v vitamin K+ hemin (BHI-YE; Becton, Dickinson and 

Company, Franklin Lakes, NJ, USA) to make suspensions of 1 × 106 CFU/mL of E. faecalis or 

P. gingivalis after 24 h incubation at 37ºC with 5% CO2. Gas-generating sachets (Gas-Pak EZ; 

Becton) were used to create the required anaerobic environment for P. gingivalis. 

Preparation of cement discs and antibacterial testing 

Each of the three tested cements was mixed according to the manufacturer’s instructions 

and placed into polyvinyl molds with a 4 mm diameter and 2 mm height to make cement discs. 

Then, the discs were incubated for 1 or 3 days at 37ºC and approximately 100% relative 

humidity. After each time point, the discs were removed, immersed in 70% ethanol for 10 

seconds as described in previous studies [22, 23] and flamed dry prior to use. Discs were 

individually immersed in glass tubes containing 5 mL of E. faecalis or P. gingivalis bacterial 
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suspension and incubated for 48 hours. Glass tubes containing the same volume of bacterial 

suspension without cement discs were also incubated as controls. Furthermore, pilot studies were 

conducted to confirm the absence of any turbidity after short term immersion of various cements 

into bacteria-free culture media. After the 48 hours of incubation, glass tubes with or without 

cement discs were vortexed for 10 seconds. Then, 200 µl of bacterial suspension from each tube 

was transferred into a microtiter plate (Fisher Scientific Inc., Fair Lawn, New Jersey, USA) and 

the optical density absorbance was read at 595 nm using a spectrophotometer (SpectraMax 190, 

Molecular Devices, Sunnyvale, CA, USA). 

Three independent experiments were performed in triplicate. Thus, a total of 9 discs from 

each type of cement were used for each bacterium at each time point. The percentage of bacterial 

growth from each cement disc was calculated according to the following equation: Bacterial 

growth (%) = (experimental absorbance value)/(control absorbance value) × 100. 

 Ion-releasing abilities 

Plastic molds of 12 mm internal diameter and 4 mm height were filled with fresh cement 

pastes (n = 3 for each material), compacted with a stainless steel spatula, and stored at a relative 

humidity of 95% at 37ºC for 4 h. The samples were then taken out of the molds, individually 

immersed in 10 mL of laboratory grade distilled water (Carolina Biological, Burlington, NC, 

USA) and stored at 37ºC. The exposed surface area of each sample was 264 mm2 (upper and 

lateral surfaces). The solutions containing the samples were collected at pre-determined end-

point times (4 and 24 hours, and 3, 7, 14, and 28 days) and each sample was moved to a new 10 

mL of distilled water at the beginning of each period. Containers with 10 mL of distilled water 

and no cement were also used to insure that the detected chemical elements in all solutions were 

actually leached from the cements and not already present in the water. The solutions collected at 
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each time point were utilized for pH measurement and elemental analyses. The ions analyzed 

were calcium, fluoride, strontium, sodium, zinc, aluminum, and boron. 

The pH measurements were performed with a pH Meter and probe (Accumet, Fisher 

Pittsburgh, PA, USA). The pH probe was calibrated using standard solutions with pH values of 

4, 7, and 10.  The calcium concentration in the solutions was analyzed using flame atomic 

absorption spectrometry (AAnalyst 200; Perkin-Elmer, Shelton, CT, USA) at 422.7 nm. The 

tested solutions were diluted with lanthanum chloride solution and calibration was performed 

using standard calcium solutions (1.25–5.00 µg Ca/mL).  Fluoride determination in the solutions 

was conducted utilizing a fluoride ion specific electrode (Orion 96-09; Thermo Electron, 

Beverly, MA,USA) connected to an ion meter (Orion Research Inc., Boston, MA, USA). 

