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17 Abstract: Colored dissolved organic matter (CDOM) is a major component of DOM in
18 waters, and plays a vital role in carbon cycling in inland waters. In this study, the light
19 absorption and three-dimensional excitation-emission matrix spectra (EEMs) of CDOM

20 of 936 water samples collected in 2014-2017 from 234 lakes in five regions across
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China were examined to determine relationships éetwlake water sources (fresh
versus saline) and their fluorescence/absorptioaragiteristics. Results indicated
significant differences regarding DOC concentratiamd a&pouw(254) between
freshwater (6.68 mg C1, 19.55 nt) and saline lakes (27.4 mg C'L41.17 nt).
While humic-like (k) and fulvic-like (F) compounds contributed to CDOM
fluorescence in all lake waters significantly, theontribution to total fluorescence
intensity (F) differed between saline and freshwater lakes.nifognt negative
relationships were also observed between lakeidétitvith either F(R?=0.63, N=306)
or Fr (R?=0.64, N=306), suggesting that the abundance ofidilike materials in
CDOM tends to decrease with increased in lakewiddi In high-altitude lakes, strong
solar irradiance and UV exposure may have indutedgsoxidation reactions resulting
in decreased abundance of humic-like substancegh@ntbrmation of low molecular
weight compounds. These findings have important licappons regarding our
understanding of C dynamics in lacustrine systemd e contribution of these
ecosystems to the global C cycle.
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1. Introduction

Dissolved organic matter (DOM) is considered theydat pool of organic matter in

natural waters, accounting for >90% of the totglamic matter (Kececioglu et al., 1997;

Cole et al., 2007; Para et al.,, 2010). Dissolvedaoic carbon (DOC) regulates

metabolic and biogeochemical processes in wateiebpdnd ultimately determines the

contribution of aquatic ecosystems to the globabaa cycle (Borge et al.,, 2015;

Catalan et al., 2016). Part of the DOM is termegbeiophoric dissolved organic matter

(CDOM) based on the absorption of ultraviolet (LAfd photo-synthetically available

radiation (PAR), whereas other DOM fractions artemed to as fluorescent DOM

(FDOM) based on the emission of fluorescence plso#dter radiation absorption; both

fractions are responsible for the optical properte DOM (Effler et al., 2010). CDOM

iIs a complex mixture of organic compounds of bdtbcathonous and autochthonous

origin (Coble, 2007; Zhang et al., 2009). As aniagiy-active substance, CDOM

absorption properties are significantly affected dmveral factors, including DOM

concentration and its chemical composition (Minetaal., 2007), photo-induced and

microbial processes in aquatic environments (Slerat., 2010), and salinity (Singh et

al., 2010).

Inland waters account for a significant portiorttod global freshwater storage (Oki
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& Kanae, 2006), and in China saline lakes compaisarge share of all inland waters

(Ma et al.,, 2011). Although several studies andiesgs have been carried out to

examine the optical and chemical properties of CDGiMd evaluate relationships

between salinity and CDOM fluorescence (Coble, 2@hang et al., 2010; Moore et al.,

2011; Song et al., 2013), little is known about teenposition, sources, and the factors

regulating the dynamics of CDOM in saline inlandteva, especially across large

national-scale regions. Previous studies have shawinear inverse relationship

between CDOM absorption and salinity (Singh et 2010), and elevated dissolved

carbon concentration in inland waters from send-amnd arid climates (Brooks and

Lemon, 2007; Song et al., 2017). Increased watentien time in saline lakes could

alter the absorption and fluorescence properties C&iOM through microbial

degradation and strong photo-induced radiationticea (Catalan et al., 2016). These

phenomena are likely of lesser significance inHvesters. Thus, studies are needed for

characterizing CDOM absorption and fluorescenceratharistics in inland saline

waters (Duarte et al., 2008; Tranvik et al., 20@8)d this is crucial to our ability to

quantify the role of inland saline waters to thebgll carbon cycle (Cole et al., 2007;

Tranvik et al., 2009). Moreover, the dynamics ahdracteristics of CDOM in saline

waters may differ depending on their relative atté (above sea level) and the amount
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of solar radiation received. In high elevation saliakes, exposure to UV-B radiation is
expected to be significant and that could in tuntreéase the photo-chemical
degradation of CDOM (Jansson et al., 2008). Intamdithe terrestrial input of CDOM

to aquatic systems is expected to be insignifigaivén the generally low terrestrial
productivity and limited human activity in high ialide regions.

CDOM is a complex mixture of organic constitueritee composition of which is
difficult to elucidate. Spectrophotometry and thddmensional excitation-emission
matrix spectra (EEMs) have provided useful infoioratabout CDOM composition,
sources, and molecular size (Liu et al., 2007; Wanhg@l., 2007; Wen et al., 2018).
Specifically, the spectral slope (S) provides int@or information on CDOM origin,
chemical composition and sources (Fichot and Ror2dldl2), and the S value is a good
proxy for indicating the proportion of terrestr@OC in waters (Gonnelli et al., 2013).
The SUVAs, has been adopted to estimate the aromatic carboterd and to
understand the chemical characteristics of DOM $W\éar et al., 200Rwietlik and
Sikorska, 2004). In recent years, the EEMs fluarse spectroscopy has been widely
used to differentiate FDOM from fresh, riverinegstal marine sources (Stedmon et al.,
2003; Henderson et al., 2009; Zhao et al., 2016)ed popular methods have been used

for extraction of useful information regarding FDQMhcluding the traditional
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“peak-picking” method (Coble, 1996), EEM coupledtiwiparallel factor analysis

(PARAFAC) (Stedmon et al., 2003), and EEM coupleithwiluorescence regional

integration (FRI) (Chen et al., 2003; Yan et aD18). Compared to the PARAFAC

techniques, FRI is a quantitative approach thagrates all the wavelength-dependent

fluorescence intensity data and has been provem &ffective method to represent the

FDOM components. With the FRI method, five FDOM gaments (including

tyrosine-like component, tryptophan-like compondulyic-like component, microbial

protein-like component, humic-like component) (Cle¢ml., 2003) have been identified,

and these components vary with the hydrologic dom# (such as water retention

time), geographical settings, climatic zones angioreal landscape characteristics.

