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Claire Li 

Modeling and simulation applications with potential impact in drug development and 

patient care 

         Model-based drug development has become an essential element to potentially 

make drug development more productive by assessing the data using mathematical and 

statistical approaches to construct and utilize models to increase the understanding of the 

drug and disease. The modeling and simulation approach not only quantifies the 

exposure-response relationship, and the level of variability, but also identifies the 

potential contributors to the variability. I hypothesized that the modeling and simulation 

approach can: 1) leverage our understanding of pharmacokinetic-pharmacodynamic (PK-

PD) relationship from pre-clinical system to human; 2) quantitatively capture the drug 

impact on patients; 3) evaluate clinical trial designs; and 4) identify potential contributors 

to drug toxicity and efficacy. The major findings for these studies included: 1) a 

translational PK modeling approach that predicted clozapine and norclozapine central 

nervous system exposures in humans relating these exposures to receptor binding kinetics 

at multiple receptors; 2) a population pharmacokinetic analysis of a study of sertraline in 

depressed elderly patients with Alzheimer’s disease that identified site specific 

differences in drug exposure contributing to the overall variability in sertraline exposure; 

3) the utility of a longitudinal tumor dynamic model developed by the Food and Drug 

Administration for predicting survival in non-small cell lung cancer patients, including an 

exploration of the limitations of this approach; 4) a Monte Carlo clinical trial simulation 

approach that was used to evaluate a pre-defined oncology trial with a sparse drug 

concentration sampling schedule with the aim to quantify how well individual drug 
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exposures, random variability, and the food effects of abiraterone and nilotinib were 

determined under these conditions; 5) a time to event analysis that facilitated the 

identification of candidate genes including polymorphisms associated with vincristine-

induced neuropathy from several association analyses in childhood acute lymphoblastic 

leukemia (ALL) patients; and 6) a LASSO penalized regression model that predicted 

vincristine-induced neuropathy and relapse in ALL patients and provided the basis for a 

risk assessment of the population. Overall, results from this dissertation provide an 

improved understanding of treatment effect in patients with an assessment of PK/PD 

combined and with a risk evaluation of drug toxicity and efficacy.                                                          

 

Robert R Bies, Pharm.D., Ph.D. 
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CHAPTER I: Introduction 

1. The need for modeling and simulation in drug development   
         Despite significant expenditures, the drug development process requires a 

substantial amount of time and it is expensive and prone to failures. The average length 

of clinical development is quoted as 7-12 year at a cost of $0.8-1.7 billion per approved 

agent (Kaitin et al., 2010; Dimasi et al., 2001; Connolly et al., 2001; Lesko et al., 2004). 

The cost of drug development takes into account those compounds that undergo clinical 

testing but do not make it to the marketing approval or fail NDA approval. Therefore, the 

rate at which pharmaceutical firms successfully develop investigational compounds for 

marketing approval by regulatory agencies is a critical indicator of the effectiveness of 

the drug development process (DiMasi et al., 2010).  A retrospective analysis of both 

public and private drug pipeline database as well as from surveys comprising nearly 4000 

drugs and biologics from the 50 largest pharmaceutical firms between the mid-1990s and 

the early 2000s by DiMasi’s group pointed to clinical approval success rates that 

remained lower than 20% with an upward trend in costs (DiMasi et al., 2010).  Estimated 

clinical approval success rates differed significantly by therapeutic class; for example, in 

oncology, the success rate was only ~5% (Kola et al., 2004). Furthermore, even with the 

massive amount of data that are generated and obtained from the clinical trials every year, 

lots of useful knowledge and information remains undiscovered or underutilized (Ette et 

al., 2007). Processes and technological innovations that can improve the predictability of 

outcomes for new compounds can therefore significantly increase the productivity of new 

drug innovation (DiMasi et al., 2010). Indeed, in the white paper Challenge and 

Opportunity on the Critical Path to New Products published in March of 2004, the Food 
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and Drug Administration (FDA) has addressed this concern and states “Not enough 

applied scientific work has been done to create new tools to get fundamentally better 

answers about how the safety and effectiveness of new product that can be demonstrated 

in faster time frames, with more certainty, and at lower cost. A new product development 

toolkit—containing powerful new scientific and technical methods such as animal or 

computer-based predictive models, biomarkers for safety and effectiveness, and new 

clinical evaluation techniques—is urgently needed to improve predictability and 

efficiency along the critical path from laboratory concept to commercial product. We 

need superior product development science to address these challenges.” To highlight all 

these issues regarding the high attrition rates and increasing costs in drug development, 

model-based drug development has been proposed as one methodology to potentially 

make drug development more productive by assessing the ongoing clinical trial studies as 

well as historical drug databases using mathematical and statistical approaches to 

construct and utilize models to increase the understanding of the drug and disease.       

2. Model based drug development (pharmacometrics and statistics)                                  
         Model-based drug development (MBDD) is the concept of utilizing pharmaco-

statistical approaches to evaluate drug efficacy and safety from preclinical through the 

clinical data to improve drug development knowledge management and decision-making 

(Milligan et al., 2013; Lalonde et al., 2007). As Lalonde et al. described, the key 

components of MBDD can be divided into six categories: PK-PD and disease/placebo 

model; meta-analysis of candidate drug and competitor data, design considerations and 

trial execution models; data-analytic models; quantitative decision criteria; and trial 

performance metrics (Milligan et al., 2013; Lalonde et al., 2007).  Those principles can 
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potentially overcome the common limitation of the current drug development strategy, 

specifically, that prior information is partly or completely ignored when analyzing and 

interpreting the results of the most recent clinical trials.  

         One of the essential parts of MBDD is the discipline of pharmacometrics. 

Pharmacometrics has been described as “the science of developing and applying 

mathematical and statistical methods to  a) characterize, understand, and predict a drug’s  

pharmacokinetic and pharmacodynamic behavior, b) quantify uncertainty of information 

about that behavior and c) rationalize data-driven decision making in the drug 

development process and pharmacotherapy” (Ette et al., 2007). The modeling and 

simulation approach not only quantifies the exposure-response relationship, disease 

progression, and the level of variability, but also identifies the potential contributors to 

that variability. In addition, these models can be linked and applied to competing study 

designs and to customize patient drug therapy through therapeutic drug monitoring and 

improved population dosing strategies; therefore, facilitating the implementation of the 

personalized medicine (Bonate , 2011). The idea of personalized medicine can be further 

utilized to emphasize the significance of biomarker findings. As a result, biomarker 

identification and validation become one of the major foci of pharmacometricians across 

disciplines. Applying quantitative assessment approaches to understand biomarker 

dynamics can potentially: identify patients at risk for a disease; predict a patient response; 

and predict the risk of toxicity. 

         Other statistical tools have also become popular to describe the relationship of 

disease and clinical outcome which may or may not involve drugs or treatments using 

mathematical equations such as regression analysis and survival analysis. In particular, 
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survival analysis has been commonly used in clinical studies to analyze time to event data 

which can provide insight of patients’ efficacy and safety profiles and facilitate decision 

making such as dose selection or patient care.  

         Since the quantity of the data expands as the improvement of data collection 

method, an efficient computer tool becomes critical and demanded to facilitate the access 

to large amount of information (ex: pharmacogenomics profiles). This can be overcome 

by the development and implementation of bioinformatics tool. 

3. The opportunities (application) of modeling and simulation in drug development                              
         As the role of modeling and simulation in drug development becomes more 

significant, there are many opportunities available for modeling across different phase of 

studies. In the journal of the pharmaceutical sciences 2002, Meibohm and Derendorf 

initially indicated the potential modeling and simulation applications from the discovery 

and preclinical phase to clinical setting and even the post-marketing phase in Figure 1.1. 

As shown in Figure 1.1, in the early stages of drug development, modeling and 

simulation can explore the pharmacokinetic and pharmacodynamic of drug and drug-drug 

interaction in in vivo system and leverage the understanding of biomarker to evaluate 

drug efficacy and toxicity profile. It can also be useful in selecting dosage regimen or 

form based on the previously developed PK/PD relationship and integrate the early 

decision making in candidate selection. Furthermore, with the modeling assessment of 

preclinical studies, a first to human dose can be suggested by extrapolating from the in 

vivo model, and the translational approach can be also beneficial for systematically 

assessing some pharmacological relationships which have not been assessable in the 

human system.  A parallel approach has been suggested by combining preclinical and 
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early clinical development as a way to expand the learning process to all the phases of 

drug development. In the learning and confirming process of clinical trial, modeling and 

simulation serves as a tool to continuously evaluate exposure-response relationship across 

different therapeutic areas (Huang et al., 2013; Meibohm et al., 2001; Sheiner, 1997). The 

model can further evaluate contributors such as gender and food effects on exposure, 

predict PK/PD under a new dosing regimen, predict PK/PD in a special population such 

as children or elderly, and characterize drug-drug interaction and drug-disease interaction 

(Meibohm et al., 2002). In clinical drug development, predictive tools such as Monte 

Carlo simulation can explore various dosage regimens and optimize the trial design 

which might allow reducing the numbers and costs of the studies and improving drug 

development efficiency (Meibohm et al., 2002). 

 

Figure 1.1. Opportunities (applications) for modeling and simulation across the drug 

development process. (This figure is reproduced with permission of John Wiley & Sons, Inc. 

Meibohm B anad Derendorf H, Pharmcokinetic-pharmcodynamic studies in drug product 
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development, and copyright © 2002 Wiley-Liss, Inc. and the American Pharmaceutical 

Association). 

 

4. Type of models 

         As the demands and opportunities of modeling and simulation increases in each 

phase of drug development, various types of models have been advocated to address 

specific questions. Some of the model strategies are introduced in the following sections, 

and the applications are demonstrated in each section. 

4.1 Pharmacokinetic modeling 

         Pharmacokinetics began as a way to characterize the absorption, distribution, 

metabolism and elimination of a drug in the body and to reduce a concentration-time 

profile into a set of parameters that could be used for comparison, evaluation, and 

prediction (Teorell, 1937; Teorell 1937; Widmark, 1933; Wanger, 1973; Widmark, 1933; 

Derendorf et al., 2000). As the assays or the measurement tools becoming available not 

only in the plasma but also in some tissue levels, disposition of drug exposure pattern can 

be better understood. Furthermore, many forms of drug exposure were also characterized 

in the pharmacokinetic analysis. Depending on whether drug concentration measurements 

are available; sometimes, dose can be used as a representation of nominal exposure, and 

population average exposures after dose have been proposed. These are known as KPD 

models explore the dose-driven shape of the concentration vs time profile specifically the 

temporality without inter-individual variability in the context of exposure and 

pharmacodynamics relationship. Typically, drug concentrations measured in plasma 

represent the systemic exposure of the drug. Pharmacokinetic parameters such as 

clearance (CL), volume of distribution (Vd) or descriptors such as area under the curve 

(AUC), maximum concentration (Cmax) and elimination half–life (      can be derived 
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or calculated.  Beyond the drug concentrations measured in the biologic fluid, with the 

innovation and improvement of the measurement techniques, drug concentrations now 

can be measured at the target site using microdialysis or positron-emission tomography 

scan so that the responses can be more precisely correlated to drug concentrations at the 

effect site (Derendorf et al., 2000; Chefer et al., 2009; Jacobson et al., 2013). In addition, 

understanding the covariate effect on systematic exposure and variability associated with 

exposure is also an important component in a pharmacokinetic model. Covariates are 

characteristics describing the patients, the conditions of the drug treatment or other 

factors potentially influencing the outcome. In late 90’s, Vozeh’s and Grasela’s groups  

demonstrated how covariates can be used to predict patients’ pharmacokinetics through 

the covariate model development in a population analysis (Vozeh et al., 1982; Grasela et 

al., 1984; Grasela et al., 1985; Grasela et al., 1987). The covariates can be constant within 

an individual or time-varying.  They not only contribute to the estimates of structure 

model parameters but also impact the random effects distribution (Ribbing, 2007). In 

general, covariates can be classified as intrinsic factors (e.g. age, race, weight, sex, and 

genotype) or extrinsic factors (e.g. compliance, and smoking status) or can be categorized 

as categorical or continuous variables based on the measurement scale (Holford, 2013). 

In the process of model development, an assessment of covariate effect can improve 

predictive model performance for subject in the current data set, for trial simulation of 

future studies or for future patient population (Gastonguay MR, 2011). 

4.2. Pharmacodynamic modeling 

         Pharmacodynamics is often defined as what the drug does to the body (Ette et al., 

2007).  Based on the definition from Derendorf et al, “pharmacodynamics is a broad term 
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that is intended to include all of the pharmacological actions, pathophysiological effects 

and therapeutic responses, either beneficial or adverse of active drug ingredient, 

therapeutic moiety, and/or its metabolite(s) on the various systems of the body from 

subcellular effects to clinical outcomes” (Derendorf et al., 2000).  In pharmacodynamic 

modeling, the pharmacological action is often modeled as a time dependent effect that is 

related to drug exposure, and the endpoints of pharmacodynamics can be physiological 

changes such as blood pressure and cholesterol level or clinical outcomes such as 

survival or toxicity.  In addition, with the flexibility of mathematical functions, different 

types of pharmacodynamic endpoints including continuous, categorical, ordered 

categorical or count data can be described. Another type of pharmacodynamic response is 

the time to a specific event. A common approach for modeling, this type of event is 

survival analysis. Typically, a proportional hazard model or parametric survival model is 

likely to be used to describe the baseline hazard and the risk that depends on covariates in 

a predefined time period. 

4.3. Population PK/PD modeling 

         Sheiner and his colleagues published several articles illustrating a new 

mathematical approach to analyze pharmacokinetic data, which was later called 

population pharmacokinetics in the late 1970s and early 1980s (Sheiner et al., 1977; 

Sheiner et al., 1980; Sheiner et al., 1981; Sheiner et al., 1982; Bonate , 2005). In one of 

the Sheiner’s publications, he demonstrated that less-biased estimates of the population 

means and variances were found using the population approach than either the naïve-

pooled or 2-stage approach (Sheiner et al., 1981; Bonate, 2005). Population methods 

were further applied to assess pharmacodynamics endpoints. Population PK/PD modeling 
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approaches represent a methodology of leveraging sparse PK and PD data. Commonly, 

this approach is applied to relatively sparse sampling but in a sufficient number of 

individuals so that inter-individual variability can be assessed and allows integrating data 

from single or multiple studies as well as studies from different phases (Ette et al., 2007; 

Gross et al., 2000). With the flexibility of analyzing combined data from different studies, 

PK or PD profile of the population can be better represented. However, analyzing 

combined data in a typical model-based metal-analysis may potentially result in bias 

estimates of parameters. Therefore, this strategy should be carefully evaluated and 

applied (Gastonguay et al., 2005; Gastonguay et al., 1999). This strategy also allows for 

the identification and quantification of the sources of inter-individual variability in 

response such as genetic polymorphisms in metabolic enzyme or transporter, clinical and 

demographic factors. In particular, the population modeling approach has become one of 

the standard assessments of clinical drug development that regulatory agencies 

recommend (Department of Health and Human Services, 1999).  

4.4. Biomarker modeling 

         The official National Institutes of Health (NIH) definition of a biological marker 

(Biomarker) is “a characteristic that is objectively measured and evaluated as an indicator 

of normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention.”  This definition is broad and though not explicitly stated, 

includes laboratory tests, radiologic studies as well as physical exam findings. Although 

biomarker is a relatively new term that dates back to the late 1960s, biologic assessments 

and measurements in the evaluation of human disease were practiced in antiquity 

(Ferguson et al., 2010). Clinically useful biomarkers have evolved over time and play an 
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increasingly important role in many aspects of pharmaceutical discovery and 

development including personalized medicine and the assessment of safety profile, 

reflecting the scientific and technologic progress made over the centuries.   

         As a result, an increasing number of clinically relevant tests and procedures are 

available to estimate organ injury and guide treatment. Recent discoveries in genetics and 

molecular biology have resulted in impressive advances in our understanding of the 

pathophysiologic processes of individual disease and yielded an abundance of 

prospective therapies directed against novel targets (Ferguson et al., 2010).  This has 

brought about an increased focus on biomarker identification, validation, and 

quantification, as well as the development of analytical technologies for biomarker 

measurement. Efforts at biomarker discovery and validation have intensified since the 

twenty-first century (Ferguson et al., 2010).  Advanced genomic, proteomic, and 

metabolomics techniques now permit comparative analysis of specimens from healthy 

and diseased individuals, facilitating biomarker identification. Generally, there are four 

types of biomarker endpoints (Figure 1.2) (Jenkins et al., 2011). The first is called a 

prognostic endpoint which is used to predict the likely disease prognosis independent of 

the mode of treatment. For instance, the number of circulating tumor cells (CTCs) in 

peripheral blood at baseline can give an indication of survival prognosis in prostate 

cancer (De Bono et al., 2008).  The second type is a predictive biomarker that predicts the 

likelihood of response to a particular treatment or a class of treatments.  As an illustration, 

CTCs can also be a predictive biomarker when compared wild type patients vs. patients 

with mutation in the same treatment. This acts more like a covariate to explain the 

variation in the outcome. The third type of biomarker is a pharmacodynamics biomarker.  
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The definition of a pharmacodynamic biomarker is a response over time to a treatment 

intervention. Simple biomarker examples include cancer antigen 125 for ovarian cancer 

(Schmidt et al., 2011) and PSA for prostate cancer (Romero et al., 2013), and tracking 

treatment over time is an important component. Pharmacodynamic biomarkers could 

reflect the safety and/or efficacy of a treatment and are typically measured at multiple 

time points. Markers that correlate well with a widely accepted clinical outcome at both 

an individual and group level could potentially act as a surrogate endpoint and substitute 

for a recognized clinical endpoint (Katz et al., 2004; Rothmann et al., 2012) and are the 

fourth type of biomarker. For example, LDL cholesterol can act as a surrogate for major 

cardiovascular events in the licensing of statins (Tardif et al., 2006). The model based 

assessment of the dynamics of a biomarker can provide insight into the disease 

progression and capture a therapeutic drug effect which might be useful for early decision 

making before the clinical endpoints are available. 
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Figure 1.2. Biomarker endpoint types (This figure is reproduced with permission of John Wiley 

& Sons, Inc. Jenkins et al., A statistician’s perspective on biomarkers in drug development, and 

copyright © 2011 John Wiley & Sons, Ltd.). 

