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Saeed Mehrabi 

 

ADVANCED NATURAL LANGUAGE PROCESSING AND TEMPORAL MINING 

FOR CLINICAL DISCOVERY 

 

There has been vast and growing amount of healthcare data especially with the 

rapid adoption of electronic health records (EHRs) as a result of the HITECH act of 2009. 

It is estimated that around 80% of the clinical information resides in the unstructured 

narrative of an EHR. Recently, natural language processing (NLP) techniques have 

offered opportunities to extract information from unstructured clinical texts needed for 

various clinical applications. A popular method for enabling secondary uses of EHRs is 

information or concept extraction, a subtask of NLP that seeks to locate and classify 

elements within text based on the context. Extraction of clinical concepts without 

considering the context has many complications, including inaccurate diagnosis of 

patients and contamination of study cohorts. Identifying the negation status and whether a 

clinical concept belongs to patients or his family members are two of the challenges faced 

in context detection. A negation algorithm called Dependency Parser Negation 

(DEEPEN) has been developed in this research study by taking into account the 

dependency relationship between negation words and concepts within a sentence using 

the Stanford Dependency Parser. The study results demonstrate that DEEPEN, can 

reduce the number of incorrect negation assignment for patients with positive findings, 

and therefore improve the identification of patients with the target clinical findings in 

EHRs. Additionally, an NLP system consisting of section segmentation and relation 

discovery was developed to identify patients’ family history. To assess the 

generalizability of the negation and family history algorithm, data from a different 

clinical institution was used in both algorithm evaluations.  

The temporal dimension of extracted information from clinical records 

representing the trajectory of disease progression in patients was also studied in this 

project. Clinical data of patients who lived in Olmsted County (Rochester, MN) during 
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1966 to 2010 was analyzed in this work. The patient records were modeled by diagnosis 

matrices with clinical events as rows and their temporal information as columns. Deep 

learning algorithm was used to find common temporal patterns within these diagnosis 

matrices. 

       Josette F. Jones, RN, Ph.D., Chair 
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CHAPTER ONE: INTRODUCTION & BACKGROUND 

1.1 Problem Statement 

Electronic Health Records (EHR) contains valuable longitudinal clinical 

information that can be used for various applications such as Clinical Decision Support 

Systems (CDSS), medication reconciliation, public health emergency surveillance, 

quality measurements, etc. However these applications are not readily feasible due to 

unstructured nature of data represented in clinical documents. Natural Language 

Processing (NLP) has been used to extract and store clinical concepts in a structured 

format. Concept identification or extraction is one of the popular sub tasks of NLP in 

enabling secondary use of EHR. However this task is not easy because the meaning of a 

concept is significantly affected by modifiers such as negation (i.e. no symptom 

attributable to her pseudocyst) and family history (i.e. her father has diabetes). In this 

work, we have developed a novel negation algorithm to detect the negation status of 

clinical concept. The system was developed using the data of patients with pancreatic 

cyst and it was evaluated on any clinical disorder or sign and symptoms.  

In the era of precision medicine, accurately identifying familial conditions is 

crucial for providing target treatment. Personalized medicine is defined as "the use of 

combined knowledge (genetic or otherwise) about a person to predict disease 

susceptibility, disease prognosis, or treatment response and thereby improve that person’s 

health" (Redekop & Mladsi, 2013). Personalized medicine could be misinterpreted as 

treatment developed uniquely for each individual therefore it is replaced with precision 

medicine in recent days.  

Identification of familial conditions requires detailed family history information. 

The family history information can be available in clinical notes by “documenting 

parents’ and siblings’ age and health (or age and cause of death), as well as a checklist of 

conditions with environmental and hereditary etiologies” (Rich, et al., 2004). We have 

developed a rule-based NLP system to identify patients with family history of pancreatic 

cancer and evaluated our system on data of two institutions to assess its portability.  

The extracted concepts across longitudinal patients’ records consist of phenotypic 

information, disease characteristics, treatment and outcome, which describe the patients’ 
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course of disease. In order to represent the temporality of the extracted information from 

patients record, each patient’s records was modeled as a matrix of temporal clinical 

events where common pattern discovery methods can be applied to matrices representing 

a cohort of patients.  In this work we developed a deep learning algorithm for temporal 

pattern discovery over longitudinal healthcare records.  

Chapter two describes state of art concept identification and our experiments in 

detection of pancreatic cyst concepts from clinical records. Chapters three and four focus 

on two challenges of identification of concept within a sentence namely negation and 

family history. If we consider the temporal order of the extracted concepts, we can find 

common phenotypic patterns among cohort of patients with similar conditions. In chapter 

five, we describe our model to represent each patient records as a diagnosis matrix and a 

deep Boltzmann machines that was used to find common temporal patterns on a cohort of 

patients. 

1.2 Clinical NLP Introduction and Background 

NLP allows computers to understand natural language used by humans as 

opposed to artificial language used by computers and is defined as the “formulation and 

investigation of computationally effective mechanisms for communication through 

natural language” (Carbonell & Hayes, 1992).  

Patients’ medical records (e.g. radiology reports, pathology reports, clinical notes, 

and discharge summaries) include wealth of information about patients that are in free 

text format. NLP can be very useful tool in extracting information from these free text 

format documents and creating structured information that can be used for further 

knowledge extraction by researchers. Research on processing of natural language in 

clinical notes has been slower in comparison to other domains such as biomedical or 

general English due to HIPAA privacy concerns in sharing clinical data and lack of 

common standards in annotation. One of the oldest and most studied clinical NLP 

systems is the Medical Language Extraction and Encoding System (MedLEE) developed 

by Carol Friedman et al at the Columbia University in the mid 90s (Friedman, Hripcsak, 

DuMouchel, Johnson, & Clayton, 1995). MedLEE was initially developed on chest 

radiology reports (Friedman, Alderson, Austin, Cimino, & Johnson, 1994), however it is 
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now, extended to any kind of clinical notes. Informatics for Integrating Biology and the 

Bedside (i2b2) is an NIH-funded national center that has organized shared tasks focusing 

on problems less studied in clinical NLP and sharing annotated clinical notes that 

removed some of barriers to the development of clinical NLP systems (Chapman, 

Nadkarni, Hirschman, W D'Avolio, Savova, & Uzuner, 2011). The first i2b2 challenge in 

2006 was on automatic identification of smoking status of patients from information 

contained in discharge summaries (Uzuner, Goldstein, Luo, & Kohane, 2008). The 

second i2b2 challenge focused on obesity and its comorbidities (Uzuner Ö., 2009). It was 

a multi-label classification task that classified obesity and its comorbidities as present, 

absent, questionable or unmentioned in discharge summaries. The third i2b2-shared task 

(2009) was on medication extraction (Uzuner, Solti, & Cadag, 2010). Various NLP 

systems using regular expression, machine learning or hybrids of them were used to 

extract information such as medications, dosages, modes of administration, frequency of 

administration and the reason for administration. The fourth challenge (2010) was on 

extraction of concepts (problems, treatments or tests), assigning assertions (whether the 

concepts are present, absent associated with someone else, hypothetical, conditional or 

possible) and classifying relations between those concepts (with eight different types of 

relations, for instance: treatment worsened a medical problem, treatment improved a 

medical problem, etc.) (Uzuner, South, Shen, & DuVall, 2011). The fifth challenge 

(2011) was on anaphora resolution (Uzuner, Bodnari, Shen, Forbush, Pestian, & South, 

2012). The sixth challenge was to correctly identify and interpret temporal relations. i2b2 

provided a corpus of de-identified discharge summaries with annotated clinical events, 

temporal expressions and relations to the NLP community (Suna, Rumshisky, & Uzuner, 

2013). The latest i2b2 challenge was on de-identification of medical records by removing 

protected health information (PHI) and identification of the risk factors of heart disease 

over time. 
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CHAPTER TWO: CONCEPT IDENTIFICATION 

2.1 Introduction  

Concept extraction or identification is a subtask of information extraction where 

phrases of interest are extracted from text. In clinical NLP, these concepts can be phrases 

referring to disorders (i.e. he had a hemiarthroplasty for osteonecrosis), sign and 

symptoms (i.e. His last seizure was on July), treatment or medication (hypertension was 

controlled on hydrochlorothiazide), etc. 

Various tools have been developed for the recognition of diverse clinical entities 

including medications, dosages, anatomical sites, disease and disorders, etc. based on 

dictionaries (Eriksson, Jensen, Frankild, Jensen, & Brunak, 2013), rules (Sun & Nguyen, 

2010) and machine learning algorithms (Jiang, et al., 2011) (Zhang & Elhadad, 2013) or 

combination of these methods (Xu, Hong, Tsujii, & Chang, 2012). However there is no 

single approach that is the Holy Grail for this problem. Domain adaptation is required in 

each approach for improved performance. Clinical terminologies are not only different 

across domains (cardiovascular versus orthopedics), but also distinctive from one type of 

clinical notes to the other, for instance the language used in radiology reports are unlike 

that of pathology reports. Therefore we can consider each particular domain of healthcare 

or type of clinical note as a sublanguage. Sublanguage is defined as "the specialized form 

of natural language which is used within a particular domain or subject matter" 

(Grishman & Kittredg, 1986). Sublanguage is characterized by a specialized vocabulary, 

syntax or semantic relationship. 

The pattern discovery in sublanguage analysis involves annotated corpora where 

concepts are marked based on their relevance or non-relevance to the extraction task. 

Normally pattern discovery starts with a set of initial patterns that are good candidates of 

the topic of interest. Figure 2.1 shows the regular expression pattern development 

flowchart where the annotated documents are divided into two parts of training and test 

sets and following steps are performed. Regular expression or regex is a pattern of 

characters matching specific strings of text.   

1) Training set is loaded and randomized  

2) The initial set of regex patterns is applied to the training set  
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3) The irrelevant extracted concepts and relevant missed concepts are used to modify 

the initial regex rules 

4) Final rule set is applied to the train set (Steps 3 & 4 are repeated until the target 

accuracy is reached for the training data) 

5) Test set is loaded and randomized 

6) Final rule set is applied to the test set 

7) Extracted concepts are compared to the reference standard to evaluate the 

accuracy of final regex rules. 

 
Figure 2.1 Regex Development Flowchart 

 

In this work, we built an NLP sublanguage model to identify patients with 

pancreatic cyst from unstructured clinical notes. In the followings, we provide a brief 

introduction on why identification of patients with pancreatic cyst is important and some 

of the previous works along with our methodology, dataset and results of our 

explorations. 
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2.1.1 Pancreatic Cyst 

Cancer of pancreas is the fourth leading cause of death in the US (Howlader, et 

al., 2012) and eight in the world (Cancer Research UK, 2012). It is estimated that 48,960 

(24,840 men and 24,120 women) will be diagnosed with and 40,560 (20,710 men and 

19,850 women) will die of cancer of the pancreas in 2015. Although considerable 

progress has been made in cancer survival rates over the past decades, 5-year survival 

rate for pancreatic cancer has hardly changed, rising from 3% in 1975 to 5.8% in 2012 

(Howlader, et al., 2012). The poor prognosis of pancreatic cancer is primarily due to its 

late stage diagnosis with more than 80% of patients presenting with locally advanced or 

metastatic disease where available systemic therapies remain largely ineffective 

(Howlader, et al., 2012). Therefore, the only chance for improving survival is to detect 

pancreatic cancer at an earlier stage (Cleary, et al., 2004). 

Pancreatic cancer has several risk factors such as obesity, smoking, and alcohol 

intake but its exact causes are not yet known. Screening of general population for early 

identification of pancreatic cancer is not feasible because of its low incidence and lack of 

effective screening tests to identify patients at earlier stages of the disease. Yet, screening 

high-risk populations such as patients with a family history of pancreatic cancer and 

patients with pancreatic cysts represent two windows of opportunity for early detection of 

pancreatic cancer.  

Family history of pancreatic cancer increases the risk of developing pancreatic 

cancer (Permuth-Wey & Egan, 2009). One first-degree relative (a parent or sibling) with 

pancreatic cancer increases the risk to 7 to 9-fold and three or more first-degree relatives 

with pancreatic cancer increase the risk to 17 to 32-fold (Klein, et al., 2004). Risk is also 

increased if a first-degree relative was diagnosed with pancreatic cancer before age 50 

(Brune, et al., 2010).  

Pancreatic cysts are well-recognized precancerous lesions. Several studies report 

their incidence in 2.6% of abdominal CTs and in up to 20% of MRI studies. (Laffan , et 

al., 2008), (Lee, Kim, Choi, Hong, & Kim, 2011) (Zhang, Mitchell, Dohke, Holland, & 

Parker, 2002). Pancreatic cysts have degrees of malignancy based upon their type and 

degree of dysplasia. There are various types of pancreatic cysts, which include 

pseudocysts, serous cystic neoplasms (SCN), mucinous cystic neoplasms (MCN) and 
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intraductal papillary mucinous neoplasms (IPMN). Only MCN and IPMN may progress 

to invasive pancreatic adenocarcinoma (Pandol, Gukovskaya, Edderkaoui, Dawson, Eibl, 

& Lugea, 2012). Because these lesions are typically asymptomatic and incidentally 

detected, they are mostly ignored, though they still may harbor a malignant potential of 

20% to 90% (Schmidt, et al., 2007), (Lennon & Wolfgang, 2013). Additionally, 10% of 

pancreatic cancers have a familial or hereditary component (Shi, Hruban, & Klein, 2009), 

(Permuth-Wey & Egan, 2009). 

Accurate identification, surveillance and treatment of patients with pancreatic 

cysts or family history of pancreatic cancer represent an opportunity to prevent pancreatic 

cancer. Much information about pancreatic cysts and patient’s family history can be 

found in free text format in various narrative medical reports including pathology, 

cytopathology, radiology (MRI, CT, EUS) and physician’s clinical reports. Therefore 

NLP is required to harness the information embedded in clinical narratives.   

2.2 Previous Works in Pancreatic Cyst Identification 

Al-Haddad et al. (2013) used Regenstrief EXtraction tool (REX) to identify 

patients with a confirmed, pathological, diagnostic report of IPMN. (Al-Haddad, Friedlin, 

Kesterson, Waters, Aguilar-Saavedra, & Schmidt, 2010) REX is a rule-based NLP 

method that uses a window of words before and after a medical concept to determine if 

the concept is negated, affirmed, related to a patient or his family members. REX was 

applied to 165,000 clinical reports of 5694 patients and validated by testing its 

performance against a manually created surgical database of patients who had a surgical 

resection of IPMN at Indiana University (IU) hospital during 1985-2009. The NLP 

system detected 208 out of 215 patients who had a confirmed pathology report of IPMN 

in the surgical database, and it found an additional 37 patients that were not included in 

the surgical database.  

