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Abstract: Colored dissolved organic matter (CDOM) is a major component of DOM in 17 

waters, and plays a vital role in carbon cycling in inland waters. In this study, the light 18 

absorption and three-dimensional excitation-emission matrix spectra (EEMs) of CDOM 19 

of 936 water samples collected in 2014–2017 from 234 lakes in five regions across 20 
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China were examined to determine relationships between lake water sources (fresh 21 

versus saline) and their fluorescence/absorption characteristics. Results indicated 22 

significant differences regarding DOC concentration and aCDOM(254) between 23 

freshwater (6.68 mg C L-1, 19.55 m-1 ) and saline lakes (27.4 mg C L-1, 41.17 m-1). 24 

While humic-like (F5) and fulvic-like (F3) compounds contributed to CDOM 25 

fluorescence in all lake waters significantly, their contribution to total fluorescence 26 

intensity (FT) differed between saline and freshwater lakes. Significant negative 27 

relationships were also observed between lake altitude with either F5 (R
2=0.63, N=306) 28 

or FT (R2=0.64, N=306), suggesting that the abundance of humic-like materials in 29 

CDOM tends to decrease with increased in lakes altitude. In high-altitude lakes, strong 30 

solar irradiance and UV exposure may have induced photo-oxidation reactions resulting 31 

in decreased abundance of humic-like substances and the formation of low molecular 32 

weight compounds. These findings have important implications regarding our 33 

understanding of C dynamics in lacustrine systems and the contribution of these 34 

ecosystems to the global C cycle.  35 

Keywords: Absorption, CDOM, EEMs, freshwater, saline water 36 
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1. Introduction 38 

Dissolved organic matter (DOM) is considered the largest pool of organic matter in 39 

natural waters, accounting for >90% of the total organic matter (Kececioglu et al., 1997; 40 

Cole et al., 2007; Para et al., 2010). Dissolved organic carbon (DOC) regulates 41 

metabolic and biogeochemical processes in water bodies, and ultimately determines the 42 

contribution of aquatic ecosystems to the global carbon cycle (Borge et al., 2015; 43 

Catalan et al., 2016). Part of the DOM is termed chromophoric dissolved organic matter 44 

(CDOM) based on the absorption of ultraviolet (UV) and photo-synthetically available 45 

radiation (PAR), whereas other DOM fractions are referred to as fluorescent DOM 46 

(FDOM) based on the emission of fluorescence photons after radiation absorption; both 47 

fractions are responsible for the optical properties of DOM (Effler et al., 2010). CDOM 48 

is a complex mixture of organic compounds of both allochthonous and autochthonous 49 

origin (Coble, 2007; Zhang et al., 2009). As an optically-active substance, CDOM 50 

absorption properties are significantly affected by several factors, including DOM 51 

concentration and its chemical composition (Minero et al., 2007), photo-induced and 52 

microbial processes in aquatic environments (Shank et al., 2010), and salinity (Singh et 53 

al., 2010). 54 

Inland waters account for a significant portion of the global freshwater storage (Oki 55 
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& Kanae, 2006), and in China saline lakes comprise a large share of all inland waters 56 

(Ma et al., 2011). Although several studies and reviews have been carried out to 57 

examine the optical and chemical properties of CDOM, and evaluate relationships 58 

between salinity and CDOM fluorescence (Coble, 2007; Zhang et al., 2010; Moore et al., 59 

2011; Song et al., 2013), little is known about the composition, sources, and the factors 60 

regulating the dynamics of CDOM in saline inland waters, especially across large 61 

national-scale regions. Previous studies have shown a linear inverse relationship 62 

between CDOM absorption and salinity (Singh et al., 2010), and elevated dissolved 63 

carbon concentration in inland waters from semi-arid and arid climates (Brooks and 64 

Lemon, 2007; Song et al., 2017). Increased water retention time in saline lakes could 65 

alter the absorption and fluorescence properties of CDOM through microbial 66 

degradation and strong photo-induced radiation reactions (Catalan et al., 2016). These 67 

phenomena are likely of lesser significance in freshwaters. Thus, studies are needed for 68 

characterizing CDOM absorption and fluorescence characteristics in inland saline 69 

waters (Duarte et al., 2008; Tranvik et al., 2009), and this is crucial to our ability to 70 

quantify the role of inland saline waters to the global carbon cycle (Cole et al., 2007; 71 

Tranvik et al., 2009). Moreover, the dynamics and characteristics of CDOM in saline 72 

waters may differ depending on their relative altitude (above sea level) and the amount 73 
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of solar radiation received. In high elevation saline lakes, exposure to UV-B radiation is 74 

expected to be significant and that could in turn increase the photo-chemical 75 

degradation of CDOM (Jansson et al., 2008). In addition, the terrestrial input of CDOM 76 

to aquatic systems is expected to be insignificant given the generally low terrestrial 77 

productivity and limited human activity in high altitude regions. 78 

CDOM is a complex mixture of organic constituents, the composition of which is 79 

difficult to elucidate. Spectrophotometry and three-dimensional excitation-emission 80 

matrix spectra (EEMs) have provided useful information about CDOM composition, 81 

sources, and molecular size (Liu et al., 2007; Wang et al., 2007; Wen et al., 2018). 82 

Specifically, the spectral slope (S) provides important information on CDOM origin, 83 

chemical composition and sources (Fichot and Ronald, 2012), and the S value is a good 84 

proxy for indicating the proportion of terrestrial DOC in waters (Gonnelli et al., 2013). 85 

The SUVA254 has been adopted to estimate the aromatic carbon content and to 86 

understand the chemical characteristics of DOM (Weishaar et al., 2003; Świetlik and 87 

Sikorska, 2004). In recent years, the EEMs fluorescence spectroscopy has been widely 88 

used to differentiate FDOM from fresh, riverine, coastal marine sources (Stedmon et al., 89 

2003; Henderson et al., 2009; Zhao et al., 2016). Three popular methods have been used 90 

for extraction of useful information regarding FDOM, including the traditional 91 
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“peak-picking” method (Coble, 1996), EEM coupled with parallel factor analysis 92 

(PARAFAC) (Stedmon et al., 2003), and EEM coupled with fluorescence regional 93 

integration (FRI) (Chen et al., 2003; Yan et al., 2018). Compared to the PARAFAC 94 

techniques, FRI is a quantitative approach that integrates all the wavelength-dependent 95 

fluorescence intensity data and has been proven as an effective method to represent the 96 

