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Longitudinal Beta-Binomial Modeling using
GEE for Over-Dispersed Binomial Data
Hongqian Wua∗†, Ying Zhangb, Jeffrey D.Longa,c

Longitudinal binomial data are frequently generated from multiple questionnaires and assessments in various
scientific settings for which the binomial data are often over-dispersed. The standard generalized linear mixed
effects model (GLMM) may result in severe underestimation of standard errors of estimated regression parameters
in such cases and hence potentially bias the statistical inference. In this paper, we propose a longitudinal beta-
binomial model for over-dispersed binomial data and estimate the regression parameters under a probit model
using the Generalized Estimating Equation (GEE) method. A hybrid algorithm of the Fisher Scoring and the
Method of Moments is implemented for computing the method. Extensive simulation studies are conducted
to justify the validity of the proposed method. Finally the proposed method is applied to analyze functional
impairment in subjects who are at-risk of Huntington disease (HD) from a multi-site observational study of
prodromal HD. Copyright c© 2015 John Wiley & Sons, Ltd.

Keywords: Beta-binomial model; Generalized estimating equation; Generalized linear mixed-effects
model; Over-dispersion; Probit model.

1. Introduction

In many medical and biological research areas, longitudinal data composed of repeated binary or binomial responses and
a set of exploratory variables are commonly generated. One standard approach to deal with such data is the generalized
linear mixed effects model (GLMM), which accommodates response variables that follow distributions other than a normal
distribution and contains random effects in the linear predictor but assumes the binomial model for the binomial response
made from independent and homogenous binary outcomes. However, such responses are very likely to be subject to
excess variability when the binary outcomes are either dependent or nonhomogeneous. For example, in an international
multi-site observational study, PREDICT-HD [1], subjects at-risk to develop a neurodegenerative disease, Huntington
disease (HD), were followed annually to ascertain disease progression markers that are associated with diagnosis. One
of the important affected domains in HD is daily function, whose impairment is highly associated with HD progression.
A common measure of daily functioning is the functional assessment scale (FAS) of the Unified Huntington’s Disease
Rating Scale (UHDRS) [2]. The FAS consists of 25 items with yes/no responses. The items purport to measure the same
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construct, which suggests they are correlated and cannot be treated as independent Bernoulli outcomes. Rather, the items
of the FAS constitute correlated binary data. Binomial data arising from an aggregate of correlated binary outcomes can
have excess variability beyond the binomial distribution, a property known as over-dispersion. It has been recognized
that over-dispersion can cause underestimation of the standard error of regression parameter estimates in GLMM and,
therefore, potentially bias the inference of these parameters [3].

The analysis of longitudinal binomial data requires special consideration. An appropriate model should account for the
correlation due to repeated measurements. If the data are generated by a binomial process, then the model should also
account for potential over-dispersion. In this paper, we propose a model that addresses both issues.

The beta-binomial distribution [4], the double exponential distribution [5], and a multiplicative generalization of the
binomial distribution [6] have all been proposed to handle binomial over-dispersion. Among these, the beta binomial
model is most commonly used. It was first proposed to describe variation in the probability of success between sets of
trials by Skellam [4]. Various researchers including Griffiths, Williams and Crowder [7, 8, 9] promoted the use of the
beta-binomial model for over-dispersed proportions. Among them, Griffiths’s reparameterization has been widely adopted
since its introduction. Assorted model estimation methods have been developed as well. Williams [10] proposed the
maximum likelihood (ML) estimation approach with iterated reweighted least squares for a beta-binomial model using
the logistic link function. Nelder and Pregibon [11] used an extended quasi-likelihood method that requires a much weaker
distributional assumption. A mixed strategy of the maximum likelihood estimation and quasi-likelihood estimation was
introduced by Brooks [12] whereas Carroll and Ruppert [13] suggested the pseudo-likelihood approach.

Limited research has been done to extend the models addressing the issue of over-dispersion in binomial data for
longitudinal studies. Molenberghs et al. [14] proposed models with normal and conjugate random effects including
Bernoulli-type models for binary data with the logit link and also with the probit link. The former model computed the
success rate of the Bernoulli trial as a product of a beta-binomial distributed random factor and another factor of normal
random effects in a logistic form, whereas the latter employed an approximation formula to link the logistic densities to the
normal densities. The authors pointed out that the ML estimation for the marginalized probit model faces computational
challenges stemming from a multivariate normal integral in the marginal likelihood. The authors suggested several
estimating methods including quasi-likelihood, pseudo-likelihood, EM algorithm, Bayesian methods, and a technique
to transform the beta random effect to a normal random effect with implementation using the SAS NLMIXED procedure.
However, the authors did not actually implement the numerical methods, nor evaluate the performance of the estimating
methods. Kassahun et al. [15] adopted the model with logit link from Molenberghs et al. [14], and applied the frequentist
maximization approach through SAS NLMIXED to two real datasets with binary outcomes. They also alternatively
employed the Markov Chain Monte Carlo (MCMC) technique for estimation and compared inference from both methods.
It is well known that the logit link does not combine smoothly with normal random effects [14], and the accuracy and
stability of the estimator from such a procedure is not always guaranteed. Neither study provided theoretical validation
nor any simulation studies to demonstrate the validity of these methods. In addition, only the binary case and not the
general binomial case was analyzed in both studies.

In this article, we propose generalized estimating equations (GEE) as an alternative to ML to analyze longitudinal
binomial data. GEE not only avoids the numerical challenges in finding the ML estimator in a specific distributional model
for over-dispersed longitudinal binomial data, but it also allows a relaxation of the distributional assumptions required for
ML. It will be demonstrated that our proposed GEE approach successfully accounts for the over-dispersion caused by
heterogeneity in binary data as well as the correlation between measures on the same subject and, therefore, provides
more reliable inferences.