Standard solutions (0.01–100.00 µg F/mL) were used for calibration. The standard solutions and 

test solutions were prepared with 1 mL of total ionic strength adjustment buffer II (TISAB II, 

Sigma Aldrich, St. Louis, MO, USA) to 1 mL of standard/test solution. The readings were 

expressed in millivolts (mV) and transformed to ppm through linear regression of the calibration 

curve. 

The concentrations of the remaining elements were determined by inductively coupled 

plasma atomic emission spectrometry (ICP-AES; 6100; Perkin Elmer, Norwalk,CT, USA). The 

conditions used for the analysis were 27 MHz and 1300 W of power from a radiofrequency 

generator, a plasma argon gas flow of 15 L/min, an auxiliary argon gas flow of 0.8 L/min, and 

carrier argon gas flow of 0.2 L/min. The ICP-AES was calibrated using a four-point calibration 

method with standard solutions and the detection limits of analyzed elements ranged between 

0.004-0.06 ppm. The cumulative releases of all elements were calculated by summing the non-

cumulative release over time and the obtained values were expressed as ppm. 
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Setting time evaluation 

The initial and final setting times of the three cements were tested according to ADA 

specifications [24] using Gilmore needles (Humboldt MFG., Norridge, IL, USA). The Gilmore 

needle used to determine initial setting time was 113.4 g with a 2.12 mm tip diameter. The 

Gilmore needle used to evaluate final setting time was 453.6 g with a 1.06 mm tip diameter.  The 

setting times were calculated as the time elapsed (min) between the mixing of the powder cement 

with liquid and the point at which Gilmore needle indentation ceased to be visible on the surface 

of the materials. A large number of cement samples were initially used to find the approximate 

initial and final setting times. Molds of 10 mm in internal diameter and 2 mm in thickness were 

filled with fresh cement pastes and stored at 37 ±1 ºC and 95% relative humidity. As the initial or 

final setting times approached, the samples were tested every minute inside the incubator to 

determine the exact Gilmore setting time. Gilmore needles were place inside the incubator at 

least 1 hour before the commencement of testing. The initial and final setting time evaluations 

were performed in triplicate for each material. 

Push-out bond strength test 

The push-out bond strength test was performed as described in a previous study [25]. 

Intact single rooted human premolars (n=30) with minimum apical curvature (less than 5º) were 

selected for this study after obtaining local IRB approval. The teeth were stored at 4 °C in 0.1% 

thymol solution and used within 6 months after extraction. All teeth were horizontally 

decoronated at the level of 0.5 mm radicular to the facial cementoenamel junction using a water 

cooled low-speed diamond saw (Buehler Ltd., Lake Bluff, IL, USA) generating 15±1 mm long 
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roots. The working length of each root was determined by visualizing the tip of a size 15 K-file 

(Brasseler, Savannah, GA, USA) extending beyond the apical foramen and subtracting 1 mm 

from that length of the file. The root canals were mechanically prepared using EndoSequence 

0.06 taper rotary instruments (Brasseler) to a master apical size 55 file. One mL of 5.25% 

sodium hypochlorite irrigation was used between sequential files. Additionally, each canal was 

finally rinsed with 1 mL of 5.25% sodium hypochlorite for 1 min followed by 1 mL of 17% 

EDTA for 1 min and 1 mL of sterile water for 1 min using a 27-gauge needle. The roots were 

then randomly divided into three treatment groups according to the obturating cement used. S-

PRG, MTA, and IRM cements were prepared according to the manufacturers’ instructions and 

manually tamped into the root canals in their respective groups using hand pluggers. The coronal 

2 mm of each root was filled with Cavit (3M ESPE, St Paul, MN, USA) and each filled root was 

radiographed mesiodistally and buccolingually to confirm the three-dimensional obturation. 

Roots were then wrapped in pieces of gauze soaked in saline (pH = 7.2) and incubated at 37 ºC 

for 7 days to allow complete setting of MTA. 