FDOM components. With the FRI method, five FDOM components (including 97 

tyrosine-like component, tryptophan-like component, fulvic-like component, microbial 98 

protein-like component, humic-like component) (Chen et al., 2003) have been identified, 99 

and these components vary with the hydrologic conditions (such as water retention 100 

time), geographical settings, climatic zones and regional landscape characteristics. 101 

Therefore, FRI can be applied to large continental-scale examinations of CDOM 102 

sources in different types of inland lakes (freshwater and saline) in an effort to identify 103 

drivers of carbon cycling in these aquatic ecosystems.  104 

In the present study, the FRI technique was used to identify the FDOM components 105 

in 936 water samples from 234 lakes across five lake regions in China. The lakes 106 

differed in salinity and elevation (relative to sea level, msl). We also determined the 107 

absorption, source characteristics, and fluorescence of CDOM. The main objectives of 108 

this study were to: (1) determine CDOM absorption coefficients in saline and freshwater 109 
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inland lakes; (2) characterize CDOM components with FRI and EEM techniques, and 110 

examine their potential for source tracking; (3) examine correlations between FRI-EEM 111 

parameters and CDOM absorption coefficients; and (4) examine the relationship 112 

between FDOM and elevation of saline lakes.  113 

 114 

2 Materials and Methods 115 

2.1 Five lake regions in China 116 

Based on broad regional variations of landforms and climate characteristics, the lakes in 117 

China have been grouped into five regions (Ma et al., 2011), namely: Northeastern lake 118 

region (NLR), Inner Mongolia-Xinjiang lake region (MXR), Tibetan-Qinghai Plateau 119 

lake region (TQR), Yungui Plateau lake region (YGR) and Eastern lake region (ELR). 120 

The NLR is located in the humid and semi-humid monsoon climate zone, and the lakes 121 

(3.3% of all lakes in China) are mainly distributed in plain areas (Fig. 1). The formation 122 

of lakes is related to volcanic calderas, or to the formation of swamps on 123 

low-permeability geological formations. Due to the specific local geographical and 124 

climatic conditions, many saline soda lakes are formed in NLR (Song et al., 2013). The 125 

MXR lakes region is characterized by arid and semi-arid climate with low annual 126 

precipitation (175 mm) and high evaporation level. Many lakes in the MXR region are 127 
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brackish to salty. The TQR is located in an area with an average elevation over 4,000 m 128 

(above msl). The high altitude and strong solar radiation contribute to the unique 129 

ecological characteristics of that region. Largely associated with endorheic drainage 130 

basins, most of the TQR lakes are saline. The TQR region includes some of the highest 131 

alpine lakes on the Earth, and represents an area with the highest density of lakes in the 132 

world. The YGR is located in a subtropical monsoon climate zone. The lakes in this 133 

region are formed along fault zone or steep valleys, and are mostly tectonic lakes. The 134 

ELR region, situated in the middle/lower reaches of the Yangtze River, Yellow River, 135 

Hai River and Huai River, is the most developed region in China. About 30% of the 136 

total lake areas in China are centered in the ELR, including the largest five freshwater 137 

lakes in the country (Fig. 1).  138 

[Insert Fig.1 about here] 139 

2.2 Field sampling and measurements 140 

Both freshwater lakes and saline water lakes (Electrical conductivity (EC) threshold: 141 

1,000 µS cm-1) were selected in the five lake regions across China in order to 142 

characterize the features of FDOM among freshwater or saline water lakes. Lakes were 143 

selected with respect to both salinity and watershed characteristics. In total, 936 water 144 

samples (630 freshwater, 306 saline) were collected from 234 lakes between 2014 and 145 
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2017. For each sampling point, geographical coordinates (latitude, longitude) and 146 

elevation were recorded in situ with a GPS receiver. Some water chemical parameters 147 

including EC, turbidity, temperature were measured in situ with an YSI EXO1 portable 148 

multi-parameter water quality probes. At the time of sampling, water clarity was also 149 

determined with a Secchi disk depth (SDD). All lake water samples were collected in 150 

1-L acid-cleaned plastic bottles, held on ice packs, and transported to the laboratory as 151 

soon as possible. In the laboratory, samples were stored at 4℃ in a refrigerator, and 152 

analyzed within 2 days.  153 

 154 

2.3 Water quality measurements 155 

In the laboratory, water samples were analyzed for DOC concentration on a Shimadzu 156 

TOC-5000 Analyzer (680 ℃). Total nitrogen (TN) and total phosphorus (TP) were 157 

analyzed according to APHA/AWWA/WEF (1998). Chlorophyll-a concentration was 158 

obtained through extraction of a filtered sample (0.45 µm Whatman GF/F) with 90% 159 

acetone solution, and determination of the chlorophyll-a concentration (Chl-a) with a 160 

Shimazdu UV-2600PC spectrophotometer. Total suspended matter (TSM) was obtained 161 

gravimetrically as described in Song et al. (2013). 162 
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2.4 CDOM absorption analysis  163 

The water samples in the laboratory were filtered through a 0.7 µm pre-combusted 164 

Whatman GF/F filter, and then through a 0.22 µm Millipore membrane cellulose filter. 165 

CDOM absorption spectra were determined using a Shimadzu UV-2600PC UV–Vis 166 

spectrophotometer, fitted with a 1-cm quartz cuvette, in the spectral region between 200 167 

and 800 nm at 1 nm intervals. CDOM spectra for Milli-Q water was used as reference. 168 

The CDOM absorption coefficient (a(λ)) was computed according to Eq.1: 169 

a (λ) = 2.303A(λ) / L                         (1) 170 

where L is the cuvette length (m), and A(λ) the measured optical density.  171 

The spectral absorbance can be modeled with Eq. 2: 172 

aCDOM(λ)=aCDOM(λ0)exp(-S(λ-λ0))                  (2) 173 

where λ0 is a reference wavelength of 700 nm and S is the spectral slope.  174 

In this study, the absorption coefficient of CDOM at 254 nm (a254) was used as a 175 

proxy for CDOM concentration. The spectral slope (S) between 275-295 nm (S275-295) 176 

was calculated using Eq. 2, and used as a proxy for DOM molecular weight which is 177 

linked to CDOM sources (Helms et al., 2008; Zhang et al., 2011). The specific UV 178 

absorbance at 254 nm (SUVA254) is defined as the absorbance at 254 nm (m-1) divided 179 

by the DOC concentration (mg C L-1) (Weishaar et al., 2003). Unlike S275-295, SUVA254 180 
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increases with decreasing CDOM molecular size (Song et al., 2017). 181 