The remainder of this paper is structured as follows. Section 2 introduces the notation and construction of the GEE
approach based on the beta-binomial model. We also provide details on the computing procedure. Section 3 discusses
extensive simulation studies to compare the performance of the proposed GEE method to the GLMM. In Section 4, we
apply the proposed method to analyze the longitudinal FAS data from the PREDICT-HD study for finding the markers
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that are responsible for daily function impairment in subjects at-risk for HD. Section 5 provides concluding remarks with
potential extensions of the proposed methodology.

2. Model

Suppose we have m independent subjects and for the ith subject (i = 1, . . . ,m), at the jth time point (j = 1, . . . , ni), we
observe a binomial response Yij and a p-dimensional vector of covariates Xij . Let Yi = (Yi1, . . . , Yit, . . . , Yini)

T be the
ni × 1 response vector and Xi = (Xi1, . . . , Xit, . . . , Xini)

T be the ni × p design matrix which includes a column of 1’s,
time-dependent, and time-independent covariates for the ith subject. Each subject can have a different number of records
either by design or due to missing data. In a longitudinal setting, the Yij are usually repeated measures on the same subject
and therefore are likely to be correlated. Let ui denote the subject-specific random effects for the ith subject and Zij the
q × 1 covariate vector for these random effects at the jth time point.

2.1. Beta-binomial Model

The beta-binomial model is the most frequently used model to account for the over-dispersion present in binomial data. It
is a compound distribution of the beta distribution and the binomial distribution. Suppose that Yij follows a beta-binomial
distribution. Namely,

Yij |pij , ui ∼ Binomial(Kij , pij)

pij |ui ∼ Beta(aij , bij)

where Kij is the total number of trials for the ith subject at the jth time point.
Further assume that for every i and j, the sum of aij and bij is fixed. Let µij = E(pij |ui) =

aij
aij+bij

and τ = 1
aij+bij

. It
can be shown that

E(Yij |ui) = KijE(pij |ui) = Kijµij

V ar(Yij |ui) = Kijµij(1− µij) +
τ

1 + τ
Kij(Kij − 1)µij(1− µij)

and
Corr(Yijk1 , Yijk2 |pij , ui) =

τ

1 + τ
for k1 6= k2

where Yijk is the binary component of the binomial distribution Yij |pij , ui, k = 1, . . . ,Kij . This equation characterizes a
constant correlation among the binary components of the binomial variable Yij . The correlation yields some extra amount
of variation (the second term of V ar(Yij |ui)) that cannot be modeled by a binomial distribution for binomial data. Let
η = τ

1+τ denote the correlation coefficient. Then η(Kij − 1) describes the over-dispersion from binomial distribution for
the binomial data Yij .

Consider Wij =
Yij

Kij
, the proportion of successful trials for the ith subject at the jth time. It follows that E(Wij |ui) =

1
Kij

E(Yij |ui) = µij and V ar(Wij |ui) =
{

1
Kij

+ η(1− 1
Kij

)
}
µij(1− µij). Let Wi = (Wi1, . . . ,Wit, . . . ,Wini)

T and

µi = (E(Wi1), . . . , E(Wit), . . . , E(Wini))
T . Denote g(·) : (0, 1)→ R as a link function, which will be used to model

the marginal mean of the outcome variable Wij . Then

E(Wij |ui) = g(µij) = XT
ijβ + ZTijui

where β is a p× 1 vector of the fixed-effects regression coefficients. Possible choices of the link function include the log
function, the logit function, the complementary log function, the complementary log-log function, and the inverse function
of any strictly increasing cumulative distribution function, including the probit function.
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2.2. Review of the Generalized Estimating Equation Method

To handle longitudinal outcomes of various distributions, Liang and Zeger [16] developed a moment-based GEE method
that only requires specification of the first two moments of the outcome vector for each subject. Generally, the regression
parameters are obtained by solving the GEE,

U(β, α) =

m∑
i=1

DT
i V
−1
i (Wi − µi) = 0

where Di =
∂µi
∂β

, µi is the vector of mean responses, and Vi is the ”working” covariance matrix of Wi, which depends

on a set of variance-covariance parameters α. In practice, the set of α parameters is usually replaced by its
√
m-

consistent estimator α̂, given β. Liang and Zeger [16] proved that under mild regularity conditions β̂GEE , defined as
the solution of U(β, α̂) = 0, is consistent with an asymptotic multivariate normal distribution N(0, H−1ΩH−1), where

H = lim
m→∞

1

m

m∑
i=1

DT
i V
−1
i Di and Ω = lim

m→∞

1

m

m∑
i=1

DT
i V
−1
i V ar(Yi)V

−1
i Di.

2.3. The GEE Method under the Beta-Binomial Model

To construct the GEE for longitudinal beta-binomial data, the first two moments need to be specified based on the
distributional assumptions. In order to account for the correlation due to repeated measures and for simplicity of
computation, the mixed effects model with random intercept is considered in this article. As for the choice of the link
function, the probit function is preferred here because (1) it facilitates the formulation and computation of the mean
structure as well as the variance structure, and (2) it is commonly used as the link function for binomial type data. Under
this model setting with binomial data, it can be shown that

E (Wij) = E {E (Wij |ui)} = E
{

Φ
(
XT
ijβ + ui

)}
= Φ

(
XT
ijβ√

1 + σ2

)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution, and

(Vi)jk =

Φ
(

XT
ijβ√

1+σ2

){
1− Φ

(
XT

ijβ√
1+σ2

)}
− (Kij−1)(1−η)

Kij

{
Φ
(

XT
ijβ√

1+σ2

)
−Aijj

}
if j = k

Aijk − Φ
(

XT
ijβ√

1+σ2

)
Φ
(

XT
ikβ√
1+σ2

)
if j 6= k

where (Vi)jk refers to the component in the jth row and kth column of the variance matrix Vi, ui is the random intercept,
assumed to follow a normal distribution N(0, σ2), and Aijk = E

{
Φ(XT

ijβ + ui)Φ(XT
ikβ + ui)