Friedlin et al. (2010) compared the identification of pancreatic cancer patients 

using ICD9 codes and NLP processing of clinical notes using REX (Friedlin, et al., 

2010). Zhao et al used the PubMed knowledge and EHR data to develop a weighted 

Bayesian network (BN) to predict pancreatic cancer (Zhao & Weng, 2011). A weight 

score was calculated for twenty selected risk factors of pancreatic cancer based on the 
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positive, negative and neutral association between these risk factors and pancreatic cancer 

using PubMed articles. The risk factors were then used in construction of a BN with a 

weighted inference model. The EHR data of patients with and without pancreatic cancer 

were used to predict risk of pancreatic cancer patients. In another study, Markov chain 

model was used to compare four different management strategies 

(pancreaticoduodenectomy, yearly non-invasive surveillance, yearly invasive 

surveillance, do nothing) in patients with branch duct IPMN (Weinberg, Spiegel, 

Tomlinson, & Farrell, 2010).  PancPRO is a Bayesian modeling framework used to assess 

the pancreatic cancer risk of patients with family history of pancreatic cancer (Wang, 

Chen, Brune, Hruban, Parmigiani, & Klein, 2007). A genetic model for mutation 

susceptibility was specified and prevalence associated with these mutations was 

estimated. Bay’s rule was used to convert the genotype probability given phenotypic 

information.  

2.3 Methodology 

2.3.1 Pancreatic Cyst Identification 

Unstructured Information Management Architecture (UIMA) was used as the 

framework for developing our text-mining system. UIMA is a software architecture 

developed by IBM for the analysis of unstructured content that includes text, audio or 

video data. It is openly available through the Apache software foundation (Ferrucci & 

Lally, 2004). UIMA is composed of processing units called analysis engine (AE) that 

analyze unstructured data and infers information from them. AEs are constructed from 

analysis logics called annotators. An AE may contain a single annotator (called primitive 

AE) or multiple annotators (called aggregate AE). Figure 2.2 shows the UIMA pipeline 

integrated to extract the information from medical reports. The input goes through a 

series of tasks depicted in each block. The input for every step is the output of its 

predecessor task.  

 
Figure 2.2 Analysis Engines Used in the UIMA Pipeline 
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The initial input is a text file containing all the reports for all the patients. Report 

separator AE in this pipeline separates each report. Each report has Metadata information 

such as medical record number (MRN), report id, report name, report date and report 

body that is the notes dictated by physicians. Metadata annotator AE extracts these 

Metadata from each report using regular expressions. The next AE is the cTAKES 

sentence detector (Savova, et al., 2010). This is a UIMA wrapper around the openNLP 

sentence detector (OpenNLP), which was originally used during the first pass. Because 

sentences were breaking on new lines, it was replaced with Ytex sentence detector. Ytex 

sentence detector is a modified version of cTAKES to deal with breaking sentences on 

new lines (Garla, et al., 2011). The cyst annotator AE extracts cyst concepts within each 

report using regular expression. Table 2.1 shows each concept and the regular expression 

developed to extract it from the patients’ medical reports.  

 

Table 2.1 Various Cyst Types and Their Associated Regular Expression Patterns 

Concept Regular Expression 

Pancreatic Cyst (?i)(pancreatic cyst(s)? | cyst(s)?(of| in)? the pancreas | 
pancreatic cystic) 

Pancreatic pseudocyst (?i)(pseudo\s?cyst(s)?) 

Mucinous Cyst 
(?i)(mucinous cyst(ic | ts) neoplasm | mucinous 
cystadenoma | intraductal papillary mucinous | 
\b(mcn)\b | \b(mca)\b | \b(ipmn)|\b(ipmt)\b) 

Serous Cyst (?i)(serous cyst(ic | s | adenoma) | \b(sca)\b) 

Retention Cyst (?i)(retention cyst(ic | s)) 

Cystic neuroendocrine 
tumor 

(?i)(cystic neuroendocrine tumor | cystic neuroendorine 
| neuroendocrine cyst(ic|ts)|islet cell cyst tumor|cystic 
islet cell tumor) 

Cystic degeneration 
cancer 

(?i)(cystic degeneration cancer | cystic degeneration | 
degeneration cyst(ic | s)) 

Duct ectasia (?i)(duct(al) ectasia | ectasia of the( pancreatic)? duct | 
ectasic duct) 

Duct dilatation (?i)(pancreatic duct(al) dilatation | dilatation of 
the(pancreatic)? duct | dilated(pancreatic)? duct) 
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Concepts that are used to identify pancreatic cysts in medical records were 

assembled by our medical team and additional keywords were added by searching 

through literature and Unified Medical Language System (UMLS) knowledge base (Al-

Haddad, Friedlin, Kesterson, Waters, Aguilar-Saavedra, & Schmidt, 2010). The initial set 

of regular expressions based on these concepts was applied to the development dataset 

described in more detail in section 2.3.1. The false positives and false negative cases 

were analyzed and the regular expression patterns were modified accordingly. This 

process was repeated several times until we reached the target precision and recall on the 

training set. At the final step the algorithm was applied to the test set for evaluation. 

The regular expressions shown in Table 2.1 only match text strings in clinical 

notes without considering the contextual information surrounding the concept of interest. 

For instance, the concept “ductal extasia” in the sentence “Chronic mastitis or ductal 

ectasia left breast” does not exist in pancreas or the concept “pancreatic ductal 

dilatation” identified in the following sentence “No pancreatic ductal dilatation is 

visualized.” is negated. 

We developed a rule-based algorithm described in the next section to remove 

concepts that happened in other organ than pancreas. In order to identify the negation 

status of concepts, we used a widely used negation algorithm called NegEx (Chapman, 

Bridewell, Hanbury, Cooper, & Buchanan, 2001). NegEx is a string-matching algorithm 

that looks for negation terms such as ‘No’, ‘No evidence of’, ‘Rule out’, etc., within the 

sentence containing the concept. Because NegEx failed to consider the contextual 

relationship between negation words and concepts, we used Dependency parser on top of 

NegEx to improve its performance. Dependency parser is a binary asymmetric relation 

that holds between a token (word) and its dependents in a sentence. Chapter three 

provides more detailed on our negation methodology.  

2.3.2 Contextual Rule-Based Algorithm 

Sentences A to D in this section represent sentences that were extracted based on 

patterns listed in Table 2.1. Sentence “A” was extracted because it contained the 

keywords “dilated duct” which could identify the presence of pancreatic duct dilatation. 

However, duct dilatation can also occur in the biliary system or breast tissue therefore 
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only clinical records that contained the term “pancrea” were selected before searching for 

the pancreatic dilated duct concept.   

A) “Additional views were obtained of the right breast in the retro-areolar 

region which demonstrate dilated ducts and increased nodularity as well as 

two coarse calcifications.” 

Sentences “B” and “C” extracted because they contained the “ductal ectasia” 

concept. Both of these sentences are not related pancreatic ductal ectasia, therefore ductal 

ectasia was only searched in reports that contained the keyword “pancrea” but did not 

contain breast-related terms: “breast,” “nipple,” “areola,” or “mammogram,” or biliary-

related terms: “biliary,” “bile” or “biloma.”  

B) FINDINGS: The liver is of normal size without intraparenchymal mass or 

biliary ductal ectasia. 

C) Chronic mastitis or ductal ectasia left breast. 

Mucinous and serous cysts can occur in the ovary (Sentence D) as well as in the 

pancreas. Thus, a filter was applied to search for keyword “ovary” to remove reports 

pertaining to ovarian-specific mucinous and serous cysts.  

D) POSTOPERATIVE DIAGNOSIS: Left ovarian mucinous cystadenoma. 

And finally, in the “Impression” section of radiology notes, the radiologist 

typically reports the final diagnosis, conclusions of the radiographic study and 

recommendations for further evaluations. Such a report may contain a phrase like 

“evaluate for dilated ducts”, yet this recommendation does not mean that a patient has 

pancreatic dilated ducts. Therefore sentences that begin with “evaluate”, “assess” or 

“indicate” were removed. 

Figure 2.3 shows a process that was adopted to remove unnecessary reports 

before applying the regex patterns. 
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Figure 2.3 Contextual Rule-Based Flowchart 

  

2.4 Datasets 

Longitudinal health records including discharge summary, surgical pathology 

document, imaging reports (abdominal MRI, CT with/without contrast, Ultrasound, etc.) 

and other clinical notes (procedure notes, visit notes, letter, consultation, etc.) of patients 

who visited the Sidney & Lois Eskenazi Hospital in Indianapolis was used in this study. 

The Eskenazi Hospital is a 316-bed hospital providing a comprehensive range of primary 

and specialty care services in central Indiana. It is comprised of providers who are faculty 

and residents of the IU School of Medicine. This study was conducted under an approved 

Institutional Review Board (IRB) protocol by IU. 

2.4.1 Development Dataset 

A random number of 44 patients were selected that contained the terms ‘pancreas’ 

and ‘cyst’ somewhere in their reports. From the patients with ‘pancreas’ and ‘cyst’ in a 

text report, all of their text reports of any type were extracted forming a corpus with 1064 

reports. The average number of reports per patient in our corpus is 23.64 with minimum 

of 1 and maximum of 221 reports per patient. Pancreatic cysts were present in 28 out of 

search'for'pancrea,c'cyst,'
pancrea,c'pseudocyst,'
reten,on'cyst,'cys,c'
neuroendocrine'and'cys,c'
degrada,on'cancer''

Filter'to'remove'
reports'related'to'
ovarian'cancer''

Search'for'Mucinous'
cyst'and'serous'cyst'

Filter'to'select'reports'
that'contain'"pancrea"'

Search'for'duct'
dilata,on'

Filter'to'remove'breast'
cancer'related'reports'

Search'for'duct'ectasia'

Clinical'
Reports'



 

13 

44 patients and absent in the remaining 16 patients’ records. The data set was randomly 

divided into two sets of train and test set, each containing 14 patients with pancreatic cyst 

and 8 patients with no pancreatic cysts. The test set is composed of 703 patient records, 

of which 509 belong to patients having pancreatic cysts and the remaining 194 records to 

patients without diagnosis of pancreatic cysts. The train set is composed of 316 patient 

records, of which 240 reports belong to patient having pancreatic cyst and the remaining 

121 records to patients without pancreatic cysts. Two pancreatic-cyst surgeon experts 

created the gold standard data. The discrepancies between the two annotators were 

resolved by discussing the differences in annotation. Cohen’s kappa was used to measure 

the inter annotator agreement K=88% (Carletta, 1996) 

2.4.2 Monthly Dataset 

All patients who visited the Sidney & Lois Eskenazi Hospital in Indianapolis, 

Indiana for any reason during March-December 2013 were retrieved. Table 2.2 shows the 

number of patients and their reports for each month. 

Table 2.2 Number of Patients and Their Reports in Each Month 

Month Total Number of 

patients 

Total Number of 

reports 

March 7950 97535 

April 6419 78451 

May 6036 70100 

June 7514 78110 

July 7390 81991 

August 7534 79072 

September 7826 80973 

October 7794 84868 

November 7152 80916 

December 7086 79957 
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2.5 Results 

Table 2.3 shows the total number of patients identified with pancreatic cyst and 

their clinical records in each month.  

Table 2.3 Number of Patients with Pancreatic Cyst in Each Month 

Month #Identified 

Patients 

# Identified 

patients’ reports 

March 227 443 

April 199 352 

May 186 325 

June 165 329 

July 196 403 

August 197 395 

September  186 308 

October 225 429 

November  194 364 

December 192 380 

Table 2.4 shows the number of positively identified patients with pancreatic cysts, 

with a family history of pancreatic cancer and with both pancreatic cysts and a family 

history of pancreatic cancer.  

Table 2.4 Number of Patients that Have Pancreatic Cyst, Family History of  
Pancreatic Cancer or Both 

Months  Pancreatic 
Cyst 

Family History 
of Pancreatic 

Cancer 

Pancreatic Cyst 
and FH of 

Pancreatic Cancer 
March 98 15 2 
April 106 6 0 
May 102 10 3 
June 85 6 2 
July 98 12 1 
August 109 10 0 
September 104 12 0 
October 136 11 1 
November 119 10 1 
December 97 10 1 
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We used seven months of data from March to September 2013 in two rounds of 

evaluations to develop the pancreatic cyst detection algorithm. The last three months of 

data was used for final evaluation of the system. For each patient there would be either 

one or multiple sentences containing pancreatic cyst. The evaluation in Table 2.5 is based 

on patient level meaning that even if one sentence is affirmed, the patient is considered to 

be a positive case of pancreatic cyst. Conversely a patient does not have a cyst when the 

system correctly identifies all the sentences that are negated. We considered false positive 

and negative from a medical perspective (i.e., presence or absence of medical problem) 

meaning that if a patient has pancreatic cyst and the system considered that as a negative 

case (patient does not have pancreatic cyst), the result was evaluated as false negative. 

Similarly, if a patient does not have pancreatic cyst and the system result was affirmed 

(patient has pancreatic cyst), it was evaluated as false positive. 
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Aug. 197 86 108 0 3 100 97.30 2.70 
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Aug.  197 86 109 0 2 100 98.2 1.80 
Sep. 186 78 104 0 4 100 96.3 3.7 

Oct.  225 85 136 0 4 100 97.14 2.86 
Nov. 194 73 119 0 2 100 98.35 1.65 
Dec. 192 94 97 0 1 100 98.98 1.02 
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There were 1,359 patients with at least one mention of a ‘pancreatic cyst’ from 

March to September. Three of those identified patients were excluded (n = 1,356) 

because they were detected twice (one patient identified in June had previously been 

identified in March and two patients identified in August and September had previously 

been identified in July and August, respectively). The NLP algorithm identified 623 

positive (patients with pancreatic cyst or pancreatic ductal dilation) patients. Manual 

(physician expert) review identified 615 positive patients (nine and one patients were 

found to be false positives and false negative, respectively). This resulted in a calculated 

prevalence of pancreatic cysts of 1.2%. Over the 7-month period, the mean sensitivity of 

the NLP algorithm for identification of a pancreatic cyst and/or ductal dilation was 

99.85% (range 98.98–100). Similarly, the mean specificity was 98.8% (range 96.3–100) 

(Figure 2.4). 

 

 
Figure 2.4 System Performance over the Study Period for Pancreatic Cyst  

Identification 

2.6 Discussion 

Pancreatic cancer is a deadly cancer due in part because it is typically diagnosed 

in advance stages when there is no effective treatment. Early detection of pancreatic 

cancer is possible through surveillance of patients at risk. Current strategies for early 

diagnosis of pancreatic cancer have focused on serum biomarkers. The most commonly 

used biomarker is serum carbohydrate antigen 19-9 (CA19-9). Its use as a screening tool 

in the general population, however, would be suboptimal because of its low sensitivity 
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(median 79%, range 70–90%) and specificity (median 82%, range 68–91%) 

(Goonetilleke & Siriwardena, 2007). Small studies have suggested that the use of a 

combination of biomarkers instead of an individual biomarker may improve sensitivity 

and specificity (Behnam & Smith, 2014) (Firpo, et al., 2009). Given the high genetic 

heterogeneity of pancreatic adenocarcinoma (Jones, et al., 2008), such may require a 

large number of biomarkers and is not likely to be routinely utilized soon. Similarly, 

cross-sectional imaging studies have low performance characteristics for screening 

pancreatic cancer in the general population (Sahani, Shah, Catalano, Boland, & Brugge, 

2008) (Nabavizadeh, Greenleaf, Fatemi, & Urban, 2012). 