Therefore, FRI can be applied to large continestale examinations of CDOM

sources in different types of inland lakes (frestewand saline) in an effort to identify

drivers of carbon cycling in these aquatic ecosyste

In the present study, the FRI technique was usédettify the FDOM components

in 936 water samples from 234 lakes across five ledgions in China. The lakes

differed in salinity and elevation (relative to sleael, msl). We also determined the

absorption, source characteristics, and fluoresc@ncCDOM. The main objectives of

this study were to: (1) determine CDOM absorptioafficients in saline and freshwater
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inland lakes; (2) characterize CDOM components Witi and EEM techniques, and

examine their potential for source tracking; (3xm®xne correlations between FRI-EEM

parameters and CDOM absorption coefficients; and gdamine the relationship

between FDOM and elevation of saline lakes.

2 Materials and Methods

2.1 Five lake regions in China

Based on broad regional variations of landforms @imdate characteristics, the lakes in

China have been grouped into five regions (Ma e8l11), namely: Northeastern lake

region (NLR), Inner Mongolia-Xinjiang lake regioMKR), Tibetan-Qinghai Plateau

lake region (TQR), Yungui Plateau lake region (YGRY Eastern lake region (ELR).

The NLR is located in the humid and semi-humid neomsclimate zone, and the lakes

(3.3% of all lakes in China) are mainly distribuiacplain areas (Fig. 1). The formation

of lakes is related to volcanic calderas, or to tieemation of swamps on

low-permeability geological formations. Due to tBpecific local geographical and

climatic conditions, many saline soda lakes arenéat in NLR (Song et al., 2013). The

MXR lakes region is characterized by arid and sena- climate with low annual

precipitation (175 mm) and high evaporation le\hny lakes in the MXR region are
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brackish to salty. The TQR is located in an areth an average elevation over 4,000 m
(above msl). The high altitude and strong solanatazh contribute to the unique
ecological characteristics of that region. LargaBsociated with endorheic drainage
basins, most of the TQR lakes are saline. The T€Jon includes some of the highest
alpine lakes on the Earth, and represents an atedahe highest density of lakes in the
world. The YGR is located in a subtropical monsa@timate zone. The lakes in this
region are formed along fault zone or steep vallaysl are mostly tectonic lakes. The
ELR region, situated in the middle/lower reachedhaf Yangtze River, Yellow River,
Hai River and Huai River, is the most developedargn China. About 30% of the
total lake areas in China are centered in the BEh&uding the largest five freshwater
lakes in the country (Fig. 1).

[Insert Fig.1 about here]
2.2 Field sampling and measurements
Both freshwater lakes and saline water lakes (Etattconductivity (EC) threshold:
1,000 pS cni') were selected in the five lake regions acrossn&tin order to
characterize the features of FDOM among freshwatsaline water lakes. Lakes were
selected with respect to both salinity and watedstiearacteristics. In total, 936 water

samples (630 freshwater, 306 saline) were colletted 234 lakes between 2014 and
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2017. For each sampling point, geographical coatds (latitude, longitude) and

elevation were recorded situ with a GPS receiver. Some water chemical paraseter

including EC, turbidity, temperature were measuresitu with an YSI EXO1 portable

multi-parameter water quality probes. At the tinfesampling, water clarity was also

determined with a Secchi disk depth (SDD). All lakater samples were collected in

1-L acid-cleaned plastic bottles, held on ice paeksl transported to the laboratory as

soon as possible. In the laboratory, samples wmred at 4C in a refrigerator, and

analyzed within 2 days.

2.3 Water quality measurements

In the laboratory, water samples were analyzedfOC concentration on a Shimadzu

TOC-5000 Analyzer (680C). Total nitrogen (TN) and total phosphorus (TP)rave

analyzed according to APHA/AWWA/WEF (1998). Chlohgfi-a concentration was

obtained through extraction of a filtered samplelfOum Whatman GF/F) with 90%

acetone solution, and determination of the chloybh concentration Chl-a) with a

Shimazdu UV-2600PC spectrophotometer. Total susggenthatter (TSM) was obtained

gravimetrically as described in Song et al. (2013).
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2.4 CDOM absorption analysis
The water samples in the laboratory were filtedeugh a 0.7 um pre-combusted
Whatman GF/F filter, and then through a 0.22 punlipire membrane cellulose filter.
CDOM absorption spectra were determined using an&teu UV-2600PC UV-Vis
spectrophotometer, fitted with a 1-cm quartz cweyatt the spectral region between 200
and 800 nm at 1 nm intervals. CDOM spectra for iMjllwater was used as reference.
The CDOM absorption coefficient (g was computed according to Eq.1:

ap)=2.303A, /L (1)
where L is the cuvette length (m), ang)fhe measured optical density.
The spectral absorbance can be modeled with Eq. 2:

acoom(})=acpom(ho)exp(-$?) (2)

wherel, is a reference wavelength of 700 nm and S ispketral slope.