}
. The variance σ2 is an

unknown nuisance parameter. The variance matrix Vi = cov(Wi) is employed as the ”working” covariance matrix for
constructing the GEE. If the data truly follow a beta-binomial distribution, the proposed GEE approach will be efficient in
estimating β with this working covariance matrix. Specifically, the GEE for this setting is given by

m∑
i=1

XT
i ∆i

(
β, σ2

)
V −1i

(
β, σ2, η

) {
Wi − µi(β, σ2)

}
= 0 (1)

where Xi, Vi and Wi are as defined above,

∆i(β, σ
2) =

1√
1 + σ2

Diag

(
φ

(
XT
i1β√

1 + σ2

)
, . . . , φ

(
XT
ini
β

√
1 + σ2

))
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and

µi(β, σ
2) =

(
Φ

(
XT
i1β√

1 + σ2

)
, . . . ,Φ

(
XT
ini
β

√
1 + σ2

))T
Here φ(·) refers to the probability density function of a standard normal distribution.

2.4. Numerical Algorithm

As stated in the previous section, solving the GEE of U(β, α̂) = 0 for β̂GEE requires finding a
√
m-consistent estimator

of α = (σ2, η). In this article, we adopt the Method of Moments in the spirit of Zeger’s approach [17], which is often used
in practice for count data. Two extra estimating equations for (σ2, η), are given by

1
m∑
i=1

ni(ni − 1)

m∑
i=1

∑
j 6=k

{
Wij − Φ

(
XT
ijβ√

1 + σ2

)}{
Wik − Φ

(
XT
ikβ√

1 + σ2

)}

Aijk − Φ

(
XT
ijβ√

1 + σ2

)
Φ

(
XT
ikβ√

1 + σ2

) = 1 (2)

and

1
m∑
i=1

ni

m∑
i=1

ni∑
j=1

{
Wij − Φ

(
XT
ijβ√

1 + σ2

)}2

Φ
(

XT
ijβ√

1+σ2

){
1− Φ

(
XT

ijβ√
1+σ2

)}
− (Kij−1)(1−η)

Kij

{
Φ
(

XT
ijβ√

1+σ2

)
−Aijj

} = 1, (3)

respectively. In these equations, although Aijk = E
{

Φ(XT
ijβ + ui)Φ(XT

ikβ + ui)
}

cannot be explicitly evaluated, it can
be easily approximated by Gauess-Hermite Quadrature. Note, however, that as long as α̂ = (σ̂2, η̂) is

√
m-consistent, the

asymptotic normality of β̂GEE does not depend on the choice of the estimator. The above Method of Moments estimates
can be shown to be

√
m-consistent using the same arguments as given in Hua, Zhang and Tu [18] and hence, they were

used for estimating the nuisance parameter α.
Plugging estimates of nuisance parameters α̂ = (σ̂2, η̂) into Equation (1), we can solve it to obtain the estimates of the

parameters of interest, β. We adopt the Fisher scoring algorithm to compute the proposed GEE model for updating β̂GEE
with the parameter estimates (β(s), σ2(s), η(s)) from the previous step. That is

β(s+1) = β(s) +

{
N∑
i=1

XT
i ∆i

(
β(s), σ2(s)

)
V −1i

(
β(s), σ2(s), η(s)

)
∆i

(
β(s), σ2(s)

)
Xi

}−1
×[

N∑
i=1

XT
i ∆i

(
β(s), σ2(s)

)
V −1i

(
β(s), σ2(s), η(s)

){
Wi − Φ(β(s), σ2(s))

}]
(4)

The algorithm for computing the proposed GEE is summarized in the following steps:
Step 1. Choose an initial value β(0) for the regression parameter β. Here, we use the estimate from probit regression for

binomial GLMM model, which includes the same fixed effects and a random intercept.
Step 2. At the sth iteration, use the current regression parameter estimate β(s) to update the estimate of α = (σ2, η).

Given an educated guess of an admissible interval [σ2
L, σ

2
U ] containing the true value σ2, perform bisection method

described in [19] to reduce the length of the admissible interval, which contains the root of Equation (2) with β(s) plugged
in for β, to be less than 10−5. Then a crude search algorithm with increment of 10−7 for σ2 within this updated admissible
interval is implemented to identify σ2(s+1) that warrants its accuracy to the solution of Equation (2) being at least 10−7.
Using the same numerical methods, η(s+1) can be solved from equation (3) with β(s) and σ2(s+1) plugged into it.

Step 3. Update the estimate of β with η(s+1) and σ2(s+1) by (4) and obtain β(s+1)

Statist. Med. 2015, 00 1–13 Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 5
Prepared using simauth.cls



Statistics
in Medicine H. WU,Y. ZHANG AND J. D. Long

Step 4. Check if max|
(
β(s+1), σ2(s+1), η(s+1)

)T − (β(s), σ2(s), η(s)
)T | ≤ ε, where ε is a small constant. If this

condition is satisfied,
(
β(s+1), σ2(s+1), η(s+1)

)T
is the final parameter estimate. Otherwise, repeat Step 2 to 4.

Once the convergence criterion is reached and the final estimate of all unknown parameters θ̂ = (β̂GEE , σ̂
2, η̂)T is

obtained, the estimated variance of the estimate β̂GEE is then given by Σ̂β = Ĥ−12 Ĥ1Ĥ
−1
2 where

Ĥ1 =

m∑
i=1

XT
i ∆i

(
β̂GEE , σ̂

2
)
V̂ −1i

(
β̂GEE , σ̂

2, η̂
){

Wi − Φ(β̂GEE , σ̂
2)
}{

Wi − Φ(β̂GEE , σ̂
2)
}T
×

V −1i

(
β̂GEE , σ̂

2, η̂
)

∆i

(
β̂GEE , σ̂

2
)
Xi

and

Ĥ2 =

m∑
i=1

XT
i ∆i

(
β̂GEE , σ̂

2
)
V̂ −1i

(
β̂GEE , σ̂

2, η̂
)

∆i

(
β̂GEE , σ̂

2
)
Xi

3. Simulation

The program written in R to compute the proposed model is available from the first author upon request. To exam the
validity of the proposed GEE approach and its performance relative to the GLMM, simulation studies were conducted.
The outcome Yij either followed the regular beta-binomial distribution or was generated as the sum of heterogeneous
binary data that produce the over-dispersion of binomial data. The two types of mechanism of over-dispersion were used
here because (1) over-dispersed data are frequently modeled by the beta-binomial distribution in practice, which is used to
develop our proposed GEE model; (2) the robustness of the beta-binomial model for over-dispersed binomial data against
the underlying constant correlation assumption between the binary components needs to be evaluated in order to promote
the use of the proposed method.