Patients with pancreatic cysts or a hereditary predisposition to pancreatic cancer 

are considered to be at higher risk of developing cancer. Pancreatic cysts, especially 

mucinous cysts, are well-established precancerous lesions. As they have the potential to 

develop into invasive adenocarcinoma in a median of 5 years (range 2–20) (Tanaka, et 

al., 2006) (Tanaka, et al., 2012), tracking them closely for clinically relevant changes 

may represent a window of opportunity for pancreatic cancer prevention and early 

detection. This study showed that the NLP system could accurately detect patients with 

premalignant cysts (mucinous cysts), thus ensuring adequate management. Although 

‘pseudocyst’ is a benign condition that alone does not require screening for pancreatic 

cancer, we included it in the final list of ‘pancreatic cyst’ concepts to be thorough and not 

miss patients with potentially other types of cysts. Our reasoning was based on manual 

review of multiple cross-sectional imaging studies reporting a pseudocyst in spite of the 

absence of clinical and radiological evidence of pancreatitis. Similarly, hypothetical 

terms, such as ‘may represent’, were considered affirmed to avoid missing patients with a 

potentially premalignant condition.  

The present study, over a 10-month period, demonstrates that it is feasible and 

inexpensive to automate the identification of patients with pancreatic cyst(s) and/or 

pancreatic ductal dilation using NLP. Our algorithm allowed tracking of those patients 

with high sensitivity (99.9%) and specificity (98.8%). Although manual review remains 

an important part of the study, patient capture is easier, faster and more thorough when 

employing a NLP algorithm. Incidentally discovered pancreatic cysts may be 

inconsequential. The data currently available on the natural history of pancreatic cysts 
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and their malignant potential have some inherent selection/referral bias, and thus the 

percentage of truly consequential cysts might be lower in a general population screened 

by an automated process. The present study aimed to confirm feasibility of an automated 

process using NLP for pancreatic cyst screening. It accomplished this with high 

sensitivity and specificity. To analyze the potential for individual lives and cost-

effectiveness, further studies including public health cost analyses would be needed to 

compare the cost of a preventive strategy with follow-up examinations versus the cost of 

pancreatic cancer treatment. 

Once patients with pancreatic cysts are correctly identified, screening this ‘at risk’ 

subpopulation for pancreatic cancer may be more feasible because the pretest probability 

is increased, thus compensating for the suboptimal sensitivity/specificity of currently 

available biomarkers/imaging studies. 

Beyond the identification and tracking of patients with pancreatic cysts, our 

system sets ground for improved pancreatic cancer screening. As this algorithm is 

adaptable, it can be incorporated into any hospital electronic system to help capture 

patients with pancreatic cysts. We anticipate the use of this algorithm as a template for 

other regional health information organizations (e.g. Boston, Utah, Stanford and 

Vanderbilt). The ultimate goal is to move towards establishment of a national pancreatic 

cyst registry. It may lead to a more organized national initiative for pancreatic cancer 

prevention and early detection, and optimal education of both healthcare providers and 

patients on current management and screening resources available.  

2.7 Conclusion 

Patient care and clinical research up until the present are largely based on 

retrospective or prospective collection of data into databases, which is often done 

manually. The increased utilization of EHR by medical centers has created new patient 

care and clinical research possibilities. NLP helps researcher to automate the process of 

patient data extraction that eventually increases the research scope (data volume, time) 

and statistical power while decreasing the required manpower utilization. In this chapter, 

we described pancreatic cyst identification based on sublanguage analysis. We briefly 

touched on the importance of the contextual information surrounding a concept of interest 



 

19 

in concept identification task. For instance, the presence of a clinical finding in narrative 

patient’s report does not imply that the patient has the finding. In the next chapter, we 

describe our negation detection algorithm that is built on top of NegEx and compare its 

performance with NegEx on wide set of clinical concepts. Another contextual challenge 

is to determine if the identified concepts belong to patient or his family members. In 

chapter four we discuss our NLP system that is developed to identify patient with family 

history information. 



 

20 

CHAPTER THREE: NEGATION 

3.1 Introduction 

A study of negation has shown that clinical observations are frequently negated in 

clinical narratives (Chapman, Bridewell, Hanbury, Cooper, & Buchanan, 2001). For 

example, physicians often report that a condition is absent in a patient. 

Negative clause is defined as “an assertion that some event, situation, or state of affairs 

does not hold. Negative clauses usually occur in the context of some presupposition, 

functioning to negate or counter-assert that presupposition” (Payne, 1997). 

Negation detection in clinical language tends to be very trivial in sentences such 

as "no fracture", "patient denies headache", and “she does not have marked 

dysmenorrhea”. Therefore simplistic approaches such as NegEx (Chapman, Bridewell, 

Hanbury, Cooper, & Buchanan, 2001) that use negation cue words without considering 

the semantic of a sentence perform well. However, the simplistic approaches sometimes 

fail to correctly identify the negation status of clinical concepts in sentences with 

complex structure. We have faced with this problem while using NegEx in our NLP 

system that automates the identification and tracking of patients with pancreatic cysts 

described in the previous chapter (Roch, et al., 2015). Table 3.1 shows some examples of 

such sentences where NegEx incorrectly negates pancreatic cyst concepts. 

Table 3.1 Example of Sentences Where NegEx Failed to Capture the Correct  

Negation Status of Concepts Denoted by Bold Letters 

Record Type Sample Sentence 
Discharge Summary Additionally, there was no evidence of extension of 

his infected pseudocyst into the psoas muscle. 
Abdomen CT There is no significant interval change in the 2 large 

pancreatic pseudocysts. 
OPERATIVE 
REPORT 

We confirmed no evidence of epithelium consistent 
with a pseudocyst. 

Consultation Acute pancreatitis with pseudocyst, with no obvious 
complications of the pseudocyst at this point in time. 

Liver CT W Contr Although there is no discretely visualized or 
abnormal enhancing pancreatic mass, there is marked 
pancreatic duct dilatation with side duct ectasia and 
abrupt cutoff of the pancreatic duct within the 
pancreatic head. 
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Aiming to reduce the number of missing pancreatic cyst patients in our NLP 

system inspired us to improve the negation assignment of NegEx by incorporating 

dependency parsing into NegEx. Dependency relation is a binary asymmetric relation 

between tokens within a sentence that has been shown to improve various NLP tasks 

including information extraction (Fundel, Küffner, & Zimmer, 2007), negation detection 

(Wilson, Wiebe, & Hoffmann, 2005), entity disambiguation (Finkel, Dingare, Nguyen, 

Nissim, Manning, & Sinclair, 2004) and many others (Cohen & Elhadad, 2012). We 

developed and tested our negation identification algorithm focusing on only pancreatic 

cyst concepts using a single institution data set. In order to evaluate its performance on 

other clinical concepts and dataset, we applied our system on 159 clinical notes from 

Mayo Clinic where clinical findings such as disorders and signs/symptoms have been 

annotated. We compared the performance of our algorithm on Mayo Clinic dataset with 

NegEx.  

3.2 Previous Works 

Negation detection has been the main or sub task of several challenges in NLP. 

Assertion classification was one of the three tasks in the 2010 i2b2/VA shared task where 

each medical concept had to be classified into one of six categories of “present”, 

“absent”, “possible”, “conditional”, “hypothetical”, and “not associated with the patient” 

(Uzuner, South, Shen, & DuVall, 2011). Processing modality and negation was the main 

task of Question Answering or Machine Reading Evaluation (QA4MRE) lab at CLEF 

2011 (Morante & Daelemans, 2011). Negation and speculation in NLP (NeSp-NLP 2010) 

(Morante & Sporleder, 2010), identifying hedges and their scope in CoNLL-2010 shared 

task (Farkas, Vincze, Mora, Csirik, & Szarvas, 2010), and SEM 2012 shared task of 

resolving the scope and focus of negation (Morante & Blanco, 2012) are few other 

initiatives that show the growing importance of negation processing in the NLP research 

community. 

Corpora used in 2010 i2b2/VA and CoNLL-2010 shared tasks are available to 

researcher with signing a data use agreement to facilitate the development and evaluation 

of clinical NLP algorithms. BioScope corpus that was used as part of the CoNLL-2010 

shared task has been created by annotating negation and uncertainty in biomedical texts is 
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also publicly available (Vincze, Szarvas, Farkas, Móra, & Csirik, 2008). BioScope corpus 

consists of clinical text, abstract and full text of scientific articles. The free text clinical 

notes of BioScope corpus are the radiology reports from the 2007 ICD9 challenge of the 

Cincinnati children hospital (Pestian, et al., 2007). NegEx has released a de-identified 

physician annotated test set of 2,376 sentences from 120 clinical reports. Also an 

instruction on how to produce an annotation guideline for biomedical corpus with 

negation layer is available (Morante, 2010). 

In negation detection, rule based techniques have been shown to be effective and 

widely used in many NLP systems (Savova, et al., 2010) (Friedman, Hripcsak, Shagina, 

& Liu H, 1999). Rule based negation systems can be token-based (e.g., NegEx 

(Chapman, Bridewell, Hanbury, Cooper, & Buchanan, 2001), NegExpander (Aronow, 

Feng, & Croft , 1999), NegFinder (Mutalik, Deshpande, & Nadkarni, 2001), NegHunter 

(Gindl, Kaiser, & Mik, 2008;)) ontology-based (Elkin, et al., 2005), or utilize syntactic 

parsing results (e.g., DepNeg (Sohn, Wu, & Chute, 2012), ChartIndex (Huang & Lowe, 

2007), Ballesteros et al (Ballesteros, Francisco, Díaz, Herrera, & Gervás, 2012)). For 

example, NegEx processes one sentence at a time by finding negation and termination 

terms. Termination terms are conjunctions such as “but” that end the scope of negation 

terms. There are three types of negation in NegEx algorithm, pseudo negation terms that 

are similar to negation terms but do not negate clinical conditions, pre-condition negation 

terms that appear before the clinical findings, and post-condition negation terms that 

appear after the clinical findings. If a pseudo negation term is found, NegEx skips to the 

next negation term in the sentence and uses corresponding regular expressions based on 

pre/post negation terms. NegEx has been extended into an algorithm called ConText in 

order to determine if a clinical condition of interest is hypothetical, historical or 

experienced by someone other than patient in addition to negation identification 

(Harkema, Dowling, Thornblade, & Chapman, 2009). Both NegEx and ConText have 

been translated into other languages (Afzal, Pons, Kang, Sturkenboom, & Schuemie, 

2014) (Skeppstedt, 2010). 

There are some attempts to incorporate syntactic parsing to improve the negation 

detection (Sohn, Wu, & Chute, 2012) (Ballesteros, Francisco, Díaz, Herrera, & Gervás, 

2012). For example, DepNeg is a dependency parser-based negation algorithm that 
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utilizes the dependency structure of a target named entity in the sentence instead of a 

fixed negation scope (Sohn, Wu, & Chute, 2012). DepNeg uses manual negation rules 

based on the patterns of dependency paths between the focus (i.e., named entity) and the 

potential negation terms in the text that enables correctly identifying problematic 

negations in the traditional negation algorithm, such as NegEx. Similarly, Ballesteros et 

al used Minipar dependency parser to determine the scope of negation terms by 

traversing the dependency path from sentence’s verb towards the end of the sentence. 

They could detect negation terms and their scope in clinical text of BioScope corpus with 

precision and recall of 0.958 and 0.906 respectively (Ballesteros, Francisco, Díaz, 

Herrera, & Gervás, 2012). 

Machine learning has also been applied in negation detection. For instance, there 

are twenty-one systems developed for i2b2/VA assertion classification task where 

majority of them applied various machine learning algorithms including support vector 

machines (SVMs). The best system achieved 0.9326 micro-averaged F-measure using a 

2-step approach. Where, in the first step, each word was represented as a feature vector 

consisting of n-gram, token category, and window of four tokens before and after the 

word, etc. and then a set of different classifiers were used to predict a score per class for 

each concept. In the second stage a multi-class SVM was used to predict the final 

assertion prediction for each token (de Bruijn, Cherry, Kiritchenko, Martin, & Zhu, 

2011). Similar 2-step approach was applied to BioScope corpus by Diaz et al where each 

token in a sentence was classified as negation/speculation signal and a second classifier 

was used at a sentence level to determine the negation status of concept (Cruz Díaz, 

Maña López, Vázquez, & Álvarez V, 2012). Goldin and Champan compared Naïve 

Bayes and decision trees with default NegEx rule on 207 sentences of clinical records 

with negation “not”. The default NegEx rule negates any UMLS concept within six-word 

window of “not.” Naïve Bayes performed better than decision tree and baseline method 

with F-Measure of 0.90 (Goldin & Chapman, 2003). 

Features used in machine learning algorithms may include results from rule-based 

systems as well as syntactic parsing results. For example, Grouin et al used SVM with 

NegEx and ConText dictionaries before or after a concept in a 5-word window (Grouin, 

et al., 2010). Wu et al (Wu, et al., 2014) also used SVM with following list of features, 1) 
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binary feature indicating if a given word appeared in a window size of 3,5 or 10 from the 

named entity 2) token in an exact distance from the named entity 3) negation terms 4) 

DepNeg dependency rules indicating whether a named entity is on the same dependency 

path as the negation word 5) constituency tree fragments to represent if a named entity is 

inside a phrase. They trained and test their system on four different corpora of SHARP 

NLP (Rea, et al., 2012), 2010 i2b2/VA, MiPACQ (Cairns, et al., 2011), and NegEx test 

sets and compared their system with YTEX (Garla, et al., 2011) implementation of 

NegEx algorithm. Their results were mixed and non conclusive, NegEx performed very 

well on NegEx test set (F-measure= 0.953) but the performance declined on other corpora 

with lowest F-measure of 0.623. Using a single versus all corpora for training the SVM 

has also generated mixed results that can be contributed to the diversity of their corpora. 

As majority of the systems reviewed above are not publicly available, it is not 

feasible to compare various systems reported in the literature. Determining the scope of 

negation is a main challenge in most of rule based methods such as NegFinder that use a 

context free grammar parser especially when the distance between negation term and 

concept is more than a few words. For instance in the sentence “Based on this, he 

required no operative intervention for his pseudocyst.” Because of the negation term 

“no” NegEx will consider the concept “pseudocyst” as negated while “no” is associated 

with “operative intervention” and not the “pseudocyst”. DepNeg attempts to remove this 

deficiency using dependency parser and shows promising preliminary results while using 

a limited set of rules on 159 Mayo clinical notes. DepNeg was compared with cTAKES 

adoption of NegEx, which is customized to Mayo Clinic data. cTAKES is an open source 

natural language processing tool for information extraction from medical records 

developed by Mayo Clinic and released under Apache license (Savova, et al., 2010). 

DepNeg focused on improving the precision of NegEx therefore it decreased the number 

of false positives in comparison to cTAKES negation (cTAKES negation -FP: 34, 

DepNeg-FP: 6) but increased the number of false negatives (cTAKES negation-FN: 47, 

DepNeg-FN: 61) (Sohn, Wu, & Chute, 2012). 