                                                                                                                                                                  

4.5. Clinical Trial simulation 

         Another significant component of pharmacometrics is stochastic simulation. 

Simulation has been widely used in many disciplines such as engineering before being 

used in drug development. It can serve not only as a predictive tool to evaluate the 

proposed trial design and the outcome under certain assumptions and to exposure pattern 

resulting from various dosage regimens, sampling schemas and population characters but 

also as an analytical tool to characterize exposure-response relationship in different 

modeling circumstances in a virtual population (Kimko et al., 2002; Kimko et al., 2011; 

Meibohm et al., 2002). Clinical trial simulation also allows us to compare different study 

designs and optimize study design by updating the design continuously. With the 

simulation assessment, the drug development process can be more efficient and powerful 

and more informative in bridging studies from one phase to another. 

4.6. Time to event model (GWAS study) 

         Clinical trials are often performed to evaluate the efficacy of new treatment 

regimens and the efficacy of existing treatments in a special population (National cancer 

institute, 2011). As mentioned briefly in section 4.2, the efficacy endpoints of the clinical 

trials are primary described as an event of interest such as death, relapse, and adverse 

drug reaction (Crom et al., 1994). The follow-up time of the patients may vary depending 

on the disease and treatment, the time component is an important assessment to 

understand the event occurrence. These statistical models consider the time course until 

an event occurs and compare the cumulative probability of events over time for two or 
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more cohorts (Lee et al., 1982; Singh et al., 2011). Therefore, a statistical procedure 

which is likely to applied for analyzing this endpoints is called time to event analysis. 

Because survival is one of the most common endpoints in time to event analysis, people 

also describe this type of analysis as survival analysis. In time to event analysis, one of 

the essential components is how the dichotomous event of interest is pre-defined. For 

example, if an adverse drug reaction is classified using a grading scale from 0 to 5, the 

event of interest can be specified as binary or categorical outcome based on the question 

we are interested in (National cancer institute, 2009). Another key component of most 

time to event model is censoring. Censoring can arise under three circumstances: when an 

individual does not experience the event during the study period; when an individual 

discontinues the follow-up during the study period; and when an individual drops out 

from the study due to other events (Singh et al., 2011).   

         One of the most common time to event model is the Cox proportional hazards 

model (Cox et al., 1972). This model was first introduced by Cox, in 1972, for analysis of 

survival data with and without censoring, and for identifying the contributors to the 

difference of survival in clinical trials. These contributors include treatment effect, 

prognostic and clinical covariates. Different from parametric survival or the Kaplan-

Meier method (Itman et al., 1992), the Cox regression model is considered a semi-

parametric method which does not require a pre-specified hazard function for the baseline 

hazard but considers the hazard to be proportional at any point in time for the 

characteristics based on the model assumption. The hazard is calculated using the 

equation shown below: 

 

 
H(t = H (t  x exp(b X + b X + b X +  + b X ) 
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where X1 ... Xj represent a group of predictor variables, and H0(t) is the baseline hazard at 

time t, representing the hazard for a person when all the predictor variables are 0 (Cox et 

al., 1972). 

The Cox model has been widely used in covariate selection for association studies such 

as Genome wide association study (GWAS), and it is very useful and robust tool in 

clinical research and provides valuable information about an intervention.  

5. Hypothesis and specific aims 

         Modeling and simulation has been shown to be a critical tool in drug development 

and patient care. In drug development, modeling and simulation provides an early 

assessment of a new drug entity in the initial discovery phase to facilitate: the compound 

selection; the prediction of pharmacokinetic-pharmacodynamic(PK-PD) relationships 

from in-vivo animal results to human; the characterization of exposure-response profiles 

at both the individual and population levels in the clinical studies; the evaluation of the 

trial design; and insights to inform decision making in drug development. Furthermore, as 

the studies go beyond drug approval, modeling and simulation can also be applied to the 

post-marketing evaluations for special populations and to predict drug toxicity and 

efficacy in a long-term patient care setting with the potential to inform clinical 

recommendations.   

         The main objectives of this proposal use a modeling and simulation approach: 1) to 

leverage our understanding of PK/PD relationship from pre-clinical system to human; 2) 

to quantitatively understand the drug impact on patients; 3) to evaluate clinical trial 

deigns and; 4) to identify potential contributors (predictors) to drug toxicity and efficacy. 

This work explores the hypothesis that modeling and simulation can be useful to provide 
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insight into trial designs and facilitate decision making (Steimer et al., 2000). To test this 

hypothesis, we proposed the following specific aims:  

1. Build a population pharmacokinetic model that accounts for both plasma and brain 

concentrations measured in rats and utilize this model to predict human concentrations of 

clozapine and its N-desmethyl metabolite, norclozapine. (Preclinical PK model) 

2. Identify covariates that contribute to variability in sertraline concentration by 

performing a population pharamcoknetic analysis of sertraline in elderly patients with 

Alzheimer disease and generating population pharmacokinetic parameters for this 

population. (Population PK model in a special population) 

3. Assess and refine the published FDA longitudinal tumor size model for predicting 

survival in NSCLC patients using archived tumor measurement data. (Pharmacodynamic 

/Biomarker model)   

4. Evaluate whether a pre-defined oncology trial with a sparse drug concentration 

sampling schedule can adequately capture individual level drug exposures, random 

variability and the food effects of abiraterone and nilotinib. (Clinical trial simulation and 

trial design evaluation) 

5. Establish a candidate gene database which included those polymorphisms associated 

with vincristine-induced neurotoxicity in childhood ALL patients from the GWAS study 

and gene enrichment analysis (Time to event model) 

6. Create a signature comprising a combination of genetic and clinical markers that 

predict vincristine-induced neurotoxicity and relapse in childhood ALL patients using 

LASSO penalized regression model. (Signature model) 
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          Successful completion of these aims would result in accelerated and information 

rich decision making by leveraging data from previous trials to simulate clinical 

outcomes as well as aid in the design of future clinical trials. Modeling and simulation 

allows one to explore the pharmacokinetic profile in a special population and exposure 

and response relationship in preclinical and clinical setting to facilitate drug development 

as well as optimal drug utilization and therefore provide better care for the patients. 

Furthermore, potential biomarkers for survival prediction and drug- induced adverse 

reactions identified by the modeling approach can help in guiding treatment decisions and 

facilitating the future protection for patients. Ideally, patients most likely to derive a 

benefit from treatment are more likely to be targeted; in contrast, those patients identified 

as non-responders are more likely to be excluded so that unnecessary harm to patients can 

be minimized.  This may allow for the identification of ineffective treatments earlier in 

the clinical trial process thus also avoiding unnecessary patient exposures. In this study, 

modeling and simulation demonstrates the potential applications in drug development and 

patient care and the utility of clinical prediction. 
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CHAPTER II: Preclinical model-prediction of brain clozapine and norclozapine 

concentrations in humans using a scaled pharmacokinetic model for rat brain and 

plasma pharmacokinetics (Published in Journal of translational medicine with open 

access license http://www.biomedcentral.com/about/license) (This material is reproduced 

with permission of BioMed Central) 

1. Introduction       

         Schizophrenia is a debilitating disorder that affects approximately 1% of the global 

population without regard to race, sex or socioeconomic status (Mathers et al., 2006). It 

typically strikes in the late-teen years or early twenties and is characterized by a high rate 

of morbidity and mortality. Given these high personal and societal costs, investment in 

research aimed at understanding the biology of the disease, its genetic components and 

their interplay with environmental factors, continues on many levels. Over the past 50 

years, pharmacotherapeutic support has been instrumental in managing primarily the 

positive symptoms of the disease and hinges on suppression of a central circuitry 

dysfunction that can be normalized by antagonism of dopamine D2 receptors in the 

striatum (Murray et al., 2008). Introduction of clozapine, the first so-called atypical 

antipsychotic approximately 25 years ago, represented a significant advance in our 

understanding of schizophrenia from a systems biology perspective in that this drug did 

not have the typical side effects of the 1
st
 generation neuroleptics. This reduction in side 

effects was attributed to higher 5HT-2A than D2 binding (Meltzer et al., 1989).   

         However, clozapine pharmacology is not limited to D2 and 5HT2A antagonism. 

Albeit unintentionally, the drug binds to several other dopamine and serotonin receptor 

subtypes, as well as to muscarinic M1/M4 and alpha-1 adrenergic receptors with 

http://www.biomedcentral.com/about/license
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pharmacologically relevant affinity (Horacek et al., 2006). From a clinical perspective, 

this broad receptor coverage may account for clozapine’s unique superiority in treatment 

resistant schizophrenia (TRS), even amongst other atypical antipsychotics. From a 

research perspective, the broad receptor coverage of clozapine conceivably makes the 

drug a useful tool to advance our understanding of complex pharmacotherapy that 

incorporates multiple interacting receptor systems.  

          The use of positron emission tomography (PET) imaging to measure receptor 

occupancy of clozapine and other atypical antipsychotics in humans has been invaluable 

in demonstrating the importance of D2 and 5HT2A receptor antagonism contributing to 

the efficacy of these drugs (Takeuchi et al., 2013; Moriguchi et al., 2013; Tsuboi et al., 

2013). However, broader application of this non-invasive technique has been limited by 

the lack of ligands specific for other receptors to which clozapine has affinity. In this 

regard, availability of other approaches that are complementary to PET imaging would be 

useful. One possibility is to link non-clinical measurements of clozapine disposition in 

the brain with clinical studies of clozapine systemic exposure using a translational PK 

modeling approach.  Prediction of clozapine CNS exposure could then be related to its 

receptor binding kinetics at multiple receptors to impart a virtual predicted 

pharmacodynamic component to a model. This approach has been used recently to 

predict CNS concentrations of atomoxetine and duloxetine that were in the range of 

receptor affinities associated with therapeutic doses (Kielbasa et al., 2012). In a related 

manner, a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach 

was used to predict D2 receptor occupancy of olanzapine in humans (Johnson et al., 

2011), and the D2 and 5HT2A receptor occupancy of risperidone and its active 
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metabolite paliperidone (9-OH risperidone) (Takeuchi et al., 2013; Moriguchi et al., 2013; 

Tsuboi et al., 2013; Kozleiska et al., 2012). These studies, as well as earlier PK-PD 

models applied to other CNS drugs (de Lange et al., 2012; de Lange et al., 2005), provide 

confidence in the ability of this approach to deepen our understanding of drug action in 

human brain.   

         A recent study measured clozapine and its N-desmethyl metabolite, norclozapine,  

in extracellular fluid (ECF) of rat medial prefrontal cortex using quantitative 

microdialysis, and these results provided evidence of net efflux from brain across the 

blood-brain barrier (BBB) (Cremers et al., 2012). This suggests that plasma 

concentrations may not be a good predictor of brain concentration for clozapine or 

norclozpaine. Therefore, prediction of clozapine exposure in the ECF of human brain 

using a translational PK modeling approach could be cross-validated against PET results 

at D2 and 5HT2A receptor occupancy in humans, and subsequently used to estimate 

clozapine receptor occupancy at the drug’s other receptor targets for which PET tracers 

do not exist.  Such comprehensive PK-PD model could potentially support individualized 

dosing of clozapine to improve its efficacy and CNS tolerability. It would also support 

research aimed at discovering new approaches for the treatment of the schizophrenia in 

its different forms.    

         The purpose of this study was; (1) to build a PK model that accounted for both 

plasma and brain concentrations measured in rats; (2) to utilize this model to predict 

concentrations of clozapine and norclozapine in human brain. This would allow for the 

prediction of expected receptor occupancy in humans. 
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2. Materials and Methods 

2.1. Study Design     

         A single dose of clozapine (10mg/kg) was administered subcutaneously to four 

male Wistar rats with an average weight of 0.35 kg purchased from Harlan (Zeist, The 

Netherlands). Three days prior to administration a microdialysis guide cannula was 

surgically implanted in the medial prefrontal cortex; at the same time, a catheter for blood 

sample collection was placed in the right jugular vein and was exteriorized through an 

incision at the top of the head.  This vascular cannulation enabled an equivalent volume 

of saline replacement for each blood sample.  A MetaQuant probe (6 mm, cellulose 

membrane, BrainLink, The Netherlands) was inserted into the guide cannula 24 hours 

prior to drug administration to enable sampling of brain extracellular fluid (ECF).  

Concentrations of clozapine and norclozapine were measured in plasma and brain (ECF) 

by HPLC with tandem mass spectrometry in the positive ion mode as previously 

described (Cremers et al., 2012). For each rat, the unbound concentrations in each 

compartment were measured at 9 time points (0, 15, 30, 60, 90, 120, 240, 360 and 480 

minutes) in plasma and 18 time points (-30, 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 

300, 330, 360, 390, 420, 450 and 480 minutes) in brain. A single dose of norclozapine 

(10 mg/kg) was also administered subcutaneously to another five male Wistar rats with 

an average weight of 0.34 kg bought from the same Harlan laboratories. Concentrations 

were measured in plasma and brain ECF, and the same time points were used as those 

specified for clozapine.   
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2.2. Model Development  

         Different model structures were initially evaluated using the system dynamics 

software VENSIM (Ventana Systems, Inc., MA, US). Thereafter a population approach 

was used to describe the pharmacokinetics of clozapine and norclozapine. Population PK 

parameters were estimated using a nonlinear mixed effect modeling approach, as 

implemented in NONMEM version 7.2 (Icon Development Solutions, Hanover, 

Maryland) using Wings for NONMEM version 7 (Holford, 2013). The first-order 

conditional estimation method (FOCE) with interaction was used to estimate the 

structural PK parameters and the random effects parameters.   

         Model development was started with an assessment of clozapine PK in plasma.  

One and two compartment models with first order absorption for clozapine in plasma 

were tested. A peripheral compartment structure was subsequently implemented to 

represent the brain extracellular fluid concentrations. The transfer characteristics of 

clozapine between the plasma and the brain compartment were evaluated using an 

intercompartmental clearance, CLin/CLout, as well as incorporating delay functions 

(Savic et al., 2007). These delay functions included a lag time and transit compartment 

approaches.  Once the structural model for clozapine was established, the plasma 

compartment of norclozapine was integrated and then connected to the brain 

compartment. The same strategy was utilized in building the structural model for 

norclozapine concentrations that were measured following norclozapine administration. 

Clozapine and norclozapine concentration measurements were then combined from the 9 

rats and modeled simultaneously in the final structural model. The volume of distribution 

of clozapine and norclozapine in brain were tested with and without fixing this parameter 
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to a literature reported value (Fridén et al., 2007). A parallel metabolic pathway from the 

extravascular space was also explored.  

         Between-animal variability (BAV) for PK parameters was assumed to be log-

normally distributed and evaluated using an exponential model Pi = PTV x e
ηp

 where Pi is 

the parameter estimate for the i
th

 animal, and PTV is the typical parameter value at the 

population level. The difference between i
th

 individual and population parameter values 

was described by p, which was identically distributed with mean equal to 0 and variance,  

ωη
2
 (Feng et al., 2006).  A combined additive and proportional model was first used to 

describe the intra-animal variability. If one of the elements of the model was found to be 

negligible and not significant, it was then removed from the residual error model. 

Residual error parameters were assumed to be normally distributed with mean equal to 0 

and variance, 
2
.  

2.3 Model selection and evaluation  

         Model evaluation was based on a likelihood ratio test using the objective function 

value (OFV) provided by NONMEM. The minimum OFV returned by NONMEM is 

approximately equal to −2 × log likelihood (−2LL) and served as a guide during model 

design. A decrease in −2LL of 6.63 points for 1 degree of freedom was regarded as a 

significant model improvement, corresponding to a p value of 0.01 for nested models. 

The final model was further examined using goodness-of-fit plots generated using R 

version 2.13 based on the conditional weighted residuals distribution and the predicted 

versus observed concentrations at both the population and individual levels. Furthermore, 

the final pharmacokinetic model was also evaluated using a visual predictive check 
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(VPC), and the uncertainty on each parameter was determined using a non-parametric 

bootstrap sampling with replacement 1000 times from the original dataset. 