In this study, the absorption coefficient of CDOMZ254 nm (as4) was used as a
proxy for CDOM concentration. The spectral slopg l§8tween 275-295 nm {3299
was calculated using Eq. 2, and used as a proxip@vl molecular weight which is
linked to CDOM sources (Helms et al., 2008; Zhahagle 2011). The specific UV
absorbance at 254 nm (SUMJ) is defined as the absorbance at 254 nm) (divided

by the DOC concentration (mg C)(Weishaar et al., 2003). Unlike820s SUVAss,

10
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increases with decreasing CDOM molecular size (Sxrad., 2017).

2.5 CDOM fluorescence measurement and FRI analysis

CDOM fluorescence excitation-emission matrices (EBEMvere measured using a
Hitachi F-7000 fluorescence spectrometer equippét @& 700-V xenon lamp. The
excitation (Ex) and emission (Em) scanning rangeseevw200-450 nm (5 nm intervals)
and 250-500 nm (1 nm intervals), respectively. $pectra were recorded at a scan rate
of 2400 nm mift using excitation and emission slit bandwidths ofife. EEMs of
Milli-Q water blanks were subtracted to eliminatee twater Raman scatter. The
elimination of the inner-filter effect was perforthby adjusting for CDOM absorbance
at the corresponding wavelengths according to EtylcKnight et al., 2001; Kothawala
et al., 2013). Interpolation was used to remove dfffect of Rayleigh scattering
(Stedmon and Bro, 2008).

Foor=Fobs X 10% g en?’? (3)
where F,s and o represent fluorescence intensity of EEMs beforeadtat calibration,
respectively. The A« and A, represent corrected absorbance at the corresmgpndin
excitation and emission wavelengths, respectivigtg fluorescence was normalized to
the integral of Raman signal to eliminate the dfi@aily variation in lamp intensity

(Lawaetz and Stedmon, 2009).

11
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[Insert Table 1 about here]

Fluorescence regional integration (FRI) is a newngitative approach to analyze
the total wavelength-independent fluorescence sitigrdata based on EEM spectra
(Chen et al., 2003; Sun et al., 2016). EEM mapswivided into five regions, and a
description of each region is provided in TableThe integral volumeH;) can be
expressed as follows:

Fi = Ygx Xem { (ApxAem) DgxBdgn, (4)
where l(AexAem) IS the fluorescence intensity at each excitaonission wavelength
pair. AAgx IS the internal excitation wavelength (taken asnd), AAgm is the internal
emission wavelength (taken as 5 nm). The sum offlin@escence intensities of
FRI-divided FDOM components were presented By (unit: nm). The percent
fluorescence response in a specific region XP1, 2, 3, 4, 5) was calculated as
following:

P ="i/g x 100% (5)
The humification index (HIX) represents the ratid alochthonous fluorescence
intensity Fsgs to that of the autochthonous fluorescence interSit g4 (Bilal et al.,
2010). Humic-like fluorescence indicated ag3b5) was excited at 355 nm and its

emission was measured at 445-455nm (Vignudelli. e2@04).

12
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2.6 Statistical analyses

Statistical analyses, including mean values, stahdaviations, linear or non-linear

regressions, and t-tests were performed using B3IBsoftware package (Statistical

Program for Social Sciences, Chicago, IL). Differenis considered statistically

significant when p < 0.05. Spatial mapping of sangpkites and land cover types were

conducted using ArcGIS 10.1 (Environmental Systdtesearch Institute, Redlands,

CA). Principal components analysis (PCA) was cotetlizising Origin 9.0 (Microcal

Software, Inc., Northampton, MA) by using the fiVeRl fluorescent components

according to different trophic status and lake oggi

3. Results

3.1 Biogeochemical characteristics

Analysis results of the 936 lake water samplesect#ld in the present study indicated

that the lakes studied in the five lake region€bina are diverse, not only in terms of

their geomorphological and climatic settings, bisban regards to water chemistry as

exemplified by the difference in DOC, TN, T€hl-a, TSM and EC values for lakes in

the different regions (Table 2). The differencesvater quality parameters among lakes

from the five regions were all statistically sigo#&nt (p<0.001).

The average DOC and TN, TP concentration in thmesalaters was noticeably

13



235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

higher than that of the freshwater lakes (Tabler2g difference in DOC concentration
(and other water chemical parameters) betweenesalater and freshwater lakes was
statistically significant (p<0.001). Among the fiiake regions of China, DOC
concentration ranged from 5.25 to 35 mg C (Fig.2a), with a mean DOC
concentration of 27.4 and 6.68 mg C for saline and freshwater lakes, respectively.
The DOC concentration in NLR, MXR and TQR regiokea were higher than that of
lakes from the ELR and YGR regions. The mean TNceaotration in the five lake
regions was, from highest to lowest, in the orddR (5.54 mg N '), TQR (3.82 mg

N LY, MXR (3.23 mg N [}, ELR (0.98 mg N [}) and YGR (0.90 mg N ).
Similarly, the TP concentration exhibited signifitaegional variability, ranging from
0.02 to 1.28 mg Pt The highest TN and TP were measured in the NkBslaand the
lowest TN was observed in lakes from the YGR regiorile the lowest TP
concentration was observed in the ELR region lakdse EC values and TSM
concentration in the saline lakes was higher tinatheé freshwater lakes. The mean EC
of lake waters ranged from 345.3 to 12,722.9 pS.cihe range forChl-a
concentration was 1.94 to 55.21 pg for different regions. The highest EC (12,722.98
uS cm') was observed in the TQR while the high€kt-a concentration was found in

the ELR (55.21 ug t). All of the water chemical parameters in salinatevs were

14
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significantly different for each lake region (p<0)0

[Insert Table 2 about here]

[Insert Fig. 2 about here]
3.2 CDOM absorption characteristics
Among the 936 lake water samplesp@u(254) ranged from 1.39 Tnto 530.03 rit,
with a mean of 41.17 thfor saline lakes and 19.55™nfor freshwater lakes. The
acpom(254) of saline lakes were significantly differdram that of fresh lakes (p<0.01).
When all five lake regions were considered togettier apow(254) in saline waters
were much higher than that of the freshwaters emNhR, MXR and TQR (Fig.2b).
Another interesting result of this study (Fig.2b)that, for the saline lakes in the NLR,
MXR and TQR region, the CDOM absorption at 254 neardased significantly with
increased lakes elevation.