There are two approaches of graph-based and transition-based in dependency 

parser. DepNeg uses ClearParser (Choi & Palmer, 2011), which is a graph-based 

dependency parser to determine whether the negation words are on the same path as 
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clinical concepts and therefore negated. Unlike DepNeg, we use a transition-based 

dependency parser to find if there is any dependency relation between negation words 

and concepts. And because NegEx had low number of false negatives (high recall) in our 

training set, we only applied the dependency parser to concepts that are considered 

negated by NegEx unlike DepNeg that applies dependency parser to all sentences 

containing negation tokens. 

3.3 DEpEndency ParsEr Negation (DEEPEN) 

We have developed an algorithm called DEpEndency ParsEr Negation 

(DEEPEN) that uses a chain of nested dependency relations between the clinical findings 

and negation terms. DEEPEN evaluate concepts that are considered negated by NegEx 

algorithm; so if a concept is considered affirmed by NegEx, no action is taken. Stanford 

dependency parser (SDP) (de Marneffe, MacCartney, & Manning, 2006) is applied to 

sentences containing the negated concept. SDP comprises of 53 grammatical relations 

(det: determiner, infmod: infinitival modifier, etc.) that will be generated for words 

within a sentence (de Marneffe & Manning, 2008). The SDP output consists of 

dependency relation, governor term and dependent term. Dependency relation is the 

grammatical relation between dependent term and governor term. Governor term is the 

word in the sentence that the dependency relation is reported for and dependent term is 

the word that is dependent of the governor term. For instance as shown in Figure 3.1, in 

the sentence “Based on this, he required no operative intervention for his pseudocyst.”, 

det(intervention-9, no-7) “det” is the dependency relation, “intervention” is the governor 

term and “no” is the dependent term.  

 

 
Figure 3.1 Dependency Relations Between Tokens in a Sentence 
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For every sentence with a concept that is considered negated by NegEx, a 

dependency chain is generated that is composed of three levels of token dependencies. 

First level token is governor of negation term, “evidence” in det (evidence-2, No-1). 

Second level tokens are dependents of first level tokens, “of” in prep (evidence-2, of-3). 

Third level tokens are dependents of second level tokens, “dilatation” pobj (of-3, 

dilatation-6). Dependency chain is the concatenation of these three levels of token 

dependencies, “evidence of dilatation”. If the concept is found in the dependency chain, it 

is negated otherwise it is affirmed. The concept “pancreatic duct dilatation” in the 

sentence “No evidence of pancreatic duct dilatation or common bile duct stones.” is in 

the dependency chain, therefore it is negated. For concepts that are noun phrase such as 

“pancreatic duct dilatation”, even if part of the noun phrase is in the dependency chain 

(dilatation), the concept is negated. 

This basic rule fails in sentences with certain structures and therefore negated 

concepts are falsely identified as affirmed (i.e., false negative). We developed a set of 

rules to address the false negative results of applying DEEPEN on the IU training set.  

In the previous chapter, we considered false positive and negative from a medical 

perspective (i.e., presence or absence of medical problem) meaning that if a patient has 

pancreatic cyst and the system considered that as a negative case (patient does not have 

pancreatic cyst), the result was evaluated as false negative. Similarly, if a patient does not 

have pancreatic cyst and the system result was affirmed (patient has pancreatic cyst), it 

was evaluated as false positive. In information retrieval focusing on negation status, 

however, we evaluate True positive—both system and the gold standard negates the term; 

True negative—both system and the gold standard does not negate the term; False 

positive—System negates the term but the gold standard does not negate the term; False 

negative—System does not negate the term but the gold standard negates the term. 

DEEPEN was developed with the mindset of decreasing the number of false 

positives, nonetheless we attempted to decrease the number of false negatives by 

addressing most common sentence structures seen in our IU training data set. Figure 3.2, 

shows the flowchart of the algorithm used in development of DEEPEN.  
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Figure 3.2 Detailed Flowchart of the DEEPEN Algorithm 
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Table 3.2 shows some examples of various rules developed in DEEPEN. More 

details and examples of DEEPEN rules are provided in the appendix A. DEEPEN is 

written in java and is freely available for researchers to use1. 

Conjunction And Rule: If there is a conjunction “and” in a sentence, it will be 

divided into two sub-sentences and negation is examined for both sub-sentences.  

Preposition Within Rule: DEEPEN uses the collapsed representation of SDP 

where dependencies that involve propositions or conjunction are merged to create a direct 

dependency between content words. For instance, the dependencies involving prep (size-

5, without-6) and pobj (without-6 inflammation-8) are collapsed into one single relation 

prep-without (size-5, inflammation-8). As we mentioned earlier first level token is the 

governor of negation term. In sentences where the negation term “without” is merged into 

the dependency relation, the governor of the relation “prep-without” is considered as first 

level token.  

Preposition With/In/Within Rule: For propositions “in”, “within”, and “with” the 

SDP is only run when the concepts in these relations are part of the dependent or 

governor terms otherwise the concept is considered as “affirmed”.  

Nominal Subject Rule: Nominal subject in SDP is a relationship in which the 

subject is a noun phrase such as “No abnormally”. If the governor of this relationship is a 

first level token then its dependent is added to the dependency chain.   

Suggest Rule: in sentences that contain the term “suggest” if the dependent of the 

term “suggest” is a first level token then “suggest” will also be considered as a first level 

token.  

                                                
1 http://svn.code.sf.net/p/ohnlp/code/trunk/DEEPEN 
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Table 3.2 DEEPEN Rules with Relevant Sentence Examples and Their SDP Relations, 

Concepts are shown in Bold and Negation Terms in Italic (See Appendix A for Detailed 

Dependency Relations) 

Rule Sentence Relevant Dependency 
Relations 
Dependency relation (governor 
token-index, dependent token-
index)  

Conjunction 
and   

The main pancreatic duct does 
not appear disrupted and in 
continuity by a bridging 
pseudocyst 

pseudocyst is affirmed in the 
sub-sentence “in continuity by a 
bridging pseudocyst” therefore 
SDP has not been applied. 

Preposition 
without  

The pancreas is normal size 
without perpancreatic 
inflammation or pancreatic 
ductal dilatation. 

First level token:  
prep (size-5, without-6)  
Second Level tokens:  
prep_without (size-5, 
inflammation-8) 
nsubj (size-5, pancreas-2)  
cop (size-5, is-3) 
amod (size-5, normal-4) 
Third level tokens: 
det (pancreas-2, The-1) 
conj_or (inflammation-8, 
dilatation-12) 

Preposition 
in, with, and 
within 

An abdominal CT showed a 
normal pancreas and 
gallbladder with no dilated 
ducts. 

First level token:  
det (ducts-5, no-3)  
Second Level tokens:  
amod (ducts-5, dilated-4) 

Nominal 
Subject 

No abnormally dilated 
pancreatic duct. 

First level token:  
det (abnormally-2, No-1) 
nsubj (dilated-3, abnormally-2) 

Suggest  No associated fluid collection 
to suggest pseudocyst or 
abscess. 

First level token:  
det (collection-4, No-1) 
nsubj (suggest-6, collection-4) 
aux (suggest-6, to-5)  
dobj (suggest-6, pseudocyst-7)  
dobj (suggest-6, abscess-9) 
Second Level tokens: 
amod (collection-4, associated-2) 
nn (collection-4, fluid-3) 
Third level tokens: 
conj_or (pseudocyst-7, abscess-
9) 
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These additional rules were added to the basic algorithm to decrease the number 

of incorrect assignment of present to concepts that were negated by NegEx.  

We stopped the development of the algorithm as we reached acceptable precision and 

recall of 0.9839 and 0.9983 respectively on the training set and tested the final algorithm 

on the IU test set and Mayo Clinic dataset. Identified concepts and their negation status 

stored in the database were exported as spreadsheet to be reviewed by two domain 

experts independently at IU. The inter annotator agreement between the two reviewers 

was 95.6%. Any discrepancies regarding the negation status of a concept was discussed 

with the third medical expert by looking at the complete patient report. At Mayo Clinic, 

we used a gold-standard dataset that has been already annotated by four annotators, 

further details on annotation task and schema on this dataset can be found elsewhere 

(Ogren, Savova, & Chute, 2008). 

3.4 Data Sources 

This study was conducted under approved institutional review board at each 

institution. 

3.4.1 Indiana University Dataset  

The IU data was divided into two sets of training data of 664 patients consisting 

of 1136 reports with 1728 sentences with pancreatic cyst concept and test set of 452 

patients with 793 reports and 1462 sentences. 

3.4.2 Mayo Clinic Dataset 

In order to evaluate the generalizability of our negation system, a set of 159 

clinical notes with manual annotation of named entities and their negation status by four 

domain experts was used (Ogren, Savova, & Chute, 2008). There are total of 1,007 

disorders with 426 unique UMLS concepts and 439 signs and symptoms with 129 unique 

UMLS concepts. 

3.5 Evaluation    

The system output was compared to the gold standard annotations to calculate the 

systems’ precision, recall, and F-measure. Table 3.3 shows the relationship between the 
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system output and manually annotated sentences as defined by True positive—both 

system and the gold standard negates the term; True negative—both system and the gold 

standard does not negate the term; False positive—System negates the term but the gold 

standard does not negate the term; False negative—System does not negate the term but 

the gold standard negates the term. 

Table 3.3 Comparison of the System's Result with Manually Annotated Sentences 

 System Output 

True 

(Negated) 

False 

(Affirmed) 

 

Gold 

Standard 

True 

(Negated) 

True Positive 

(TP) 

False 

Negative (FN) 

False 

(Affirmed) 

False Positive 

(FP) 

True Negative 

(TN) 

 

Performance of the system is measured by precision, recall, and F-Measure as 

follows:   

Accuracy =
TP+ TN

TP+ FP+ FN+ TN                                                                                                                                                               (3− 1) 

                Precision =
TP

TP+ FP                                                                                                                                                                                                         (3− 2) 

    Recall =
TP

TP+ FN                                                                                                                                                                                                                       (3− 3) 

  F−Measure =
2 ∗ Precision ∗ Recall
Recall+   Precision                                                                                                                                           (3− 4) 

3.6 Results  

Table 3.4 shows the results of NegEx and DEEPEN applied to the IU and Mayo 

Clinic dataset. IU dataset contains 438 negated pancreatic cyst concepts (418 TPs + 20 

FNs and 422 TPs + 16 FNs through NegEx and DEEPEN respectively) out of 1461 total 

concepts, which accounts for 30% of the data. Similarly 15.79% of disorders and 29.35% 

of sign and symptoms are negated in Mayo Clinic dataset. DEEPEN decreased the 

number of both false positives and false negatives when tested on IU dataset while it only 

decreased the number of false positive on Mayo Clinic dataset.  
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Table 3.4 Comparison of DEEPEN and NegEx Algorithm on IU and Mayo Clinic  

Dataset 

IU
 D

at
as

et
 

Pa
nc

re
at

ic
 C

ys
t 

C
on

ce
pt

s 

M
et

ho
d 

TP
 

TN
 

FN
 

FP
 

Pr
ec

is
io

n 

R
ec

al
l  

F-
M

ea
su

re
  

A
cc

ur
ac

y 
 

NegEx 418 983 20 40 0.91 0.95 0.93 0.95 
DEEPE

N 
422 100

8 
16 15 0.96 0.96 0.96 0.97 

M
ay

o 
C

lin
ic

 
D

at
as

et
 

D
is

or
de

rs
 NegEx 135 736 10 37 0.78 0.93 0.85 0.94 

DEEPE
N 

107 760 38 13 0.89 0.73 0.80 0.94 

Si
gn

 
&

 
Sy

m
pt

om
s NegEx 113 276 10 20 0.84 0.91 0.88 0.92 

DEEPE
N 

95 287 28 9 0.91 0.77 0.83 0.91 

 

We also compared DEEPEN with DepNeg that uses dependency relations for 

negation detection. As the exact replication of the experiment reported in the DepNeg 

paper is not feasible, we compared DEEPEN’s performance on the example sentences 

reported in the DepNeg paper. These sentences represent typical cases of DepNeg’s 

capability of complicated negation detection as well as its limits. Table 3.5 shows the 

performance of three negation algorithms on the example sentences reported in the 

DepNeg paper.  
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Table 3.5 Comparison of DEEPEN, DepNeg, and NegEx, on Sentences Reported in the 

DepNeg Paper (the bold words in the sentence column denoted concepts that were 

examined for negation status; gray cells denote correct cases for each column). 

 
Sentence 

Negation Status 
Gold 

Standard 
DEEPEN DepNeg NegEx 

He felt that no specific 
therapy was available 
regarding Moebius 
sequence. 

Affirmed  Affirmed Affirmed Negated 

I do not recommend drug 
treatment for stone 
prevention. 

Affirmed Affirmed Affirmed Negated 

If her pain should not have 
been resolved by that time, 
there is the possibility of 
repeating facet rhizotomy. 

Affirmed Affirmed Affirmed Affirmed 

However, I suspect that 
her pain is not due to an 
underlying neurologic 
disorder. 

Affirmed Affirmed Affirmed Affirmed 

She denies any ear pain, 
sore throat, odynophagia, 
hemoptysis, shortness-of-
breath, dyspnea on 
exertion, chest discomfort, 
anorexia, nausea, weight-
loss, mass, adenopathy or 
pain.  

Negated Negated Negated Negated 

Molecular fragile-X results 
reveal no apparent PMR-1 
gene abnormality. 

Negated Affirmed Affirmed Negated 

Mrs. Jane Doe returns with 
no complaints worrisome 
for recurrent or metastatic 
oropharynx cancer. 

Negated Affirmed Affirmed Negated 

She is not having any 
incontinence or suggestion 
of infection at this time. 

Negated Affirmed Affirmed Negated 

She denies any blood in 
the stool. 

Negated Negated Affirmed Negated 

 

DEEPEN and DepNeg could correctly identify all affirmed concepts, while 

DEEPEN had one less false negative than DepNeg. NegEx, however, had higher number 
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of false positives than both DEEPEN and DepNeg while it had lower number of false 

negatives compared to DEEPEN and DepNeg. It should be noted that the major aim of 

DEEPEN and DepNeg is on having a high precision (i.e., reducing false positives).   

3.7 Discussion 

DEEPEN had higher precision and recall than NegEx on the IU dataset. However, 

when applied to the Mayo Clinic dataset, DEEPEN decreased false positives (i.e., higher 

precision) at the expense of increasing false negatives (i.e., lower recall), which resulted 

in lower F-measure than NegEx. This fact shows an interoperable issue on using 

heterogeneous data between institutions. NegEx uses a dictionary of negation terms that 

is not comprehensive. We added “lack of”, “failed”, “negative”, “resolving” and 

“resolution” to NegEx’s negation phrases dictionary based on observations in our training 

set to capture more negated concepts.   

3.7.1 Error Analysis  

In what follows, we discuss some of the reasons contributed to the increasing 

number of false negatives. 