2.4 Prediction of Human Clozapine, Norclozapine Brain Concentrations and 

Expected Receptor Occupancy  

         After the pharmacokinetic model of clozapine in rat was finalized, the PK model 

framework was adapted by scaling PK parameters with allometric principles to predict 

human concentrations in brain. The following exponents were utilized scaling body 

weight to: clearance 0.75; volume of distribution 1; and first order rate constants 0.25 

(Sharma et al., 2009). A 50% of conversion from clozapine to norclozapine in humans 

was assumed in the model based on prior reports (Centorrino et al., 1994; Raedler et al., 

2008; Couchman et al., 2010), and this was implemented in the simulated model 

assuming CLclo/F is equal to CLclo-p/F. The model performance was evaluated comparing 

model simulated plasma concentrations to published human clozapine concentrations 

(Ismail et al., 2012) in plasma at steady state following 200, 300 and 400 mg daily doses. 

The published human clozapine data were reported as total concentrations, and these 

concentrations were converted to free concentration using 3% unbound fraction 

(Clozapine Product Insert, 2013) prior to the comparison. After model validation, the 

simulated human clozapine and norclozapine concentrations were used to calculate the 

expected human receptor occupancy for multiple receptors.  Receptor occupancies were 

predicted for: dopamine 2(D2); serotonin 2A (5-HT2A); muscarinic-1 (M1); alpha-1 

adrenergic (α1); alpha-2 adrenergic (α2); and histamine-1 (H1) using published 

equilibrium dissociation constants (Kd) for clozapine (Seeman et al., 2002: Bumaster et 

al., 1996; Kroeze et al., 2003) and norclozapine (D2 only) (Lidow et al., 2000). 
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3. Results 

3.1 Rat Population Pharmacokinetics 

         A two-compartment model with first order absorption best described clozapine 

pharmacokinetics in rats using a central compartment for plasma concentrations and a 

peripheral compartment for brain concentrations.  Between plasma and brain, an apparent 

delay in the distribution of clozapine was identified.  Several structural models were 

tested to capture the observed delay. A transit compartment model with two 

compartments best described flow from plasma to brain, and inter-compartment clearance 

described the return from brain to plasma (Figure 2.1). Population pharmacokinetic 

estimates are given in Table 1. Norclozapine exposures in plasma and brain following 

clozapine administration were adequately described using a similar structure, but with 

one fewer transit compartment (Ktr2), which was estimated to be approximately 40% of 

the clozapine value. The volume of distribution of clozapine (Vclo-p/F) and norclozapine 

in brain (Vmet-p/F) were fixed to the previously estimated values in the final model. 
 

Although a significant reduction in the OFV was observed when both parameters were 

estimated, they were estimated with very poor precision. The elimination of clozapine 

converted to norclozapine was CLclo-met at 0.055 L/min, which is approximately 10% of 

total clozapine systemic clearance. The NONMEM control stream with the selected 

model is also included in the supplementary material (Additional file 1). 
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Figure 2.1. Compartmental representation of clozapine and norclozapine pharmacokinetics. 

Two compartments in blue represented the plasma and brain compartment of clozapine. 

Two compartments in green represented the plasma and brain compartment of norclozapine. 

Clo (Clozapine): CLclo /F=clearance of clozapine; Vclo-p /F=volume of distribution of clozapine in 

plasma; Kaclo =absorption rate of clozapine; Qclo /F=intercompartmental clearance of clozapine;  

Vclo-b /F= volume of distribution of clozapine in brain; Ktr1= transit rate constant of clozapine.  

Met (Norclozapine): CLclo-met /F=clearance of clozapine to norclozapine; CLmet /F=clearance of 

norclozapine; Vmet-p /F=volume of distribution of norclozapine in plasma; Kamet =absorption rate 

of norclozapine; Qmet /F=intercompartmental clearance of norclozapine;  

Vmet-b /F= volume of distribution of norclozapine in brain; Ktr2= transit rate constant of 

norclozapine.  
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         Bootstrap analysis  Median [5-95th percentiles] 

Parameters Estimates (RSE%) BAV (RSE%)                 Estimates                                                    BAV   

Clozapine         

CLclo/F (L/min) 0.5(20.3) 

 

         0.463[0.358-0.661] 

 
Vclo-p/F (L) 19.4(40.3) 

 
           18.9[5.43-31.59] 

 

Kaclo (1/min) 0.00801(14.7) 
 

0.00815[0.0051-0.0095] 

 
Qclo/F (L/min) 2.01(40.8) 0.193(33.6) 2.08[0.58-3.43] 0.2[0.07-0.29] 

Vclo-b/F (L) 0.214 FIXED 
 

 

 

Ktr1 (1/min) 0.0125(9.4) 0.05 (48.9) 0.0129[0.011-0.015] 0.047[0.0033-0.069] 

Fclo  1 FIXED 0.259(37.1) 
 

0.243[0.062-0.35] 

Norclozapine 
    

Clclo-met/F 
(L/min) 

0.055(24.8) 
 

0.0584[0.04-0.0855] 
 

CLmet/F (L/min) 0.419(18.8) 0.111(74.8) 0.43[0.33-0.61] 0.08[0.0038-0.18] 

Vmet-p/F (L) 2.95(38.6) 0.168(51.1) 3.02[1.91-5.55] 0.149[0.000047-0.27] 

Kamet   (1/min) 0.00277(31) 0.371(44.2) 0.00296[0.0015-0.0047] 0.319[0.065-0.54] 

Qmet/F (L/min) 0.388(45) 
 

0.386[0.229-0.768] 
 

Vmet-b/F (L) 0.25 FIXED 
  

 

Ktr2 (1/min) 0.00517(12.3) 
 

0.00521[0.0045-0.0064] 
 

Fmet 1 FIXED 
  

 

Residual error 
(proportional) 

    

Parent-plasma 0.109(70) 
 

0.084[0.029-0.19] 

 
Parent-brain 0.0367(27) 

 
0.0371[0.023-0.055] 

 
Metabolite-

plasma 
0.0762(24.1) 

 
0.0714[0.051-0.11] 

 Metabolite-
brain 

0.014(18)   0.0133[0.0095-0.017]    

 

Table 2.1. Parameter estimates of final population pharmacokinetic model. 

Clo (Clozapine): CLclo /F=clearance of clozapine; Vclo-p /F=volume of distribution of clozapine in 

plasma; Kaclo =absorption rate of clozapine; Qclo /F=intercompartmental clearance of clozapine;  

Vclo-b /F= volume of distribution of clozapine in brain; Ktr1= transit rate constant of clozapine.  
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Met (Norclozapine): CLclo-met /F=clearance of clozapine to norclozapine; CLmet /F=clearance of 

norclozapine; Vmet-p /F=volume of distribution of norclozapine in plasma; Kamet =absorption rate 

of norclozapine; Qmet /F=intercompartmental clearance of norclozapine;  

Vmet-b /F= volume of distribution of norclozapine in brain; Ktr2= transit rate constant of 

norclozapine.  

BAV=between animal variability 

RSE%= percent relative standard error 
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Additional file1: NONMEM control stream 

… 

$SUBS ADVAN13 TOL=6 

$MODEL  

       COMP(DEPOT)        ; ORAL DOSE OF CLOZAPINE 

       COMP(CENTRAL)    ; PLASMA COMPARTMENT FOR CLOZAPINE 

       COMP(PER)              ; BRAIN COMPARTMENT FOR CLOZAPINE       

       COMP(TRANSIT1)   ; TRANSIT COMPARMENT 1 FOR CLOZAPINE  

       COMP(TRANSIT2)   ; TRANSIT COMPARMENT 2 FOR CLOZAPINE 

       COMP(MET)            ; PLASMA COMPARMANET FOR  NORCLOZAPINE  

       COMP(DEPOT2)      ; ORAL DOSE OF NORCLOZAPINE 

       COMP(PER2)            ; BRAIN COMPARMENT FOR  NORCLOZAPINE 

       COMP(TRANSIT3)   ; TRANSIT COMPARMENT 1 FOR NORCLOZPAINE 

    

$PK 

CLclo=THETA(1) 

CLclo-met=THETA(2)                               

Vclo-p=THETA(3)                              

KAclo=THETA(4)                          

S2=Vclo-p  

Vclo-b=THETA(5)                          

Qclo=THETA(6)*EXP(ETA(1))  

Fclo=THETA(7)*EXP(ETA(2))   

KTR1=THETA(8)*EXP(ETA(3))  

CLmet-p=THETA(9)*EXP(ETA(4)) 

KAmet=THETA(10)*EXP(ETA(5)) 

Vmet-p=THETA(11)*EXP(ETA(6)) 

Vmet-b=THETA(12) 

Qmet=THETA(13) 

KTR2=THETA(14) 

Fmet=THETA(15) 

 

 A_0(1)=0 

 A_0(2)=0 

 A_0(3)=0 



                                                                          29 
 

 A_0(4)=0 

 A_0(5)=0 

 A_0(6)=0 

 A_0(7)=0 

 A_0(8)=0 

 A_0(9)=0 

 

;------------------------------------------------------------------------------------------ 

$DES 

;--------------------------------PK ODES ----------------------------------- 

DADT(1)=-KAclo*A(1) 

DADT(2)=KAclo*A(1)-(CLclo-met/Vclo-p)*A(2)-(CLclo/Vclo-p)*A(2)+(Qclo/Vclo-b)*A(3)-KTR1*A(2) 

DADT(3)=KTR1*A(5)-(Qclo/Vclo-b)*A(3) 

DADT(4)=KTR1*A(2)-KTR1*A(4)  

DADT(5)=KTR1*A(4)-KTR1*A(5)  

DADT(6)=(CLclo-met/Vclo-p)*A(2)-(CLmet/Vmet-p)*A(6)+KAmet*A(7)+(Qmet/Vmet-b)*A(8)-KTR2*A(6) 

DADT(7)=-KAmet*A(7) 

DADT(8)=KTR2*A(9)-(Qmet/Vmet-b)*A(8) 

DADT(9)=KTR2*A(6)-KTR2*A(9) 

… 
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         Figures 2.2 and 2.3 show the goodness of fit plots of the final model for the parent 

drug and metabolite in plasma and brain, respectively.  Population and individual 

predictions as well as the conditional weighted residuals distribution are shown in these 

figures. In the case of norclozapine, imprecision in population predicted plasma 

concentrations was evident and is attributed to the inter-animal variability observed in the 

context of the limited number of animals available to support these predictions. The 

majority of the fixed effects were estimated with less than 40% relative standard error 

(Table 1). BAV was estimated for several of the structural parameters and ranged from 

5% (Ktr1) to 75% (Clmet). Residual variability for clozapine in plasma and brain were 

10.9% and 3.7%, respectively, and residual variability of norclozapine in plasma and 

brain were 7.6% and 1.4%, respectively. VPC results are shown in Figures 2.4 and 2.5, 

the observed medians (dashed black lines) concentrations were adequately captured by 

the corresponding simulation based 90% predicted intervals of median concentrations for 

clozapine and norclozapine (shaded areas). Median, 5
 th

 and 95
th

 percentiles of the 

parameters derived from the bootstrap analysis of 1000 replicates are shown in Table 2.1.    
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Figure 2.2. Model diagnostic plots for clozapine.                                                                                                 

A and E: population prediction vs. observation plots for clozapine in plasma and brain ECF, 

respectively, solid line is line of identity.  B and F: individual prediction vs. observation plots for 

clozapine in plasma and brain ECF, respectively.  C and G: conditional weighted residuals vs. 

time for clozapine in plasma and brain ECF, respectively. D and H: conditional weighted 

residuals vs. population prediction for clozapine in plasma and brain ECF, respectively.  
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Figure 2.3. Model diagnostic plots for norclozapine.  

A and E: population prediction vs. observation plots for norclozapine in plasma and brain ECF, 

respectively, dashed line is the line of identity.  B and F: individual prediction vs. observation 

plots for norclozapine in plasma and brain ECF, respectively.  C and G: conditional weighted 

residuals vs. time for norclozapine in plasma and brain ECF, respectively. D and H: conditional 

weighted residuals vs. population prediction for norclozapine in plasma and brain ECF, 

respectively. 
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Figure 2.4. Visual predictive checks of clozapine in plasma and brain and norclozapine in 

plasma. 

Visual predictive check of clozapine concentrations in plasma (A) and brain (B), and 

norclozapine concentrations in plasma (C) following a 10 mg/kg subcutaneous dose of clozapine.  

Norclozapine concentrations in brain following a 10 mg/kg subcutaneous dose of clozapine were 

not measureable. 

Dashed line is the median of observed concentrations, the shape represents the 90% predicted 

interval of the median, and the dots represent the observed concentrations. 
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Figure 2.5. Visual predictive checks of norclozapine in plasma and brain. 

Visual predictive check of norclozapine concentrations in plasma (A) and brain (B) following a 

10 mg/kg subcutaneous dose of norclozapine.  

Dashed line is the median of observed concentrations, the shape represents the 90% predicted 

interval of the median, and the dots represent the observed concentrations. 
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3.2 Human PK Simulation 

         Simulated unbound clozapine concentrations in plasma from 12 to 24 hours after 

administration were compared with published human data and are shown in Figures 2.6A, 

2.6B and 2.6C for 3 doses (200, 300 and 400mg/day). Predicted occupancy of D2, 5-

HT2A, M1, α1, α2 and H1 receptors were calculated using simulated unbound clozapine 

and norclozapine (D2 only) brain concentrations for the three dose levels. For clozapine, 

the predicted median percentage of receptor occupancy of D2 ranged from 6-42%, 9-52% 

and 11-59% for the 200, 300 and 400mg daily doses, respectively, across the inter-dose 

time interval. The median percentage of 5-HT2A receptor occupancy decreased from 

93% to 52%, 95% to 62% and 96% to 69% from 6 to 24 hours after 200,300 and 400mg 

daily doses, respectively. For M1, α1 and H1 receptors, occupancies ranged from 74 to 

99% across the dosage interval. In addition, the median percentage occupancy of α2 

receptors was predicted to be in the range of 3-40% across the dosage interval.  For 

norclozapine, the predicted median percentage of receptor occupancy of D2 ranged from 

1.1-17.3% across the dosage interval. Receptor occupa 

ncy results across the dosage interval are summarized in Figure 2.7.  
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Figure 2.6. Simulated clozapine human unbound concentrations vs. published human 

concentrations at steady state in brain with 200,300 and 400 mg OID from 12 to 24 hours. 

The shape represents the 90% predicted interval of the median and the dots represent the 

observed data. 
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Figure 2.7. The predicted median percentage of receptor occupancy of D2, 5-HT2A, M1, α1, 

α2 and H1 for clozapine and D2 for norclozapine. 

The predicted median percentage of receptor occupancy of D2, 5-HT2A, M1, α1, α2 and H1 for 

clozapine were shown in A to F, respectively, and predicted median percentage of receptor 

occupancy of D2 for norclozapine was shown in G between 6 to 24 hour after dose. The solid 

line,dash line and dot line represent the predicted median percentage of receptor occupancy 

following 200, 300 and 400 mg daily doses, respectively. 
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4. Discussion 

         The model presented represents a unique PK model developed from directly 

measured concentrations of clozapine and norclozapine in rat plasma and brain ECF.  A 

multiple transit compartment model was used to account for a delay in the transport of 

clozapine and norclozapine from plasma to brain across the rat blood brain barrier.  Some 

evidence suggests that Pgp may be involved in the process of clozapine transport 

(Cremers et al., 2012; Doran et al., 2005) across the blood brain barrier. The need to 

incorporate transit compartments in the present model is consistent with a Pgp role in 

clozapine transport across this barrier. Using an animal model, drug exposure can be 

measured by microdialysis at the target site.    Based on a previously published non-

compartmental analysis, the ratio of AUC between parent and metabolite in the rat 

indicated that only about 10% of parent drug was eliminated through metabolism (Olsen 

et al., 2008). This is consistent with the ratio of norclozapine to clozapine clearance (Clclo-

met is 9.91% of Clclo.)  As the results revealed, even with relatively rich sampling profiles, 

the uncertainty of some parameters, in particular of between-animal variability, was large 

likely because of the small number of animals in this study.  

         Simulated human plasma concentrations were based on previously published human 

plasma concentration data (Ismail et al., 2012). The unbound plasma concentrations at 

steady state after a range of doses overlapped with published data corrected for the 

unbound fraction of clozapine (3%) (Clozapine Product Insert, 2013).  Subsequently, 

plasma exposures were linked to the plasma–brain structural PK parameters, using 

allometric scaling, that described clozapine and norclozapine transport between plasma 

and brain in the rat to ultimately predict human brain ECF exposure. This population 
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pharmacokinetic approach, based on a transit compartmental approach as opposed to 

explicit assumption of a Pgp role and its associated interspecies scaling, enabled 

translational representation of the system across species to predict human brain ECF 

concentrations. As an atypical antipsychotic drug, clozapine targets D2 receptors as well 

as acts as an agonist or antagonist at several other receptors found in the CNS.  In order 

to get a more complete profile of PK-PD linkage, percentage receptor occupancy of each 

receptor was calculated from 6 to 24 hour after three dosage levels. Our results show that 

the median percentage D2 receptor occupancy was in a range of 42% to 59% 6 hours 

after administration of a daily dose of 200-400 mg. This range is congruent with the 33% 

to 67% range reported by  Nordström et al (Nordström et al., 1995), and agrees with the 

widely recognized understanding of low D2 receptor occupancy of therapeutic doses of 

clozapine relative to those obtained with therapeutic doses of other antipsychotics (first 

and second generation).  In addition to D2, percent 5-HT2a receptor occupancy also 

overlapped with the results of Nordström et al.   