The S50 in this study ranged from 10 pihto 61.15 prit, and the mean values
were 0.031nntfor saline lakes and 0.024 frfor freshwater lakes (Fig.3a). The slope
for both saline lakes and freshwater lakes in ive fegions were significantly different
(p<0.01). The CDOM slopes for saline lakes in eachvidual lake region were higher
than that of the freshwater lakes in that regidme %5 .95 increased while the SUVGA,

decreased inversely. The SUMAIn this study ranged from 0.04 to 5.62 L Png" for

15
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saline waters, and from 0.35 to 6.99 L'ty for freshwaters (Fig.3b). The SUY
for both saline and freshwater lakes in the fivgioms were significantly different
(p<0.01). The SUVAe, for saline lakes in a given region was signifibambwer than
that of freshwater lakes in the corresponding negiéor both freshwater and saline
lakes, we observed a significant (p<0.01) increashe $75.295 values with increased
lakes elevation in the NLR, MXR and TQR regions. dontrast, a corresponding
decrease in SUVA, values with increased lakes elevation was noted.Hatl also
organized our dataset with seasons (spring, sunamérautumn), it was found that
S,75-205 Of saline waters in all three seasons was highen that of fresh waters, the
inverse trends of SUVA, was also observed in the corresponding seasogs§Ba-b).
For all water types and seasons, thsoa(254), SUVAs, were all negatively correlated
to elevation (p<0.01) (Table S1). Details of theas&iguing phenomena will be
discussed in later sections.

[Insert Fig. 3 about here]
3.3 FRI-Based CDOM Fluorescent Components
In this study, the FRI-based EEMs in saline andhweater lakes of China were
analyzed to document trends in CDOM fluorescen@adteristics in relation to lake

types. The excitation-emission area volumesakd RP(i = 1, 2, 3, 4, and 5) were

16
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proportional to the total fluorescence intensityl @he relative contribution of the five
different components to the total fluorescencensity. Examples of EEM fluorescence
spectra from Lake Seli Co (TQR), Lake Aibi (MXR)dahake Khanka (NLR) were
selected as representative of lakes in these redibiy. 4). The total fluorescence
intensity (F) ranged from 3.78 10°nm to 4.55<10*?nm for all water samples, and
the mean F for saline waters and freshwaters was 4.93%a® and 3.39x18 nm
respectively (Fig. 5). ThetHn saline waters was higher than that of the fredhrs in
lakes from the NLR, MXR and TQR. The highest(E.05X 10** nm) was observed in
the saline waters from the NLR, while the lowest(E.99X 10** nm) was obtained in
the freshwaters from the TQR. For different seasadhe corresponding FRI-EEM

component in the fresh waters was lower than thaaline waters for various seasons

(Fig. S3c-d).
The relative contribution of individual componef& with i=1, 2, 3, 4, 5) to total
fluorescence intensity differed among lake types mgions (Fig. 6). It was found that,

for both saline and freshwater lakes in differesgions, the & (humic-like) and &

(fulvic-like) compounds were predominant in FDOMurthermore, by comparing the

fluorescence intensity of different componentg (#th i= 1, 2, 3, 4, 5) across lake

regions (Fig.7), it was found that the percent ¢ftd- total fluorescence intensity in

17
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saline lakes was higher than that of freshwateedak the NLR, MXR and TQR

regions. The inverse was observed in regard toFthiBuorescent component. These

results indicated that the fluorescence intendithe five components and their relative

contribution to the total fluorescence intensitffeded between saline and freshwater

lakes across the five lake regions of China. Th@%%) ranged from 3.28 to 1,018 nm,

with a mean Fn(355) of 108.50 and 88.75 nm for hineger and saline lakes,

respectively. The relative humic-like fluorescermmamtent of saline waters was higher

than that of the freshwaters. However, the mean iffeation index (HIX) for

freshwater lakes (8.45) was nearly 2-fold highantfor saline waters (4.39).

[Insert Fig. 4-7 about here]

3.4 PCA of FRI Fluorescent Components

PCA was conducted, using the relative scores offiteeFRI fluorescent components

(F1, F2, F3, F4 and F5) for all 936 lake water dasipto determine the degree of

separation between the saline lakes and freshualtes investigated. For the saline

lakes, the first two PCA axes (i.e., componentfd 2) explained 91.2% of the total

variance in the dataset, with component 1 and commpio2 accounting for 68.1% and

23.1%, respectively (Fig.8a). For the freshwatdesa the first two PCA axes (i.e.,

components 1 and 2) explained 96.4% of the totalamee in the dataset, with

18
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component 1 and component 2 accounting for 82.58614r0%, respectively (Fig. 8c).

Each PCA axis is a linear combination of the fivel luorescent components (Table

3).

[Insert Fig.8 and Table 3 about here]

The five FRI fluorescent components showed positm@mponent 1 loadings (Fig.