For each simulation setting, we generated 1,000 Monte Carlo samples of different sample size (m = 100 and 200),
and different degree of over-dispersion. In each sample, the data constitute

(
Yi, Xi = (1, Ti)

)
: i = 1, 2, . . . ,m. For each

subject, Ti is a ni × 1 vector of time variables, tij , j = 1, . . . , ni where ni is an integer randomly drawn from a discrete
uniform distribution [1, 10]. The first element of Ti is 1 and the other elements are simulated by a two-stage procedure.
First, ni − 1 integers are drawn without replacement from [2, 10]. Then tij is drawn from the uniform distribution with
length 1 and centered at each of these integers, j = 2, . . . , ni. The parameter η takes three values: 0.10, 0.25, and 0.50
(one at a time) and the number of trials Kij is assumed to be the same (K = 10 or 25) for all i and j. Note that these two
quantities determine the degree of over-dispersion. The greater these two quantities, the more over-dispersion. The true
values for other parameters are set to be: (β0, β1)T = (1.5,−0.05)T , and σ = 0.5. Using these values, Yi are generated
using the aforementioned mechanisms.

Mechanism 1 : The random intercept ui is drawn from the normal distribution N(0, 0.25) which results in
µij = Φ(β0 + β1tij + ui). The probability for the ith subject at the jth time point, pij , follows the beta distribution
Beta

(
µij(1−η)

η ,
(1−µij)(1−η)

η

)
. Finally Yij is generated according to Binomial(K, pij).

Mechanism 2 : Using a procedure proposed by Ahn and Chen [20], we simulate binary data Yijk, i = 1, . . . ,m, j =

1, . . . , ni, k = 1, . . . ,K such that, for any 1 < l ≤ ni, k < l, Corr(Yijk, Yijl) is set to be a constant randomly drawn from

the uniform distribution with length 0.1 and centered at η, i.e.Corr(Yijk, Yijl) ∼ U(η − 0.05, η + 0.05). The sum
K∑
k=1

Yijk

constitutes an over-dispersed binomial outcome, which does not follow a beta-binomial distribution.
In addition to the over-dispersed data, standard binomial data (η = 0) are also generated and included in the simulation.

The binomial GLMM with the probit link function and the correctly specified subject random intercept was fitted to
every simulated dataset, in addition to the proposed GEE model. Note that the only misspecification in the GLMM is the
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Table 1. Comparison of estimation results from the GLMM and the proposed GEE model on simulated beta-binomial data

η
β̂0 β̂1 σ̂ η̂Bias % ASE ESD CP Bias % ASE ESD CP

GLMM
K = 10 0 0.47 0.0685 0.0705 93.8% 0.80 0.0073 0.0077 94.1% 0.4931 -

m = 100 0.10 3.21 0.0733 0.0857 85.9% -2.60 0.0073 0.0106 81.2% 0.5576 -
0.25 7.67 0.0839 0.1105 67.9% -5.20 0.0076 0.0138 71.0% 0.6591 -
0.50 17.49 0.1062 0.1524 35.7% -9.60 0.0080 0.0192 54.2% 0.8451 -

GEE
K = 10 0 0.12 0.0709 0.0767 92.6% 1.00 0.0074 0.0077 93.9% 0.4946 -0.0004

m = 100 0.10 0.12 0.0831 0.0865 94.3% 0.00 0.0101 0.0103 94.4% 0.4918 0.1000
0.25 0.13 0.0989 0.1048 92.9% 0.40 0.0132 0.0132 94.3% 0.4935 0.2494
0.50 0.16 0.1201 0.1316 93.1% 1.60 0.0171 0.0176 94.0% 0.4872 0.4979

GLMM
K = 10 0 0.42 0.0489 0.0483 94.1% -0.60 0.0052 0.0052 95.8% 0.4939 -

m = 200 0.10 3.30 0.0535 0.0618 82.8% -2.40 0.0053 0.0074 83.7% 0.5628 -
0.25 7.68 0.0605 0.0779 53.7% -5.80 0.0054 0.0100 70.0% 0.6615 -
0.50 17.28 0.0751 0.1093 12.9% -11.20 0.0056 0.0141 54.1% 0.8474 -

GEE
K = 10 0 -0.06 0.0500 0.0520 93.7% -0.40 0.0052 0.0052 95.7% 0.4928 -0.0001

m = 200 0.10 0.21 0.0591 0.0631 92.9% 0.00 0.0072 0.0073 94.0% 0.4979 0.0996
0.25 0.20 0.0702 0.0767 92.2% -0.20 0.0094 0.0097 94.8% 0.4989 0.2491
0.50 0.03 0.0854 0.0942 92.3% 0.40 0.0121 0.0127 94.3% 0.4940 0.5004

GLMM
K = 25 0 0.48 0.0582 0.0626 92.6% -0.20 0.0047 0.0049 94.1% 0.4963 -

m = 100 0.10 3.41 0.0659 0.0780 84.5% -1.60 0.0048 0.0087 71.4% 0.5786 -
0.25 8.81 0.0659 0.1091 56.9% -5.20 0.0042 0.0131 47.1% 0.7005 -
0.50 21.15 0.1006 0.1525 20.5% -12.60 0.0051 0.0184 41.1% 0.9280 -