1) Errors due to sentence detection: Detecting the correct boundary of a sentence 

is a very important step in negation detection algorithm. Sentence detection in clinical 

notes is very challenging due to lack of end of sentence punctuation and random line 

breaks. Sentence detection can affect negation identification, for instance when “HOSP 

NO” and “Diagnosis: Pancreatic pseudocyst” in two lines were detected as one sentence 

the concept “pancreatic pseudocyst” is falsely considered negated because of the “NO” in 

“HOSP NO” that matches “no” in NegEx’s negation terms. Also when multiple lines of 

text are considered as one sentence, dependency parser fails to correctly identify the 

relation between tokens in the sentence containing the concept and therefore the final 

negation detection result is compromised.  

2) Errors due to variations in the two institutions’ corpora:  

DEEPEN was developed focusing on a single concept within the IU dataset although it 

performed well on Mayo Clinic dataset by decreasing the number of false positive in 

comparison with NegEx it could not maintain the same performance consistency as tested 

on IU data. One of the major sentence structures in the Mayo Clinic false negatives were 
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sentences with a negation word followed by multiple concepts separated with “comma” 

and “or” such as “No associated shortness-of-breath, nausea, vomiting, diaphoresis, or 

light-headedness.”. All five concepts within this sentence are falsely considered affirmed 

by DEEPEN. More than 20 of the false negatives in sign and symptoms and 12 of false 

negatives in the disorders from Mayo dataset had the same structure. 

3) Conditions developed previously  

Sentences that mention a condition that was previously developed in a patient but are not 

considered a current medical problem could be very complex and require deep contextual 

analysis. Following is example of two such sentences A and B from Mayo clinic and IU 

datasets respectively. 

A) “Mr. X is doing very well from the standpoint of his sarcoma with no evidence 

of recurrent disease on physical examination.” 

B)“No lesion seen at the prior site of the mid pancreatic body lesion, which was 

previously to represent a pseudocyst.”  

Based on dependency relations, “sarcoma” and negation word “no” are not 

related in sentence A, however it can be inferred from the context that the concept is 

considered as a history and therefore negated. Likewise in sentence B, the concept 

“pseudocyst” is affirmed by DEEPEN because there is no relation between negation term 

“No” and the concept “pseudocyst”, however previously seen pseudocyst does not mean 

that the patient currently has pseudocyst. 

3.7.2 Limitations 

As DEEPEN does not address the present (i.e., affirmed) concepts by NegEx. The 

number of concepts considered incorrectly present by DEEPEN are inherited from 

NegEx or due to incorrect dependency relations of SDP parsing. SDP has been created 

using the corpus of English web Treebank that consists of sentences from weblogs, 

newsgroups, etc. Therefore its performance would be lower on clinical texts that lack 

proper grammatical structure in comparison to general English in news and weblogs.  
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3.7.3 Future Work 

We are planning to address the false negative cases in Mayo Clinic dataset and 

also address the concepts that are affirmed by NegEx in the next release version of 

DEEPEN.  

3.8 Conclusion  

In this chapter, we described one of the challenges in contextual detection, 

detecting the negation status of a concept in a sentence. DEEPEN used a nested 

dependency relation to find out the relation between negation words and concepts to 

decrease the number of falsely negated concepts (i.e. false positives). It could effectively 

decrease the number of false positives in both the IU and Mayo Clinic dataset in 

comparison with NegEx. DEEPEN shared the idea of using a dependency parser with 

DepNeg to find out the relation between negation words and concepts. Our approach is 

different from DepNeg in: 1) DepNeg does not use NegEx to find the negation status of 

concepts and 2) DepNeg uses rules to find out if concepts and negation words are on the 

same dependency path. However, DEEPEN is built on top of NegEx and only uses 

dependency relation rules for concepts that are negated by NegEx. The comparison of 

DEEPEN with DepNeg on example sentences reported in DepNeg paper showed the 

capability of DEEPEN in correctly identifying negation status of complicated cases.   

In the next chapter, we will describe our family history detection, another 

important contextual information extraction. 
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CHAPTER FOUR: FAMILY HISTORY 

4.1 Introduction 

It has been shown that a wide range of adult conditions such as diabetes, 

cardiovascular diseases, Alzheimer’s and cancers have hereditary roots (Wilson, et al., 

2009). Accurate family history information can be very helpful in precision medicine that 

tailors the treatment to the individual characteristics of patients. For instance, the risk of 

having colon cancer for individuals with family history of colon cancer is two fold, which 

makes individuals with positive family history of colon cancer the best candidates for 

genetic testing and preventive screening (Yoon, Scheuner, Peterson-Oehlke, Gwinn , 

Faucett , & Khoury, 2002) (Behnam, Waterman, & Smith, 2013).  

The family history information can be available in clinical notes by “documenting 

parents’ and siblings’ age and health (or age and cause of death), as well as a checklist of 

conditions with environmental and hereditary etiologies” (Degowin & Degowin, 1969). 

Information extraction (IE) attempts to structure and encode the information 

buried in free text clinical notes. Statistical machine learning and rule-based approaches 

have been used in the development of IE techniques. Machine learning approaches 

require annotated training examples and lacks portability. Rule-based approaches on the 

other hand perform very well when a task involves a specific subdomain or a limited 

number of named entities (Liu, et al., 2013). Although, rule-based approaches are 

cumbersome to implement, they have been widely used in clinical NLP. In this chapter 

we developed a rule-based method to identify patients with family history of pancreatic 

cancer. In order to evaluate the generalizability of the algorithm, it was evaluated on a 

different institution’s records that it was originally developed. 

4.2 Related Works 

Family history identification consists of various steps including section 

segmentation, relation discovery between family members and diagnosis, and negation 

detection. Automatic identification of section headers in clinical notes is an important 

preprocessing step in the family history extraction. Argumentative zoning is a closely 

related task that attempts to classify each sentence of a scientific article into one of seven 
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sections of “background”, “other” (other researchers’ work), “own” (author’s work), 

“aim”, “textual” (textual organization of the paper), “contrast” (other’s work weaknesses) 

and “basis” (authors’ work based on others’ work) (Teufel & Moens, 2002). Sequential 

tagging approaches such as Naïve Bays (NB) and maximum entropy (MaxEnt) model 

have been used in solving this problem. MaxEnt model of Merity et al., achieved 96.88% 

F-Score (Merity, Murphy, & Curran, 2009). Another closely related task is classification 

of sentence in abstracts of scientific articles into sections such as introduction, methods, 

results and conclusion. Machine learning algorithms such as SVM (McKnight & 

Srinivasan, 2003) (Rastegar-Mojarad, Boyce, & Prasad, 2013), Hidden Markov Model 

(HMM) (Lin, Karakos, Demner-Fushman, & Khudanpur, 2006) (Rastegar-Mojarad, 

2013), and Conditional Random Field (CRF) (Hirohata, Okazaki, Ananiadou, & Ishizuka, 

2008)have been used with performances ranging from 90-94.3% accuracy. CRF has 

several advantages over widely used probabilistic models such as HMM, Maximum 

Entropy Markov models (MEMM) and stochastic grammars in labeling sequential data. 

Lafferty et al compared the performance of CRF to HMM and MEMM models on 

synthetic and natural language data (Lafferty, McCallum, & Pereira, 2001). CRFs 

(Lafferty, McCallum, & Pereira, 2001) have been successfully applied to medication 

event extraction (Li, Liu, Antieau, Cao, & Yu, 2010), named entity recognition (Leaman 

& Gonzalez , 2008), information extraction (Fuchun & McCallum, 2006) and event 

causality identification (Fu, Liu, Liu , & Guo, 2011).  

In clinical domain, researchers at university of Vanderbilt developed an algorithm 

called SecTag that uses a combination of NLP techniques, rules based and naïve 

Bayesian scoring methods to identify note section headers (Denny, Spickard 3rd, 

Johnson, Peterson, Peterson, & Miller, 2009). Section header terminology was developed 

using Quick Medical Reference (QMR) knowledge base and Logical Observation 

Identifiers Names and Codes (LOINC) and various other resources with data model 

similar to UMLS (Denny, Miller, Johnson, & Spickard 3rd, 2008). Similar to 

argumentative zoning sequential tagging algorithms have also been used in clinical 

section segmentation. Li et al., used HMM to label sections in clinical notes to one of 15 

possible known section types achieving per section accuracy of 93% and per note 

accuracy of 70% (Li, Gorman, & Elhadad, 2010). Tepper et al, used two methods, one-
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step approach that segment and classify sections in one step and two-step approach that 

uses two different models for section segmentation and classification.  In one-step 

approach they used MaxEnt sequential tagging model to identify if a line begins, inside 

or outside a section category.  In two-step approach they used MaxEnt sequential tagging 

to first label each line with begin, inside and outside tags and then a separate 

classification algorithm was used to label each section with appropriate section 

categories. The two-step approach outperformed the one-step approach with 

precision/recall/F-measure of 90.0-97/90.4-96.7/89-96.8 (%) on three different datasets 

(Tepper, Capurro, Xia, Vanderwende, & Yetisgen-Yildiz, 2012).  

Once a family history section is identified and sentences within this section are 

parsed, the next step is to associate the diagnosis with the correct family members. Both 

rule-based and dependency parsers have been used to associate family members with 

diagnoses concepts. Goryachev et al. developed a rule-based algorithm using tokens such 

as “comma”, “and”, “dot”, “patient has”, “patient had” to assign diagnosis concepts to 

family members (Goryachev, Kim, & Zeng-Treitler, 2008). Their method achieved 

higher precision and recall in comparison to a dependency parser based algorithm used in 

another study (Lewis, Gruhl , & Yang, 2011).  

4.3 Methods 

Clinical reports are organized into sections with headers such as “Physical 

examination,” “Medication,” “family history,” etc. Usually patient’s family history is 

reported under the family history section of the narrative reports. Classifying clinical 

texts into sections can be helpful in family history extraction. However family history 

does not always appear under the family history section. It is sometimes mentioned with 

the patient’s history, diagnosis or other sections of the report. Based on this 

understanding, we divided the family history identification problem into two parts. In the 

first part, the patients’ family history, which is reported under family history section, 

were identified. In the second part, the family history section is removed from the clinical 

note and any mentions of family history in other sections were identified. The first part 

consists of three sub-parts: 1) section header detection, 2) family member and diagnosis 

identification, and 3) relation discovery between family member and diagnosis.  
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4.3.1 Section Header Detection 

Clinicians typically use a template with pre-defined sections to write their 

observations but they can freely modify these sections. Furthermore there is no fixed 

terminology for section headers; therefore accurate identification of section headers is a 

challenging task.  

We used Conditional Random Field (CRF), which is a sequential tagging 

algorithm to identify the section boundaries in clinical notes. CRFs are undirected 

graphical models that model the conditional distribution p (x | y) rather than joint 

probability distribution p (y, x) and trained to maximize the conditional probability of 

outputs given the inputs (Ye, Sun, Chieu, & Wu, 2009) (Swaminathan, et al., 2013). 

A probability distribution of p (x, y), over a set of random variables V=x ∪ y, can 

be represented by a product of distributions that represent a smaller set of the full variable 

set (Sutton & McCallum, 2011). 

                                 P (x, y) = !
!

Ф!(x!, y!)!Є!                                                      (4-1) 

Where, a is a subset of V (F=a ⊆ V), x=<x1, x2,…, xn> is the set of input variables 

for instance a sequence of tokens and y=<y1, y2,.., yn> is a set of output variables that can 

be BIO tags with section label X (B-X, I-X & O-X indicate the begin, inside and outside 

of a section with category X respectively). And Z in equation (3-2) is a constant that 

normalize distribution (3-1) to one.  

                                             Z =   Ф(x!, y!)!Є!!,!                                                (4-2) 

Ф x!, y!  can be written as k feature functions where 𝜆 is the learned weights for 

each feature function.  

                                               Ф(x!, y!) = exp{ λ!"f!"  ! x!, y! }                            (4-3) 

The weights will be learned in a training procedure to positively reinforce the 

feature functions that are correlated with the output labels or weaken the feature functions 

that are not correlated with the output labels, weights for uninformative feature functions 

will have a zero value or neutral effect.    

Reports have section relevant to their type, for instance “impression” and 

“indication” are section headers that only exist in radiology reports. Therefore, the 

training set of 400 clinical notes was randomly selected such that at least one report from 
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every type of report was included in the dataset. A guideline on annotation of clinical 

reports was created and reports were manually annotated with BIO (begin, inside and 

outside of a section) using knowtator (Ogren, 2006), tokens other than the section header 

were tagged as “out”. Two annotators independently annotated the data and a third 

reviewer resolved any discrepancies. The inter annotator agreement between the two 

reviewers was 95.9%. 

Table 4.1 and equations 3-4 to 3-9 show the calculation of the inter annotator 

agreement.  

Table 4.1 Inter-Annotator Agreement for the Manual CRF Training Data Annotation 

  2nd  Annotator 

1st Annotator  

B I O Total 

B 1976 0 54 2030 

I 0 2124 78 2202 

O 51 149 87105 87305 

Overall Total 2027 2273 87237 91537 

 

                                    Σ𝑎 =1976+2124+87105=91205                                           (4-4) 

                                           Ef1=
!"#"∗!"!#
!"#$%

  =44.95                                                    (4-5) 

                                            Ef2=
!!"!∗!!"#
!"#$%

=56.67                                                     (4-6) 

                                             Ef3=
!"#$%∗!"#$"

!"#$%
=83203.8                                             (4-7) 

                                             Σ𝑒𝑓 =83303.42                                                           (4-8) 

                                            K =!"#$%!!""#".!"
!"#$%!!""#".!"

=!"#$.!"
!"#$

=95.9                                    (4-9) 

 

The Mallet implementation of the CRF algorithm was used in this study (McCallum, 

2002). Following is the list of features used to train and test the CRF model: 

• CRF Model Features 

Features are inputs to the CRF model and the outputs are a sequence of “begin”, 

“inside” and “out” tags. In the training set, we supply the CRF model with feature inputs 

(tokens, token categories, prefix and suffixes, POS, shallow parser) and known outputs 

(begin, inside and out) so that the CRF model could learn the pattern of data by adjusting 
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the weights of its feature function. The learned model was then used on an unseen data 

(test set) to predict its sequence of tags.  

• Tokens and Prefixes and suffixes  

Tokens and their prefix and suffix are used as features. Words such as family 

history, physical exam, etc. might be section headers and are important features to be 

considered as inputs. Also tokens’ prefix and suffix were considered with the maximum 

length of 4 words. 

• Token category    

Token category can determine if a token is a section header or not. For instance 

tokens that starts with an uppercase letter are more probable of being a section header 

than tokens that contain only lowercase letters. Tokens are categorized based on their 

character. Table 4.2, obtained from LingPipe API documentation (Alias-i, 2008), shows 

the list of categories such as all upper case letters, all lower case letters, mixed of digits 

and letters, n number of digits, an uppercase letter followed by lowercase letters, 

punctuations, etc. 
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Table 4.2 List of Token Categories (Alias-i, 2008) 

Category Description 

NULL-TOK Zero-Length string. 

1-DIG A single digit. 

2-DIG A two-digit string. 

3-DIG A three-digit string. 

4-DIG A four-digit string. 

5+-DIG String of all digits five or more digits long. 

DIG-LET Contains digits and letters. 

DIG-- Contains digits and hyphens. 

DIG-/ Contains digits and slashes. 

DIG-, Contains digits and commas. 

DIG-. Contains digits and periods. 