8a and 8c). The fulvic-like @F and humic-like (E) compounds showed positive

loadings for component 2. The FRI-PCA in this staduld differentiate, on the basis of

fluorescent characteristics, between the alloclgbersubstances [fulvic-like {Fand

humic-like (F5) compounds] and the autochthonous substancessipgrdike (F),

tryptophan-like (E), and microbial protein-like @F compounds]. Further, a plot of the

PCA component 1 and component 2 scores for allszli®@e water samples (Fig. 8b)

showed a general clustering of most saline waterpsss, with component 1 scores in

the range of -3 to 8 and component 2 scores rarfgimg -3 to 4. The water samples

from the NLR region lakes were generally scattenedh high component 1 and

component 2 scores. However, the saline water sfigm TQR lakes were generally

clustered along the negative axis of componentdl.cmponent 2. With increased in

altitude from NLR and MXR to the TQR region lakéise PCA score distribution for

the saline samples decreased along the verticaloedxdomponent 2. In contrast, for the
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freshwater lake samples (scores ranging from 42 ftor PCA component 1 and from -1
to 3 for PCA component 2), the scores distribufibiy. 8d) was random and did not
follow patterns that could be associated with dpetake regions (although a weak
cluster was noted for samples from YGR and TQR @ltime negative axis of
component 2).

[Insert Fig. 8 about here]
4. Discussion
4.1 DOC and CDOM absorption of saline and freshwaters
Variability in DOC concentration among the inlanakés investigated reflects the
diversity of the geological materials, land usénekic conditions and human activity
within the lakes drainage basins (Tranvik et 02 Webster et al. 2008). The range of
DOC concentration (5.25-35.07 mg CYLFig. 2a) measured in the present study
overlaps nicely the results of an earlier studySmong et al. (2013) in which DOC
concentration in the range of 3.61-32.60 and 14923 mg C [* was measured in
saline and freshwater lakes, respectively. Simiégults have also been reported by
Curtis and Adams (1995) for lakes in the semi-agigion of Alberta, Canada. The high
DOC content in saline water indicated that DOC setadaccumulate with long water

retention time (Catalan et al., 2016), and may aéstect the input of carbonaceous
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materials transported via runoff from surroundimgdscapes (Spencer et al., 2012;
Song et al., 2013).

A key finding of the present study is the obseomtihat, in both freshwater and
saline lakes, DOC concentration tends to decreaaduglly with increased lakes
altitude in the NLR and MXR to the TQR region. Cersely, in YGR and ELR regions,
DOC concentration tends to rise consistently wiglerdased lake elevation. A similar
trend was previously reported in the YGR region Zhyang et al. (2009). Indeed,
different land use types (Fig. S1) and climaticdibans may have contributed to the
variability in DOC input and DOC optical characgtics. For example, the much higher
DOC concentration and predominance of humic substarin lake waters from the
NLR region could be ascribed to the forestland anidue soils in that region (Zhao et
al., 2016). But above all, our research findinggesaded that landscape elevation plays
an important role in driving the DOC variability.

The apom(254) for saline waters was significantly differép&0.01) from that of
freshwaters across the five regions (Fig. 2b). Camexgb with other previous studies, our
acpom(254) values were comparable to the results of ghetral. (2018) who reported
acoom(254) between 1.68 and 92.65 for 22 lakes along a trophic gradient in China.

The diversity of CDOM absorption at 254 nm may he do the following factors.

21



379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

Firstly, the CDOM absorption is dependent on thaltbOM concentration in the lake

waters. The regional hydrogeological conditions #mel variety of climatic situations

additionally affect the variability of DOM in lakeaters. Because of the prevailing dry

climate in the areas surrounding most of the sdikes, high rates of evaporation

likely occur and that may have contributed to tlghHDOM concentrations measured in

these lakes. Secondly, the saline waters are dbgnemaminal lakes in semi-arid or arid

regions, and consequently DOM from terrestrial sesiraccumulates in these lakes (and

IS not exported downstream).

4.2 CDOM sources for saline and freshwaters

The slopes for both saline lakes and freshwateeslain the five regions were

significantly different (p<0.01). The CDOM slopes fsaline lakes in the five regions

were all lower than those of the freshwater lakethe corresponding regions (Fig. 3a).

This observation is similar to those of Wen et(2D016) who noted that the slope of

CDOM absorption for Mongolian plateau saline lakiEsninated by autochthonous

sources of CDOM was higher than that of freshwaters in the region. In contrast, in

many fresh water lakes, significant input of CDOMM surrounding landscapes can

occur, especially during extreme hydrological egeithis interpretation is in line with

the work of Zhou et al. (2016) who reported a pgafahcrease in the concentration and
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relative molecular size of terrestrial humic-likdDOM molecules in Qiaodao Lake
waters during periods of high inflow.

In the saline lakes across different regions, weeoled a significant increase in
S,75-205 With increase in the altitude of the lakes, frorbRNand MXR to TQR region,
while the SUVAs, values significantly decreased (Fig. 3b). Our SkhyAresults
(Fig.3b) were similar to those reported for ternhitekes of the Innner Mongolia
Plateau (saline waters, SUM}=1.90 mg C m*; freshwaters, SUVA~2.74 mg C
m?), and for saline lakes of Northeast China (2.8#8g C* m™) (Wen et al., 2016;
Zhao et al., 2017). The higher S and lower Skh/Anay be due to the effect of salinity
on photosynthesis in terrestrial higher plants, &mdmicrobial degradation and the
stronger photo-degradation processes resulting fnaionged water residence time and
greater UV radiation exposure.Wu et al., 2005; Bsoet al., 2007; Madsen-@sterbye et
al., 2018). Moreover, our results suggest that gtaportion of terrigenous DOC in
saline waters was lower than that of the freshwdtdes. The diversity of
hydrogeological conditions, longer residence tifhd®M and the photo-degradation
of DOM in saline waters could significantly contite to the variability of CDOM
absorption and composition (Spencer et al., 20b2gSet al, 2013; Wen et al., 2018).