GEE
K = 25 0 0.19 0.0612 0.0670 93.5% 0.20 0.0048 0.0049 93.8% 0.4927 -0.0003

m = 100 0.10 -0.06 0.0760 0.0808 93.5% 1.00 0.0086 0.0086 94.6% 0.4930 0.0995
0.25 -0.05 0.0938 0.1046 93.4% 0.60 0.0123 0.0126 94.2% 0.4923 0.2494
0.50 0.23 0.1172 0.1258 93.6% -0.20 0.0165 0.0167 94.0% 0.4884 0.4981

GLMM
K = 25 0 0.27 0.0411 0.0413 94.9% -0.00 0.0033 0.0033 94.6% 0.4966 -

m = 200 0.10 3.59 0.0470 0.0564 74.0% -2.80 0.0034 0.0060 72.1% 0.5807 -
0.25 8.70 0.0550 0.0743 36.5% -5.40 0.0034 0.0092 52.0% 0.7019 -
0.50 20.69 0.0710 0.1068 4.8% -12.60 0.0036 0.0134 37.6% 0.9264 -

GEE
K = 25 0 0.11 0.0436 0.0466 94.3% 0.00 0.0034 0.0034 94.1% 0.4969 -0.0001

m = 200 0.10 0.22 0.0543 0.0596 93.1% -0.40 0.0061 0.0060 95.6% 0.4991 0.0998
0.25 -0.10 0.0666 0.0714 93.1% 0.20 0.0087 0.0089 93.8% 0.4968 0.2499
0.50 -0.04 0.0833 0.0905 92.9% -0.20 0.0118 0.0121 94.6% 0.4928 0.4999

underlying binomial distribution when over-dispersion is indeed present. The GLMM was fitted using the “glmer” function
in the R package “lme4” with the default method of Laplace approximation to compute the integral. The algorithm with
the default Laplace approximation method worked very well in our simulation studies and converged successfully in every
case we studied. In each setting of the simulation, the percent bias (bias %), average standard error (ASE), empirical
standard deviation (ESD) of the estimates of β, coverage probability of the 95% Wald confidence intervals of β, and the
average estimate of the variance parameter σ were calculated, for both the GLMM and the proposed GEE method. For
our proposed GEE method, the average estimate of the correlation coefficient η was also provided. With data generated
by Mechanisms 1 and 2, simulation results are summarized in Tables 1 and 2, respectively.

When binomial data are generated from the standard binomial distribution (η = 0 in Table 1), the GLMM is actually
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the ML estimation method and hence, is asymptotically efficient. As can be seen from Table 1, the GLMM method
performs very well in terms of unbiasedness of estimation of the regression parameters, standard errors, and coverage
probabilities. For this case, our proposed GEE method also gives unbiased inference and its performance is comparable
to the GLMM method, particularly for the regression parameter β1. However, when binomial data are generated from the
beta-binomial distribution (η > 0 in Table 1), the GLMM method does not work properly. Not only does it underestimate
the standard errors by comparing ASE to ESD that yields undercoverage of 95% confidence intervals, it also results in
biased estimation of regression parameters. The inference becomes more biased when data are more over-dispersed as
induced by η increasing from 0.10 to 0.50, or K increasing from 10 to 25. For this case, our proposed GEE method
still works very well with unbiased inferences regardless of the extent of over-dispersion. In addition, we note that for
the over-dispersed binomial data, the standard GLMM procedure also badly overestimates the variability of the random
intercept (σ2) and the overestimation worsens as over-dispersion increases; whereas the proposed GEE approach estimates
the variability of the random intercept and the over-dispersion parameter η unbiasedly.

Table 2. Comparison of estimation results from the GLMM and the proposed GEE model on over-dispersed binomial data
generated from binary data with small heterogeneity

η
β̂0 β̂1 σ̂ η̂Bias % ASE ESD CP Bias % ASE ESD CP

GLMM
K = 10 0.10 3.26 0.0730 0.0892 83.8% -3.00 0.0073 0.0109 79.4% 0.5600 -

m = 100 0.25 7.61 0.0834 0.1088 67.0% -5.26 0.0076 0.0138 70.7% 0.6548 -
0.50 16.84 0.1044 0.1492 36.0% -10.40 0.0079 0.0188 59.2% 0.8371 -

GEE
K = 10 0.10 0.23 0.0834 0.0916 92.5% -0.60 0.0102 0.0107 93.7% 0.4952 0.0997

m = 100 0.25 0.09 0.0980 0.1064 93.1% 0.60 0.0131 0.0133 95.2% 0.4872 0.2484
0.50 0.05 0.1202 0.1325 92.4% 1.00 0.0170 0.0170 94.2% 0.4906 0.4993

GLMM
K = 10 0.10 3.14 0.0523 0.0604 82.9% -2.20 0.0053 0.0072 84.4% 0.5592 -

m = 200 0.25 7.61 0.0584 0.0741 50.7% -5.80 0.0054 0.0097 71.8% 0.6549 -
0.50 16.71 0.0744 0.1033 13.7% -10.00 0.0056 0.0132 56.6% 0.8395 -

GEE
K = 10 0.10 0.08 0.0591 0.0625 93.7% 0.20 0.0072 0.0072 94.6% 0.4951 0.0996

m = 200 0.25 0.19 0.0700 0.0729 93.6% -0.00 0.0094 0.0093 95.3% 0.4927 0.2493
0.50 0.04 0.0854 0.0915 93.3% 1.00 0.0121 0.0121 94.5% 0.4985 0.4989

GLMM
K = 25 0.10 3.07 0.0644 0.0765 85.3% -1.20 0.0047 0.0086 70.3% 0.5723 -

m = 100 0.25 8.71 0.0668 0.1056 58.0% -6.20 0.0043 0.0133 45.6% 0.6894 -
0.50 20.47 0.0624 0.1492 18.0% -12.00 0.0033 0.0187 26.8% 0.9080 -