After seven days, three 2-mm thick cylinders were cross-sectioned from each root at the 

coronal, middle, and apical levels using a water-cooled diamond saw. The coronal and apical 

root canal diameter and the thickness of each root cylinder were measured to the nearest 0.01 

mm utilizing a digital caliper. The area of adhesion between the cement and each root cylinder 

was estimated according to the following equation: 

Adhesion surface area (mm2) = (D1 + D2

2
) × π × h

Where D1 and D2 were the greater and lesser canal diameters, respectively, π was the 

constant 3.14 and h was the thickness of the obturated root cylinder. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

The amount of force required to displace the obturation material from each root cylinder 

was measured using a universal testing machine (Sintech Renew 1123, MTS, Eden Prairie, MN, 

USA). Each root cylinder was fixed on the center of a metal disc that had a central hole with the 

coronal side facing away from the point of load application. The central hole within the metal 

disc was slightly larger than the coronal root cylinder diameter to support the root cylinder and 

allow easy dislodgment of the obturating cement. Cylindrical metal plungers (9, 7, and 5.5 mm 

in diameter for coronal, middle and apical root cylinders, respectively) attached to the loading 

cell were used to apply compressive force on the obturating cement at a crosshead speed of 0.5 

mm/min. Each metal plunger had a clearance of at least 0.15 mm from the root wall margins. 

The maximum dislodgement force of the obturation material was recorded in Newtons and the 

push-out bond strength (MPa) was calculated for each sample using the following equation: 

Push-out bond strength (MPa) = the dislodgment force (N) / adhesion surface area (mm2). 

After the push out test, the samples were examined with stereomicroscopy (Nikon UM-2, 

Tokyo, Japan) at 40× magnification to categorize the failure pattern according to the following 

classification:  (1) adhesive (between  dentine and the obturation cement), (2) cohesive (within 

the obturation cement), or (3) mixed. 

Statistical analyses 

All data were checked for normality using the Kolmogorov-Smirnov test and natural 

logarithm transformations were conducted when necessary to satisfy the normality assumptions. 

Mixed model ANOVA followed by Fisher protected least significant differences were used to 

statistically analyze data from antibacterial activity, ion release and push-out bond strength 

assays. Additionally, one-way ANOVA followed by Fisher protected least significant differences 

was used to statistically analyze data from both initial and final setting times of different 
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cements. Cumulative logit generalized estimating equations (GEE) model including the fixed 

effects of root location and cement material was used to statistically analyze data from mode of 

failure after push-out bond strength test. Statistically significant differences were established 

when p < 0.05.  

Results 

Antibacterial activity against P. gingivalis 

Both S-PRG and IRM cements caused a significant reduction in the percentage of 

bacterial growth compared to the control (p<0.005) at both time points (Table 1). On the other 

hand, MTA demonstrated a significantly higher percentage of bacterial growth compared to the 

control after one day of cement preparation (p<0.0001). S-PRG provided significantly more 

reduction in bacterial growth compared to IRM and MTA (p<0.0001) at both time points. 

Additionally, IRM provided a significantly higher reduction in bacterial growth compared to 

MTA (p<0.0001) at both time points.

Antibacterial activity against E. faecalis 

All tested cements caused a significant reduction in the percentage of bacterial growth 

compared to the control at both time points (p<0.0001; Table 1). Furthermore, MTA 

demonstrated significantly higher reduction in bacterial growth compared to S-PRG and IRM 

(p<0.0001) at both time points. Additionally, S-PRG provided significantly higher reduction in 

bacterial growth compared to IRM (p<0.0001) at both time points. The time factor did not have a 

significant effect on the percentage of bacterial growth. 