1-LET-UP A single uppercase letter. 

1-LET-LOW One lowercase letter. 

LET-UP Uppercase letters only. 

LET-LOW Lowercase letters only. 

LET-CAP Uppercase letters followed by one or more lowercase letters. 

LET-MIX Letters only, containing both uppercase and lowercase. 

PUNC- A sequence of punctuation characters. 

OTHER Anything else. 

 

• Part of speech  

We used MedPost POS tagger for tagging the sentences (Smith, Rindflesch, & 

Wilbur, 2004). Section headers are more likely to appear as proper nouns and adjectives 

than verb or determinants. Table 4.3, shows the POS tags generated by the system for 

every token in the sentence “PROCEDURES DURING HOSPITALIZATION: The 

patient underwent…”. 

• Shallow parser 

We used Apache OpenNLP (The Apache Software Foundation) phrase chunker to 

tag syntactical phrases in BIO (begin, inside and outside) sequence. Section headers are 
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normally consist of noun phrases rather than propositional or verb phrases. As it can be 

seen in Table 4.3, the section header (PROCEDURES DURING HOSPITALIZATION) 

is a noun phrase (NP) and tagged with BNP (begin NP) and INP (inside NP). 

 

Table 4.3 Tokens of a Sentence with Their POS, Shallow Parser Generated by the  

System and Manually Tagged as BIO 

Tokens Procedures During Hospitalization : The Patient Underwent 

POS NN NN NN : DD NN VVD 

Phrase 

Chunks  

B-NP I-NP I-NP O B-

NP 

I-NP B-VP 

BIO 

tags 

B I I O O O O 

4.3.2 Family member and diagnosis identification 

After family history section was identified, sentences reported under this section 

were detected using Ytex sentence detector (Garla, et al., 2011). A list of keywords 

indicating pancreatic cancer concepts, UMLS semantic type T099 for family group 

(Bodenreider, 2004) and manual review of clinical notes were used to assemble a list of 

family member and diagnosis keywords. This dictionary was then used to identify family 

member and pancreatic cancer concept within a sentence. 

4.3.3 Relation between the family member and diagnosis 

Associating family member with pancreatic cancer in a sentence with only one 

family member is trivial (i.e. Sentence A).   

A) “Notable for a father with what sounds like cirrhosis, colorectal cancer, as 

well as pancreatic cancer, and alcohol abuse.” 

However for sentences with more than one family member, this task is 

challenging (i.e. Sentence B).    

B) “The only cancers in her family include a first cousin on her mother's side 

with breast cancer in her xxx, as well as a paternal aunt who had pancreas 

cancer in her xxx, and her brother who died of pancreas cancer at the age of 

xxx.” 
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We developed a set of rules that divides the sentence into sub-sentences based on 

tokens such as “,”, “;” or “, and” and associate family member and disease in each sub-

sentence.  

For example in sentence “B” after dividing the sentence to three sub-sentences, 

we could link “paternal aunt” and “pancreas cancer” in the sub-sentence “ as well as a 

paternal aunt who had pancreas cancer in her xxx” and “brother” and “pancreas cancer” 

in the sub-sentences “and her brother who died of pancreas cancer at the age of xxx”.  

If the pancreatic cancer concept were found with no family members in sentences 

under family history section, the general term “family history” was assigned to the 

concept.  

In order to identify family history of pancreatic cancer that are mentioned in other 

section of the report other than family history, the family history section was removed 

from the report and the same algorithm was applied with the exception that at least one 

family member should be present in the sentence. 

An NLP system using UIMA framework shown in Figure 4.1, was developed to 

accommodate the above steps. First two blocks in the UIMA pipeline are report separator 

and metadata annotator that extract each report’s main body and its metadata information 

such as report name, ID, date and patient medical record number. Reports’ main body 

was then used as an input to the next block of code where family history sections were 

detected. After the family history section was extracted, the section was split into 

sentences and family member and diagnosis were identified. We used our previously 

developed negation algorithm called DEpEndency ParsEr Negation (DEEPEN) to find 

out the negation status of diagnosis concepts in a sentence (Mehrabi, et al., 2015). 

DEEPEN improves the NegEx algorithm by double-checking the negation status of 

concepts using a nested chain of dependency relations between negation word and 

desired concepts within a sentence. And finally all the extracted information including 

patient medical number, report name, report date, the sentence containing the concept, the 

diagnosis concept and related family members found in the sentence, and their negation 

status were stored in a database.  
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Figure 4.1 Analysis Engines Developed in the UIMA Pipeline to Identify Patients  

with FH of Pancreatic Cancer 

4.4 Dataset 

4.4.1 Indiana University (IU) 

Clinical notes of patients who visited Sidney and Lois Eskenazi hospital in 

Indianapolis during March-December 2013 were used in this study. On average 7,270 

patients visited the hospital each month with a range of 80 to 95 thousands of reports for 

all patients during that month. The dataset was randomly divided into 60% for training 

and 40% for testing. 

4.4.2 Mayo Clinic 

To investigate the portability of the family history extraction rules, we used Mayo 

cancer registry data to obtain a list of patients with pancreatic cancer. There were a total 

of 3573 patients in the registry, out of which 2923 had a family history section in their 

clinical notes. Clinical notes for those patients were extracted from Mayo clinic data 

repository and text from the family history section of those notes forms the data set.   

4.5 Results 

Table 4.4 shows the performance of the system on the IU training and testing sets. 

The system output consists of patient medical record number, sentence, diagnosis, family 

member and negation. The results were evaluated as correct or incorrect by two 

independent reviewers with inter annotator agreement of 95.9%. A result is correct if 

pancreatic cancer is associated with the correct family member and negation status of the 

diagnosis was identified accurately. Any errors in these finding were considered as an 

incorrect instance. We also considered hypothetical cases (i.e. a sister may have had 

pancreatic cancer.) as incorrect. If pancreatic cancer related to patient or his non-blood 
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relative (i.e. wife or husband) was mentioned in the family history section, it was 

considered as irrelevant. 

 

Table 4.4 IU Dataset Evaluation 

Train  Correct  Incorrect Irrelevant  Precision 

Affirmed  22 7 2 75.9 

Test Set  Correct InCorrect Irrelevant  

Affirmed  14 2 2 88.9 

Negated 2 0 0 100 

 

We applied the same algorithm to the Mayo clinic dataset without any 

modifications (Table 4.5). Precision is defined as the number of correct instances over 

total of correct and incorrect instances. As it can be seen the performance of the system 

has been consistent across the two institutions.  

 

Table 4.5 Mayo Clinic Dataset Evaluation 

 Correct  InCorrect Irrelevant  Precision 

Affirmed  519 72 32 87.8 

Negated 438 4 2 99.1 

 

In order to make sure that we did not miss any patient with family history of 

pancreatic cancer, 100 reports were selected randomly and manually reviewed. Table 4.6 

shows the result of our modified algorithm to incorporate missing patterns in these 100 

reports. 

 

Table 4.6 Results of Mayo Clinic Dataset Evaluation after System Customization 

 Correct  Incorrect Irrelevant  Precision 

Affirmed  550 74 34 88.1 

Negated 443 4 2 99.1 
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Another batch of 100 reports were randomly selected from Mayo dataset 

excluding the first 100 reports to manually review the family history of pancreatic cancer. 

There was no missing pattern in the second set of randomly selected reports. 

In relation discovery evaluation, true positives were considered as instances 

where the pancreatic cancer concept was assigned to the correct family member in the 

sentence. False negatives were any family member relation that was missed by the 

system. A wrong family member assignment was considered as a false positive. 

 

Table 4.7 Results of Family Member Identification 
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True Positive False Positive False Negative 

579 190 53 

Precision Recall F-Measure 

75.3 91.6 82.6 

 

There were total of 268 patients with a family history of pancreatic cancer out of 

3573 patients with pancreatic cancer in Mayo Clinic’s data set. Table 4.7 and Figure 4.2 

show the number of patients identified with first, second or third degree relative. 
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Figure 4.2 Number of Identified Patients with one or more 1st, 2ed or 3rd Degree 

Relative 

 

4.6. Discussion 

We have developed our system on IU dataset. IU dataset consisted of any patient 

who visited the Eskenazi hospital during 10 months for any reason. Due to low incidence 

of pancreatic cancer with a familial basis, we had a very few number of patients 

compared to Mayo Clinic dataset. Clinical notes at the Mayo Clinic are CDA 1.0 

compliant; therefore section detection developed at IU dataset was not used for Mayo 

Clinic dataset. We also did not consider the family history mentions in other sections of 

clinical notes other than family history in Mayo Clinic dataset. 

4.6.1 Error Analysis  

We can classify the errors in our system based on the following reasons:  

1) Complicated family relations  
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Sentences “C”, “D”, and “E” show examples of family relation were multiple 

family member terms were used to show the relation. As we did not have these 

complicated instances of relationship in our dictionary set, our system related each family 

member term to the pancreatic cancer separately. For instance in sentence “C” pancreatic 

cancer was related to mother, sister and granddaughter. 

Sentence “F” shows an example where semantic inference is needed to infer that 

pancreatic cancer is related to mother. 

C) “recently she found out about her mother's sister's granddaughter who was 

diagnosed with pancreatic cancer at the age of xxx.” 

D) “he had an uncle that was actually a half-sibling to his mother that died of 

pancreatic cancer.” 

E) “he had one cousin on the patient's father's side of the family (the cousin was 

the son of the patient's father's brother) who had pancreas cancer at age xxx.” 

F) “her son (our patient) found her deceased about x p.m.  a postmortem 

examination showed cause of death was due to multiple blood clots and she 

was found to have a widespread pancreatic cancer.”   

2) System Failure   

As mentioned in the relation discovery section, a set of rules was developed to 

divide the sentence into sub-sentences. When there are multiple family relation terms in a 

sentence such as sentence “G”. Each family relation term is then associated with the 

pancreatic cancer concept within the sub-sentence. In sentence “G”, “pancreatic cancer” 

is associated with “paternal grandfather” but it failed to associate the “mother” and 

“father” with pancreatic cancer concept in the sub-sentence “his mother, father,” because 

there is no concept in the sub-sentence. 

G) “his mother, father, and paternal grandfather died from pancreatic cancer.” 

There were few instances where co-referencing was needed to extract the right 

family relation (i.e. sentence “H”). Our current system does not handle co-referencing. 

H) “She has one son living and one deceased. The one that is living has a recent 

diagnosis of pancreatic cancer, and three daughters.” 
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4.6.2 Future Work 

The future steps involves, refinement of the family relation discovery rules 

specially improvement of the sentence detection algorithm. A risk stratification method 

will also be developed based on the number and degree of family relations to assess 

patient’s risk of having cancer and a surveillance strategy will be designed to follow up 

with patients according to their risk. 

4.7 Conclusion 

We have developed a rule-based algorithm to identify patients with family history 

of pancreatic cancer retrospectively from their clinical records (Mehrabi , et al., 2015). 

Development of clinical NLP system requires resources such as domain experts to 

develop guidelines, nurse abstractor to create gold standards and researchers/programmer 

to develop and analyze the system. Although rule-based method highly depend on the 

natural language that they have been developed on, this study shows that as long as the 

rules are kept simple and generalizable, we can transfer an algorithm developed in one 

institution to other institutions. Positive family history is the basis for the diagnosis of 

many familial conditions and with the increase of precision medicine practice, it can not 

only be a great source of information for diagnosis and screening but also can be utilized 

for targeted treatment. And therefore adequate family history information including 

detailed information such as affected family members and their social history, age of 

disease onset, and specific information regarding the disease in question are crucial. 

So far, we described the various NLP methods to correctly identify concepts, their 

negation status and weather it is associated with patient or his family member. Although 

we extracted the encounter time along with the clinical entities from longitudinal records 

of patient, the temporal order of these events were not considered. Temporal analysis of 

clinical data of patients can help in discovering patterns that represent phenotypic path of 

disease progression. For instance, many pancreatic cysts demonstrate pre-malignant 

behavior, and some will ultimately progress to pancreatic cancer. Pancreatic lesions that 

may harbor invasive cancer depend on patient symptoms/signs/conditions, radiographic 

features, cytology, pancreatic fluid, and serum marker analysis. Identifying the common 

phenotypic features in patients with pancreatic cyst who developed pancreatic cancer 
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across their longitudinal health records is crucial in early pancreatic cancer detection. 

Unfortunately there were very few patients with pancreatic cyst in our dataset that 

developed pancreatic cancer; therefore we used a different dataset to test our temporal 

pattern discovery method that is described in the next chapter.  



 

53 

CHAPTER FIVE: TEMPORAL PATTERN DISCOVERY 

5.1 Introductions and Background  

Longitudinal patients’ EHR consist of disease characteristics, its treatment and 

outcome. The analysis of such clinical information against temporal dimensions provides 

valuable information in clinical decision-making that includes phenotyping (Hripcsak & 

Albers, 2013) and early diagnosis (Jakkula, Crandall, & Cook, 2009). It also facilitates 

discovering novel patterns in the disease progression based on the knowledge acquired 

from similar patients (Jensen, et al., 2014). Temporal pattern discovery aims at finding 

temporal patterns among one or more groups of patients. Pattern discovery is an active 

research in many domains including image processing, signal processing, video content 

analysis, etc. (Wang, Zhao, & Yuan, 2013). 

Signal processing methods have been extensively used in studying the ECG or 

EEG data to extract interesting patterns and classifying data into meaningful labels for 

clinicians (Gacek & Pedrycz, 2012). However, clinical events that are recorded in 

irregular time interval in patients’ medical records are more challenging to process. 

Domain expert interpretation is needed to define a common temporal interval and 

normalize all irregular intervals into the common selected interval. One approach would 

be to transform the irregularly timed observations into time series format and analyse the 

time series data. Lasko et al used Gaussian process regression to transform the irregularly 

timed stamped uric acid measurements in patients with gout or acute leukemia, into a 

continuous longitudinal probability density before applying the deep learning algorithm 

(Lasko, Denny, & Levy, 2013). Perotte and Hirpcsak used kernel density to estimate 

distribution of ICD9 dignosis codes across cohort of patietns. The density estimate of 

positive mentions of a diagnosis was divided by all mentions of the diagnosis to estimate 

the probability of a specific condition at a given time after its first docuemntation (Perotte 

& Hripcsak, 2013). Also Lomb-Scargle periodgrams, a frequency spectrum estimation 

model that is based on a least square fit of sinusoid was used in ICD9 coded records of 

patients to discover seasonally linked diseases (Melamed, Khiabanian, & Rabadan, 

2014).  
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Temporal abstraction is one of the most common approaches in studying the 

temporal pattern of unevenly timed-sampled clinical observation (Shahar & Musen, 1993) 

(Shahar & Musen, 1996) Temporal abstraction transfers time-stamped clinical events to 

interval-based representation so that temporal data mining methods can be applied (Batal, 

Fradkin, Harrison, Moerchen, & Hauskrecht, 2012) (Patnaik, Butler, Ramakrishnan, 

Parida, Keller, & David, 2011) (Sacchi, Larizza, Combi, & Bellazzi, 2007) (Batal, 

Valizadegan, Cooper, & Hauskrecht, 2013) KarmaLego is an algorithm for fast mining of 

temporal interval patterns. It is based on Allen's seven relations with addition of an epsilon 

value to all seven relations  (Moskovitch & Shahar , 2009) (Moskovitch & Shahar, 2013) 

(Moskovitch, Walsh, Hripcsak, & Taton, 2014). ChronoMiner is an ontology driven 

temporal mining system that dynamically extracts temporal association at various 

hierarchical levels (Raj, O’Connor , & Das , 2007). It was applied to a data set of patients 

with HIV to find the association of new mutation corresponding to the related 

administered therapy. Temporal data mining techniques were also applied to 

administrative data in health care. Noren et al presented a pattern discovery method based 

on statistical and graphical approach to mine the association between medication 

prescription and clinical events stored in clinical administrative database (Norén, 

Hopstadius, Bate, Star, & Edwards, 2010). Hybrid of time stamped and interval-based 

representations were also used in mining the temporal association rules to find relationship 

between drug prescriptions and clinical conditions of diabetic patients (Concaro, Sacchi, 

Cerra, & Bellazzi, 2009) (Nabavizadeh, Greenleaf, Fatemi, & Urban, 2014).  