This result was consistent with Kellerman et a1®®) who concluded that degradation
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processes preferentially remove oxidized, aron@@ipounds in aquatic systems.

[Insert Fig.9 about here]

The differences in the correlation between DOC @M for saline waters and

freshwaters suggest that salinity may have modiiltte relationships between these

variables in the lakes investigated. Our resultsewsmilar to those from previous

studies that have reported good correlations betvie@OM absorption and DOC in

coastal areas and inland waters (Chen et al., 2R62helle-Newall and Fisher, 2002;

Song et al., 2018). But, the variability in theesigth of these correlations for different

regions was ascribed to differences in regionalaggcal characteristics and salinity.

The presence of CDOM components such as allochttsohdvic and humic acids can

also be responsible for the good correlation teaisually observed between CDOM

absorbance and DOM content in a variety of watéisng et al., 2010). Therefore, the

results indicated that human disturbances, nontaricultural pollutant and climatic

conditions may have contributed to the accumulatiberrestrial humic acids in the

freshwater lakes investigated. The general slopdignt was in the order (from high to

low): TQR, MXR and NLR. The high slopes DOC/CDOMigB) indicate that the

higher slopes in saline lakes were associated thghhigh autochthonous production

CDOM and photo-induced degradation of CDOM. Thetpfahemical degradation of
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CDOM changed its optical and chemical propertiesnvolves the decomposition of

CDOM chromophores and results in reduced CDOM aitisttly of UV and visible

radiations (Fichot and Miller, 2010). Finally, dteelong water retention time of saline

lakes, more aromatic compounds for allochthonousersaare preferred to degradation

to form low molecular CDOM components that may halso influenced CDOM

composition and ultimately the correlation betw&OM and DOC.

4.3 Correlation between CDOM and Fluorescent Components

The PCA results for saline waters indicated thatfthvic-like (F3) and humic-like (E)

components were predominant in FDOM for saline vgate the NLR region. With

increased lake altitude, the contribution of autbohous substances increases in saline

waters. The PCA score of the freshwaters indic#tatl the fluorescent CDOM varied

with different hydrogeological conditions withindividual lake regions, and that the

allochthonous substances; (@d k) were predominant in the terminal lakes of NLR

and MXR regions while the more autochthonous suiost® (f, F, and R) were

produced in lakes of the YGR and TQR regions. Cmselg, the high percentage of, F

F, and R in the ELR lakes indicated that the low-altitudeshwater lakes in that region

are highly polluted, exhibiting high content of thgosine-like, tryptophan-like, and
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microbial protein-like materials. This interpretatiis consistent with previous studies
(Baker, 2001; Lu et al., 2014; Zhao et al., 201Baker (2001) related the high
fluorescence intensity of the tryptophan-like comgat of FDOM to wastewater

discharge. Likewise, Zhao et al. (2017) detectesl highest concentration of the
tryptophan-like and the microbial protein-like cooments in highly polluted river

basins. Lu et al. (2014) concluded that anthropmgactivities (cropland, pasture and
urban) increased microbial activity and enhancedrétative abundance of protein-like
fluorescence of DOM.

[Insert Fig. 10 about here]

Correlations among the five fluorescent componeautsl with other optical
parameters [@owm(254), HIX and Fn(355)] showed, for both saline &redhwater lakes,
strong positive linear relationships betwegrafd & (Fig.10a) (saline water&=0.71,
p<0.01; freshwatersR’=0.93, p<0.01), suggesting that parts of the tyr@dike
component F and microbial protein-like component, Bre likely from the same
autochthonous sources. Similar results were alsaddetween Fand k (Fig.10b)
which indicated that the fulvic-like componentsg &d the humic-like componentg F
may originate from similar allochthonous sourcedie Tsaline lakes are largely

distributed in the endorheic region of China, amd aeharacterized by long water
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residence times and strong water evaporation. Coesgly, organic materials
(autochthonous and allochthonous) progressivelvraotate in these lakes along with
salinity, and that may have contributed to the gmeaoncentration of CDOM and
FDOM measured in the saline lakes (Catalan et28ll6; Song et al., 2018). Strong
positive correlations between the tryptophan-likeaRd the fulvic-like components; F
were observed in saline waters (Fig.10c) (slope3;R9=0.67) and in freshwater lakes
(slope=0.09R?=0.54), indicating that part of the tryptophan-likeorophore may have
originated from the fulvic-like components, and ttithe ratio of tryptophan-like
component to fulvic-like component was higher iastiwaters than in saline waters.
There was also a weak correlation between the &tiaththonous substancegFand
the apowm(254) for saline waters (slope=0.0R% =0.39) and freshwaters (slope=0.03,
R’=0.39) (Fig.10d). Moreover, correlation betweepau(254) and Fn(355) were also
found for saline waters (slope=0.F, =0.54) and freshwaters (slope=0.88,=0.61)
individually. These results suggested that the CD@&4 dominated with allochthonous
substances in both saline waters and freshwatérsreTwere also moderate positive
linear relationships betweenzau(254) and HIX for saline waters (slope=5.7%
=0.79) and freshwaters (slope=0.88,=0.35) respectively. These results indicated that

the relative humic-like components were more abohdafreshwaters, in accord with
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higher degree of humification of CDOM in freshwatban in saline waters. Long

periods of exposure to sunlight have likely incezhghe extent of photochemical

oxidation processes in saline waters. The photdymition process significantly

increases with salinity in natural waters (Niet@@t al., 2006; Mostofa et al., 2009;

Osburn et al. 2009). Our result indicated that lthkage of the fluorescent CDOM

components to CDOM in saline waters and freshwatansbe very complex due to the

effect of various hydro-geographical and climataxctérs, including precipitation,

salinity, wastewater discharge and the trophiastat the lakes.