Ion releasing abilities 
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The non-cumulative and the cumulative releases of all tested ions in the leachates as well 

as pH are shown in Table 2. S-PRG cement showed the ability to release 6 different ions 

throughout the soaking period. S-PRG cement provided an initial burst of boron, zinc and 

sodium followed by continuous ion release throughout the experiment. Both fluoride and 

aluminum reached their peak release from S-PRG cement after three days while the release of 

strontium showed gradual and continuous increase throughout the experiment. MTA cement 

demonstrated an initial burst of calcium release after 4 hours soaking followed by constant 

release of calcium at all endpoint times. Sodium, aluminum, and strontium released by S-PRG 

cement were significantly higher than the same ions released from MTA and IRM at the majority 

of soaking times (p<0.0001). S-PRG release of zinc was significantly higher than Zn released 

from IRM after 4 hours and 1 day (p<0.0001) of water soaking. 

S-PRG maintained the pH of the distilled water unchanged throughout the soaking 

period. IRM also maintained the pH of the distilled water unchanged until the two week time 

point but it showed significant acidifying effect compared to the control at the four week time 

point. Furthermore, S-PRG provided significantly higher pH of the distilled water compared to 

IRM at 4 hours (p<0.0039), 1 week (p<0.02) and 4 week (p<0.0002) time points. Additionally, 

the pH in the presence of MTA cement was significantly higher than that of the control and all 

other materials at the majority of tested endpoints (p<0.03- p<0.0002). 

Setting time

The effect of type of cement was significant for both initial and final setting times (p< 

0.0001). Both initial and final setting times were significantly shorter for IRM and S-PRG 
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cements than for MTA (p< 0.0001) (Figures 1A and B). However, no significant difference in 

initial and final setting times was observed between IRM and S-PRG. 

Push-out bond strength

 The location-by-type of cement interaction was significant for push-out bond strength 

(p<0.0001). Therefore the pairwise differences of cement materials were performed at each root 

third (Table 3). MTA had significantly higher bond strength at the coronal and middle parts of 

the root compared to IRM and S-PRG cements (p<0.0001). Furthermore, IRM had significantly 

higher bond strength compared to S-PRG (p<0.001).  The bond strength of IRM at the apical part 

of the root was significantly higher compared to that of MTA and S-PRG (p<0.0001). The push-

out bond strength of MTA was significantly lower in the apical third of the roots compared to 

both coronal and middle thirds (p<0.0001). On the other hand, the push out bond strength of 

IRM was significant higher in the apical third of the roots compared to coronal third (p=0.02).

Modes of failure were predominately cohesive or mixed except for S-PRG cement on the coronal 

and middle thirds of the roots, in which adhesive or mixed failure occurred in the majority of the 

samples. However, the interaction between type of cement used and level of roots was not 

significant for mode of failure. Furthermore, no significant difference was detected in mode of 

failure between the three types of cement at all root levels. 

Discussion 

The strategy of using various bioactive glass particles in dental applications to improve 

dentine remineralization has been proposed for decades [26, 27]. However, the incorporation of 
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bioactive glass fillers into relatively bioinert materials has gained popularity in recent years as an 

attempt to achieve more specific biological responses such as inducing antibacterial action [28] 

or promoting a particular cell response [29]. The antibacterial test used in this study was a 

modified direct contact test, which is a common antibacterial test used in the endodontic 

literature to test the antibacterial properties of root cements [4] and sealers [30]. However, the 

main limitation of the regular direct contact test is that it does not allow evaluation of 

microorganisms under biofilm conditions [5] because any attempt to disrupt the bacterial biofilm 

on cement surfaces would lead to crushing of the unset cement samples. Therefore, the modified 

direct contact test was performed on set cement samples in the current study in order to be able 

to vortex the tested cement samples and evaluate the bacterial biofilm grown on the specimen 

surfaces as well as planktonic bacteria around the samples. Future studies aiming to investigate 

the antibacterial effects of these cements against bacterial biofilms rather than planktonic 

bacteria are necessary to confirm the antibacterial finding of the current study.  