         The proposed PK model thus demonstrated the ability to extrapolate human 

systemic exposure to predict clozapine brain concentrations and associated receptor 

occupancy profiles in humans at clinically relevant doses.  In addition, the model 

simultaneously captured parent and metabolite in the system, which is relevant since 

norclozapine also has activity at multiple receptors (Bishara et al., 2008). However, the 

model can be improved in the precision of the PK parameter estimates by increasing the 

sample size. With this limitation taken into consideration, the model framework reported 

shows promise in predicting clozapine receptor occupancy at multiple receptors in human 

CNS, which can then be probed as a correlate to response and/or toxicity. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Nordstr%C3%B6m%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=7573582
http://www.ncbi.nlm.nih.gov/pubmed?term=Nordstr%C3%B6m%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=7573582
http://www.ncbi.nlm.nih.gov/pubmed?term=Nordstr%C3%B6m%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=7573582
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CHAPTER III: Population Pharmacokinetic Modeling of Sertraline Treatment in 

Alzheimer’s disease Patients: The DIADS-2 Study (Published in The Journal of Clinical 

Pharmacology) (This material is reproduced with permission of John Wiley & Sons, Inc.) 

1. Introduction 

         Alzheimer’s disease (AD) is a neurodegenerative disease associated with a number 

of neuropsychiatric symptoms (NPS). One commonly found NPS is depression, affecting 

as many as 60% of AD patients (Steinberg et al., 2008). The antidepressant sertraline, a 

selective serotonin reuptake inhibitor (SSRI), has been used for the treatment of 

depression in AD patients (Martin et al., 2006). It is the second most potent inhibitor of 

serotonin reuptake (Hiemake et al., 2000).  In a study of 117 randomized controlled trials 

from 1991 to 2007, sertraline was proposed as the best first line treatment for moderate to 

severe depression in adults based on an overall evaluation of benefits, acceptability and 

other factors (Cipriani et al., 2009). Sertraline is orally administered with high plasma 

protein binding affinity (Owen et al., 1997). The average elimination half-life of 

sertraline is approximately 26 hours and the peak plasma concentration (Cmax) is reached 

at 6-8 hours (Warrington et al., 1991). Sertraline is mainly eliminated by hepatic 

metabolism to its major metabolite, N-desmethylsertraline, by multiple cytochrome p450 

enzymes including CYP2B6, CYP2D6, CYP2C9, CYP2C19 and CYP3A4 (Kobayashi et 

al., 1999). This metabolite has 5 -10% of sertraline’s serotonin reuptake inhibitor potency; 

thus its clinical effect on sertraline response is negligible (Sprouse et al., 1996). 

             The pharmacokinetic profile of sertraline has been broadly explored in previous 

clinical studies where patient ages spanned broad ranges (Muijsers et al., 2002; Schneider 

et al., 2003; Axelson et al., 2002). In a pharmacokinetic study of 16 elderly (≥65 years of 
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age) patients treated with 100 mg sertraline once daily for 14  days, plasma sertraline 

clearance was approximately 40% lower compared to similarly studied younger ( 25-32 

years ) patients  (Warrington et al., 1991; Zoloft product information New York: Roeg, 

2001). A comparable result was found in a 21 day study (n=44), with the elimination rate 

constant (0.019 / hr) in elderly individuals 16 to 63% lower than that observed in young 

adults (Ronfeld et al., 1997).  

 In the elderly, sertraline’s effectiveness is comparable to the SSRI fluoxetine as 

well as the tricyclic antidepressants (TCAs) nortriptyline, amitriptyline and imipramine. 

It has lower rates of adverse side effects than the TCAs (Muijsers et al., 2002). Although 

many studies have examined the sertraline pharmacokinetic profile in elderly subjects, 

non-compartmental methods were employed that have limitations in assessing sources of 

inter-individual variability in sertraline concentration. In fact, this is the first population 

pharmacokinetic (PPK) study focusing on AD patients with depression. While this 

analysis was based on data from a null clinical study, it provided an opportunity to 

capture the pharmacokinetic characteristics in elderly individuals of sertraline.  In these 

analyses, we aim to gain insights relating to inter-individual variability in the 

pharmacokinetics of sertraline in AD patients. The objective is to identify covariates that 

contribute to variability in sertraline concentration by performing a PPK analysis of 

sertraline in elderly patients with AD and generating PPK parameters for this population.  

2. Materials and Methods 

2.1 Participants and Study design 

The design of the multicenter Depression in Alzheimer’s Study-2 (DIADS-2) has 

been described in detail elsewhere (Martin et al., 2006; Rosenberg et al., 2010; Weintraub 
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et al., 2010; Drye et al., 2011).  Briefly, DIADS-2 enrolled 131 AD patients with mild-to-

moderate AD.  Patients were randomized in a, 12-week, double-blind, placebo-controlled 

(n=64) antidepressant trial of sertraline (n=67; range: 25-125 mg per day). An initial 

treatment regimen of sertraline 50 mg QD or identical-appearing placebo was prescribed. 

The dosage of sertraline in the active treatment arm was increased to 100 mg QD after 

one week. The daily dose was adjusted depending on the response and tolerability of the 

treatment in the first four weeks post randomization. Single concentration samples of 

sertraline were collected in individual patients at weeks 4 and 12.   The time of last dose 

and exact time of collection were available for each of these samples. 

The study was approved by Institutional Review Boards at all five study sites and 

the coordinating center: Johns Hopkins School of Medicine, Baltimore, MD; University 

of Pennsylvania School of Medicine, Philadelphia, PA; Medical University of South 

Carolina, Charleston, NC; University of Rochester School of Medicine, Rochester, NY; 

University of Southern California Keck School of Medicine, Los Angeles, CA; Johns 

Hopkins Bloomberg School of Public Health. In addition, the PPK analysis was approved 

by the institutional Review Board of Indiana University School of Medicine, Indianapolis, 

IN. 

2.2 Analytical Procedure to Measure Sertraline Concentration  

Plasma sertraline concentration was determined using high-performance liquid 

chromatography (HPLC). The extraction of plasma was done in the mobile phase at a 

60:40 ratio of 0.025 M potassium phosphate buffer, pH 2.5, and acetonitrile with a flow 

rate of 1 mL/min. The separation of plasma occurred in a Knauer nucleosil, C18, 100 

angstrom, 150 mm x 4.6 mm column with a Supelco pelliguard LC-18, 2 cm X 4.6 mm 
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pre-column cartridge. Ninety microliters of n-octylamine was added as a modifier to the 

mobile phase and degassed. The sertraline and D-sertraline assays were linearized by an 

internal standard, 200 ng/mL of clomipramine, in the range of 10 to 600 ng/mL. The 

intra-assay and inter-assay variability in the coefficient of variation (CV) ranged from 

6.6% to 9.4% and ranged from 2.8% to 6.3%, respectively. With 1 mL of plasma, 

recovery for sertraline and metabolite ranged from 87% to 93% with a lower limit of 

quantification (LLOQ) of 10ng/mL. The analysis was carried out using a Turbo Chrom 

data system.          

2.3 Population Pharmacokinetic Model Development 

The population pharmacokinetics of sertraline were analyzed using nonlinear 

mixed effect modeling software, NONMEM, Version VII (GloboMax_LLC, Ellicott City, 

MD, USA) using Wings for NONMEM, Version 7 (Holford,2012). The initial model 

development focused on a base model structure on PK parameter assessment.  One and 

two compartment models with first order absorption and elimination were evaluated 

using subroutine ADVAN2 TRANS2 and ADVAN4 TRANS4, respectively. A likelihood 

based approach (Method 3) was used to handle measurements below the quantitation 

limit (BQL) at 10 ng/mL (Ahn et al., 2008). 

PPK analyses used the first-order conditional estimation (FOCE) LAPLACIAN 

method. Inter-individual variability (IIV) for PK parameters was assumed to be log-

normally distributed and evaluated using an exponential model Pi = PTV x e
ηp

 where Pi is 

the parameter estimate for the ith individual, and PTV is the typical value for the parameter 

at the population level. The variability between ith individual and population parameter 

values was described by p which was identically distributed with a mean of 0 and a 
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variance of ωη
2
 (Feng et al., 2006).  In addition to the IIV, intraindividual variability, 

system noise, experimental error and/or model misspecifications was described by a 

residual error model.  The residual error models evaluated were: additive (
ijijij yy  ˆ ); 

proportional ( )1(ˆ
ijijij yy  ); and combined ( ')1(ˆ

ijijijij yy   ); where 
ijy and 

ijŷ

represents the jth observed sertraline concentration, and its corresponding model 

predicted concentration with the difference described by 
ij or 'ij . 

ij  was assumed to be 

normally distributed with a mean of 0 and a variance of 
2
. The absorption rate constant 

(Ka) was fixed to 0.5 based on the literature values of tmax and an elimination constant 

(Ronfeld et al., 1997).  This was done because the estimation of Ka in this dataset 

resulted in unstable model runs.  

To evaluate the inter-individual variability estimated by the nonlinear mixed 

effects modeling approach, patients’ demographic characteristic (weight, height, age, sex, 

race and study site) were evaluated to see if these explained this variability. These factors 

were assessed independently in a step-wise forward addition approach. Covariates such 

as weight, height, age, sex and race were included to examine potential physiologic 

differences that could contribute to difference in drug elimination rate or distribution 

volume across this population. Given the possibility of differences in adherence to the 

protocol by either subjects or the study site in sample collections, etc, clinical site was 

also tested as a covariate. 

              For continuous covariates, the effects of the covariates on PK parameter 

estimates were tested in the following model structures: 

                   (1) PTV = θ1+ θ2*Cov                                                                                                                  

                   (2) PTV = θ1+ θ2*(Cov - Medcov))                                                                                               



                                                                          45 
 

                   (3) PTV = θ1*(Cov / Medcov)
2

                                                                                                    

                   (4) PTV = θ1*exp[θ2*( Cov / Medcov)]                                                                                       

where PTV  is the typical population estimate of a particular PK parameter, and θ1 and θ2 

are fixed effect estimates for a corresponding covariate, Cov normalized by the median 

value of the covariate, Medcov. Missing data were found in both weight and height 

covariates. A naïve substitution approach (Yang et al) was carried out to simply replace 

the missing value with the median value based on sex.  

                    (5) IF (WT=0 and SEX=1) THEN WT= MedWT,Sex=Male                                                                                                                                                                    

           IF (WT=0 and SEX=2) THEN WT= MedWT,Sex=Female                                                                                          

A common allometric function of scaling the PK parameters to the 0.75 power of body 

weight was also tested after the missing weight values were replaced. 

                    (6) PTV = θ1*(WT / MedWT)
0.75

   

Categorical variables such as sex, race and site were tested in the following model 

structure. Each category was evaluated in a separate fashion. 

                    (7) IF (Cov.EQ.1) THEN PTV = θ1                                                                                              

           Else PTV = θ2 

For example, each ethnic group was divided into a category, African American=1, 

White=4 and Hispanic/Latinos=5. Each ethnic group was examined separately from other 

races.  In addition, groupings of racial categories were affected when the individual race 

effects were not uniquely identifiable. In this case, θ1 and θ2 are the population PK 

parameter estimates for groupings of race that were uniquely identifiable, in this case 

African American and all others.  
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Model evaluation was based on a likelihood ratio test using the objective function 

value (OFV) from NONMEM. The change in the OFV returned by NONMEM is 

approximately equal to -2 x log likelihood.  The difference in -2 x log likelihood between 

two models that are nested follows a χ
2
 distribution.  Covariates were added to the model 

in a step-wise addition fashion and remained in the final model if the OFV decreased by 

greater than 3.84 (p-value 0.05, df=1). The final model was further examined using 

goodness-of-fit plots generating using R (Version 2.13) based on the conditional 

weighted residuals distribution and the predicted versus observed sertraline 

concentrations at both the population and individual levels. 

3. Results 

3.1 Patient Characteristics  

         A total of 131 participants entered the trial with 67 randomized to sertraline and 64 

to placebo. Only the concentration measurements taken from patients in the active 

treatment arm (n=67) were utilized for this analysis. An average of 1.7 sertraline 

concentration measurements per individual was available, and 5 of the measurements 

were found below the LLOQ.  Seventeen individuals were removed from the analysis.  

Specifically, 16 individuals lacked sertraline concentration information at both weeks 4 

and 12, and one individual had missing dosage information for both occasions.  In the 

remaining 50 individuals, other single observations were removed as follows: 14 

individuals only had a single sertraline concentration measurement from one of the two 

visits (non-measured visit removed).  Of these 14 observations, 11 were missing a 

concentration measurement, 1 was missing a dosage time associated with a concentration 

sample, and 2 were missing dosage amount information associated with that 
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concentration sample. The PPK analysis was conducted using the remaining 85 PK 

observations from 50 individuals.   

As shown in Table 3.1, the median age of the patients was 75 (range: 53-89). 

There were 20 males and 30 females in the analysis broken down as follows: 18% 

African American; 72% White; and 10% Hispanic.  This analysis included 4 patients with 

missing weight information and 9 with missing height information.   The median values 

of weight and height without considering the missing values were 147 lb (range: 107-245) 

and 64 in (range: 57-72), respectively. 
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Table 3.1. Alzheimer’s disease patient demographics  

 N (%) Mean (SD) Median(range) 

Sample size 50   

Number of observations 85   

Gender  
    Male 
    Female 

 
20 (40) 
30(60) 

  

Race  
    Black/African American 
    White 
    Hispanic /Latino   

 
9 (18) 

36 (72) 
5 (10) 

  

Clinical sites  
    A          

B                                                        
C 
D                                                        
E                                                

 
15 (30) 
11 (22) 
6 (12) 
8(16) 

10(20) 

  

Baseline Age (years)   75 (7.76) 76 (53-89) 

Baseline Weight (Ib) 
Without 4 missing values 

 159 (37.08) 147 (107-245) 
 

Baseline Height (In) 
Without 9 missing  values 
 

 64 (4.45) 64 (57-72) 
 

Sertraline dose 
administered (mg) 

 92.47 (18.62) 100 (25-100) 

Sertraline concentrations 
(ng mL-1) 
Without 5  BQL values 

 62.94 (47.62) 49 (9-229) 
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3.2 Population Pharmacokinetic Modeling 

A one-compartment model with first order absorption and elimination and an 

additive residual error model best described the sertraline data. The population parameter 

estimates of CL/F and Vd/F in the base model were 83.1 L/h and 6,620 L, respectively.  

Inter-individual variability (IIV) was estimated only for CL/F  because a significant 

correlation was found between CL/F and Vd/F. Patients at site C has CL/F approximately 

49% lower than that seen in patients other at other clinical sites ( χ
2
 = 5.576 df=1, 

p<0.05). The final covariate model was implemented using the categorical covariate 

model structure described in the methods section (equation 7). No other significant 

covariate relationships were found for CL/F or Vd/F. The population PK parameter 

estimates and goodness-of- fit plots for the final model are listed in Table 3.2 and Figure 

3.1, respectively.    
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Table 3.2. Population pharmacokinetic parameter estimates of sertraline in the final model  

 

Parameters Population estimate 
(% SE) 

Inter-individual variability 
(% SE) 

CL/Fsite=C, L/h 43.8(34) 59.33% (31.3) 

CL/Fsite=others, L/h 89.1(12.2) 59.33% (31.3) 

Vd/F, L 6470(70.5)  

Ka, 1/h (fixed) 0.5  

Residual variability 19.6 ng/mL (11.6)  

 

CL/Fsite=C ; clearance adjusted for bioavailability from site C; CL/Fsite=others;; clearance adjusted for 

bioavailability from other clinical sites; Vd/F, Volume of distribution adjusted for bioavailability; 

Ka, rate of absorption; SE, standard error 
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A                                                                                    C 

 

B                                                                                           D 

 

Figure 3.1. Goodness-of-fit plots for the final sertraline model. 

 

Plot of population and individual predicted versus observed sertraline concentrations and plot of 

conditional weighted residuals versus population predicted concentrations and time (hours). 
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4. Discussion 

         Nineteen percent of the variance in pharmacokinetic distribution of sertraline in 

these depressed AD patients was accounted for using a 1-compartment model. The 

population mean CL/F and Vd/F were 83.1 L/h and 6,620 L, respectively. As most 

patients in DIADS-2 were elderly (mean age of 75 years; range: 53-89), the mean 

elimination rate constant of 0.013 1/h is consistent with other literature reported values 

(Ronfeld et al., 1997).  Compared to younger patients, the elderly have a longer sertraline 

half-life, but we found no difference between elderly healthy volunteers in the literature 

and these AD patients. 