2.5 CDOM fluorescence measurement and FRI analysis 182 

CDOM fluorescence excitation-emission matrices (EEMs) were measured using a 183 

Hitachi F-7000 fluorescence spectrometer equipped with a 700-V xenon lamp. The 184 

excitation (Ex) and emission (Em) scanning ranges were 200-450 nm (5 nm intervals) 185 

and 250-500 nm (1 nm intervals), respectively. The spectra were recorded at a scan rate 186 

of 2400 nm min-1 using excitation and emission slit bandwidths of 5 nm. EEMs of 187 

Milli-Q water blanks were subtracted to eliminate the water Raman scatter. The 188 

elimination of the inner-filter effect was performed by adjusting for CDOM absorbance 189 

at the corresponding wavelengths according to Eq. 3 (McKnight et al., 2001; Kothawala 190 

et al., 2013). Interpolation was used to remove the effect of Rayleigh scattering 191 

(Stedmon and Bro, 2008).  192 

Fcor=Fobs×10(A
Ex

+A
Em

)/2                        (3) 193 

where Fobs and Fcor represent fluorescence intensity of EEMs before and after calibration, 194 

respectively. The AEx and AEm represent corrected absorbance at the corresponding 195 

excitation and emission wavelengths, respectively. The fluorescence was normalized to 196 

the integral of Raman signal to eliminate the effect daily variation in lamp intensity 197 

(Lawaetz and Stedmon, 2009).  198 
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[Insert Table 1 about here] 199 

Fluorescence regional integration (FRI) is a new quantitative approach to analyze 200 

the total wavelength-independent fluorescence intensity data based on EEM spectra 201 

(Chen et al., 2003; Sun et al., 2016). EEM maps were divided into five regions, and a 202 

description of each region is provided in Table 1. The integral volume (Fi) can be 203 

expressed as follows: 204 

�� = ∑ ∑ ｌ(��	��
)�
�	 ∆��	∆��
                 (4) 205 

where l(λExλEm) is the fluorescence intensity at each excitation–emission wavelength 206 

pair. ∆λEx is the internal excitation wavelength (taken as 5 nm), ∆λEm is the internal 207 

emission wavelength (taken as 5 nm). The sum of the fluorescence intensities of 208 

FRI-divided FDOM components were presented by FT (unit: nm). The percent 209 

fluorescence response in a specific region (Pi = 1, 2, 3, 4, 5) was calculated as 210 

following: 211 


� =
F�
F�
� × 100%                       (5) 212 

The humification index (HIX) represents the ratio of allochthonous fluorescence 213 

intensity F3&5 to that of the autochthonous fluorescence intensity F1&2&4 (Bilal et al., 214 

2010). Humic-like fluorescence indicated as Fn(355) was excited at 355 nm and its 215 

emission was measured at 445-455nm (Vignudelli et al., 2004). 216 
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2.6 Statistical analyses 217 

Statistical analyses, including mean values, standard deviations, linear or non-linear 218 

regressions, and t-tests were performed using SPSS 16.0 software package (Statistical 219 

Program for Social Sciences, Chicago, IL). Difference is considered statistically 220 

significant when p < 0.05. Spatial mapping of sampling sites and land cover types were 221 

conducted using ArcGIS 10.1 (Environmental Systems Research Institute, Redlands, 222 

CA). Principal components analysis (PCA) was conducted using Origin 9.0 (Microcal 223 

Software, Inc., Northampton, MA) by using the five FRI fluorescent components 224 

according to different trophic status and lake regions.  225 

3. Results 226 

3.1 Biogeochemical characteristics 227 

Analysis results of the 936 lake water samples collected in the present study indicated 228 

that the lakes studied in the five lake regions of China are diverse, not only in terms of 229 

their geomorphological and climatic settings, but also in regards to water chemistry as 230 

exemplified by the difference in DOC, TN, TP, Chl-a, TSM and EC values for lakes in 231 

the different regions (Table 2). The differences in water quality parameters among lakes 232 

from the five regions were all statistically significant (p<0.001). 233 

The average DOC and TN, TP concentration in the saline waters was noticeably 234 
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higher than that of the freshwater lakes (Table 2). The difference in DOC concentration 235 

(and other water chemical parameters) between saline water and freshwater lakes was 236 

statistically significant (p<0.001). Among the five lake regions of China, DOC 237 

concentration ranged from 5.25 to 35 mg C L-1 (Fig.2a), with a mean DOC 238 

concentration of 27.4 and 6.68 mg C L-1 for saline and freshwater lakes, respectively. 239 

The DOC concentration in NLR, MXR and TQR region lakes were higher than that of 240 

lakes from the ELR and YGR regions. The mean TN concentration in the five lake 241 

regions was, from highest to lowest, in the order: NLR (5.54 mg N L-1), TQR (3.82 mg 242 

N L-1), MXR (3.23 mg N L-1), ELR (0.98 mg N L-1) and YGR (0.90 mg N L-1). 243 

Similarly, the TP concentration exhibited significant regional variability, ranging from 244 

0.02 to 1.28 mg P L-1. The highest TN and TP were measured in the NLR lakes, and the 245 

lowest TN was observed in lakes from the YGR region, while the lowest TP 246 

concentration was observed in the ELR region lakes. The EC values and TSM 247 

concentration in the saline lakes was higher than in the freshwater lakes. The mean EC 248 

of lake waters ranged from 345.3 to 12,722.9 µS cm-1. The range for Chl-a 249 

concentration was 1.94 to 55.21 µg L-1 for different regions. The highest EC (12,722.98 250 

µS cm-1) was observed in the TQR while the highest Chl-a concentration was found in 251 

the ELR (55.21 µg L-1). All of the water chemical parameters in saline waters were 252 
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significantly different for each lake region (p<0.01).  253 