GEE
K = 25 0.10 -0.19 0.0759 0.0786 93.6% 1.00 0.0086 0.0085 94.1% 0.4928 0.0987

m = 100 0.25 0.21 0.0939 0.1016 93.3% -0.20 0.0123 0.0128 92.8% 0.4904 0.2493
0.50 0.63 0.1177 0.1270 92.4% -0.60 0.0166 0.0170 94.1% 0.4916 0.4979

GLMM
K = 25 0.10 3.39 0.0464 0.0554 77.1% -2.60 0.0034 0.0063 68.8% 0.5761 -

m = 200 0.25 8.57 0.0482 0.0728 38.4% -5.40 0.0031 0.0092 47.7% 0.6904 -
0.50 20.15 0.0292 0.1007 3.7% -12.80 0.0016 0.0132 18.0% 0.9128 -

GEE
K = 25 0.10 0.12 0.0540 0.0584 93.3% -0.20 0.0061 0.0062 94.1% 0.4970 0.0995

m = 200 0.25 0.13 0.0667 0.0710 93.1% 0.40 0.0087 0.0089 94.2% 0.4955 0.2496
0.50 0.24 0.0837 0.0863 93.9% -0.80 0.0118 0.0119 94.9% 0.4970 0.5000

When the over-dispersed binomial data are generated from binary data with moderate heterogeneity (Mechanism 2),
the results are similar as in the beta-binomial data. As expected, Table 2 shows the GLMM underestimates the standard
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errors in estimating the regression parameters, which directly causes the shrinkage of the coverage probability and also
potentially inflates Type 1 error in making inference regarding β. In contrast, the inference based on the proposed GEE
method remains asymptotically unbiased with η̂ estimating the mean of correlations among individual binary outcomes.

In addition to the analyses above, we conducted a simulation study for over-dispersed data generated using Mechanism
2, but with large heterogeneity in correlations among individual binary components. Specifically, we considered two
scenarios: the correlation coefficient of any pair of binary components is randomly drawn from [0.05, 0.45] and from
[0.30, 0.70]. The results are summarized in Table 3. For this case, the proposed GEE method does appear to have noticeable
bias in estimating the regression parameters as well as the variance components. For estimating β0, the standard errors are
also slightly underestimated and the bias becomes more noticeable when K increases from 10 to 25, which contributes to
the undercoverage of the confidence intervals. However the standard errors for estimating the more practically meaningful
regression parameter, β1, are still estimated unbiasedly, which results in the confidence intervals having a coverage
probability around the nominal value.

In summary, the simulation studies provide evidence that the proposed beta-binomial based GEE method has a
robustness property for the underlying distribution with longitudinal over-dispersed binomial data. The robustness pertains
to inferences of the regression parameters that are related to the effects of covariates on the binomial outcome, particularly
if the heterogeneity of the correlation coefficients is not substantial. This evidence strengthens applicability of this
proposed GEE method in analyzing longitudinal binomial data subject to potential over-dispersion.

Table 3. Comparison of estimation results from the GLMM and the proposed GEE model on over-dispersed binomial data
generated from binary data with large heterogeneity

Corr.Coef. β̂0 β̂1 σ̂ η̂Bias % ASE ESD CP Bias % ASE ESD CP
GLMM

K = 10 [0.05,0.45] 5.22 0.0796 0.1033 74.8% -2.40 0.0073 0.0136 69.2% 0.6373 -
m = 100 [0.30,0.70] 13.48 0.0995 0.1445 47.7% -8.60 0.0077 0.0184 58.7% 0.8075 -

GEE
K = 10 [0.05,0.45] -1.57 0.0961 0.1032 92.1% 2.60 0.0129 0.0131 94.0% 0.4822 0.2392

m = 100 [0.30,0.70] -1.60 0.1158 0.1279 90.8% 1.80 0.0164 0.0169 93.8% 0.4861 0.4633
GLMM

K = 10 [0.05,0.45] 5.11 0.0583 0.0723 70.2% -3.00 0.0054 0.0095 71.9% 0.6363 -
m = 200 [0.30,0.70] 13.25 0.0711 0.1034 27.2% -8.00 0.0055 0.0132 58.0% 0.8036 -

GEE
K = 10 [0.05,0.45] -1.65 0.0682 0.0694 92.8% 2.20 0.0092 0.0092 94.1% 0.4841 0.2391

m = 200 [0.30,0.70] -1.76 0.0820 0.0897 91.5% 2.20 0.0116 0.0122 93.0% 0.4856 0.4650
GLMM

K = 25 [0.05,0.45] -0.41 0.0685 0.0947 84.0% 3.00 0.0046 0.0118 57.8% 0.6150 -
m = 100 [0.30,0.70] 10.05 0.0734 0.1278 54.1% -4.80 0.0042 0.0160 37.9% 0.7989 -

GEE
K = 25 [0.05,0.45] -6.30 0.0845 0.0936 75.5% 7.00 0.0111 0.0113 92.5% 0.4567 0.2118

m = 100 [0.30,0.70] -4.29 0.1066 0.1115 88.5% 4.80 0.0149 0.0147 94.7% 0.4662 0.4168
GLMM

K = 25 [0.05,0.45] -0.55 0.0488 0.0629 86.5% 3.00 0.0033 0.0082 57.9% 0.6172 -
m = 200 [0.30,0.70] 9.77 0.0528 0.0880 39.6% -5.40 0.0030 0.0114 35.9% 0.8053 -

GEE
K = 25 [0.05,0.45] -6.41 0.0599 0.0618 61.2% 7.00 0.0078 0.0080 91.1% 0.4646 0.2118

m = 200 [0.30,0.70] -4.47 0.0759 0.0796 81.7% 3.60 0.0106 0.0105 95.1% 0.4773 0.4180
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4. Application to the PREDICT-HD Study