4.4 Elevation versus FDOM components for saline water

Examination of the correlations between lake elematand fluorescent CDOM

characteristics showed weak relationships betweeset variables in the freshwater

lakes (Fig. S2). However, as shown in the restdtsall water types (fresh waters and

saline waters) and seasons, theom(254), SUVAs, K and K were all negatively

correlated to elevation (p<0.01) (Table S1). Tksult indicated that with the increasing

of elevation, less human activity decreased CDOpuinand stronger photochemical

degradation of allochthonous CDOM, and seasonalgdgmand elevations would affect

the CDOM compositional changes in fresh waters allytsignificantly. Therefore, the

sole effect of elevation on fluorescent charadiessof CDOM was not as pronounced
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as in saline waters. Future studies could investighe seasonality of CDOM

composition in lakes of different altitudes espkgitor fresh waters. Meanwhile, these
relationships are likely driven by variations in ofmical settings, climate

characteristics, irradiance conditions, and antbgepic factors and their effect on
water residence time and DOC dynamics in lacustegstems. The short water
retention time as well as differences in the origifCDOM may account for the weak
relationships observed in the freshwater lakes @viat al., 2000; Winter et al., 2007,
Catalan et al., 2016).

[Insert Fig.11 about here]

The correlation between elevation and CDOM absonptit 254nm R=0.51,
N=306), and between elevation and SUMAN the saline lakesRf=0.41,N=306) was
moderate (Fig. 11la and 11f). These trends indicdtiat the CDOM absorption was
higher in the high altitude than in the lower alti¢ lakes, and that the molecular weight
and aromaticity of CDOM trends to decrease withreased lakes elevation. No strong
correlations between the tyrosine-like, Ehe tryptophan-like £ and the microbial
protein-like iz components were observed. There was a negatiearlioorrelation
between the humic-like sFand elevation Rf=0.63, N=306). However, a strong

correlation was found between the total fluoresietensity i and elevationR=0.64,
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N=306), suggesting that humic-like materials weredpminant of the FDOM in the
saline waters and tended to decrease with incrgadiitude. That interpretation would
be consistent with the moderate negative correldigiween elevation and humification
index (HIX) (R°=0.56,N=306), and the strong correlation between elevatiwhFn(355)
(R?=0.70, N=306), indicating that the concentration of huniie|substances and the
contribution of allochthonous sources of CDOM tehde decline in the high altitude
lakes due to the preferred degradation processes.

The linkages between fluorescent CDOM charactesisind elevation in the saline
lakes can be difficult to explain based solely ba tlata collected during the present
study. However, in light of the information pressshtin past studies, several
mechanisms can be invoked to explain the obsemasdis regarding lakes elevation
and fluorescence characteristics of CDOM in theked. Solar radiation is a key factor
for photo-induced degradation of DOM and organiotaminants in waters (Dobrovic”
et al., 2007; Mostofa et al., 2009). Previous sisdiave shown that increase in the
fluxes of UV radiation can substantially increabe tjuantity of reactive free radicals
such as HOe« and 4@, in waters (Qian et al., 2001; Yocis et al., 200l)e effect of
irradiance on the degradation processes and flcemes properties of CDOM are

generally highest in surface waters, but tends e@oldss significant in regard to
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deep-water DOM because of the lower sunlight iaade in the deeper water layers
(Laurion et al., 2000). Analysis of the relationshibetween lakes elevation and
meteorological factors (100 stations), showed aearaté positive correlation with solar
irradiance R?=0.41,N=100, p<0.01) and a weak positive correlation wdthation of
daylight (?=0.18,N=100, p<0.01) (Fig. S4). This result indicated théh increased
lakes elevation, solar irradiance is a determirfador controlling the decrease in the
humic-like fluorescent component of CDOM. Solar adiation can trigger
photo-induced degradation of CDOM and the reledsenall molecular weight CDOM
moieties. The intensity of these processes and th@gpact on the concentration,
absorption spectrum and molecular attributes of ®D&De expected to vary depending
on lakes altitude. It demonstrated that the humatenials in CDOM undergo the
photo-induced degradation in natural waters andlavalecrease significantly with
increased elevation.

The relationships between FDOM and elevation camefbre be complex, and
depend on several factors related to variable logatlitions including, solar radiation,
molecular nature of DOM, salinity and even globa@rming. Further investigations of
these factors are needed to further elucidateréimsformation of CDOM components,

and the contribution of photo-induced reactions amidrobial processes on these

31



559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

transformations. These future studies would infoum understanding of photo-induced

and microbial-mediated alterations in CDOM absarpttharacteristics in inland waters,

and ultimately contribute to our ability to assetb® significance of lacustrine

ecosystems to the global C cycle.

5. Conclusions

Information about the optical properties and flszence characteristics of CDOM in

saline inland waters for large geographical regismare and generally incomplete. For

a better understanding of carbon cycling in inldakles, a large-scale study was

conducted across five lake regions in China to anxepthe characteristics of CDOM

absorption and CDOM fluorescence. Compared to Wwasdr lakes, higher DOC

concentration, @ow(254) and SUVAs, were measured in the saline inland lakes.