[Insert Table 2 about here] 254 

[Insert Fig. 2 about here] 255 

3.2 CDOM absorption characteristics 256 

Among the 936 lake water samples, aCDOM(254) ranged from 1.39 m-1 to 530.03 m-1, 257 

with a mean of 41.17 m-1 for saline lakes and 19.55 m-1 for freshwater lakes. The 258 

aCDOM(254) of saline lakes were significantly different from that of fresh lakes (p<0.01). 259 

When all five lake regions were considered together, the aCDOM(254) in saline waters 260 

were much higher than that of the freshwaters in the NLR, MXR and TQR (Fig.2b). 261 

Another interesting result of this study (Fig.2b) is that, for the saline lakes in the NLR, 262 

MXR and TQR region, the CDOM absorption at 254 nm decreased significantly with 263 

increased lakes elevation.  264 

The S275-295 in this study ranged from 10 µm-1 to 61.15 µm-1, and the mean values 265 

were 0.031nm-1 for saline lakes and 0.024 nm-1 for freshwater lakes (Fig.3a). The slope 266 

for both saline lakes and freshwater lakes in the five regions were significantly different 267 

(p<0.01). The CDOM slopes for saline lakes in each individual lake region were higher 268 

than that of the freshwater lakes in that region. The S275-295 increased while the SUVA254 269 

decreased inversely. The SUVA254 in this study ranged from 0.04 to 5.62 L mg-1m-1 for 270 
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saline waters, and from 0.35 to 6.99 L mg-1m-1 for freshwaters (Fig.3b). The SUVA254 271 

for both saline and freshwater lakes in the five regions were significantly different 272 

(p<0.01). The SUVA254 for saline lakes in a given region was significantly lower than 273 

that of freshwater lakes in the corresponding region. For both freshwater and saline 274 

lakes, we observed a significant (p<0.01) increase in the S275-295 values with increased 275 

lakes elevation in the NLR, MXR and TQR regions. In contrast, a corresponding 276 

decrease in SUVA254 values with increased lakes elevation was noted. We had also 277 

organized our dataset with seasons (spring, summer and autumn), it was found that 278 

S275-295 of saline waters in all three seasons was higher than that of fresh waters, the 279 

inverse trends of SUVA254 was also observed in the corresponding seasons (Fig. S3a-b). 280 

For all water types and seasons, the aCDOM(254), SUVA254 were all negatively correlated 281 

to elevation (p<0.01) (Table S1). Details of these intriguing phenomena will be 282 

discussed in later sections.  283 

[Insert Fig. 3 about here] 284 

3.3 FRI-Based CDOM Fluorescent Components 285 

In this study, the FRI-based EEMs in saline and freshwater lakes of China were 286 

analyzed to document trends in CDOM fluorescence characteristics in relation to lake 287 

types. The excitation-emission area volumes Fi and Pi (i = 1, 2, 3, 4, and 5) were 288 
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proportional to the total fluorescence intensity and the relative contribution of the five 289 

different components to the total fluorescence intensity. Examples of EEM fluorescence 290 

spectra from Lake Seli Co (TQR), Lake Aibi (MXR) and Lake Khanka (NLR) were 291 

selected as representative of lakes in these regions (Fig. 4). The total fluorescence 292 

intensity (FT) ranged from 3.78×1010 nm to 4.55×1012 nm for all water samples, and 293 

the mean FT for saline waters and freshwaters was 4.91×1011 nm and 3.39×1011 nm 294 

respectively (Fig. 5). The FT in saline waters was higher than that of the freshwaters in 295 

lakes from the NLR, MXR and TQR. The highest FT (1.05×1012 nm) was observed in 296 

the saline waters from the NLR, while the lowest FT (1.99×1011 nm) was obtained in 297 

the freshwaters from the TQR. For different seasons, the corresponding FRI-EEM 298 

component in the fresh waters was lower than that of saline waters for various seasons 299 

(Fig. S3c-d).  300 

The relative contribution of individual components (Fi, with i=1, 2, 3, 4, 5) to total 301 

fluorescence intensity differed among lake types and regions (Fig. 6). It was found that, 302 

for both saline and freshwater lakes in different regions, the F5 (humic-like) and F3 303 

(fulvic-like) compounds were predominant in FDOM. Furthermore, by comparing the 304 

fluorescence intensity of different components (Pi, with i= 1, 2, 3, 4, 5) across lake 305 

regions (Fig.7), it was found that the percent of F5 to total fluorescence intensity in 306 
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saline lakes was higher than that of freshwater lakes in the NLR, MXR and TQR 307 

regions. The inverse was observed in regard to the F3 fluorescent component. These 308 

results indicated that the fluorescence intensity of the five components and their relative 309 

contribution to the total fluorescence intensity differed between saline and freshwater 310 

lakes across the five lake regions of China. The Fn(355) ranged from 3.28 to 1,018 nm, 311 

with a mean Fn(355) of 108.50 and 88.75 nm for freshwater and saline lakes, 312 

respectively. The relative humic-like fluorescence content of saline waters was higher 313 

than that of the freshwaters. However, the mean humification index (HIX) for 314 

freshwater lakes (8.45) was nearly 2-fold higher than for saline waters (4.39).  315 

[Insert Fig. 4-7 about here] 316 

3.4 PCA of FRI Fluorescent Components 317 

PCA was conducted, using the relative scores of the five FRI fluorescent components 318 

(F1, F2, F3, F4 and F5) for all 936 lake water samples, to determine the degree of 319 

separation between the saline lakes and freshwater lakes investigated. For the saline 320 

lakes, the first two PCA axes (i.e., components 1 and 2) explained 91.2% of the total 321 

variance in the dataset, with component 1 and component 2 accounting for 68.1% and 322 

23.1%, respectively (Fig.8a). For the freshwater lakes, the first two PCA axes (i.e., 323 

components 1 and 2) explained 96.4% of the total variance in the dataset, with 324 
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component 1 and component 2 accounting for 82.5% and 14.9%, respectively (Fig. 8c). 325 

Each PCA axis is a linear combination of the five FRI fluorescent components (Table 326 

3). 327 

[Insert Fig.8 and Table 3 about here] 328 

The five FRI fluorescent components showed positive component 1 loadings (Fig. 329 