The PREDICT-HD study [21] is an international multi-site longitudinal observational study of prodromal HD. One of the
study goals is to assess clinical markers that are associated with the loss of daily functioning for prodromal HD individuals
who are genetically at-risk for HD, but who have not yet received a diagnosis. An HD diagnosis is made when a trained
examiner (e.g., a neurologist) indicates in the UHDRS Diagnostic Confidence Level that they are at least 99% confident
the examinee is presenting unequivocal motor signs of HD, based on the standard motor examination. Individuals not yet
diagnosed are referred to as prodromal because they could be displaying “soft” motor signs. In this study, 1,021 gene-
expanded prodromal participants were evaluated annually with the 25-item yes/no FAS questionnaire. The FAS purports
to measure everyday function, with the total score computed as the count of “yes” responses. There were on average 4.53
visits per individual with a total number of 4,628 observations. Some individuals had intermittent missing values that can
be reasonably assumed missing completely at random (MCAR) as the missing values were due to administrative reasons
(e.g., scheduling conflicts). Initial analysis showed that answers to 20 out of the 25 FAS questions had no variability
(all “no” response). Therefore, only the five questions with possible “yes” responses were included for the analysis. At
the baseline, the pairwise phi coefficient [22] for the five binary outcomes ranged from 0.1773 to 0.5857 showing good
reproducibility of the five outcomes and hence, suggesting the presence of over-dispersion in the binomial FAS data.

The clinical markers other than the FAS in PREDICT-HD include measures of motor abnormality, cognition, psychiatric
symptoms and brain imaging. An important research question is whether FAS is related to these other clinical measures,
especially the cognitive and motor variables. To address this question, the following variables were selected based on
previous research [23, 24]. The cognitive domain was represented by SYDIGTOT, which is a score from the symbol digit
modalities test (SDMT) that measures the number of correct responses on a timed task of symbol to digit transcription;
STROOPCO and STROOPWO are two scores from the Stroop Color and Word Test [25] that measure the number of
correct matches of color and word, respectively. Representing the motor domain was NEUROTOT, which is the total
motor score of multiple individual motor signs (each rating 0 = normal to 4 = greatest impairment) based on the standard
motor examine (NEUROTOT may influence the diagnosis decision but it does not define diagnosis). Control variables
included in the analysis were sex and CAG-Age product (CAP), the latter being a commonly used index of the cumulative
toxicity of the mutant protein characteristic of HD [26, 27].

For the data analysis, both the binomial GLMM with the probit link and the proposed GEE model were fitted to
the FAS data. The results from both models were summarized in Table 4. The correlation coefficient estimate from
the GEE model was η̂ = 0.1474. As shown in Table 4, the fixed effects estimates for the four clinical markers were
similar in both models. However, the standard errors of the estimated regression parameters were consistently larger in
the GEE approach compared to the GLMM. Given the estimated correlation for the data (η̂ = 0.1474), the results are
perhaps not surprising in light of what was found for the over-dispersed longitudinal binomial data in the simulation
study. Interestingly, inference for the CAP control variable was different between the two models. For the GEE method,
CAP was statistically significant at the 0.05 level with a negative coefficient indicating prodromal HD subjects with more
genetic toxicity had less probability to maintain unimpaired daily functioning. CAP is a very important variable in HD
research because it indexes both the genetic loading of the disease and the length of exposure to the toxic protein. The
finding regarding CAP is consistent with many other data analysis results in PREDICT-HD and other studies [23, 24]. The
GLMM results showed an insignificant positive coefficient. The inferential discrepancy between the two models may be
explained by the finding from the simulation studies that the GLMM generally yields a biased inference about regression
parameters for over-dispersed binomial data.
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Table 4. The inference from the GLMM and the proposed GEE model for the PREDICT-HD FAS data

GLMM GEE

Effect Estimate SE p-value Estimate SE p-value

Intercept -0.4489 0.3679 0.2225 0.4909 0.4681 0.2943
SEX 0.2546 0.1134 0.0248 0.2070 0.1126 0.0659
CAP 0.0005 0.0007 0.4660 -0.0016 0.0007 0.0125
NEUROTOT -0.0438 0.0028 < 10−6 -0.0427 0.0039 < 10−6

SYDIGTOT 0.0244 0.0039 < 10−6 0.0196 0.0043 5·10−6

STROOPCO 0.0120 0.0033 0.0003 0.0128 0.0044 0.0036
STROOPWO 0.0111 0.0027 0.0001 0.0100 0.0033 0.0024

5. Final Remarks

Longitudinal over-dispersed binomial data can arise in numerous applications where binary components are correlated.
The GLMM is widely used as a default method for modeling binomial data because it is a natural extension of the
generalized linear model and various statistical software are available for computation. However, the GLMM does
not account for the over-dispersion that often exists in longitudinal binomial data. We showed the GLMM tends to
underestimate the standard errors of regression parameter estimates and it may also result in biased estimation of regression
parameters with the presence of over-dispersion. Inflation of Type I error for inference is a direct consequence of the
biased estimation of those quantities. Therefore, a special treatment must be considered in practice when over-dispersion
is a potential factor for longitudinal binomial data.

In this article, we developed a beta-binomial based GEE model to analyze longitudinal binomial data that accounts for
both the over-dispersion in binomial data and correlations among the repeatedly measured binomial data. Our proposed
beta-binomial GEE model requires the sum of parameters in the Beta distribution to be constant, which is indicative of
constant correlation among the binary components and is overly restrictive in view of practical applications. We conducted
extensive simulation studies to demonstrate that the proposed GEE method is valid and provides unbiased inference for the
regression parameters if the correlations among the binary components do not vary too much. This result implies a desired
inference property of robustness for the proposed beta-binomial GEE model in analyzing longitudinal over-dispersed
binomial data. Hence the proposed method is expected to have broad practical application.