In our analysis, CL/F estimates for the four patients with sertraline observations 

below the quantification limits were in the top 24% of all CL/F estimates. Indeed, one 

patient with both observations below the quantification limit had a CL/F value 

approximately three times higher than the typical population value. The cause of these 

high CL/F values is not clear. Many possible factors might be considered, such as fasting, 

poor adherence, or genetic variance.   . 

We also examined the effect of sex, race, age, weight, height and site on the 

variability of the PK parameter estimates. Previous publications have suggested that the 

average half-life is 1.5 times longer in women than in men (Ronfeld et al., 1997). We 

expected to detect an effect of gender on sertraline PK parameters; however, inclusion of 

sex as a covariate in our model yielded a statistically non-significant association. Possible 

differences between males and females were likely undetectable because of the small 

study population. In addition, a commonly reported correlation (Mahmood et al., 2007) 

between plasma clearance and body weight was not detected in this analysis. 
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         Unexpectedly, the only covariate examined that affected PK variability was related 

to a single clinical site. Patients at site C had much lower CL/F than other sites. This 

might be explained by the 3 high sertraline concentrations found in 2 patients out of a 

total of 9 observations from site C.  Nineteen percent of the total variance in inter-

individual on CL/F was explained by incorporating the site as a covariate in this analysis. 

The model CL/F estimates we present that exclude patients at the site C are likely more 

generalizable to the typical AD population. In conclusion, clinical site was a significant 

covariate contributing to the CL/F change. The clinical implications for subjects at the 

outlying site would be important if this represented a true bias in subject selection. In this 

case diminished clearance could lead to a greater risk of adverse effects such as dizziness, 

extrapyramidal effects and hyponatremia. Nonetheless, the subjects at this site were 

found not to differ in demographic nor clinical attributes from the other four sites. This, 

as well as the failure to detect differing incidences of side effects, leads to the more likely 

explanation, that there may have been variations in study procedures such as sampling. 

Site variability in trial procedures is critical to the validity of multi-site trials, and 

population pharmacokinetics may prove helpful in this assessment. If drug administration 

and sample collection procedures were found not to be atypical than this may suggest 

meaningful subject differences in the patient sample at the outlying site e.g., drug 

metabolism or body size as we have found previously (Jin et al., 2010). Therefore, the 

dosage regimen and administration should be closely monitored in a multicenter study in 

order to avoid unnecessary exposures or incomplete treatments. 
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CHAPTER IV: Data quality constrains utility of computational modeling of tumor 

burden in non-small cell lung cancer clinical trials  

1. Introduction 

         Cancer drug development would be more effective if new therapeutics could be 

evaluated with readily available technologies, in fewer patients, observed on treatment 

for shorter periods of time.  One set of strategies to achieve these goals has been 

computational modeling of the longitudinal growth of non-small cell lung cancer 

(NSCLC) in populations of patients and in silico simulation of clinical trials. (Claret et 

al., 2012; Houk et al., 2009; Wang et al., 2009; Fridlyand et al., 2011; Moertel et al., 

1976). The ultimate goal of these efforts is to improve the efficiency of cancer drug 

clinical development (Barrett et al., 2007; Bruno et al., 2009; Bruno et al., 2010).  

         In NSCLC, clinical trial simulations have employed a “two-step” joint model 

(Ibrahim et al., 2010) of overall survival in metastatic disease that was based on a 

longitudinal tumor growth model.  These models were developed with data from nearly 

3,400 patients submitted to the FDA. From 4 randomized phase III clinical trials for 

regulatory approval of bevacizumab, docetaxel, erlotinib, and pemetrexed (Wang et al., 

2009)  the longitudinal growth model was derived from the sum of the longest dimension 

measurements of tumors by computed tomography (CT) imaging as recorded in study 

case report forms. Interpolations of the change in tumor size from baseline to 8 weeks of 

treatment (the tumor size ratio or TS) proved an important predictor of overall survival.  

Modeling and simulation with these data could be an efficient means to support decision 

making at the Phase 2 to Phase 3 transition in drug development (Claret et al., 2012).    
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             Another potential benefit of quantitative analysis of NSCLC tumor burden would 

be to redesign phase II trials to randomize fewer patients and have shorter observation 

periods than required for determining progression-free survival (Adjei et al., 2009; Dhani 

et al., 2009; Maitland et al., 2011; Maitland et al., 2011; Mandrekar et al., 2010; Stein et 

al., 2011; Yap et al., 2010).  A simple strategy in NSCLC would be to measure the 

median change in tumor size at 8 weeks for randomly-assigned treatments among the 

study arms (Bruno et al., 2009; Lavin et al., 1981; Karrison et al., 2007).  A more 

complex strategy that might ultimately require fewer resources would be to collect all 

tumor measurements from all patients over time and have the cumulative data from 

patients enrolled early in the trial continuously inform a calculated parameter of drug 

effect.  These strategies have had limited testing and require validation.  For example, in 

studies of colorectal cancer therapy and survival outcomes some have found advantages 

to continuous tumor measurement metrics while others have not (An et al., 2011; Kaiser 

et al., 2013; Claret et al., 2013).  

         The purpose of this study was to assess and refine the published FDA longitudinal 

tumor size model for NSCLC using archived tumor measurement data so that modeling 

and simulation might lead to smaller, quicker early phase trials for testing new treatments 

for NSCLC.  We obtained archived case report forms from three randomized clinical 

trials by the Cancer and Leukemia Group B (CALGB) sponsored by the U.S. National 

Cancer Institute (NCI).  We intended to evaluate the power of smaller clinical trials with 

novel endpoints to detect evidence of anti-cancer drug treatment effects.  Instead, we 

found elements of 3 data sets from multi-center clinical trials that could bias comparisons 

between continuous measurement and categorical strategies for improving treatment 
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evaluations.  These findings are likely to be common to historical and current solid tumor 

trial data sets.  Here we identify variance in measurement and recording of CT imaging 

assessments of tumor burden as a modifiable factor that constrains the successful 

development and validation of novel tumor growth assessment metrics. 

2. Materials and Methods 

2.1 Patients 

         Archived case report forms were available from 857 patients enrolled in 3 NCI-

supported studies conducted by CALGB listed in Table 4.1.  These were front-line trials 

in metastatic NSCLC: CALGB 9730 (Lilenbaum et al., 2005) was a phase III randomized 

trial that compared single-agent paclitaxel with combination carboplatin/paclitaxel, 

CALGB 30203 (Edelman et al., 2008) was a randomized phase II trial that evaluated 

eicosanoid modulation and examined cyclooxygenase-2 expression as a positive 

predictive factor for the inclusion of celecoxib in the standard first-line cytotoxic therapy 

regimens, and CALGB 30303 (Miller et al., 2008) was a phase II randomized study of 

dose-dense docetaxel and cisplatin administered every two weeks with pegfilgrastim and 

darbopoetin-alfa with or without the chemoprotectant BNP7787. The inclusion and 

exclusion criteria of the trials were previously published (Edelman et al., 2008; 

Lilenbaum et al., 2005; Miller et al., 2008). 
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Table 4.1. Three U.S. National Cancer Institute (NCI)-sponsored studies conducted by the 

Cancer and Leukemia Group B CALGB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CALGB study Treatment # of patients 

enrolled 

# of patients 

treated & eligible 

Dates of 

accrual 

 

9730 

 

 

paclitaxel vs. 

paclitaxel/carboplatin 

 

561 

 

561 

 

10/1997 – 

12/2000 

30203 

 

carboplatin/gemcitabine + 

zileuton/celecoxib/both 

140 134 12/2003 – 

9/2004 

30303 

 

docetaxel/cisplatin +/-  

BNP7787 

160 151 8/2004 – 

3/2006 
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2.2 Original Clinical Trial Data Collection 

         Data relevant to original reporting of the clinical trial results were captured on case 

report forms and entered into the CALGB digital databases for each of the clinical trials.  

The coded, patient-level data were stored at the Core Statistical Facility for CALGB 

(Durham, NC, USA). Treatment response assessments were conducted according to the 

study protocols.  The CALGB 9730 trial incorporated standard World Health 

Organization response criteria (Miller et al., 1981) based on imaging studies conducted 

every 2 cycles (6 weeks).  Bi-dimensional measurements of radiographically identified-

lesions were typically hand-written into the same data-field on a standard spreadsheet at 

each evaluation time-point.  Treatment was discontinued: when it became intolerable; 

when new lesions were identified; when the product of two perpendicular diameters of 

any measured lesion increased by at least 25%; or when 6 cycles of therapy were 

completed.  Patients were subsequently followed every 3 months for 2 years.  For 

CALGB studies 30203 and 30303, the Response Evaluation Criteria in Solid Tumors was 

employed, and categorical responses were based on the sum of the longest 

unidimensional measurements of criteria-defined “target lesions” (Therasse et al., 2000).  

Thoracic CT imaging evaluations were conducted in all patients pre-treatment, and at 6 

and 12 weeks after treatment.  Patients were removed from the studies for unacceptable 

toxicity or progression of disease.  Patients who completed all study therapy were 

followed at minimum every 12 weeks thereafter.   

         For studies 30203 and 30303, tumor measurements were recorded on the “CALGB 

Solid Tumor Evaluation Form” – C-660.  The form designates separate rows for each 

target lesion and columns for each evaluation time-point. The longest unidimensional 
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measurement was entered for each designated target lesion at baseline in a separate row.  

Non-target lesions were identified as present in a separate section of the form. During the 

studies the original case report forms were transmitted by the sites to the CALGB 

Statistical Facility where the forms were reviewed and verified by the data management 

team and the RECIST categorical evaluations were entered into digital databases. The 

sum of the longest dimensions of target lesions and the target lesion measurements were 

not captured in the study database. After publication of study results, the case report 

forms and associated source document CT reports were stored off-site in an archive 

facility. 

2.3 Tumor Measurement Collection   

         To obtain the original target lesion measurements, the archived paper case report 

forms were obtained from storage, scanned, and saved as portable document format (pdf) 

files.  Tumor measurements from the pdf files for CALGB 30203 and 30303 were 

manually extracted by a research assistant and entered into a tracking file and into the 

study databases simultaneously.  The transcriptions were independently reviewed by one 

of the study authors (SK and CL) and inconsistencies were manually corrected.  

Additionally, individual patient tumor growth plots were inspected for atypical growth 

and response patterns.  All aberrant plots were cross-verified with the original case report 

form pdf and any additional data entry errors captured by this review were corrected 

before modeling analyses were performed.  This process (Figure 4.1) resulted in 103 

patients with evaluable data from CALGB 30203 and 124 from CALGB 30303.  A 

sample of case report forms from CALGB 9730 (Figure 4. 2), consistently revealed 

insufficient documentation of quantitative measurements of tumors to be useful for this 
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modeling exercise, and therefore all patients from this trial were excluded from our 

planned evaluation. 

 

 

Figure 4.1. Selection of patients contributing images from CALGB 30203 and 30303. 
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Figure 4.2. An example of a case report form from CALGB 9730 trial. 
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2.4 Tumor Size Modeling 

         Longitudinal tumor size trajectories (sum of longest tumor diameter) were analyzed 

with nonlinear mixed effect modeling software, NONMEM, Version VII 

(GloboMax_LLC, Ellicott City, MD, USA) using Wings for NONMEM, Version 7 

(Holford, 2012) and the published model structure (Wang et al., 2009).  This model 

employed a combination of a linear growth function and an exponential shrinkage 

function to describe the tumor change respect to baseline size (Eq.1). 

tPReBASEtTS i

tSR

ii
i 


)(  

Where )(tTSi
is the tumor size at time t for the thi individual, 

iBase is the baseline tumor 

size, )(tSRi
is the exponent tumor shrinkage rate constant, and )(tPRi

is the linear tumor 

growth rate constant. The exponential shrinkage function constrains the tumor size to be 

greater than zero (to avoid negative tumor sizes being predicted) and reflects the drug 

effect on tumor (whether or not there is actual tumor shrinkage).  Tumor size changes 

were modeled using the first-order conditional estimation (FOCE) and stochastic 

approximation expectation maximization (SAEM) method with interaction. Between 

subject variability was assumed to be log-normally distributed and  evaluated on baseline 

tumor size, tumor shrinkage rate and tumor progression rate using an exponential model 

Pi = PTV x e
ηp

 where Pi is the parameter estimate for the thi individual and PTV is the 

typical value for the parameter at the population level.  The variability between thi  

individual and population parameter values was described by p which was identically 

distributed with a mean of 0 and a variance of ωη
2
 (Feng et al., 2006).  Residual 

variability was also estimated using a proportional residual error model ( )1(ˆ
ijijij yy  ) 

where 
ijy and 

ijŷ represents the thj  observed tumor trajectory, and its corresponding 
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model predicted tumor size.  The difference between observed and predicted values was 

described by 
ij  which was assumed to be normally distributed with a mean of 0 and a 

variance of 
2
.  

         A likelihood ratio test was applied based on the change in the objective function 

value (OFV) in NONMEM to evaluate the random effect on parameters. This change in 

OFV is approximately equal to -2 x log likelihood.  The difference in -2 x log likelihood 

between two models that are nested follows a χ
2
 distribution.  An alpha level for 

significance of 0.05 was set a priori (3.84 OFV for 1 degree of freedom).  The final 

model was further examined using goodness-of-fit plots generating using R (Version 2.13) 

based on the conditional weighted residuals distribution and the predicted versus 

observed tumor size measurements at both the population and individual levels. The 

tumor size model was developed to evaluate data from both treatment arms individually 

as well as simultaneously on the combined dataset. 

2.5 Modeling Matched Cases from ECOG 4599 and CALGB 30203 

         The CALGB trial based parameter estimates for the linear growth rate and the 

treatment-related shrinkage rate differed from those originally published from the large 

FDA sample. To determine whether the deviation of the parameter estimates were 

specific to the CALGB data collection we extracted longitudinal tumor measurement data 

from a clinical trial conducted by the Eastern Cooperative Oncology Group (ECOG), trial 

4599.  That study compared front-line therapy with carboplatin and paclitaxel with or 

without the addition of bevacizumab (Sandler et al., 2006). The ECOG4599 data 

constituted more than one fourth the total sample used to generate the FDA model.  One 

hundred three individual cases were selected from the carboplatin, paclitaxel, and placebo 
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arm of ECOG 4599 by matching to the CALGB 30203 sample on patient visit time, 

number of lesions, and sum of the longest diameter of the target lesions at baseline.   

2.6 Calculation of time to tumor growth 

         In addition to change in tumor size at 8 weeks an alternative metric of treatment 

effects on serial tumor measurements, time to tumor growth (TTG) was evaluated (Claret 

et al., 2013) (Figure 4.3).  TTG is expressed in time units (week) and depends on all the 

parameters of the empirical tumor model including baseline (Base, cm), tumor shrinkage 

rate constant (SR, 1/week) and tumor progression rate constant (PR, cm/week) (Eq 2).  
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Figure 4.3. A graphical representation of tumor matrices.    

TTG: time-to-tumor growth estimated using the FDA model; PTR: percentage tumor reduction 

from baseline.  
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2.7 Survival Analysis 

             In order to determine the relationship between tumor size change and overall 

survival, the tumor size model was used to predict tumor size change at early time points 

(4, 6 and 8 weeks).  In addition to the predicted tumor size changes at 4, 6 and 8 weeks, 

time to tumor growth and other clinical risk factors (Table 4.2) were tested in Cox model 

for overall survival using pre-selection with a stepwise significance at 0.05.  For the 

purpose of evaluating the prediction of time to death using measures of tumor dynamics, 

a parametric survival was adapted to estimate this relationship.  Parametric survival 

functions including: exponential; Weibull; and log normal were tested, and the final 

survival distribution selected based on likelihood ratio test and Akaike information 

criterion. 
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Table 4.2. Demographic and clinical characteristics of patients in CALGB 30203 and 30303 

trial.  