8a and 8c). The fulvic-like (F3) and humic-like (F5) compounds showed positive 330 

loadings for component 2. The FRI-PCA in this study could differentiate, on the basis of 331 

fluorescent characteristics, between the allochthonous substances [fulvic-like (F3) and 332 

humic-like (F5) compounds] and the autochthonous substances [tyrosine-like (F1), 333 

tryptophan-like (F2), and microbial protein-like (F4) compounds]. Further, a plot of the 334 

PCA component 1 and component 2 scores for all 306 saline water samples (Fig. 8b) 335 

showed a general clustering of most saline water samples, with component 1 scores in 336 

the range of -3 to 8 and component 2 scores ranging from -3 to 4. The water samples 337 

from the NLR region lakes were generally scattered, with high component 1 and 338 

component 2 scores. However, the saline water samples from TQR lakes were generally 339 

clustered along the negative axis of component 1 and component 2. With increased in 340 

altitude from NLR and MXR to the TQR region lakes, the PCA score distribution for 341 

the saline samples decreased along the vertical axis of component 2. In contrast, for the 342 
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freshwater lake samples (scores ranging from -2 to 4 for PCA component 1 and from -1 343 

to 3 for PCA component 2), the scores distribution (Fig. 8d) was random and did not 344 

follow patterns that could be associated with specific lake regions (although a weak 345 

cluster was noted for samples from YGR and TQR along the negative axis of 346 

component 2).  347 

[Insert Fig. 8 about here] 348 

4. Discussion 349 

4.1 DOC and CDOM absorption of saline and freshwaters 350 

Variability in DOC concentration among the inland lakes investigated reflects the 351 

diversity of the geological materials, land use, climatic conditions and human activity 352 

within the lakes drainage basins (Tranvik et al., 2009; Webster et al. 2008). The range of 353 

DOC concentration (5.25-35.07 mg C L-1; Fig. 2a) measured in the present study 354 

overlaps nicely the results of an earlier study by Song et al. (2013) in which DOC 355 

concentration in the range of 3.61-32.60 and 1.01-14.23 mg C L-1 was measured in 356 

saline and freshwater lakes, respectively. Similar results have also been reported by 357 

Curtis and Adams (1995) for lakes in the semi-arid region of Alberta, Canada. The high 358 

DOC content in saline water indicated that DOC tends to accumulate with long water 359 

retention time (Catalan et al., 2016), and may also reflect the input of carbonaceous 360 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 
 

materials transported via runoff from surrounding landscapes (Spencer et al., 2012; 361 

Song et al., 2013).  362 

A key finding of the present study is the observation that, in both freshwater and 363 

saline lakes, DOC concentration tends to decrease gradually with increased lakes 364 

altitude in the NLR and MXR to the TQR region. Conversely, in YGR and ELR regions, 365 

DOC concentration tends to rise consistently with decreased lake elevation. A similar 366 

trend was previously reported in the YGR region by Zhang et al. (2009). Indeed, 367 

different land use types (Fig. S1) and climatic conditions may have contributed to the 368 

variability in DOC input and DOC optical characteristics. For example, the much higher 369 

DOC concentration and predominance of humic substances in lake waters from the 370 

NLR region could be ascribed to the forestland and unique soils in that region (Zhao et 371 

al., 2016). But above all, our research findings revealed that landscape elevation plays 372 

an important role in driving the DOC variability.  373 

The aCDOM(254) for saline waters was significantly different (p<0.01) from that of 374 

freshwaters across the five regions (Fig. 2b). Compared with other previous studies, our 375 

aCDOM(254) values were comparable to the results of Zhang et al. (2018) who reported 376 

aCDOM(254) between 1.68 and 92.65 m-1 for 22 lakes along a trophic gradient in China. 377 

The diversity of CDOM absorption at 254 nm may be due to the following factors. 378 
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Firstly, the CDOM absorption is dependent on the total DOM concentration in the lake 379 

waters. The regional hydrogeological conditions and the variety of climatic situations 380 

additionally affect the variability of DOM in lake waters. Because of the prevailing dry 381 

climate in the areas surrounding most of the saline lakes, high rates of evaporation 382 

likely occur and that may have contributed to the high DOM concentrations measured in 383 

these lakes. Secondly, the saline waters are generally terminal lakes in semi-arid or arid 384 

regions, and consequently DOM from terrestrial sources accumulates in these lakes (and 385 

is not exported downstream).  386 

4.2 CDOM sources for saline and freshwaters 387 

The slopes for both saline lakes and freshwater lakes in the five regions were 388 

significantly different (p<0.01). The CDOM slopes for saline lakes in the five regions 389 

were all lower than those of the freshwater lakes in the corresponding regions (Fig. 3a). 390 

This observation is similar to those of Wen et al. (2016) who noted that the slope of 391 

CDOM absorption for Mongolian plateau saline lakes dominated by autochthonous 392 

sources of CDOM was higher than that of freshwater rivers in the region. In contrast, in 393 

many fresh water lakes, significant input of CDOM from surrounding landscapes can 394 

occur, especially during extreme hydrological events. This interpretation is in line with 395 

the work of Zhou et al. (2016) who reported a parallel increase in the concentration and 396 
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relative molecular size of terrestrial humic-like CDOM molecules in Qiaodao Lake 397 

waters during periods of high inflow. 398 

In the saline lakes across different regions, we observed a significant increase in 399 

S275-295 with increase in the altitude of the lakes, from NLR and MXR to TQR region, 400 

while the SUVA254 values significantly decreased (Fig. 3b). Our SUVA254 results 401 

(Fig.3b) were similar to those reported for terminal lakes of the Innner Mongolia 402 

Plateau (saline waters, SUVA254=1.90 mg C-1 m-1; freshwaters, SUVA254=2.74 mg C-1 403 

m-1), and for saline lakes of Northeast China (2.8-5.7 mg C-1 m-1) (Wen et al., 2016; 404 

Zhao et al., 2017). The higher S and lower SUVA254 may be due to the effect of salinity 405 

on photosynthesis in terrestrial higher plants, and to microbial degradation and the 406 

stronger photo-degradation processes resulting from prolonged water residence time and 407 

greater UV radiation exposure.Wu et al., 2005; Brooks et al., 2007; Madsen-Østerbye et 408 

al., 2018). Moreover, our results suggest that the proportion of terrigenous DOC in 409 

saline waters was lower than that of the freshwater lakes. The diversity of 410 

hydrogeological conditions, longer residence time of DOM and the photo-degradation 411 

of DOM in saline waters could significantly contribute to the variability of CDOM 412 

absorption and composition (Spencer et al., 2012; Song et al, 2013; Wen et al., 2018). 413 