Wang et al in a distinctive approach from the above represented each patients 

record as an image or event matrix where y-axis corresponds to clinical features such as 

symptoms, lab values and radiological features etc. and x-axis corresponds to the time 

they were recorded in longitudinal patient records. They proposed a convolutional 

nonnegative matrix factorization based framework to discover patterns of synthetic and 

real data in patients with diabetes (Wang, Lee, Hu, Sun, & Ebadollahi, 2012) (Wang, Lee, 

Hu, Ebadollahi, & Laine, 2013).  

Various applications such as SAX (Lin, Keogh, Lonardi, & Chiu, 2003), 

PatientFinder (Plaisant, et al., 2008) and LifeLines (Plaisant, Mushlin, Snyder, Li, Heller, 

& Shneiderman, 1998) have been developed to visualize and cluster temporal patterns. 
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SAX introduced a symbolic representation of time series with dimensionality reduction 

where data mining algorithms can be efficiently applied to symbolic representation 

without any information loss comparing to the original dimension. LifeLine provides 

hierarchical timeline visualization organizing visits, lab tests and medications for a single 

patient and doesn’t have any mechanism for temporal representation of facts across 

multiple patients’ records. PatientFinder offers graphical visualization with ability of 

temporal query on Microsoft Amalga EHR. However, it requires the user to specify what 

patterns to look for in the data.  

5.1.1 Deep Learning  

Recent advances in GPU architecture and computer vision is one of the major 

reasons for the resurgence of deep learning neural networks. These architectures have 

been very popular in image and signal processing with significant improvement in error 

reduction. For instance Microsoft reported the error reduction of 23% in the GMM-HMM 

system to 13% in deep learning system on the switchboard automatic speech recognition 

task (Deng , et al., 2013). Back propagation invented in 1980’s has been a well-known 

algorithm for learning weights of feed forward networks. Step Hochreiter has shown that 

back-propagation algorithm is too slow for practical use because of vanishing gradient 

problem (Hochreiter, 1998). Therefore simpler methods such as support vector machines 

dominated the field of machine learning during 1990s and 2000s. In 2006 Geoffrey 

Hinton introduced the idea of unsupervised pre-training of each layer of deep 

architectures (Hinton, Osindero, & Teh, 2006). This recent development of deep learning 

algorithms created a new wave of interest in unsupervised learning.  

5.1.2 ICD9 and HCUP CSS Diagnosis Codes 

ICD9-CM consists of more than 14,000 diagnostic codes with fine granularity and 

details. The Agency for Healthcare Research and Quality (AHRQ) developed a collection 

of databases and related software tools through Healthcare Cost and Utilization Project 

(HCUP) that enabled research on a broad range of topics including cost and quality of 

healthcare services, treatment outcome, medical practice patterns, etc. (Agency for 

Healthcare Research and Quality, 2014). The clinical classification software (CCS) in 

HCUP classifies ICD9-CM diagnosis codes and Current Procedural Terminology (CPT) 
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codes into more manageable and clinically meaningful categories (Elixhauser, Steiner, & 

Palmer, 2014) (Agency for Healthcare Research and Quality). The single-level HCUP 

codes clusters ICD9-CM codes into 280 groups and multi-level HCUP CSS codes further 

group the single-level codes into 18 main groups. 

Previously we explored topic modeling for discovery of associations of diagnosis 

codes (Li, Thermeau, Chute, & Liu, 2014). However it did not take into account the 

temporal relationship between diagnosis codes. In this study we explored the deep 

learning technique to discover temporal pattern among diagnosis codes. 

5.2 Rochester Epidemiology Project  

The Rochester Epidemiology Project (REP) is a research infrastructure, linking 

together the medical records of the residents of Olmsted County, Minnesota and has 

supported various population based analytic studies of disease and outcome. The REP 

manages a dynamic cohort of 502,820 unique patients who lived in Olmsted County at 

some point during 1966 to 2010 and received healthcare from one of the 50 participating 

health care providers. The REP links together the longitudinal medical records of patients 

who contributed a total of 6,239,353 person-years of follow-up. The REP provides indexes 

to all the paper-based and electronic medical records for each patient, containing 

information such as demographic characteristics, medical diagnostic codes, surgical 

procedure codes and death information (including causes of death) (St Sauver, et al., 

2012). Data collection is ongoing, and medical records are added either quarterly or twice 

a year. Dental clinics are recently being incorporated into the system as well (Rocca WA, 

Yawn BP, St Sauver, Grossardt, & Melton, 2012). Olmsted County has been one of the 

few places in the world where occurrence and natural history of almost any diseases or 

syndrome can be accurately described with a healthcare data of patients that spans over a 

half a century. In comparison to the entire US population, Olmsted County is less 

ethnically diverse (90.3% vs. 75.1% white), more educated (91.1% vs. 80.4% high school 

graduates) and wealthier ($51,316 vs. $41.944 median household income) (St. Sauver, 

Grossardt, Leibson, Yawn, Melton III, & Rocca, 2012). 

The REP data utilized for this project consisted of patient ID, demographic 

information (sex, race, date of birth), ICD9-CM and HCUP CCS diagnostic codes, counts 
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of diagnosis codes in each visit, length of stay and visit dates. ICD9-CM consists of more 

than 14,000 diagnostic codes with fine granularity and details. The Agency for 

Healthcare Research and Quality (AHRQ) developed a collection of databases and 

related software tools through Healthcare Cost and Utilization Project (HCUP) that 

enabled research on a broad range of topics including cost and quality of healthcare 

services, treatment outcome, medical practice patterns, etc. (Agency for Healthcare 

Research and Quality, 2014). The clinical classification software (CCS) in HCUP 

classifies ICD9-CM diagnosis codes and Current Procedural Terminology (CPT) codes 

into more manageable and clinically meaningful categories (Elixhauser, Steiner, & 

Palmer, 2014) (Agency for Healthcare Research and Quality). The single-level HCUP 

codes clusters ICD9-CM codes into 280 groups and multi-level HCUP CSS codes further 

group the single-level codes into 18 main groups. 

We selected patients in the REP that were 18 years old or younger at the time of 

their hospital visit by subtracting their visit data from their birth date. A cohort of 46,020 

patients (23,128 female and 22,892 male) with 271 unique HCUP CCS codes and 6,902 

unique ICD9 codes during 6 years from 2004 to 2009 was constructed. Figure 5.1 shows 

the patient population stratified by race/ethnicity with number of patients and their 

corresponding percentage separated by comma. 

 

 
Figure 5.1 Patients Race Distribution 
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5.3 Methods 

5.3.1 Representation Model 

In order to model every patient clinical record as a diagnoses matrix, a patient 

class with attributes such as patient ID, race, gender, and two diagnoses (ICD9 and 

HCUP) matrices was constructed. For every patient, an instance of the patient object 

class was created by updating its attributes. In each diagnosis matrix, the row and column 

represent the diagnosis code and year of diagnosis respectively. In order to create a 

matrix of diagnosis codes and year of diagnosis with manageable size, we limited the 

granularities of diagnosis date to year of diagnosis to reduce the number of possible visit 

dates and correspondingly the number of columns in the matrix. To reduce the number of 

rows, 6,902 in ICD9 matrix and 271 in HCUP matrix, we selected the most frequent 

ICD9 and HCUP codes in our cohort. We selected unique ICD9 codes assigned to each 

patient in the cohort in order to find the number of patients in each ICD9 category. Figure 

5.2 and Figure 5.3 show ICD9 and HCUP CSS codes assigned to each patient in the 

cohort with the number of patients on the logarithmic scale. 

 

 
Figure 5.2 ICD9 Diagnosis Codes Histogram 
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Figure 5.3 HCUP Diagnosis Codes Histogram 

 

The most frequent diagnosis codes were selected by using 90 percentile of the 

HCUP code distribution and 99 percentile of the ICD9 codes distribution. There were 28 

HCUP codes selected based on 90-percentile distribution and 70 ICD9 codes based on 

the 99-percentile distribution. Table 5.1 and Table 5.2 list the top 10 most frequent 

HCUP and ICD9 codes respectively in our data set.  

Table 5.1 Ten Most Frequent ICD9 Codes in the Cohort 

ICD9 

Code 

ICD9 Code Description Number of 

Patients  

Number of 

Occurrences 

V20.2 Routine infant or child health check 32840 121672 
V04.81 Need for prophylactic vaccination 

and inoculation against influenza 
24487 67036 

462 Acute pharyngitis 22595 61704 
465.9 Acute upper respiratory infections of 

unspecified site 
20707 53831 

V06.1 Need for prophylactic vaccination 
with diphtheria-tetanus-pertussis 
combined [dtp] [dtap] vaccine 

20706 33640 

382.9 Unspecified otitis media 16939 55269 
V05.3 Need for prophylactic vaccination 

and inoculation against viral hepatitis 
16937 29212 

V05.9 Need for prophylactic vaccination 
and inoculation against unspecified 
single disease 

16224 32768 

V04.0 Need for prophylactic vaccination 
and inoculation against poliomyelitis 

16173 31646 

V05.4 Need for prophylactic vaccination 
and inoculation against varicella 

15535 17627 
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Table 5.2 Ten Most Frequent HCUP Codes in the Cohort 
HCUP 
Code 

HCUP Code Description Number 
of 
Patients 

Number of 
Occurrences 

10 Immunizations and screening 
for infectious disease 

39076 344545 

126 Other upper respiratory 
infections 

31676 136170 

255 Administrative/social 
admission 

34350 133889 

92 Otitis media and related 
conditions 

18277 73444 

133 Other lower respiratory disease 17828 45628 

94 Other ear and sense organ 
disorders 

16385 36420 

200 Other skin disorders 15333 37190 

7 Viral infection 14680 28283 

256 Medical 
examination/evaluation 

14635 23233 

259 Residual codes; unclassified 13695 25885 

 

Not all patients have the most frequent selected codes therefore selecting the most 

frequent ICD9 codes reduced the number of patients from 46,020 to 45,066 while HCUP 

codes reduced this number of 45,627. The size of ICD9 event matrix is 70×6 representing 

70 rows of most frequent ICD9 codes in the cohort and six diagnosis years of 2004 to 

2009 as columns. Similarly the HCUP matrix has 28 rows of the most frequent HCUP 

codes and six diagnosis years of 2004 to 2009 as columns. To populate the matrix with 

the values corresponding to the patients’ diagnosis code and year of visit, two default 

matrices of ICD9 codes with 70×6 dimensions and HCUP codes with 28×6 dimensions 

and default zero values were constructed. For every patient the matrix element 

corresponding to the diagnosis year and HCUP or ICD9 code was identified and its 

default value of zero was replaced with one. The matrix was updated by adding to the 

previous state for every new data entry related to that patient. And finally the matrix 

values were normalized by replacing any value higher than zero with one for simplicity 

and accommodating the bias in patients with frequent visits. The idea of representing 
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each patient records as a matrix is to find common patterns shared among all patient 

records similar to pattern discovery in image processing.  

HCUP1=155 
 

HCUP2=211 
 

HCUP3=218 
 

HCUP4=133 
. 
. 
. 
 

HCUP28=239 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 1  0 0 0 0 

0 1  0 0 0 0 

0 1  0 1  0 0 

0 1  0 0 1  0 

0 0 0 0 0 1  

0 0 0 0 0 0 

 2004 2005 2006 2007 2008 2009 

Figure 5.4 shows an example of HCUP matrix. Grayed out cells form two 

horizontal and diagonal lines showing an example of patterns that could be common 

among all HCUP matrices. 

 

HCUP1=155 
 

HCUP2=211 
 

HCUP3=218 
 

HCUP4=133 
. 
. 
. 
 

HCUP28=239 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 1  0 0 0 0 

0 1  0 0 0 0 

0 1  0 1  0 0 

0 1  0 0 1  0 

0 0 0 0 0 1  

0 0 0 0 0 0 

 2004 2005 2006 2007 2008 2009 

Figure 5.4 An Example of a Longitudinal Patient's Record Represented as a Matrix 

5.3.2 Deep Learning Algorithm for Temporal Pattern Discovery 

Restricted Boltzmann machine (RBM) is a two layer undirected graphical model 

that unlike Boltzmann machine algorithm (Hinton & Sejnowski., 1983) has no hidden to 
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hidden and visible to visible connections. It uses connecting weights W between visible 

units v and hidden units h as shown in Figure 5.5 to define the joint probability of these 

two layers P(v, h; W) with an energy function E (Hinton G. , 2002). 

                                                 𝑝 𝑣, ℎ =    !"#  (!!(!,!))
!

                                            (5-1) 

Where Z== exp  (−𝐸(𝑣, ℎ))!!  is called the partition function. The energy 

function can be described as either equation (5-2) or (5-3) depending on the visible units 

having real or binary values correspondingly:  

                       E(v, h; W)= !
!
 𝑣!!!  – 𝑣!  !,! 𝑊!,!ℎ! - 𝑏!ℎ!!  - 𝑐!𝑣!!                      (5-2) 

                       E(v, h; W)=  – 𝑣!  !,! 𝑊!,!ℎ! - 𝑏!ℎ!!  - 𝑐!𝑣!!                                   (5-3) 

Where bj are hidden units biases and ci are visible unit biases. 

The network assigns a probability to every pair of visible and hidden vector using 

energy function defined in (5-1). The weights can be learned using stochastic gradient 

descent on the log likelihood of training data. However computing the exact gradient of 

log-likelihood is intractable. A common alternative is contrastive divergence (CD) 

approximation (Arnold, Rebecchi, Chevallier, & Paugam-Moisy, 2011), which still has 

some limitations such as optimal choice of the number of Markov chain transitions. A 

new learning algorithm called Persistent Contrastive Divergence (PCD) remove this 

limitation by persisting the Markov chain states from the previous iteration of the 

gradient calculation rather than from the training data (Tieleman, 2008) (Tieleman & 

Hinton, 2009). 