Chemo: Chemotherapy; RT: Radiation. 
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2.8 Script to “Clean CRF Data” to Match RECIST 1.1 Consistently 

         When considered a conservative evaluation of longest diameter of tumor size, 

RECIST criteria 1.1 has been proposed to apply for trajectory selection. The tumor 

dynamic data was further manipulated by a script based program implemented using R 

(version 2.13) to extract and calculate the sum of longest diameter of the tumor size at 

each measurement using RECIST 1.1 criteria.  The majority of tumors were measured by 

computed tomography scan (93.3%) and the rest of 6.62% were measured in different 

methods. Besides removing lesions with missing information and deleting individuals 

with baseline measurements only, the script based extraction was further applied to 

comprise the following steps: 1) exclude the lesions with inconsistent follow-up, 2) select 

up to a total of five lesions with a maximum of two lesions per organ and exclude lymph 

nodes if the maximum number of target lesions are exceeded.  
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R script code 

###### import data ########### 

library(MIfuns) 

library(lattice) 

library(reshape) 

 d<-

read.csv(file="C:/Claire/NSCLC1/NSCLC30303TEST2.csv",skip=0,header=TRUE,sep=

",",as.is=TRUE) 

names(d) <- 

c("ID","OID","VISIT","TREATMENT","LESION","LOCATION","SIZE","OLOCATIO

N") 

d$SIZE <- as.numeric(as.character(d$SIZE)) 

origi.dat <- d 

write.table(d,file="C:/Claire/NSCLC1/30303TEST1.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

######## calculate sum of baseline tumor sizes ######### 

d1 <- d[d$VISIT==0,] 

reapply <- function(x,INDEX,FUN,...){ 

           y <- tapply(x,INDEX) 

           z <- tapply(x,INDEX,FUN,...) 

           z[y] 

} 
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d1 <- transform(d1,basesum=reapply(SIZE,INDEX=ID,FUN=sum)) 

d1 <- d1[,c("ID","basesum")] 

d2 <-d1[!duplicated(d1$ID),] 

d3 <- merge(d,d2,by.x="ID",by.y="ID",all.x=T) 

write.table(d,file="C:/Claire/NSCLC1/30303TEST2.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

######## remove lesion and size which are missing ######## 

d <- d3 

d <- d[!is.na(d$LESION) & !is.na(d$SIZE),]   

head(d) 

write.table(d,file="C:/Claire/NSCLC1/30303TEST3.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

###### determine which lesions are present for each individual at every visit ###### 

####how many follow up+baseline in each patient  

ni <- length(id <- unique(d$ID)) 

keep.lesion <- NULL 

temp <- NULL 

for (i in 1:ni){ 

    visit <- unique(d$VISIT[d$ID==id[i]])  

    nvisit <- length(visit) 

    s.lesion <- d$LESION[d$ID==id[i]] 

    u.lesion <- unique(s.lesion)  

    n.sl <- length(s.lesion) 
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    n.ul <- length(u.lesion) 

    l <- data.frame(u.lesion,rep(0,n.ul)) 

    names(l) <- c("lesion","times") 

 

    for (j in 1:n.ul) { 

        for (k in 1:n.sl) { 

           if (u.lesion[j]==s.lesion[k]) 

           l$times[j] <- l$times[j]+1     

        } 

    } 

    l <- l[l$times==nvisit,] 

    temp <- data.frame(rep(id[i],length(l$lesion)),l$lesion,rep(nvisit,length(l$lesion)) 

    keep.lesion <- rbind.data.frame(keep.lesion,temp) 

}  

names(keep.lesion) <- c("ID","LESION","NVISIT") 

write.table(keep.lesion,file="C:/Claire/NSCLC1/30303TEST4.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

####### delete IDs with baseline visit only #######  

dd <- keep.lesion  

dd <- dd[dd$NVISIT >= 2,] 

###### calculate number of lesions that appear at all of the visits ####### 

ni <- length(dd$ID) 

dd$flag <- rep(0,ni) 
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n <- ni-1 

for (i in 1:n) { 

    if (dd$ID[i]==dd$ID[i+1]) 

           dd$flag[i] <- 1 

    else 

       dd$flag[i]<- 0 

}   

dd <- transform( dd, NLESION=reapply(flag,INDEX=ID,FUN=sum)+1) 

dd$flag <- NULL 

keep.lesion <- dd 

######## extract data with only the lesions that appear at all of the visits 

###############  

a <- merge(d,keep.lesion,by=c("ID","LESION"),all.y=T) 

a <- a[order(a$ID,a$VISIT,a$LESION),] 

a <- 

a[,c("ID","VISIT","LESION","SIZE","basesum","NLESION","TREATMENT","LOCA

TION","NVISIT")] 

all.lesions <- a 

write.table(all.lesions,file="C:/Claire/NSCLC1/30303TEST5.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

### add flag for lesions which are labled as "LYMPH NODE" ###### 

flag <- rep(0,length(a$ID)) 

for (i in grep("LYMPH NODE",a$LOCATION)){ 
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    flag[i] <- 1 

} 

a$LYM <- flag 

lym <- a[a$LYM==1,c("ID","LESION","LYM")] 

lym <- unique(lym) 

write.table(lym,file="C:/Claire/NSCLC1/30303TEST6.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

a$LYM <- NULL 

a <- merge(a,lym,by=c("ID","LESION"),all.x=T) 

a <- a[order(a$ID,a$VISIT,a$LESION),] 

a$LYM[is.na(a$LYM)] <- 0 

 

write.table(a,file="C:/Claire/NSCLC1/30303TEST7.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

######### calculate sum of lesions size at each visit for IDs with <= 3 lesions present at 

each visit ############  

a1 <- a[a$NLESION <=3,] 

aa1 <- 

aggregate(x=list(visitsum=a1$SIZE),by=list(ID=a1$ID,VISIT=a1$VISIT),FUN=sum) 

aa1 <- aa1[order(aa1$ID,aa1$VISIT),] 

a1 <- merge(a1,aa1,by=c("ID","VISIT"),all.x=T) 

a1 <- a1[order(a1$ID,a1$VISIT,a1$LYM,-a1$SIZE),] 
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write.table(a1,file="C:/Claire/NSCLC1/30303TEST8.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

##### IDs lesion # >3 #######  

a2 <- a[a$NLESION >3,] 

a2 <- a2[order(a2$ID,a2$VISIT,a2$LYM,-a2$SIZE),] 

write.table(a2,file="C:/Claire/NSCLC1/30303TEST9.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 

##### identify three lesion numbers with biggest size at baseline and exclude "lymph 

node" for #lesion >=4 #######  

d <- a2[a2$VISIT==0,c("ID","LESION")] 

 d1 <- NULL 

 temp <- NULL 

 ni <- length(id<-unique(d$ID)) 

for (i in 1:ni){ 

    lesion <- unique(d$LESION[d$ID==id[i]])  

    nlesion <- length(lesion) 

    temp <- data.frame(rep(id[i],3),lesion[1:3]) 

    d1 <- rbind.data.frame(d1,temp) 

} 

names(d1) <- c("ID","LESION") 

d1 <- d1[order(d1$ID,d1$LESION),] 

v <- d1 

########### calculated sum of three largest lesion sizes at each visit ############  
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v1 <- merge(v,a2,by=c("ID","LESION"),all.x=T) 

vv1 <- 

aggregate(x=list(visitsum=v1$SIZE),by=list(ID=v1$ID,VISIT=v1$VISIT),FUN=sum) 

v1 <- merge(v1,vv1,by=c("ID","VISIT"),all.x=T) 

a2 <- v1 

a2 <- a2[order(a2$ID,a2$VISIT,a2$LYM,-a2$SIZE),] 

a2$NLESION <- 3 

######### combine two subset together #########  

a <- rbind.data.frame(a1,a2) 

###a$TREAT <- ifelse(a$TREATMENT=="PLACEBO",0,1)#### 

a <- a[,c("ID","VISIT","LESION","SIZE","visitsum","basesum","NLESION" 

,"LYM","TREATMENT","NVISIT")] 

names(a) <- c("ID","VISIT","LESION","SIZE","VSUM","BSUM","NLESION" 

,"LYM","TREATMENT","NVISIT") 

a <- a[order(a$ID,a$VISIT,a$LYM,-a$SIZE),] 

######## export dataset with all ids ###########  

write.table(a,file="C:/Claire/NSCLC1/NSCLC30303FINAL.csv", 

sep=",",append=F,quote=F,col.names=T,row.names=F,na=".") 
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2.9 Blinded Re-Evaluation of Imaging Data 

         To identify sources of variance between patient outcomes and the modeled 

change in tumor size over time, we obtained the original sets of images from patients 

enrolled at the University of Chicago in studies 30203 and 30303.  One radiologist, 

blinded to the original case report forms and radiology reports (co-author AO) reviewed 

all of the baseline images and identified and measured all target lesions.  Unblinded to the 

lesions, but still blinded to the original measurements, the radiologist performed serial 

measurements on the identified target lesions on the University of Chicago patients. 

3.Results 

3.1 Data Quality Control 

         We discovered that 9730 study case report forms (CRFs) frequently included no 

change (nc) or not available (na) rather than tumor size measurements on subsequent CT 

scans as in Figure 4.2.  Consequently the entire trial data set had too much missing data 

to be useful for validating the longitudinal tumor growth model and data from all 561 

subjects was excluded.   

         For the CALGB trials, we subjected the patients’ data to the same standard for 

inclusion as in the FDA model (at least a baseline measurement and measurements 

recorded at some subsequent time-point).  Figure 4.1 describes the attrition for 140 

original cases in the CALGB 30203 trial and 160 in CALGB 30303. This resulted in a 

total of 227 patients available for the analyses.  

3.2 Longitudinal Modeling of Tumor Size 

         Parameter estimates for sum of longest tumor dimensions at baseline (M_BASE), 
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the treatment-effect/shrinkage rate (M_SR), and the linear tumor growth rate (M_PR) 

were determined and compared to the results of similar study arms from the original 

study as shown in Table 4.3. The individual predictions vs. observations of sum of the 

longest diameter were compared in each individual between FOCE and SAEM methods. 

The final parameters were estimated using SAEM based on individual fitting. 
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Table 4.3. Tumor model parameter estimates and precision standard error (SE) of baseline 

(M_BASE), shrinkage rate (M_SR) and progression rate (M_PR) for FDA registration 

trials and CALGB 30203 and 30303 trial. 
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              Variance in parameter estimates increased as sample size was reduced from 

typical phase III to typical phase II size study arms.  With a combination of both 30203 

and 30303 trials, the model estimates of baseline tumor size, shrinkage rate and 

progression rate were 8.44cm, 0.027 1/week and 0.066 cm/week, respectively.  For 

example a patient with an average baseline tumor size at 8.1cm will after 1 month, have 

the typical tumor burden decrease to 8.44e^(-0.027 x 4)+ 0.066 4=7.84cm. This 7.1% 

decrease reflects the drug effect on tumor size.  Compared to the average parameter 

estimates from five treatment arms of FDA data, the CALGB results underestimated 

M_BASE, M_SR, M_PR in 3%, 48% and 57%, respectively.                                                                  

         These differences in tumor size and growth metrics between the smaller CALGB 

dataset and the FDA dataset were associated with tumor size at 8 weeks no longer being a 

statistically significant predictor of survival in NSCLC (Table 4.4). This inconsistency in 

the prediction of survival by tumor size with data collected by an experienced 

cooperative clinical trials group undermined plans to replace RECIST with continuous 

measures of tumor burden in smaller, prospective, randomized phase II trials. We 

conducted additional studies to identify factors in acquisition of these data that might 

have led to this unexpected finding. 

         Furthermore, no significant changes in the tumor parameter estimates were 

observed when applying additional script-based filtration by adding the restriction of 

number of the lesions, consistence of follow-up and number of lymph nodes. 
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Table 4.4. Comparison of tumor parameter estimates between CALGB30203 trial and a 

subset of E4599 trial which matched to CALGB30203 tumor information. 
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3.3 Evaluation of deviations in parameter estimates and survival prediction 

         First we hypothesized that these lower estimates might reflect lower quality of data 

from small cooperative group trials compared to perhaps more meticulously accurate data 

submitted to the FDA for review. We therefore matched 103 patients from the ECOG 

4599 study carboplatin/paclitaxel arm, part of the dataset used to generate the FDA model, 

with the 103 CALGB 30203 cases (who received carboplatin/gemcitabine).  For this 

subset of matched cases in ECOG 4599 the mean baseline tumor size was larger, but the 

parameter estimates for M_SR and M_PR were now more similar to CALGB 30203 than 

to the results for the entire 444 subject carboplatin/paclitaxel arm of  ECOG 4599 (Table 

4.4). This implied that the deviation of parameter estimates between the CALGB data and 

the similar, but larger, treatment arms in the FDA dataset were unlikely to be due to 

significant differences in data quality between trials conducted by different groups, and 

instead reflected effects of decreasing the size of the analyzed subject pool. 

         Some recent studies suggested that TTG might be more robust than tumor size at 

early fixed time-points for colorectal cancer (Claret et al., 2013) and NSCLC (Claret et 

al., 2014).  We therefore tested whether TTG might be a significant predictor of survival 

in the CALGB 30203 and the matched E4599 smaller dataset. In the Cox proportional 

hazard model for CALGB 30203 patients, the baseline tumor size (centered at 8.5cm) (P< 

0.001) and TTG (P<0.001) were significant predictors of time to death when incorporated 

as independent factors.  The p-value of each coefficient was no longer significant when 

both factors were tested in the survival model simultaneously.  The TTG and baseline 

tumor size were correlated (r = 0.75) ( P<0.001).  Therefore, the final survival model 

included the baseline tumor size and ECOG performance status (0/1/2) (Eq 3). 
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log(T)=0 + 1  (baseline-8.5) +2 ECOG + 

where T is time to tumor death (day) in a log normal distribution, 0 is the intercept when 

no covariate was added, 1 and  2  are the coefficients for baseline-8.5 and ECOG, 

respectively, and  represents the residual error. In the matched subset of E4599 patients, 

TTG remained a statistically significant predictor in this model.  However, when tested in 

the remaining 232 subjects of the carboplatin/paclitaxel arm, TTG was no longer a 

significant predictor of survival.  We concluded that this loss of tumor size as a 

significant predictor of survival in smaller datasets was not an effect of the specific 

parameter of continuous measurement of tumor burden.   

         A difficult-to-test hypothesis is that the model accurately reflects that the CALGB 

30203 and E4599 subsets of patients are genuinely different from the larger population of 

patients on which the FDA model was based.  Our experience with the multi-step process 

of CT-imaging measurement and transmission of measurements into clinical trial 

databases offers an alternative hypothesis: the routine variance in tumor burden 

measurements introduced by our current RECIST-oriented clinical trial methods 

contributes significantly to this loss of power because of the inherent variance introduced 

with this approach.  This variance further confounds computational models of continuous 

tumor growth reducing their ability to accurately predict survival in patient populations 

typical of phase 2 trials. 

         We therefore explored specific modifiable factors in the collection and reporting of 

tumor measurements might contribute to the altered shrinkage rate and growth rate 

parameter estimates in the longitudinal growth model when the size of the population was 

decreased. To evaluate the reproducibility of the tumor measurements on the case report 
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forms, an independent radiologist in blinded fashion re-determined and measured the 

baseline target lesions from the original CT images collected from 15 patients enrolled in 

CALGB 30203 and 30303 at one institution (Figure 4.4A). For 4 of the 15 patients, at 

least one additional target lesion was identified.  Once unblinded to the determination of 

target lesions, the radiologist performed blinded serial measurements of the designated 

lesions (Figure 4.4B). Although displayed for consistency, 3 of the 15 subjects did not 

have an on-treatment assessment and therefore were not included in subsequent modeling 

analyses.  For the 12 cases with serial measurements, 4 (subjects 7, 8, 9, 12) had 

trajectories of the measured sums of longest dimensions that were nearly superimposable 

between the case report forms (CRF) and the blinded evaluator re-assessment. Four 

(subjects 1, 3, 4, and 5) had obvious divergence between the CRF and blinded 

evaluations in terms of the magnitude of change in tumor burden and time-points at 

which these changes are registered. The remaining 4 had differences of unclear 

significance (2, 6, 10, 11).  

3.5 Estimated impact of continuous measurement variance on modeled endpoints 

         RECIST was developed to be robust to inter-rater variance in measurements by 

setting categories for tumor size changes (Progressive Disease, Partial Response, and 

Complete Response) based on thresholds for magnitudes of change that would be 

unlikely to be due to the greatest degree of inter-rater variance (Therasse et al., 2000).  A 

patient’s category of response would then likely only be due to a significant effect of 

treatment (Moertel et al., 1976; Miller et al., 1981). It is therefore not surprising that in 

settings where inter-rater variance is not actively controlled, assessments of continuous 



                                                                          84 
 

measurements of tumor growth will not improve upon our current RECIST-based 

categorical and time-to-event strategies              

         We hypothesized that this inter-rater variance in tumor burden assessments would 

have a significant effect on a continuous-measurement-based strategy such as TTG with 

less effect on a RECIST-based time to event endpoint such as progression-free survival 

(PFS). For the 12 subjects with serial CRF and blinded radiologist measurements (Table 

4.5), we identified an average 25% delay in TTG calculated from the re-evaluated scans 

compared with the CRF data, but no differences in PFS assessments.  Despite differences 

in target lesion assessment and measurement, subjects met criteria for progressive disease 

at the same imaging session in both datasets. 
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A) 

B) 

 
 
Figure 4.4. Comparisons of identified target lesion measurements from original case report 

forms and by blinded radiologist reviewer.   