In the present study, S-PRG cement showed significant reduction in P. gingivalis growth 

ranging between 95-99%. The ability of S-PRG cement to nearly eradicate P. gingivalis bacteria 

can be explained by considerable ion release with antibacterial activity such as boron, strontium, 

and fluoride. The antimicrobial ability of boron-containing compounds has been a subject of 

interest in recent years [31, 32]. Indeed, boron-based antibacterial therapeutics were suggested to 

possess strong antibacterial activity against gram-negative infections due to their ability to inhibit 

various bacterial enzymes [33, 34]. The current study showed that S-PRG cement was able to 

release significant amounts of boron throughout all time points. The strong antibacterial effect of 

S-PRG cement against gram-negative P. gingivalis as reported in this study may indicate a 

potential efficient use of this new root repair material in primary endodontic infections due to the 
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presence of higher level of gram-negative bacteria compared to secondary endodontic infections 

[35, 36]. However, further studies are required to evaluate the antibacterial properties of S-PRG 

cement against other gram-negative endodontic pathogens. It is also worth noting that the ability 

of S-PRG cement to release both fluoride and strontium may also play an additional antibacterial 

role as the combination of these elements was suggested to have significant antibacterial action 

[37]. 

Our study also demonstrated that IRM caused a significant reduction in P. gingivalis 

growth and this reduction was significantly higher for IRM after three days aging. However, the 

IRM reduction in P. ginigvalis growth ranged between 11-23%, which was significantly lower 

than the bacterial growth reduction caused by S-PRG cement. A previous study also found that a 

zinc-oxide eugenol based sealer had significant antibacterial effect against P. gingivalis [30]. The 

antimicrobial effect of IRM could be explained by the antibacterial ability of eugenol released 

from IRM by progressive hydrolysis [38]. No antibacterial effect of MTA against P. ginigivalis 

was observed in the current study, which is consistent with previous studies [30, 39]. All tested 

cements caused significant but limited reduction on E. faecalis growth ranging from 2-15% 

compared to control. Furthermore, MTA provided significantly more reduction of E. faecalis 

growth compared to IRM and S-PRG cements. The ability of MTA to create an alkaline 

environment may explain its antibacterial effect against E. faecalis [6]. Previous studies have 

also demonstrated a significant antibacterial effect of MTA, IRM and glass ionomer like material 

against E. faecalis without being able to totally eliminate the bacterium [4, 5, 40]. 

Our study demonstrated that S-PRG released 6 different types of ions throughout all 

tested time points, which is consistent with previous studies conducted on various S-PRG based 

materials [16, 41].  In addition to the expected antibacterial action of some of the ions released 
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by S-PRG, ions like fluoride and strontium may play an important role in apatite formation and 

stability. Previous studies also showed that the combination of fluoride and strontium caused a 

synergistic remineralization effect [42, 43]. Ions released from the S-PRG filler were suggested 

to promote apatite induction [17], increase dentine remineralization [44] and improve dentine 

acid resistance [45]. Furthermore, S-PRG based root canal sealer was able to establish a 

superficial surface layer in root canal dentine that is rich with fluoride, strontium, and silicon 

[45]. This study also confirms the findings of previous studies that showed continuous release of 

calcium ions from MTA [2, 46]. On the other hand, no calcium release was detected from S-PRG 

cement. These findings may indicate distinct differences in the potential mechanism of action of 

MTA versus S-PRG cement in both antibacterial and remineralization effects. The MTA mode of 

action is mainly facilitated by the continuous leaching of calcium ions and the increase in local 

pH during hydration reaction while the S-PRG mode of action is mainly derived by the release of 

multiple ions other than calcium and maintaining a relatively neutral pH of the local 

environment.   

One of the concerns related to the use of S-PRG root cement is the potential cytotoxic 

effect of some of the ions released, specifically fluoride. However, the cytotoxicity of fluoride is 

pH dependent [47, 48] and previous studies have shown that fluoride is cytotoxic in acidic pH 

but has minimum cytotoxic effect in neutral pH [47, 48]. Therefore, the ability of S-PRG cement 

to maintain the pH of the soaking water unchanged throughout the soaking period might be 

helpful in minimizing the cytotoxic effect of fluoride. A recent study suggested that S-PRG filler 

containing composite was significantly less cytotoxic than ceramic reinforced glass ionomer 

cement, conventional glass ionomer cement and resin composite [49]. Nevertheless, further 
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studies are required to investigate the biocompatibility of S-PRG root repair cements on both 

cellular and histological levels. 