This result was consistent with Kellerman et al. (2015) who concluded that degradation 414 
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processes preferentially remove oxidized, aromatic compounds in aquatic systems.  415 

 [Insert Fig.9 about here] 416 

The differences in the correlation between DOC and CDOM for saline waters and 417 

freshwaters suggest that salinity may have modulated the relationships between these 418 

variables in the lakes investigated. Our results were similar to those from previous 419 

studies that have reported good correlations between CDOM absorption and DOC in 420 

coastal areas and inland waters (Chen et al., 2002; Rochelle-Newall and Fisher, 2002; 421 

Song et al., 2018). But, the variability in the strength of these correlations for different 422 

regions was ascribed to differences in regional geological characteristics and salinity. 423 

The presence of CDOM components such as allochthonous fulvic and humic acids can 424 

also be responsible for the good correlation that is usually observed between CDOM 425 

absorbance and DOM content in a variety of waters (Vione et al., 2010). Therefore, the 426 

results indicated that human disturbances, non-point agricultural pollutant and climatic 427 

conditions may have contributed to the accumulation of terrestrial humic acids in the 428 

freshwater lakes investigated. The general slope gradient was in the order (from high to 429 

low): TQR, MXR and NLR. The high slopes DOC/CDOM (Fig.9) indicate that the 430 

higher slopes in saline lakes were associated with the high autochthonous production 431 

CDOM and photo-induced degradation of CDOM. The photo-chemical degradation of 432 
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CDOM changed its optical and chemical properties; it involves the decomposition of 433 

CDOM chromophores and results in reduced CDOM absorptivity of UV and visible 434 

radiations (Fichot and Miller, 2010). Finally, due to long water retention time of saline 435 

lakes, more aromatic compounds for allochthonous matters are preferred to degradation 436 

to form low molecular CDOM components that may have also influenced CDOM 437 

composition and ultimately the correlation between CDOM and DOC.  438 

 439 

4.3 Correlation between CDOM and Fluorescent Components 440 

The PCA results for saline waters indicated that the fulvic-like (F3) and humic-like (F5) 441 

components were predominant in FDOM for saline waters in the NLR region. With 442 

increased lake altitude, the contribution of autochthonous substances increases in saline 443 

waters. The PCA score of the freshwaters indicated that the fluorescent CDOM varied 444 

with different hydrogeological conditions within individual lake regions, and that the 445 

allochthonous substances (F3 and F5) were predominant in the terminal lakes of NLR 446 

and MXR regions while the more autochthonous substances (F1, F2 and F4) were 447 

produced in lakes of the YGR and TQR regions. Conversely, the high percentage of F1, 448 

F2 and F4 in the ELR lakes indicated that the low-altitude freshwater lakes in that region 449 

are highly polluted, exhibiting high content of the tyrosine-like, tryptophan-like, and 450 
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microbial protein-like materials. This interpretation is consistent with previous studies 451 

(Baker, 2001; Lu et al., 2014; Zhao et al., 2017). Baker (2001) related the high 452 

fluorescence intensity of the tryptophan-like component of FDOM to wastewater 453 

discharge. Likewise, Zhao et al. (2017) detected the highest concentration of the 454 

tryptophan-like and the microbial protein-like components in highly polluted river 455 

basins. Lu et al. (2014) concluded that anthropogenic activities (cropland, pasture and 456 

urban) increased microbial activity and enhanced the relative abundance of protein-like 457 

fluorescence of DOM. 458 

[Insert Fig. 10 about here] 459 

Correlations among the five fluorescent components and with other optical 460 

parameters [aCDOM(254), HIX and Fn(355)] showed, for both saline and freshwater lakes, 461 

strong positive linear relationships between F1 and F4 (Fig.10a) (saline waters: R2=0.71, 462 

p<0.01; freshwaters: R2=0.93, p<0.01), suggesting that parts of the tyrosine-like 463 

component F1 and microbial protein-like component F4 are likely from the same 464 

autochthonous sources. Similar results were also found between F3 and F5 (Fig.10b) 465 

which indicated that the fulvic-like components F3 and the humic-like components F5 466 

may originate from similar allochthonous sources. The saline lakes are largely 467 

distributed in the endorheic region of China, and are characterized by long water 468 
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residence times and strong water evaporation. Consequently, organic materials 469 

(autochthonous and allochthonous) progressively accumulate in these lakes along with 470 

salinity, and that may have contributed to the greater concentration of CDOM and 471 

FDOM measured in the saline lakes (Catalan et al., 2016; Song et al., 2018). Strong 472 

positive correlations between the tryptophan-like F2 and the fulvic-like components F3 473 

were observed in saline waters (Fig.10c) (slope=0.03, R2=0.67) and in freshwater lakes 474 

(slope=0.09, R2=0.54), indicating that part of the tryptophan-like fluorophore may have 475 

originated from the fulvic-like components, and that the ratio of tryptophan-like 476 

component to fulvic-like component was higher in freshwaters than in saline waters. 477 

There was also a weak correlation between the total allochthonous substance F3&5 and 478 

the aCDOM(254) for saline waters (slope=0.07, R2 =0.39) and freshwaters (slope=0.03, 479 

R2=0.39) (Fig.10d). Moreover, correlation between aCDOM(254) and Fn(355) were also 480 

found for saline waters (slope=0.27, R2 =0.54) and freshwaters (slope=0.18, R2 =0.61) 481 

individually. These results suggested that the CDOM was dominated with allochthonous 482 

substances in both saline waters and freshwaters. There were also moderate positive 483 

linear relationships between aCDOM(254) and HIX for saline waters (slope=5.71, R2 484 

=0.79) and freshwaters (slope=0.99, R2 =0.35) respectively. These results indicated that 485 

the relative humic-like components were more abundant in freshwaters, in accord with 486 
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higher degree of humification of CDOM in freshwater than in saline waters. Long 487 

periods of exposure to sunlight have likely increased the extent of photochemical 488 

oxidation processes in saline waters. The photo-production process significantly 489 

increases with salinity in natural waters (Nieto-Cid et al., 2006; Mostofa et al., 2009; 490 