A) Target lesion measurements from CALGB 30203 and 30303.  X-axis; Yellow circles; CRFs 

(case report forms), Blue circles; BE (Blinded re-evaluation of imaging data by radiologist from 

the University of Chicago).  Y-axis; Each circle depicts one lesion at baseline (BL) visit in 

centimeters (cm).  Gray line between yellow and blue circle connects the same lesion. B) Sum of 

the longest dimensions (cm) at each assessment time point for subjects in A over the course of the 

trial. 
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Table 4.5. Comparisons of PFS and calculated TTG from the target lesion measurements by 

blinded radiologist evaluation (BE) and case report form (CRF) data 
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4. Discussion 

         This examination of a NSCLC longitudinal tumor growth model and endpoints in 

published CALGB studies revealed current limitations to employing continuous 

measurements of tumor burden in phase II clinical trials. Modeling of typical phase III 

clinical trial-size samples has reproducibly demonstrated tumor burden metrics as 

predictors of survival (Claret et al., 2012; Stein et al., 2011; Claret et al., 2013; Stein et al., 

2012). Contrary to our expectations, we showed that decreasing the sample size to that of 

a typical phase II trial results in complete loss of the predictive power of these tumor 

metrics. Even though TS at 8 weeks is no longer a statistically significant predictor of 

survival in NSCLC with a typical phase II sample size, the direction of this predictor to 

survival remains the same as observed in the large phase III trials. As Bonate illustrated 

in a simulation study based on the FDA model structure, the parameter bias did not 

translate to prediction bias in tumor size as the measurement error with the expected 

bounds for tumor size assessment (Bonate et al., 2013). This suggests that we cannot rule 

out the clinical utility of TS at early time points in phase II survival prediction because of 

the low predictive power in a small size trial. In fact, other sources of variance such as 

phase II survival data in contributing to the model predictability may also need to be 

evaluated. Closer scrutiny of the original images and the recorded data revealed variance 

in the process by which tumor burden is assessed and recorded to meet RECIST 

standards.  This variance has no apparent effect on RECIST categories or time-to-event 

endpoints, but does affect tumor burden metrics.  

         There is no superior alternative approach to RECIST for the standardized 

assessment of anatomical tumor burden and its change over time (Eisenhauer et al., 2009; 
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Fojo et al., 2012).   This categorical system applied to quantitative assessments of tumor 

burden provides low inter-rater variance (progressive disease will be determined with 

high uniformity across sites in a multi-center trial and among trials) at the expense of 

efficiency (requires more patients to be observed over long periods of time).  Our 

findings are consistent with investigators collecting and curating the quantitative tumor 

burden data with sufficient precision to support use of RECIST but not to support more 

computationally intensive methods of evaluating effects of treatments in small clinical 

trials.  It is no surprise that many investigators have found no significant advantages to 

use of quantitative methods (such as tumor size ratio) over more qualitative time-to-event 

strategies (such as progression-free-survival) for predicting impact on overall survival 

(Fridlyand et al., 2011; An et al., 2011; Kaiser et al., 2013).   

         This study had a limited data sample for analysis, but it required significant effort to 

obtain these data.  The qualitative documentation of tumor response data in earlier trials 

was not suitable for further quantitative analysis.  For the more recent trials, the primary 

databases maintained the RECIST-based categories in data fields, but obtaining the 

quantitative tumor measurements required manual retrieval and processing of archived 

paper forms.  The small cohort of patients for whom images were available and reviewed 

might have been a biased sample, but this site had been a major contributor to enrollment 

across thoracic oncology trials in CALGB with the stringent audit and quality control 

processes applied for member sites.  The data are therefore likely representative of the 

overall quality of data in the larger clinical trials.  Furthermore, an independent trial, 

conducted by a completely different set of institutions (ECOG) yielded similar results. 

We cannot exclude the possibility that this particular subset of patients matched between 
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the CALGB and ECOG datasets represents a unique group of NSCLC patients whose 

tumor growth patterns are distinct from the typical patient population.  Therefore our 

findings will require confirmation in other datasets. 

         The study demonstrates a potential major flaw in assumptions on the use of 

quantitative measures of tumor burden and computational analysis.  The process of 

measuring, transmitting, analyzing, and interpreting CT imaging-based measures of 

tumor contributes significant, but potentially modifiable variance.  Centralized collection 

and measurement of CT images with semi-automated and digitally enhanced procedures 

should significantly reduce this variance.  Advances in computing and digital data 

management in the past several years have reduced costs and make paperless systems 

with fewer opportunities for manual error possible.  Our findings suggest that 

establishing methods with less inter-rater variance should be a worthwhile investment in 

the future of cancer therapeutics assessment. 
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CHAPTER V: Clinical Trial Simulation to Evaluate Study Design: Capturing 

Abiraterone and Nilotinib Exposures  

1. Introduction 

         In the past twenty years, oral anticancer drug therapy has become more prevalent 

(Singh et al., 2004). Unlike intravenous drug administration, orally administered agents 

undergo absorption from the gastrointestinal lumen through the intestinal epithelium into 

the portal vein and then into the systemic circulation. The fraction of an orally 

administered drug dose that reaches the systemic circulation is the drug’s oral 

bioavailability and significant differences or changes in bioavailability will lead to a 

significant variation in drug exposure (Martinez et al., 2002) and thus modified 

therapeutic and or toxic effects.   

One of most well-known factors contributing to variability in oral bioavailability 

is food intake (Singh et al., 2004; Winstanley et al., 1989; Gu et al., 2007). The effect of 

food on oral bioavailability has the potential to cause a clinically significant impact by 

causing variable systemic drug exposures that can lead to drug toxicity or therapeutic 

failure (Koch et al., 2009; Kang et al., 2010).  Furthermore, the alternation of 

pharmacokinetic profile of several standard and investigational anticancer drugs such as 

busulfan, topotecan and fluorouracil caused by food-drug interactions have been 

previously reported (Singh et al., 2004). Quantifying the effect of food on drug exposure 

is important when designing a clinical trial for oral anti-cancer drugs.  In addition to food 

related variability, variability in drug pharmacokinetic parameters between individuals as 

well as between occasions within an individual also contributes to variability in drug 

exposure. In order to assess the contribution of different magnitudes of between-
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individual and between-occasion variability on drug exposure, this study used a 

population PK modeling approach and  Monte Carlo methods to simulate a virtual 

clinical trial of patients who took drug in both the fasted and fed states. 

               Such a clinical trial simulation framework provides insight as to whether a 

particular study design, with a random sampling schema to reflect a typical clinical 

practice setting, permits the retrieval of pharmacokinetic (PK) parameters and their 

variability under different prandial conditions.  In addition, simulation of a clinical trial 

can assess how patient specific covariates, between-individual, and between-occasion 

variability affect the ability to accurately capture individual level exposures. The aim of 

this study was to evaluate whether a pre-defined oncology trial with a sparse drug 

concentration sampling schedule can adequately capture individual level drug exposures, 

random variability and the food effects of (1) abiraterone (92% decrease in  oral 

clearance), and (2) nilotinib, (18% decrease in oral clearance). To achieve these 

objectives, a virtual cancer study population was simulated with assigned 

pharmacokinetic characteristics, food intake and between-individual as well as between-

occasion variability. A population pharmacokinetic (Pop PK) approach was utilized to 

retrieve the Pop PK parameters under these conditions and examine whether or not these 

parameters could be adequately retrieved on estimation at both the individual and 

population level.  

2. Materials and Methods 

2.1 Simulation of Patient Pharmacokinetic Characteristics 

Hypothetical patients were created with fasting state Pop PK characteristics 

mimicking those found in oncology patients. (See Table 5.1 for abiraterone (Ryan et al., 
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2010) and Table 5.2 for nilotinib (ZYTIGA, Tanaka et al., 2010) patient characteristics. 

The Pop PK parameters were assumed to be log- normally distributed and the parameter 

values for simulation were obtained or calculated based on literature values from a non-

compartmental analyses (Ryan et al., 2010; ZYTIGA, Tanaka et al., 2010). A one 

compartment model with first order absorption and elimination was assumed as the 

model structure. Between-individual variability of oral clearance (CL/F) and volume of 

distribution (Vd/F) were based on the mean and standard deviation of pharmacokinetic 

parameters from published studies. Abiraterone between-individual variability values for 

oral clearance and volume of distribution were 174% and 73%, respectively, in the fasted 

state and 42.2% and 36%, respectively, in the fed state [7]. The between-individual 

variability of the absorption rate constant was assumed to be 20% and a proportional 

residual error with 30% CV was assumed based on literature values for abiraterone (Ryan 

et al., 2010). For nilotinib, the between-individual variability of oral clearance and 

volume of distribution values were set to 55% and 37% CV, respectively, for both fed 

and fasting states (Tanaka et al., 2010). A between-individual variability for the nilotinib 

absorption rate constant of 20% and a proportional residual error with 10% CV based on 

the lower limit of quantification of the nilotinib concentration assay were assumed 

(Tanaka et al., 2010).   

Values of the Pop PK parameters for each hypothetical patient were randomly 

chosen from their respective distributions with a correlation of 0.6 applied between 

clearance and volume.  
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Table 5.1.  Population pharmacokinetic parameters for abiraterone patients  

Abiraterone 

Parameter Fasting status 

Mean (SD) 

Fed status 

Mean (SD) 

Apparent Clearance / bioavailability [CL/F] 

(L/h) 

2650 (4617) 231 (97.7) 

Apparent Volume of distribution / 

bioavailability [Vd/F] (L)  

25494 (18670) 4069 (1462) 

Absorption rate (1/h) 1.65 (0.33) 1.65 (0.33) 

F = oral bioavailability 
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Table 5.2.  Population pharmacokinetic parameters for nilotinib patients 

Nilotinib 

Parameter Fasting status 

Mean (SD) 

Fed status 

Mean (SD) 

Apparent Clearance / bioavailability 

[CL/F](L/h) 

33 (18) 27(15) 

Apparent Volume of distribution / 

bioavailability  [Vd/F] (L) 

720 (267) 604(181) 

Absorption rate (1/h) 0.74 (0.15) 0.74 (0.15) 

F = oral bioavailability 
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2.2 Food Effects  

For both abiraterone and nilotinib, it was assumed that 50% of doses were taken 

with food and that the values of the oral clearance and volume of distribution depended 

upon whether a particular dose was taken with food or without food.  

To mimic the actual drug administration protocol for food intake, we considered a 

different food effect in the abiraterone versus nilotinib trials. This was done to test 

whether the model would be able to capture two extreme food effects, the between-

individual and between-occasion variability, and the individual level exposure. For 

abiraterone, patients in the fed prandial state were assumed to have had a high fat meal 

given the availability of Pop PK parameter values in the reference for simulation from 

this state; therefore, the oral clearance and volume of distribution were reduced by 92% 

and 85%, respectively, if the dose was taken with food (Ryan et al.,2010). In contrast to 

the abiraterone simulations, patients who were simulated as receiving nilotinib were 

assumed to have a light fat meal and possibly just a glass of grape juice 2 hours before or 

1 hour after nilotinib was taken. An 18% reduction in apparent clearance was introduced 

to reflect this food effect (Tanaka et al., 2010; Yin et al., 2010).   

2.3 Study Design 

Patients in the simulated abiraterone trials were randomly assigned to take 1,000 

mg once daily and patients in the simulated nilotinib trials were assigned to take a 300 or 

400 mg tablet twice daily in 1:1 fashion.  Virtual pharmacokinetic samples for each 

patient were assumed to occur at week 1, week 4, and month 2 and month 3 based on a 

previously established trial sampling schedule (see Figure 5.1) after the start of the trial 

so each individual had a total of 4 measurements (one sample obtained on each occasion). 
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This sampling schedule was designed to fit in with the standard clinical follow up of the 

patient. The samples were assumed to occur at random times during clinic hours.  The 

visit day for each pharmacokinetic sample of each hypothetical patient was randomly 

selected from a discrete distribution with 50% of virtual patients having a visit sample 

drawn on the recommended day, 20%   1 day, 20% at  2 days and 10% at  3 days 

from the scheduled visit date.  Each clinic visit time was randomly selected from a 

uniform distribution assuming regular office hours from 7am to 6pm.  To mimic food 

intake when patients take their medications, a random food covariate was generated for 

each hypothetical patient and sampled for the four different clinic visit occasions within 

each patient.   

The hypothetical patients were assigned into trial sizes of 20, 50 or 70 individuals, 

and each trial was replicated 100 times. The same study design was tested using three 

different between-occasion variability levels: 10, 25, and 40% CV on drug clearance. 
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Figure 5.1. Study schema of abiraterone and nilotinib clinical trials. 
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2.4 Population Pharmacokinetic Model Estimation 

The population pharmacokinetics of the hypothetical patients in each trial were 

analyzed using nonlinear mixed effect modeling software, NONMEM, Version VII 

(GloboMax_LLC, Ellicott City, MD, USA) using Wings for NONMEM, Version 7. One-

compartment structural model with a proportional residual error model was tested using 

the first-order conditional estimation (FOCE) method. Between-individual variability was 

tested on oral clearance and volume of distribution, and between-occasion variability was 

tested on oral clearance only. The between-individual and between-occasion variability 

for Pop PK parameters were assumed to be log-normally distributed and evaluated using 

an exponential model  Pi,k = PTV x e
ηp,i

 x e
ηp,k

 where Pi,k is the parameter estimate for the i 

th
  individual after the k 

th
  dose administered and PTV is the typical value for the parameter 

at the population level. The variability between the i 
th

 individual and the population 

parameter value was described by p,i which was identically distributed with a mean of 0 

and a variance of  ωη p,i 
2
 (Feng et al., 2006). The variability between the k 

th
 occasion of 

dose administration and the population parameter value was described by p,k which was 

identically distributed with a mean of 0 and a variance of ωη p,k 
2
.  In addition to the 

between-individual and between-occasion variability, residual variability was described 

by a proportional error model. That is, )1(ˆ
ijijij yy  where 

ijy and 
ijŷ are the j 

th
  

observed nilotinib or abiraterone concentration and its corresponding model predicted 

concentration, respectively, with the difference described by 
ij which is assumed to be 

normally distributed with a mean of 0 and a variance of 
2
. In order to estimate between-

occasion variability in the model, the residual error was fixed in the estimation step.  
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2.5 Evaluation of Clinical Trial Designs 

The food effect in each trial was evaluated by comparing the fit of a base model 

with no food effects with a model that includes a food effect covariate on oral clearance. 

The model comparison was based on a likelihood ratio test using the objective function 

value (OFV) from NONMEM. The change in the OFV returned by NONMEM is 

approximately equal to -2 x log likelihood. The difference in -2 x log likelihood between 

two models that are nested follows a χ
2
 distribution. The significance level for identifying 

the food effect corresponded to a decrease in the OFV of greater than 6.63 (p-value 

0.01, df=1). The power to detect a food effect is the percent of the trials where the 

population PK analysis demonstrated significant OFV change among the 100 trials in 

both abiraterone and nilotinib and retrieving a food effect value within 20% of the true 

food effect value.    

In addition, to determining whether or not a food effect was detected by the trial 

design, the accuracy and precision of the model for retrieving parameter values of 

clearance, between-individual and between-occasion variability was assessed using two 

statistical standard criteria: percent bias and percent precision (Huang et al., 2007).  

              At the population level, the bias of each parameter represents the difference 

between the estimated values from the simulated (true) value of the population, and the 

percent bias is the mean predicted error normalized by the simulated value taken from the 

literature. The bias is calculated using the equation shown below: 
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where Yp,J  is the predicted value for the j 
th

  trial in total m trials with the same given 

between-occasion variability level and the same sample size, and Ye is the literature value 

we simulated from. The precision was estimated by calculating the root mean square 

error, reflecting the distribution of variance, and the percent precision is the root mean 

square error normalized by the simulated mean.  This included the bias and precision of 

the estimation of the food effect.   

            
Parameter estimates at the individual level were evaluated using percent bias and percent 

precision.       

    

where      and      are the predicted and simulated values for the     patient, respectively. 

n represents the number of patients in the trial.                                                                                          

           

Then, an average of individual percent bias and precision of the m number of trials was 

calculated.  

3. Results 

         The goodness-of- fit plots for the final model were shown in Figure 5.2 and 5.3 for 

abiraterone and niltonib, respectively. The percent bias and precision for the population 
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oral clearance for abiraterone ranged from -37% to -31% and 36.2% to 38.1%, 

respectively (Table 5.3). The average percent bias and precision are noticeably smaller in 

magnitude for individual clearance estimates (range of 1.2% to 4.4% and 14.5% to 19.9%, 

respectively). This indicates that the model estimates for oral clearance are more accurate 

and less variable at the individual level compared to the population level. Across three 

between-occasion variability levels (10, 25, and 40%), 21%, 10% and 11% of the 

abiraterone trials, respectively, retrieved population clearance values within 20% of the 

true value. The ranges of percent bias and precision for between-individual variability 

were -45.1% to-42.1% and 42.8% to 45.9%, respectively, with minimal variations with 

number of patients in the trial or between-occasion variability. The ranges of percent bias 

and precision of between-occasion variability were -30% to -1.1% and 11.6% to 40.7%, 

respectively.  There was a decrease in both the between-occasion variability bias and 

precision as the number of patients and between-occasion variability increased. The 

known food effect on oral clearance for abiraterone was identified in 100% of simulated 

trials with 20, 50 and 70 patients for the 10%, 25%, and 40% between-occasion 

variability levels. The ranges of percent bias and precision of food effect were 2.01% to 

4.42% and 6.81% to 14.4%, respectively. 
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Figure 5.2. Goodness-of-fit plots for the final model of abiraterone.  

Plot of population and individual predicted versus observed concentrations and plot of conditional 

weighted residuals versus population predicted concentrations and time (hours). 
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Figure 5.3. Goodness-of-fit plots for the final model of nilotinib.  

Plot of population and individual predicted versus observed concentrations and plot of conditional 

weighted residuals versus population predicted concentrations and time (hours). 