In this article, only the random intercept was included in the linear predictor for ease of model presentation. A more
general approach should include random slopes with additional effort to deal with computation complexity. An ML
approach has been theoretically proposed [14] and it will be of interest to implement the ML estimator and compare
its inference with the proposed GEE model. Besides probit regression, one could investigate other types of regression
models such as the traditional logistic regression model. However, it is anticipated that the logistic regression model will
require more computing effort than the probit regression with the proposed GEE method.
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Appendix A Derivation of the variance matrix Vi

First, the mean of Wij is given by

E(Wij) =
1

Kij
E {E(Yij |ui)} =
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= EΦ(ui +XT
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Then the variance of Wij can be derived.
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Also,

cov(Wij ,Wik) = E(WijWik)− E(Wij)E(Wik)

= E {E(WijWik|ui)} − E(Wij)E(Wik)

=
1

KijKik
E {E(Yij |ui)E(Yik|ui)} − E(Wij)E(Wik)

= E
{

Φ(ui +XT
ijβ)Φ(ui +XT

ikβ)
}
− Φ

(
XT
ijβ√

1 + σ2

)
Φ

(
XT
ikβ√

1 + σ2

)

References

1. Paulsen J, Long J, Ross C, Harrington D, Erwin C, Williams J, Westervelt H, Johnson H, Aylward E, Zhang Y, et al.. Prediction of manifest Huntington’s

disease with clinical and imaging measures: a prospective observational study. Lancet Neurology 2014; 13(12):1193–1201.

2. Huntington Study Group. Unified huntington’s disease rating scale: Reliability and consistency. Movement Disorders 1996; 11:136–142.

3. Demidenko E. Mixed Models: Theory and Applications. John Wiley & Sons, Inc.: Hoboken, NJ, 2005.

4. Skellam J. A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets for

trials. Journal of the Royal Statistical Society. Series B 1948; 10(2):257–261.

5. Efron B. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 1986; 81(395):709–

721.

6. Altham P. Two generalisations of the binomial distribution. Journal of the Royal Statistical Society. Series C 1978; 27(2):162–167.

7. Griffiths D. Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of

cases of a disease. Biometrics 1973; 29(4):736–648.

8. Williams D. The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 1975; 31(4):949–

952.

9. Crowder M. Beta-binomial anova for proportions. Journal of the Royal Statistical Society. Series C 1978; 27(1):34–37.

12 www.sim.org Copyright c© 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 00 1–13

Prepared using simauth.cls



H. WU,Y. ZHANG AND J. D. Long

Statistics
in Medicine

10. Williams D. Extra-binomial variation in logistic linear models. Journal of the Royal Statistical Society. Series C 1982; 31(2):144–148.

11. Nelder J, Pregibon D. An extended quasi-likelihood function. Biometrika 1987; 74(2):221–232.

12. Brooks R. Approximate likelihood ratio tests in the analysis of beta-binomial data. Journal of the Royal Statistical Society. Series C 1984; 33(3):285–

289.

13. Carroll R, Ruppert D. Transformation and Weighting in Regression. Chapman & Hall: London, 1988.

14. Molenberghs G, Verbeke G, Demtrio C, Vieira A. A family of generalized linear models for repeated measures with normal and conjugate random

effects. Statistical Science 2010; 25(3):325–347.

15. Kassahun W, Neyens T, Molenberghs G, Faes C, Verbeke G. Modeling overdispersed longitudinal binary data using a combined beta and normal

random-effects model. Archives of Public Health 2012; 70(7):1–13.

16. Liang K, Zeger S. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73(1):13–22.

17. Zeger S. A regression model for time series of counts. Biometrika 1988; 75(4):621–629.

18. Hua L, Zhang Y, Tu W. A spline-based semiparametric sieve likelihood method for over-dispersed panel count data. The Canadian Journal of Statistics

2014; 42(2):217–245.

19. Burden R, Faires J. Numerical Analysis. Available Titles CengageNOW Series, Cengage Learning, 2004.

20. Ahn H, Chen J. Generation of over-dispersed and under-dispersed binomial variates. Journal of Computational and Graphical Statistics 1994; 4(1):55–

64.

21. Tabrizi SJ, Reilmann R, Roos RAC, Dur A, Leavitt B, Owen G, Jones R, Johnson H, Crauford D, Hicks SL, et al.. Potential endpoints for clinical

trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. The Lancet Neurology 2012;

11(1):42–53.

22. Cramér H. Mathematical Methods of Statistics. Princeton University Press: Princeton, NJ, 1946.

23. Paulsen J, Long J, Johnson H, Aylward E, Ross C, Williams J, Nance M, Erwin C, Westervelt H, Harrington D, et al.. Clinical and biomarker changes

in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study. Frontiers in Aging Neuroscience 2014; 6(78):1–11.

24. Paulsen J, Long J, Ross C, Harrington D, Erwin C, Williams J, Westervelt H, Johnson H, Aylward E, Zhang Y, et al.. Prediction of manifest Huntington’s

disease with clinical and imaging measures: a prospective observational study. The Lancet Neurology 2014; 13(12):1193–1201.

25. Golden C. Stroop color and word test. Stoelting Company: Illinois, 1978.

26. Zhang Y, Long J, Mills J, Warner J, Lu W, Paulsen J, Researchers of the PREDICT-HD Huntington’s Study Group. Indexing disease progression at study

entry with individuals at-risk for Huntington disease. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics 2011; 156(7):751–763.

27. Long J, Paulsen J, Marder K, Zhang Y, Kim J, Mills J, Researchers of the PREDICT-HD Huntington’s Study Group. Tracking motor impairments in

the progression of Huntington’s disease. Movement Disorders 2014; 29(3):311–319.

Statist. Med. 2015, 00 1–13 Copyright c© 2015 John Wiley & Sons, Ltd. www.sim.org 13
Prepared using simauth.cls


	1 Introduction
	2 Model
	2.1 Beta-binomial Model
	2.2 Review of the Generalized Estimating Equation Method
	2.3 The GEE Method under the Beta-Binomial Model 
	2.4 Numerical Algorithm

	3 Simulation
	4 Application to the PREDICT-HD Study
	5 Final Remarks
	Appendix A Derivation of the variance matrix Vi