Osburn et al. 2009). Our result indicated that the linkage of the fluorescent CDOM 491 

components to CDOM in saline waters and freshwaters can be very complex due to the 492 

effect of various hydro-geographical and climatic factors, including precipitation, 493 

salinity, wastewater discharge and the trophic status of the lakes. 494 

4.4 Elevation versus FDOM components for saline water 495 

Examination of the correlations between lake elevation and fluorescent CDOM 496 

characteristics showed weak relationships between these variables in the freshwater 497 

lakes (Fig. S2). However, as shown in the results, for all water types (fresh waters and 498 

saline waters) and seasons, the aCDOM(254), SUVA254, F5 and FT were all negatively 499 

correlated to elevation (p<0.01) (Table S1). This result indicated that with the increasing 500 

of elevation, less human activity decreased CDOM input, and stronger photochemical 501 

degradation of allochthonous CDOM, and seasonal changes and elevations would affect 502 

the CDOM compositional changes in fresh waters mutually significantly. Therefore, the 503 

sole effect of elevation on fluorescent characteristics of CDOM was not as pronounced 504 
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as in saline waters. Future studies could investigate the seasonality of CDOM 505 

composition in lakes of different altitudes especially for fresh waters. Meanwhile, these 506 

relationships are likely driven by variations in geological settings, climate 507 

characteristics, irradiance conditions, and anthropogenic factors and their effect on 508 

water residence time and DOC dynamics in lacustrine systems. The short water 509 

retention time as well as differences in the origin of CDOM may account for the weak 510 

relationships observed in the freshwater lakes (Moran et al., 2000; Winter et al., 2007; 511 

Catalan et al., 2016).  512 

[Insert Fig.11 about here] 513 

The correlation between elevation and CDOM absorption at 254nm (R2=0.51, 514 

N=306), and between elevation and SUVA254 in the saline lakes (R2=0.41, N=306) was 515 

moderate (Fig. 11a and 11f). These trends indicated that the CDOM absorption was 516 

higher in the high altitude than in the lower altitude lakes, and that the molecular weight 517 

and aromaticity of CDOM trends to decrease with increased lakes elevation. No strong 518 

correlations between the tyrosine-like F1, the tryptophan-like F2, and the microbial 519 

protein-like F4 components were observed. There was a negative linear correlation 520 

between the humic-like F5 and elevation (R2=0.63, N=306). However, a strong 521 

correlation was found between the total fluorescent intensity FT and elevation (R2=0.64, 522 
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N=306), suggesting that humic-like materials were predominant of the FDOM in the 523 

saline waters and tended to decrease with increasing altitude. That interpretation would 524 

be consistent with the moderate negative correlation between elevation and humification 525 

index (HIX) (R2=0.56, N=306), and the strong correlation between elevation and Fn(355) 526 

(R2=0.70, N=306), indicating that the concentration of humic-like substances and the 527 

contribution of allochthonous sources of CDOM tended to decline in the high altitude 528 

lakes due to the preferred degradation processes. 529 

The linkages between fluorescent CDOM characteristics and elevation in the saline 530 

lakes can be difficult to explain based solely on the data collected during the present 531 

study. However, in light of the information presented in past studies, several 532 

mechanisms can be invoked to explain the observed trends regarding lakes elevation 533 

and fluorescence characteristics of CDOM in these lakes. Solar radiation is a key factor 534 

for photo-induced degradation of DOM and organic contaminants in waters (Dobrovic´ 535 

et al., 2007; Mostofa et al., 2009). Previous studies have shown that increase in the 536 

fluxes of UV radiation can substantially increase the quantity of reactive free radicals 537 

such as HO• and H2O2 in waters (Qian et al., 2001; Yocis et al., 2000). The effect of 538 

irradiance on the degradation processes and fluorescence properties of CDOM are 539 

generally highest in surface waters, but tends to be less significant in regard to 540 
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deep-water DOM because of the lower sunlight irradiance in the deeper water layers 541 

(Laurion et al., 2000). Analysis of the relationships between lakes elevation and 542 

meteorological factors (100 stations), showed a moderate positive correlation with solar 543 

irradiance (R2=0.41, N=100, p<0.01) and a weak positive correlation with duration of 544 

daylight (R2=0.18, N=100, p<0.01) (Fig. S4). This result indicated that with increased 545 

lakes elevation, solar irradiance is a determining factor controlling the decrease in the 546 

humic-like fluorescent component of CDOM. Solar irradiation can trigger 547 

photo-induced degradation of CDOM and the release of small molecular weight CDOM 548 

moieties. The intensity of these processes and their impact on the concentration, 549 

absorption spectrum and molecular attributes of CDOM are expected to vary depending 550 

on lakes altitude. It demonstrated that the humic materials in CDOM undergo the 551 

photo-induced degradation in natural waters and would decrease significantly with 552 

increased elevation.  553 

The relationships between FDOM and elevation can therefore be complex, and 554 

depend on several factors related to variable local conditions including, solar radiation, 555 

molecular nature of DOM, salinity and even global warming. Further investigations of 556 

these factors are needed to further elucidate the transformation of CDOM components, 557 

and the contribution of photo-induced reactions and microbial processes on these 558 
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transformations. These future studies would inform our understanding of photo-induced 559 

and microbial-mediated alterations in CDOM absorption characteristics in inland waters, 560 

and ultimately contribute to our ability to assess the significance of lacustrine 561 

ecosystems to the global C cycle.   562 

 563 

5. Conclusions  564 

Information about the optical properties and fluorescence characteristics of CDOM in 565 

saline inland waters for large geographical regions is rare and generally incomplete. For 566 

a better understanding of carbon cycling in inland lakes, a large-scale study was 567 

conducted across five lake regions in China to explore the characteristics of CDOM 568 

absorption and CDOM fluorescence. Compared to freshwater lakes, higher DOC 569 

concentration, aCDOM(254) and SUVA254 were measured in the saline inland lakes. 570 