The initial and final setting times of S-PRG reported in this study were 11 and 30 

minutes, respectively. This is significantly shorter than MTA initial and final setting times, 

which were 35 and 200 minutes, respectively.  The final setting time of MTA reported in this 

study is consistent with that reported in the literature, which ranged between 165-250 minutes [2, 

50, 51]. The relatively short setting times of S-PRG cement may provide for a reasonable one-

visit root repair material, which is not possible with the ProRoot MTA. Cements with traditional 

acid-base reaction systems such as S-PRG and IRM are expected to set faster than calcium-

silicate cements that rely primarily on hydration reactions for setting, which is usually slow [52]. 

Further studies are required to investigate other variables of S-PRG cement that are related to the 

setting process such as dimensional stability, solubility and expansion. 

Various chemical compositions of root repair materials may lead to different interaction 

between these materials and radicular dentine. Therefore, push out bond strength was used in the 

current study to explore the dislocation resistance of various root materials. It is the most reliable 

mechanical test that can rank the dislodgment resistance of various endodontic materials applied 

to dentine such as root canal sealers, root repair materials and intraradicular posts [53]. The 

push-out bond strength was significantly higher for MTA and IRM compared to S-PRG cement 

at both coronal and middle thirds of the roots. The relatively fast expansion [54] and 

biomineralization [55] abilities of MTA may improve the mechanical retention of MTA and 

explain its superior bonding strength on the coronal and middle part of the roots compared to 

other tested cements. Furthermore, the low push-out bond strength of S-PRG cement might be 

attributed to the relatively short storage time before evaluation of the bond strength in the current 
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study (7 days), which was selected because it is the common storage time used in the vast 

majority of studies investigating the push-out bond strength of calcium silicate root cements [25, 

56]. Fluoride, strontium and silicon ions released from a prototype S-PRG-based root canal 

sealer were suggested to incorporate into root dentine significantly deeper after one and three 

months of application compared to one week application [41]. The bond strength of MTA at the 

apical part of the roots showed a severe and significant drop compared to other locations. 

Previous studies also showed significantly lower push out bond strength of MTA based sealer 

[57] and other types of root canal sealers [58] in the apical third of the roots compared to other 

locations. On the other hand, the present study showed significantly higher bond strength of IRM 

at the apical part of the roots compared to other locations. No previous studies have compared 

the bond strength of IRM in different location of the roots. The previously reported significant 

difference in dentinal tubule density [59, 60], orientation [59], and degree of tubular sclerosis 

[61] between apical and coronal part of the roots may be attributed to the observed significant 

change in the bond strength at the apical part of the roots. 

Conclusion 

The suggested prototype S-PRG root repair cement offered a significantly superior 

antibacterial effect against P. gingivalis bacterium compared to both MTA and IRM and 

significantly shorter initial and final setting time in comparison to MTA. Furthermore, S-PRG 

cement showed the ability to continuously release multiple ions up to four weeks including 

boron, fluoride and strontium. Both MTA and IRM had significantly higher push out bond 

strength than S-PRG in the coronal and middle third of the roots. Therefore, S-PRG cement may 

be used as a single-visit root repair material that can release multiple ions with potential 
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antibacterial effects against endodontic pathogens. Further studies are warranted to determine the 

biocompatibility of S-PRG cement. 
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Figure 1A. The means (SE) of initial setting times of the three tested cements. Different letters 
represent statistically significant differences. 

Figure 1B. The means (SE) of final setting times of the three tested cements. Different letters 
represent statistically significant differences.  
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Table 1. The mean percentage (SE) of bacterial growth after exposure to one- and three-day old 

root cements.  