Analysis of CDOM fluorescence characteristics pied important insights regarding

the sources (allochthonous vs authochnous, natsaknthropogenic), fates and

transformation of DOM in inland lakes. Specificalthe analysis showed that low

molecular CDOM fractions were relatively more abamid(hence, low humification

index of CDOM) in saline than in freshwater lak&fce the saline lakes are largely

located in endorheic drainage basins and experilemge periods of exposure to solar
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radiation, these results were interpreted as thasemuence of UV-induced

photochemical oxidation reactions in saline lakdgergby complex humic molecules

are decomposed into low molecular weight fulvieligubstances. Our results further

indicate that this photo-oxidation process is msithnger in high-altitude lakes. These

findings have important implications regarding aurderstanding of C dynamics in

inland lacustrine systems and the contributiorheté ecosystems to the global C cycle.
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Tables

Table 1 The Excitation and Emission wavelength ranges of the five integrated regions
identified by Fluorescence Regional Integration (FRI)

FRI Region Excitation (nm) Emission (nm) Description and Source
F1 200-250 250-330 Tyrosine-like protein

F, 200-250 330-350 Tryptophan-like protein
Fs 200-250 350-500 Fulvic acid-like

F4 250-280 250-380 Microbial-like

Fs 280-400 380-500 Humic-like

"Five regions identified by FRI method according to Chen et al. (2003).



Table 2 The water chemical parameters of various lake regions

Region DOC EC TN TP Chl-a TSM
(mg/L) (pglem)  (mg/lL)  (mg/L) (mg/L) (mg/L)
NLR 27.22 3855.21 554 1.28 24.10 127.00
MXR 25.78 9388.91 3.23 0.17 6.99 24.88
TOR 34.96 9671.30 3.82 0.49 1.94 29.64
ELR 5.92 345.32 0.98 0.02 55.21 13.33
YGR 5.25 388.12 0.90 0.05 2441 41.99
All saline 27.40 1272298 355 0.40 7.01 42.97
All Fresh 6.68 970.75 2.38 0.13 47.99 19.91




Table 3 The PCA component 1 and 2 as the dependent variables expressed with FRI

fluorescent components as independent variables

Types Equations

Component 1=0.417F;+0.501F,+0.484F;+0.446F,+0.377Fs
Component 2=-0.564F,-0.014F,+0.373F;-0.390F,+0.625Fs

Salinewaters

Component 1=0.457F;+0.473F,+0.430F;+0.468F,+0.404F5
Component 2=-0.427F;-0.266F,+0.506F5-0.319F,;+0.624F;

Fresh waters




Figures
Fig. 1 The distribution of sampled saline and freshwater lakes in different lake regions

with respecting to elevation across China.
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Fig. 2 () the concentration variations of dissolved organic carbon (DOC), and (b) the
variation of acpom(254) and comparison for saline (S) and fresh waters (F) in five lake

regions across China
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Fig. 3(a) The variation and comparison of CDOM absorption spectral slope (S75-205),
and (b) SUVA s, values for saline (S) and freshwater (F) lakes across five lake regions

of China. The line and circle within each box represent the median and mean,

respectively. The horizontal edges of each box denote the 25™ and 75™ percentiles, the

whiskers denote the 10" and 90™ percentiles, and X represent outliers.
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Fig. 4 The EEM fluorescence spectra and FRI distribution of Lake Selin Co from the
TQR, LakeAibi from the MXR and Lake Khanka from the NLR.
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Fig.5 The comparison of total fluorescent intensity of saline (S) and fresh water (F)

lakes in different lake regions across China.
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Fig. 6 The comparison of individual fluorescent intensities of saline (S) and fresh
waters (F) in different lake regions. F1 represents tyrosine-like protein, F2 represents
tryptophan-like protein, F3 represents fulvic acid-like organics, F4 represents soluble

microbia by-product-like materials, and F5 represents humic acid-like organics
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Fig. 7 The proportions of individual fluorescent intensities of saline (S) and fresh
waters (F) in different lake regions. P, represents the percentages of EEM-FRI
extracted FDOM related to tyrosine-like protein. P, represents the percentages of
EEM-FRI extracted FDOM related to tryptophan-like protein. P; represents the
percentages of EEM-FRI extracted FDOM related to fulvic acid-like organics. P,
represents the percentages of EEM-FRI extracted FDOM related to soluble microbial
by-product-like materials. Ps represents the percentages of EEM-FRI extracted FDOM

related to humic acid-like organics.
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Fig. 8 The principa component analysis (PCA) results of FRI-based EEMs (a) PCA
components and (b) PCA factor scores for saline waters; (c) PCA components and (d)

PCA factor scores for freshwaters.
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Fig. 9 The correlation between acpom(254) and DOC concentration for various lake
regions in China. (a). TQR (The high saline waters are with the mean EC of 25000
us/cm, the low saline water are with the mean EC of 9500 us/cm); (b). ELR; (¢). YGR;
(d). NLR; (€). MXR.
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Fig.10 The correlations between acpom (254) and FRI-EEMs characteristics, (a).
cumulative volume F; and F, by EEM-FRI for water samples in saine lakes, (b)
acpom(254) and Humic-like Fluorescence (Fn355), (€) acpom(254) and humification
index, (d) cumulative volume F, and F3 by EEM-FRI for water samplesin saline lakes,
() acpom(254) and cumulative volume Fsz+Fs by EEM-FRI for water samples in
saline lakes, (f) cumulative volume F3 and Fs by EEM-FRI for water sasmplesin saline
lakes.
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Fig. 11 The correlation between elevation and CDOM absorption and FRI-EEM

extracted indices for saline waters, (a) acpom(254) versus elevation, (b) Fs versus

elevation, (c) F,355 versus elevation, (d) Fr versus elevation, (e) HIX and elevation,

and (f) SUVA 54 versus elevation.
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Highlights

1. The 936 lake samples in China were examined to explore CDOM optical
properties

2. FRI was used to characterize CDOM sources of saline waters and fresh waters

3. The relationships between CDOM absorption and FDOM components were
analyzed

4. Closerelations of elevation and saline waters FDOM components were identified
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