Analysis of CDOM fluorescence characteristics provided important insights regarding 571 

the sources (allochthonous vs authochnous, natural vs anthropogenic), fates and 572 

transformation of DOM in inland lakes. Specifically, the analysis showed that low 573 

molecular CDOM fractions were relatively more abundant (hence, low humification 574 

index of CDOM) in saline than in freshwater lakes. Since the saline lakes are largely 575 

located in endorheic drainage basins and experience long periods of exposure to solar 576 
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radiation, these results were interpreted as the consequence of UV-induced 577 

photochemical oxidation reactions in saline lakes whereby complex humic molecules 578 

are decomposed into low molecular weight fulvic-like substances. Our results further 579 

indicate that this photo-oxidation process is much stronger in high-altitude lakes. These 580 

findings have important implications regarding our understanding of C dynamics in 581 

inland lacustrine systems and the contribution of these ecosystems to the global C cycle. 582 
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Tables 

Table 1 The Excitation and Emission wavelength ranges of the five integrated regions 

identified by Fluorescence Regional Integration (FRI) * 

FRI Region Excitation (nm) Emission (nm) Description and Source 

F1 200-250 250-330 Tyrosine-like protein 

F2 200-250 330-350 Tryptophan-like protein 

F3 200-250 350-500 Fulvic acid-like  

F4 250-280 250-380 Microbial-like   

F5 280-400 380-500 Humic-like  

*Five regions identified by FRI method according to Chen et al. (2003). 
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Table 2 The water chemical parameters of various lake regions 

Region 
DOC 

(mg/L) 

EC

（µs/cm） 

TN 

(mg/L) 

TP 

(mg/L) 

Chl-a 

(mg/L) 

TSM 

(mg/L) 

NLR 27.22 3855.21 5.54 1.28 24.10 127.00 

MXR 25.78 9388.91 3.23 0.17 6.99 24.88 

TQR 34.96 9671.30 3.82 0.49 1.94 29.64 

ELR 5.92 345.32 0.98 0.02 55.21 13.33 

YGR 5.25 388.12 0.90 0.05 24.41 41.99 

All saline 27.40 12722.98 3.55 0.40 7.01 42.97 

All Fresh 6.68 970.75 2.38 0.13 47.99 19.91 
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Table 3 The PCA component 1 and 2 as the dependent variables expressed with FRI 

fluorescent components as independent variables 

 

Types Equations 

Saline waters 
Component 1=0.417F1+0.501F2+0.484F3+0.446F4+0.377F5 

Component 2=-0.564F1-0.014F2+0.373F3-0.390F4+0.625F5 

Fresh waters 
Component 1=0.457F1+0.473F2+0.430F3+0.468F4+0.404F5 

Component 2=-0.427F1-0.266F2+0.506F3-0.319F4+0.624F5 
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Figures 

Fig. 1 The distribution of sampled saline and freshwater lakes in different lake regions 

with respecting to elevation across China.  
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Fig. 2 (a) the concentration variations of dissolved organic carbon (DOC), and (b) the 

variation of aCDOM(254) and comparison for saline (S) and fresh waters (F) in five lake 

regions across China.  
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Fig. 3(a) The variation and comparison of CDOM absorption spectral slope (S275-295), 

and (b) SUVA254 values for saline (S) and freshwater (F) lakes across five lake regions 

of China. The line and circle within each box represent the median and mean, 

respectively. The horizontal edges of each box denote the 25th and 75th percentiles, the 

whiskers denote the 10th and 90th percentiles, and×represent outliers. 
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Fig. 4 The EEM fluorescence spectra and FRI distribution of Lake Selin Co from the 

TQR, Lake Aibi from the MXR and Lake Khanka from the NLR. 
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Fig.5 The comparison of total fluorescent intensity of saline (S) and fresh water (F) 

lakes in different lake regions across China. 
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Fig. 6 The comparison of individual fluorescent intensities of saline (S) and fresh 

waters (F) in different lake regions. F1 represents tyrosine-like protein, F2 represents 

tryptophan-like protein, F3 represents fulvic acid-like organics, F4 represents soluble 

microbial by-product-like materials, and F5 represents humic acid-like organics 
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Fig. 7 The proportions of individual fluorescent intensities of saline (S) and fresh 

waters (F) in different lake regions. P1 represents the percentages of EEM-FRI 

extracted FDOM related to tyrosine-like protein. P2 represents the percentages of 

EEM-FRI extracted FDOM related to tryptophan-like protein. P3 represents the 

percentages of EEM-FRI extracted FDOM related to fulvic acid-like organics. P4 

represents the percentages of EEM-FRI extracted FDOM related to soluble microbial 

by-product-like materials. P5 represents the percentages of EEM-FRI extracted FDOM 

related to humic acid-like organics. 
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Fig. 8 The principal component analysis (PCA) results of FRI-based EEMs (a) PCA 

components and (b) PCA factor scores for saline waters; (c) PCA components and (d) 

PCA factor scores for freshwaters. 
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Fig. 9 The correlation between aCDOM(254) and DOC concentration for various lake 

regions in China. (a). TQR (The high saline waters are with the mean EC of 25000 

us/cm, the low saline water are with the mean EC of 9500 us/cm); (b). ELR; (c). YGR; 

(d). NLR; (e). MXR. 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Fig.10 The correlations between aCDOM (254) and FRI-EEMs characteristics, (a). 

cumulative volume F1 and F4 by EEM-FRI for water samples in saline lakes, (b) 

aCDOM(254) and Humic-like Fluorescence (Fn355), (c) aCDOM(254) and humification 

index, (d) cumulative volume F2 and F3 by EEM-FRI for water samples in saline lakes, 

(e) aCDOM(254) and cumulative volume F3+F5 by EEM-FRI for water samples in 

saline lakes, (f) cumulative volume F3 and F5 by EEM-FRI for water samples in saline 

lakes. 
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Fig. 11 The correlation between elevation and CDOM absorption and FRI-EEM 

extracted indices for saline waters, (a) aCDOM(254) versus elevation, (b) F5 versus 

elevation, (c) Fn355 versus elevation, (d) FT versus elevation, (e) HIX and elevation, 

and (f) SUVA254 versus elevation. 
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Highlights 

 

1. The 936 lake samples in China were examined to explore CDOM optical 
properties 

2. FRI was used to characterize CDOM sources of saline waters and fresh waters 

3. The relationships between CDOM absorption and FDOM components were 
analyzed  

4. Close relations of elevation and saline waters FDOM components were identified 
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