Within each bacterium, different uppercase letters indicate a significant difference between 

different types of cements and the control (set at 100%) at each time point. Within each 

bacterium, different lowercase letters indicate a significant difference between one- and three-

day old samples of the same cement. 

Type of cement 
E. faecalis P. gingivalis 

1 day 3 days 1 day 3 days 

S-PRG 91 (5.3)Ca 90 (4.2)Ca 5 (3)Da 1 (0.95)Ca 

MTA 85(4.4)Da 86 (2.3)Da 105 (5.5)Aa 98 (6.9)Ab 

IRM 98 (2.9)Ba 96 (2.1)Ba 89 (4.7)Ca 77(5.2)Bb 

Control 100Aa 100Aa 100Ba 100Aa 

Table 1



Table 2. Non-cumulative and cumulative release of ions from tested cements in distilled water. 

Material 4 hours 1 day 3 days 1 week 2 weeks 4 weeks 

Fluoride (ppm) released 

S-PRG (non-cumulative) 16 (4)D 41 (2)A 46(4)A 41 (3)A 34 (2)B 28 (1)C 

S-PRG (cumulative) 16 (4)F 57 (3)E 103 (6)D 144 (4)C 178 (3)B 206 (3)A 

MTA 0 0 0 0 0 0 

IRM 0 0 0 0 0 0 

Calcium (ppm) released 

S-PRG 0 0 0 0 0 0 

MTA (non-cumulative) 43 (9)A 20 (1)B 21 (0.5)B 21 (2)B 24 (2)B 23 (2)B 

MTA (cumulative) 44 (9)F 64 (9)E 85 (8)D 106 (11)C 130 (12)B 153 (12)A 

IRM 0 0 0 0 0 0 

Strontium (ppm) released 

S-PRG (non-cumulative) 7 (0.4)Ea 8 (1)Ea 27 (3)Da 60 (13 )Ca 84 (5)Ba 97(6)Aa 

MTA (non-cumulative) 9 (1)Ab 8 (1)Aa 3 (0.1)Bb 3(0.2)Bb 2 (0.3)Bb 2  (0.2)Bb 

IRM (non-cumulative) 0.2 (0.02)Ac 0.2(0.02)Ab 0.2 (0.03)Ac 0.2 (0.03)Ac 0.2 (0.02)Ac 0.2 (0.006)Ac 

S-PRG (cumulative) 7 (0.4)Fa 15 (2)Ea 42 (2)Da 102(13)Ca 186 (17)Ba 283 (23)Aa 

MTA (cumulative) 9 (1)Fa 17 (0.5)Ea 20 (1)Db 22 (1)Cb 25 (0.3)Bb 27 (0.2)Ab 

IRM (cumulative) 0.2 (0.02)Fb 0.4 (0.01)Eb 0.6 (0.03)Dc 0.8 (0.04)Cc 1 (0.05)Bc 1.2 (0.05)Ac 

Boron (ppm) released 

S-PRG (non-cumulative) 481 (50)A 235 (22)B 168 (30)C 117 (18)D 80 (9)E 51 (4)F 

S-PRG (cumulative) 481 (50)D 716 (43)C 884 (66)B 1002 (56)A 1082 (65)A 1133 (62)A 

MTA 0 0 0 0 0 0 

IRM 0 0 0 0 0 0 

Aluminum (ppm) released 

S-PRG (non-cumulative) 2.7 (0.6)Ea 12 (0.8)Da 23 (4)Aa 18 (2)Ba 15 (0.5)Ca 12 (2.6)Da 

IRM (non-cumulative) 0.07 (0.01)Ab 0.07 (0.01)Ab 0.06 (0.02)Ab 0.1 (0.005)Ab 0.09 (0.01)Ab 0.08 (0.01)Ab 