 

 
Figure 5.5 The RBM Architecture with a Visible (v) and Hidden (h) Layer 

 

Multiple RBMs can be trained by using each hidden layer as training data for the 

next higher-level layer. This stack of RBMs can be viewed as a single probabilistic model 
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called deep belief network (DBN). Salakhutdinov and Hinton introduced Deep 

Boltzmann Machines (DBM) that also composed of multiple layers of RBM with a small 

modification to the DBN algorithm (Salakhutdinov & Hinton, 2009). They used 

variational approximation to estimate data dependent expectations and persistent Markov 

chain to estimate data independent expectation. These two estimation techniques make it 

practical to learn Boltzmann machines with multiple hidden layers and millions of 

parameters (Salakhutdinov & Larochelle, 2010). 

Pylearn2 was used to implement DBM with three hidden layers and PCD learning 

algorithm (Goodfellow, et al., 2013). Pylearn2 is a machine library built on top of Theano 

(Bastien, et al., 2012) and written in python with an emphasis on flexibility and 

extensibility.  

There are number of parameters that are required to be tuned to optimize the 

DBM learning algorithm such as learning rate, number of epochs, and initial momentum. 

Epoch is the number of iteration over the input data to learn the patterns. Learning rate is 

the parameter that controls the weight and bias size changes during the learning, the 

lower it is, the slower the learning will be and if it is too high the weights and objective 

function will diverge and there would be no learning. We used a manual search to find 

the hyper parameters by monitoring the network error rates. 

5.4 Results  

5.4.1 CCS-HCUP Diagnosis Codes  

A set of 45,627 HCUP matrices with 28×6 dimension were used as inputs to a 

DBM network. Figure 5.6, Figure 5.7 and Figure 5.8 show the heatmaps of hidden layer 

weights of the DBM network.  
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Figure 5.6 Heatmaps of First Hidden Layer Weights 

 

We have randomly chosen 3 hidden nodes with the most distinctive patterns 

among the other nodes in the network. Figure 5.6 shows the value of weights connecting 

the visible units to the first hidden layer in the network. The value of these weights shows 

the strength or importance of the visible nodes contribution to the hidden layer nodes. 

Higher values of weights are shown by red color versus the blue color that represents 

lower values in the heatmaps figures. Figure 5.7 and 5.8 show the weights of second and 

third hidden layer of the DBM network. 
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Figure 5.7 Heatmaps of Second Hidden Layer Weights 

 

 
Figure 5.8 Heatmaps of Third Hidden Layer Weights 
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5.4.2 ICD9 Diagnosis Codes  

Similarly, 45,066 ICD9 matrices were constructed with ICD9 codes as rows and 

years of diagnosis as columns. Figure 5.9, Figure 5.10 and Figure 5.11 show heatmaps of 

first, second and third hidden layers weights correspondingly.  

 

 
Figure 5.9 Heatmaps of First Hidden Layer Network with ICD9 Matrices as 

Inputs 
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Figure 5.10 Heatmaps of Second Hidden Layer Weights 

 

 
Figure 5.11 Heatmaps of Third Hidden Layer Weights 
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5.5 Discussion 

Figures 5.6 to 5.8 visualize the final learned weights of three layers of DBM 

network after training on 45,627 matrices of patients with HCUP diagnosis. Figures 5.7 

and 5.8 show the value of weights connecting the first hidden layer to the second hidden 

layer and second hidden layer to the third hidden layer correspondingly. The value of 

nodes in these hidden layers are an aggregate of visible node values multiplied by their 

weights values. Therefore, the discovered patterns in higher-level layers of DBM are 

abstracted representation of inputs. 

If we associate the red dots in each column of Figures 5.6a to 5.6c we can find an 

association between HCUP codes in each year. For instance in Figure 5.6b an association 

between following codes can be seen: 211 (Other connective tissue disease), 204 (Other 

non-traumatic joint disorders), 244 (Other injuries and conditions due to external causes) 

and 239 (Superficial injury; contusion). 

Horizontal lines on Figure 5.6c show the chronic patterns of HCUP codes 91 

(Other eye disorders) and 89 (Blindness and vision defects). Also from Figure 5.6a, it can 

be inferred that disorders of teeth and jaw (HCUP code 136) was significant in first years 

of patients from 2004 to 2006 with a red line that changed to blue in later years showing 

how the disorder evolved through time. 

Also the clustering in the years 2008 and 2009 of Figure 5.6a between codes 92 

(Otitis media and related conditions) and 94 (Other ear and sense organ disorders) shows 

the strong relationship between the two codes, the same clustering with a reverse steep 

can be seen in Figure 5.6b. There are other temporal clusters in Figure 5.6b such as 

cluster between 256 (Medical examination/evaluation), 257 (Other aftercare) and 255 

(Administrative/social admission) and a cluster between 204 (Other non-traumatic joint 

disorders) and 244 (Other injuries and conditions due to external causes).  

Similarly Figure 5.9a-d show the weights of DBM network learned over 45,066 

ICD9 matrices of patients’ record. 

An association between various diagnosis codes related to respiratory disease can 

be seen such as association between 473.9 (Unspecified Sinusitis), 786.2(Cough), 466.0 

(Acute Bronchitis), and 380.4(Impacted Cerumen) in year 2004 of Figure 5.9a. 
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Association between 466.0 (Acute Bronchitis), 461.9 (Acute Sinusitis Unspecified), 462 

(Acute Pharyngitis), 381.81 (Dysfunction Of Eustachian Tube), 388.7 (Otalgia 

Unspecified), 381.4 (Nonsuppurative Otitis Media Not Specified As Acute Or Chronic), 

and 493.9 (Asthma Unspecified) in the same figure along the 2005 columns and finally 

on the year 2006 of the same figure association between 462 (Acute Pharyngitis), 461.9 

(Acute Sinusitis Unspecified), and 388.70 (Otalgia Unspecified). In figure 9b there is 

association between 520.6 (Disturbances In Tooth Eruption) and 524.4 (Malocclusion 

Unspecified) which both are mouth disorders. 

We can also see horizontal line across the columns representing chronic disease 

such as 706.1 (Other Acne) and 380.4 (Impacted Cerumen) in Figure 5.9a. A diagonal 

line between v50.2 (Routine Or Ritual Circumcision), 774.6 (Unspecified Fetal And 

Neonatal Jaundice) and 729.5 (Pain In Limb) can be observed in Figure 5.9a. In a study 

in 2008, researchers studied the effects of circumcision on jaundice in newly born babies 

(Eroğlu, Balci, Ozkan, Yörükalp, & Göksel, 2008) (Shandiz, MacKenzie, Hunt, & 

Anglin, 2014). They selected 60 male patients, of whom 30 were circumcised. Babies 

were tracked for 35 to 40 gestational weeks and no statistically significant result were 

found between the two groups of patients. Literature has shown the decrease rate of 

urinary tract infection in circumcised newborn babies (Singh-Grewal, Macdessi, & Craig, 

2005). Comparing the diagnosis codes v50.2 (Routine Or Ritual Circumcision) and 599 

(Urinary Tract Infection Site Not Specified) in figure 9a shows that the higher values (red 

color) of ICD9 code 599 are associated with lower values (blue color) of ICD9 code 

V50.2 on the same year. 

5.5.1 Limitations 

Convolutional restricted Boltzmann machines (CRBM) are similar to RBM but 

the weights between hidden and visible layers are shared among all locations in the 

hidden layer. It has been shown that CRBM has better performance on several pattern 

recognition tasks (Lee, Grosse, Ranganath, & Ng, 2009) (Norouzi, Ranjbar, & Mori, 

2009). However CRBM creates new features that are nonlinear combinations of the input 

variables and therefore it is not possible to identify the original input variables that 

derived the final detected pattern. 
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Although we constructed a DBM network in this study, we could only analyze the 

first hidden layer patterns due to the same reason as above and basically utilized a RBM 

rather than a DBM in our temporal pattern discovery. 

5.5.2 Future Work 

There are various optimization methods such as grid search, random search, 

gradient-based optimization etc. to select the best hyper parameters of a network. 

Hyperopt2 is a state of the art hyper parameter optimization package that uses sequential 

model-based optimization techniques to automatically select the optimum hyper 

parameters. Hyperopt will be used in pylearn2 to select the best parameters. Also 

comparison of our methodology with other pattern discovery methods such as temporal 

topic modeling will be studied.  

The Kids' Inpatient Database (KID) is a nationwide database of pediatric inpatient 

care from community hospitals participating in HCUP (Chu, Houchens, Elixhauser, & 

Ross, 2007) (Agency for Healthcare Research and Quality Healthcare Cost and 

Utilization Project (HCUP), 2015). Expanding our work to the KID’s nationwide 

database and comparing the results with REP cohort will be explored. 

Another factor of this investigation may be to select various different cohorts with 

different characteristics to compare results. The initial cohort of 0-18 year olds will have 

significantly different results than a cohort of 60-80 year olds. Also, incorporating longer 

temporal trends of information (10 or more years) may also show different types of trends 

over time.   

On the interpretation side, further investigation and exploration needs to be done 

in order to summarize and interpret the results in a manner that will allow medical 

experts to start analyzing the patterns that have emerged in this analysis. A pre-screening 

of data may be required, filtering out any extraneous billing coded information and 

allowing the algorithm to focus on the most relevant and impactful diagnostic codes.  

                                                
2 http://hyperopt.github.io/hyperopt/ 
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5.6 Conclusion 

In this study we selected patients 18 or younger in REP cohort and modeled their 

medical record as diagnosis matrices with the diagnosis code as the rows and year of 

diagnosis as the column. We used DBM network to find common temporal patterns 

among the diagnosis matrices (Mehrabi, et al., 2015).  

The deep learning results showed relationships, which would be expected, such as 

diagnosis codes for blindness correlated with codes for eye disorders. This face validation 

shows that the underlying technique of developing these patterns via deep learning can 

find expected results. Further exploration of additional patterns will need to involve more 

work with medical subject matter experts, and exploration of patterns that may not have 

preconceived significance but may indicate underlying patterns that need further 

exploration. 

The significance of this research is the ability to generate new hypotheses based 

on data, and identify relationships in data that are not readily apparent.  By utilizing deep 

learning and other advanced analytical techniques, new potential correlations can be 

found which can be the basis of new research questions. Those potential questions will 

have to be filtered by researchers with medical domain knowledge and the ability to 

discern and interpret the patterns as they relate to the medical diagnostic events. 

In the following we discuss some of the limitation to this approach and our future 

works. 
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CHAPTER SIX: CLOSING REMARKS 

6.1 Summary of Contributions  

There are enormous amount of clinical information embedded in free text format 

that pose challenges in its secondary use. NLP has offered opportunities to tap into 

clinical text to extract information needed for various clinical applications. We used 

sublanguage analysis to identify pancreatic cyst concepts from patient longitudinal 

records. However the meaning of concept can be affected by its surrounding contextual 

text, for instance the presence of a clinical concept in patient’s report does not imply that 

the patient has the finding. In this work, we studied the effects of two such contextual 

modifiers negation and family history. We developed a negation algorithm called 

DEEPEN that is built on top of NegEx and uses a chain of dependency relations to find 

the contextual relationship between negation words and clinical concepts. The detection 

of family history in clinical notes consists of various preprocessing steps such as section 

segmentation, negation detection, relation discovery, etc. We used a conditional random 

field algorithm to identify family history section and a set of rules to identify the 

relationship between family members and diagnosis concepts.   

When the concepts of interest are extracted using NLP from longitudinal records 

of a patient, their temporal order is not considered. In order to represent the temporal 

dimension of healthcare data, we modeled each patient’s records as a matrix with clinical 

events as rows and time of encounter as columns. Once a cohort of patients is represented 

by diagnosis/event matrices, common pattern discovery methods such as deep learning 

algorithm can be applied. We analyzed the heatmap representation of weights of a deep 

Boltzmann machine to find common features among patients’ records. 
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APPENDIX  

Following are the detailed explanation of DEEPEN rules with example sentences. 

a) “Conjunction And” (conj_and) Rule  

The concept “pseudocyst” in Figure 1 is negated by NegEx because of negation 

verb “does not”. In DEEPEN however if the dependency parser contains the dependency 

relation “conj_and”, the sentence is split into sub sentences and negation is checked for 

each sub sentence. Because there is no negation term in the second sub sentence 

containing the concept  “pseudocyst”, it is affirmed by DEEPEN. 

 
Fig. 1: Dependency relation for a sentence with “conj_and” relation 

 

b) “Preposition Without” (prep_without) Rule  

If there is “prep_without” dependency in the SDP chain, its governor is added to 

the first level token list. Therefore, the dependency chain for this sentence would be 

(size)(pancreas is normal inflammation) (The dilatation) where “size” is the first level 

token, “pancreas”, “is”, “normal”, and “inflammation” are second level tokens and  

“the”, “peripancreatic”, and “dilatation” are third level tokens. For concepts that are 

noun phrase such as “pancreatic duct dilatation”, even if part of the noun phrase is in the 

dependency chain (dilatation), the concept is negated. 

 
Fig. 2: Dependency relation for a sentence with “prep_without” relation 

c) Preposition (prep_in, prep_with, prep_within) Rule  

The sentence in Figure 3 contains the dependency relation (conj_and), therefore 

based on the rule “a) conj-and” it is split into two sentences and dependency relations is 

generated for each sub-sentence as shown in Fig. 3a and Fig. 3b. If the SDP contains one 
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of the dependencies: “prep_in”, “prep_with” or “prep_within” and either the governor or 

dependent term is the concept, then the dependency chain is generated otherwise the 

concept is affirmed. In the sub-sentence “gallbladder with no dilated ducts” because the 

dependent of relation prep_with (gallbladder-1, ducts-5) is part of the concept “dilated 

duct”, the dependency chain is generated, which is “ducts (first level token) dilated 

(second level tokens)”. The concept (dilated ducts) is in dependency chain and therefore 

negated.    

  
Fig. 3.  a) Dependency relation for a sentence with “prep_with” relation  

 
Fig. 3. b) SDP after splitting the sentence into two sentences 

 

d) Nominal Subject (nsubj) Rule  

If the SDP contains the relation “nsubj” and its dependent term is in the 

dependency chain, then its governor term is added to the dependency chain. In the 

sentence “No abnormally dilated pancreatic duct”, shown in Fig. 5, “abnormally” is the 

dependent term in the relation nsubj (dilated-3 abnormally-2). It is also in dependency 

chain as the first level token, therefore its governor “dilated” is added to the dependency 

chain. The final dependency chain is (dilated pancreatic duct) and the concept is negated. 
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Fig. 4. Dependency relation for a sentence with “nsubj” relation 

e) Suggest Rule  

If a sentence contains “suggest” and its dependent is a first level token then 

“suggest” is added to the first level tokens. In the sentence “No associated fluid collection 

to suggest pseudocyst or abscess.” Shown in Fig. 5, “suggest” is the governor in the 

following dependency relations: nsubj (suggest-6, collection-4), and its dependent terms 

“collection” is a first level token det (collection-4, No-1) therefore the dependency chain 

is “(collection) (associated fluid) (pseudocyst)”. The concept “pseudocyst” is in the 

dependency chain and therefore it is negated.  

 
Fig. 5. Dependency relation for a sentence with “suggest” as the dependent term 
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