S-PRG (cumulative) 2.7 (0.6)Fa 14.5 (1.1)Ea 37 (2.6)Da 55.1 (0.5)Ca 70.4 (1)Ba 82 (2.9)aA 

IRM (cumulative) 0.07 (0.01)Fb 0.14 (0.02)Eb 0.2 (0.02)Db 0.28 (0.01)Cb 0.37 (0.004)Bb 0.5 (0.01)Ab 

MTA 0 0 0 0 0 0 

Zinc (ppm) released 

S-PRG (non-cumulative) 26 (7)Aa 15 (4)Ba 5 (0.2)Db 7 (2)Ca 10 (0.8)Ba 12 (1)Ba 

IRM (non-cumulative) 0.7 (0.1)Cb 5 (2)Bb 11 (0.6)Aa 11 (1)Aa 11 (1)Aa 10 (0.4)Aa 

S-PRG (cumulative) 26 (7)Da 41 (11)Ca 46 (11)Ca 53 (12)Ca 63 (13)Ba 75 (14)Aa 

IRM (cumulative) 0.7 (0.1)Fb 5 (2)Eb 16 (2)Db 27 (3)Cb 38 (2)Bb 48 (2)Ab 

MTA 0 0 0 0 0 0 

Sodium (ppm) released 

S-PRG (non-cumulative) 957 (140)Aa 805 (69)Ba 962 (174)Aa 693 (90)Ba 522 (67)Ca 370 (12)Da 

MTA (non-cumulative) 77 (5)Ab 90 (20)Ab 62 (11)Ab 41 (8)Ab 36 (1)Ab 44 (1)Ab 

S-PRG (cumulative) 957 (140)Fa 1762(102)Ea 2723 (256)Da 3417 (188)Ca 3939 (250)Ba 4309 (262)Aa 

MTA (cumulative) 77 (5)Fb 167 (16)Eb 229 (27)Db 270 (20)Cb 306 (21)Bb 350 (20)Ab 

IRM 0 0 0 0 0 0 

pH of distilled water 

S-PRG 7.5 (0.03)Ab 7.4 (0.09)ABb 7.4 (0.09)ABb 7.3 (0.08)ABb 7.1 (0.03)ABb 6.9 (0.04)Bb 

MTA 7.9 (0.06)Aa 7.9 (0.04)Aa 8.1 (0.06)Aa 7.8 (0.2)ABa 7.6 (0.04)ABa 7.5 (0.07)BCa 

IRM 7.3(0.2)Ac 7.2 (0.09)Ab 7.1 (0.3)ABb 6.6 (0.4)Bc 6.6 (0.5)Bb 6.2 (0.2)Cc 

Water (negative control) 7.2 (0.3)Abc 7.2 (0.2)Ab 7.2 (0.2)Ab 7.1 (0.2)Ab 6.9 (0.2)Ab 6.7(0.1)Bb 

Table 2



Within each outcome, different lower case letters represent statistically significant differences 

between different materials and different upper case letters represent statistically significant 

differences between different time points for the same material. No measurable ions were 

detected from the negative control (distilled water) except traces of Na (15-25 ppm). 



Table 3. Mean (SE) of push-out bond strength (MPa) of various tested root canal cements in the 

apical, coronal and middle part of the roots. 

Within each cement type, different upper case letters indicate statistically significant differences. 

Within each location, different lower case letters indicate statistically significant differences. 

Root level 
Type of root repair cement 

IRM (MPa) MTA (MPa) S-PRG (MPa) 

Apical 10.06 (2.63)Aa 1.71 (0.83)Bb 2.72 (1.55)Ab 

Middle 8.25 (1.39)Bb 12.69 (3.03)Aa 4.38 (2.60)Ac 

Coronal 7.82 (2.22)Bb 12.31 (2.68)Aa 4.50 (1.90)Ac 

Table 3



Figure 1A Click here to download Figure Figure 3A.TIF 
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Figure 1B Click here to download Figure Figure 3B.TIF 
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