 

 

 



 
 

      Table 5.3.  Bias and precision of abiraterone oral clearance at the population level and individual level, between-individual     

      variability, and between-occasion variability 

Between-

occasion 

variability 

Number of 

patients in 

trial 

Oral Clearance – 

Population level 

Oral Clearance – 

Individual level 

Between-individual 

variability 

Between-occasion 

variability 

Food effect 

  Bias Precision  Bias Precision Bias Precision Bias Precision Bias Precision 

10% 20 -32.3% 37.1%  1.5% 14.5% -44% 45.6% -30% 40.7% 2.65% 9.95% 

 50 -36.6% 37.8%  1.3% 14.6% -43.6% 44.5% -25.8% 30.8% 4.42% 7.42% 

 70 -36.8% 37.8% 1.4% 14.9% -43.3% 43.5% -15.3% 23.3% 3.84% 6.81% 

25% 20 -31.7% 36.6% 3.3% 19.6% -45.1% 45.9% -5.85% 18.8% 2.36% 11.8% 

 50 -36.3% 37.6% 1.2% 18.9% -42.4% 42.8% -5.51% 14.6% 4.16% 8% 

 70 -36.9% 37.9% 3.2% 19.9% -43 % 43% -3.08% 14.8% 3.61% 7.22% 

40% 20 -31% 36.2% 1.4%    19.7% -44.9% 46.1% -1.34% 17.4% 2.01% 14.4% 

 50 -35.7% 37.1% 1.6% 19.9% -42.1% 42.8% -1.44% 13.4% 2.52% 11.9% 

 70 -37% 38.1% 4.4% 19.6% -42.6% 43% -1.11% 11.6% 2.64% 8.6% 

1
0
4
 



                                                             105 
 

The percent bias and precision on the population oral clearance for nilotinib ranged from 

-13.3% to -11.8% and 14.2% to17.0%, respectively (Table 5.4) and were consistent 

across between-occasion variability levels (10%, 25% and 40%). In contrast to 

abiraterone, the average individual nilotinib oral clearance estimates were significantly 

more accurate and precise than population estimates with the percent bias and precision 

ranging from -1.9% to -0. 5% and 4.2% to 8.6%, respectively. Across three between-

occasion variability levels (10, 25 and 40%), 86, 84 and 83% of the nilotinib trials, 

respectively, retrieved the population oral clearance within 20% of the true value. The 

ranges of percent bias and precision of between-individual variability were -9.9% to -7. 

9% and 11.3% to 19.4%, respectively and ranged from -3.9% to -0.4% and 4.9% to 

11.0% for percent bias and precision on between-occasion variability. Retrieval of the 

known food effect in this system was observed in 100% of the simulated nilotinib trials 

with 10% between-occasion variability with trial sizes of 25, 50, and 70 patients.  For 

nilotinib trials simulated with 25% between-occasion variability, significant food effects 

on oral clearance were retrieved in 80% of 20 patient trials, 99% of 50 patient trials, and 

100% of 70 patient trials. Nilotinib trials simulated with 40% between-occasion 

variability resulted in significant food effects on clearance being retrieved in 50% of 20 

patient trials, 78% of 50 patient trials, and 88% of 70 patient trials. The ranges of percent 

bias and precision of food effect were -2.16% to 11.8% and 6.3% to 38.8%, respectively 

 

 

 



 

     

         Table 5.4.  Bias and precision of nilotinib oral clearance at the population level and individual level, between-individual  

         variability, and between-occasion variability 

Between-

occasion 

variability 

Number of 

patients in 

trial 

Oral Clearance – 

Population level 

Oral Clearance – 

Individual level 

Between-individual 

variability 

Between-occasion 

variability 

Food effect 

  Bias Precision  Bias Precision Bias Precision Bias Precision Bias Precision 

10% 20 -11.8% 16.0% -0.6% 4.6% -9.0% 18.1% -3.9% 11.0% -0.12% 12.3% 

 50 -12.0% 16.3% -0.5% 4.3% -9.9% 13.4% -2.1% 6.9% -0.05% 12.3% 

 70 -12.8% 14.2% -0.5% 4.2% -8.0% 11.3% -2.3% 5.7% -0.04% 6.3% 

25% 20 -12.0% 16.2% -1.5% 6.6% -8.8% 18.5% -1.9% 8.9% -0.4% 30% 

 50 -12.4% 16.7% -1.0% 6% -9.1% 13.1% -1.2% 5.2% 0.9% 20.9% 

 70 -13.3% 14.7% -0.8% 5.7% -7.9% 11.7% -0.9% 4.9% -1.39% 15.5% 

40% 20 -12% 16.4% -1.9% 8.6% -8.5% 19.4% -1.8% 8.7% 11.8% 38.8% 

 50 -12.7% 17.0% -1.0% 7.2% -9.2% 13.9% -0.4% 7.7% 2.32% 30% 

 70 -13.3% 14.7% -0.9% 7.1% -7.9% 12.3% -0.7% 4.9% -2.16% 24.3% 

1
0
6  
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4. Discussion 

         Virtual clinical trials of abiraterone and nilotinib using sparse concentration 

measurements and a population PK sampling time design were simulated to test whether 

the drug exposure of each simulated patient and its variability under different prandial 

conditions on oral clearance for two recently approved drugs would be retrieved 

accurately and precisely.  The trial design is a typical phase II design in the NCI 

cooperative system and this assessment provides and evaluation of whether there is value 

in drawing sparse samples to utilize in population pharmacokinetic analysis for the 

determination of individual drug exposure. It was important to assess this particular study 

design as it is widely used and insight on the value of drug concentration sampling under 

these conditions was unclear.  Population as well as individual pharmacokinetic 

parameters for abiraterone, with a large food effect, and nilotinib, with a smaller food 

effect, were well estimated from the virtual trial results. This evaluation of whether 

between-individual and between-occasion variability can be well captured with a 

significant covariate effect on oral clearance (the underlying food effect) at different 

levels of variability on anticancer drug exposure is a novel observation. As the prior 

knowledge of more than 100% between-individual variability was introduced to oral 

clearance in the abiraterone trial, the model estimation of the population oral clearance 

parameter and between-individual variability have relatively poor percent bias and 

precision compared to the  nilotinib trial. This is reflected in the power calculation 

showing that only 10 to 20% of the trials across three between-occasion variability levels 

(10, 25, 40%) have population oral clearance estimates within 20% of the true value. This 

finding indicates that retrieving population level effects with large between-individual 



                                                             108 
 

variability may need a much larger trial size or more intense sampling schedule or a 

combination of both.  

         Between-occasion variability estimates were reasonable considering both percent 

bias and precision were less than 30% in most trial simulations. However, the percent 

bias and precision were relatively poor for the simulated abiraterone trials with 20 

patients and 10% within-individual variability. One possible explanation of this is that the 

system is less able to capture between-individual variability if the actual variability is 

small, but the true mechanism contributing to this poor bias at 10% between-individual 

variability is as yet unclear.  

         This model was unable to estimate both residual error and between-occasion 

variability accurately simultaneously. In order to accurately capture the between-

individual variability, the residual error estimation was fixed to published values.  This 

suggests that more than one sample per occasion will be required to distinguish these 

hierarchies of variability simultaneously.  

         The effects of two important features of such clinical trials were quantified using a 

NONMEM based simulation analysis.  These were the power to detect differences in oral 

drug clearance related to the prandial state of the study participants and the degree of 

between-individual variability and sample size. When the between-individual variability 

was set to 25% for a trial with 20 patients, 80% of the simulated nilotonib trials resulted 

in the detection of a statistically significant reduction in oral clearance caused by the food 

effect. The power to detect this food effect on oral drug clearance increased to 100% 

when the number of patients per trial was increased from 20 to 70. At 40% between-

individual variability, the food effect signal was observed in only 50% of trials with 20 
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patients, increasing to 88% when the number of patients increased to 50. The percent 

precision also indicated that the food effect as a covariate was captured less precisely 

when between-occasion variability increased, and the trial sample size was reduced. In 

contrast, abiraterone with a much more substantial food effect (92% reduction in oral 

clearance) resulted in a power to detect the food effect of 100% in the smallest trial 

evaluated (20 patients).  This virtual trial also had 40% between-individual variability 

and resulted percent bias and precision on the Pop PK parameters that were all less than 

20%. Using a modeling approach, we were able to simulate a complex clinical oncology 

population pharmacokinetic trial setting and capture the between-occasion variability and 

the magnitude of individual drug exposure in the presence of a large food effect for two 

recently approved oral anti-cancer agents. This simulated approach facilitated an early 

evaluation of the proposed trial design. However, clinical trial simulations are generated 

based on many trial assumptions, and these assumptions may include uncertainty. In fact, 

with different underlying assumptions, the simulated outcomes can differ, so multiple 

scenarios as well as assumptions must be tested in order to fully interpret the relevance of 

the results.  

         There are limitations to this analysis. First, a dropout model was not incorporated in 

this study design which can potentially contribute to censor events in a 3 month study. 

The simulations also assumed parameter distributions based on available food effect 

assessment in previous non-compartmental analysis. Because of the established sampling 

schedule, both drugs were better estimated with a simplified model structure.  Despite 

this, the model provides an approximation of the actual behavior and can capture the 

trend of the variability within the population. In fact, this simplified modeling approach 
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was previously proposed to assess the pharmacokinetics of some drug entities in the trials 

with a relative sparse sampling schedule (Scerwin et al., 2012; van Erp et al., 2011). The 

sampling schedule could also be optimized for the identification of food effects and 

model parameters, but the objective of this work was to evaluate trial designs given a 

commonly used sampling schedule. Second, non-compliance was not considered in this 

study design as we assumed that the compliance rate should be reasonably controlled in 

the clinical trial although this will result in a higher residual error and between-individual 

variability than compliance accounted for using electronically monitoring (Vrijens et al., 

2005). This study emphasizes the importance of addressing trial designs where intensive 

sampling cannot be obtained and yet there is a need to understand the drug exposure 

characteristics to what are otherwise medications with highly variable pharmacokinetic 

disposition.    
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CHAPTER VI: Genetic determinants of vincristine neuropathy in pediatric acute 

lymphoblastic leukemia patients  

1. Introduction 

         Vincristine is one of the most commonly prescribed anticancer agents, and it has 

been used to treat a wide variety of malignancies. Even though the drug is commonly 

used, the dose optimization of vincristine and potential causes of severe side effects and 

lack of efficacy still remain unclear. In fact, vincristine plays a role in many cellular 

mechanisms. It not only binds irreversibly to microtubules and spindle proteins and 

interferes with the formation of the mitotic spindle, but also depolymerizes microtubules 

and may also interfere with amino acid, cyclic AMP, and glutathione metabolism. In 

addition, it is associated with calmodulin-dependent Ca++ -transport ATPase activity, 

cellular respiration, and nucleic acid and lipid biosynthesis (National Cancer Institute, 

2011). 

         Similar to other chemotherapy agents such as taxanes and platinums, vincristine is 

associated with highly variable cumulative dose-dependent neurotoxicity, secondary to its 

binding to tubulin dimers, which can inhibit the assembly of microtubule and arrest 

mitosis in metaphase (Park et al., 2013; Howlader et al., 2012; Verstappen et al., 2005; 

Postma et al., 1993; Haim et al., 1994). In severe cases, neurotoxicity may lead to dose 

reduction, which may negatively impact the drug efficacy. In addition, substantial 

variability in vincristine pharmacokinetics with up to a 40-fold interpatient variation has 

been reported in the literature (Crom et al., 1994; de Graaf et al., 1995), and this 

pharmacokinetic variability may be associated with severity of neurotoxicity. Published 

data also indicate that vincristine pharmacokinetics may in fact be associated with long-
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term outcomes in children of acute lymphoblastic leukemia with rapid clearance being 

associated with a greater risk of relapse. (Lonnerholm et al., 2008). 

The variability of vincristine pharmacokinetics might be potentially explained in part by 

genetic differences in cytochrome P450 3A family enzymes, which are important for 

vincristine metabolism (Dennison, et al., 2006).     

         As previous study shown, Caucasian children with ALL more commonly suffer 

from vincristine-induced peripheral neuropathy (VIPN) than do children of other 

ethnicities due to CYP3A5 genotype (Dennison et al., 2006). In fact, another study 

suggests that polymorphisms of multi-drug resistance (MDR1) gene which code as an 

efflux transporter are associated with peripheral neuropathy (Te Loo et al., 2010). This 

might also contribute to the variability of vincristine PK, and the genetic impact on drug 

toxicity. In addition, study published by Hertz et al. suggested that CYP2C8 

polymorphisms can increase the risk of neuropathy in breast cancer patients treated with 

paclitaxel (Hertz et al., 2013). This indicated that in the case of paclitaxel drug toxicity 

may be associated with pharmacokinetic exposure through metabolic pathways. However, 

those findings are controversial across studies with limited validation in the literature 

(Hertz et al., 2014).  In a study of 329 subjects by Broyl et al., an early-onset vincristine-

induced neuropathy was characterized by the up-regulation of genes involved in cell 

cycle and proliferation, including AURKA and MKI67, and also by the presence of 

single-nucleotide polymorphisms (SNPs) in genes involved in these processes, such as 

GLI1 (rs2228224 and rs2242578) (Broyl et al.,2010). Similar to the vincristine 

association analyses, many studies have aimed to identify potential genetic risks in 

predicting neuropathy induced by platinum agents or Taxanes. In those genomic studies, 
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few candidate genes (FGD4, TUBB2A, ARHGEG and PRX) were found to be associated 

with paclitaxel-induced peripheral neurotoxicity. These results indicated that drug- 

induced peripheral neurotoxicity may share genetic roots as hereditary neuropathies 

(Baldwin et al., 2012; Leandro-Garcia et al., 2012; Beutler et al., 2014; Travis et al., 

2014).  Furthermore, McWhinney- Glass’s group further explored genetic risk of four 

SNPs (SOX10, BCL2, OPRM1 and TRPV1) in an association analysis of 

platinum/taxane-induced neurotoxicity. Interestingly, a cumulative association of these 

genetic variations with neurotoxicity was observed in this population of 404 patients with 

ovarian disease (McWhinney-Glass et al., 2013). 

         In order to better understand VIPN and predict risk for toxicity to ultimately aid in 

vincristine  dose optimization and to further explore the findings from the previous 

studies, a genome-wide association analysis was proposed to take an unbiased  approach 

in evaluating the  association between germline variants and VIPN in pediatric ALL 

patients. Indeed, as the genomics technologies improve, genetic biomarkers provide a 

unique tool for prediction of disease outcomes of interest. The objective of this study is to 

build a candidate gene list including polymorphisms associated with VIPN from the 

GWAS study as well as other association analysis approaches. The rationale for the 

proposed research is that once we understand the impact of specific pharmacogenetic 

changes on vincristine toxicity, we will be able to use this information to optimize dosing 

of this important drug for individual patients. 
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2. Materials and Methods 

2.1 ALL Patient Population and Study Design 

         A total of 2154 children with precursor B cell acute lymphoblastic leukemia from 

the Pediatric Oncology Group (POG) 9904, 9905 and 9906 trials were enrolled.  In 

conjunction with 9905, the objective of the 9904 trial was to determine if a delayed multi-

drug intensification, administered in the context of intensive anti-metabolite therapy 

improved outcomes and compare the different durations of methotrexate infusion. 9906 

was aimed at specifically evaluating patients at high risk for treatment failure. Those who 

had Down’s syndrome, Charcot Marie Tooth disease, baseline peripheral neuropathy, or a 

history of liver disease with chronic elevation in liver function tests to greater than 5-

times the upper limit of normal based on normal values for age were excluded from this 

GWAS. Genotyping of germline samples from 1888 patients on the 9900 trials has been 

completed using the Affymetrix GeneChip Human Mapping 6 and 500K arrays for 9904/ 

9905 and 9906, respectively.  The number of vincristine doses per patient over the course 

of treatment ranged from 18-23, depending on specific protocol and treatment arm. 

Standard vincristine dosing of 1.5mg/m
2
/ dose was used. The complete treatment 

duration is 2.5 years from the date of diagnosis for females and 3.5 years for males. The 

treatment plan is summarized in Figure 6.1.  

 

 



 

 

 

 

 
     Vincristine dose regimen scheme in POG 9904 trial 

 

              

 
 Vincristine dose regimen scheme in POG 9905 trial 

 

 

 

 

 

 

 

Day 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274

INDUCTION                                                               CONTINUATION CONTINUTATION DELAYINTENSIFICATION

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

9904 GroupA V V V V V V V V VV

GroupB V V V V V V V V VV

GroupC V V V V V V V V V V V

GroupD V V V V V V V V V V V

Day 281 288 295 302 309 316 323 330 337 344 351 358 365 372 379 386 393 400 407 414 421 428 435 442 449 456 463 470 477 484 491 498 505 512 519 526 533 540 547 554

Week 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

9904 GroupA VV VV VV

GroupB VV VV VV

GroupC VV VV VV

GroupD VV VV VV

Day 561 568 575 582 589 596 603 610 617 624 631 638 645 652 659 666 673 680 687 694 701 708 715 722 729

Week 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

9904 GroupA VV VV

GroupB VV VV

GroupC VV VV

GroupD VV VV

Day 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274

INDUCTION                                                               CONTINUATION INTENSE CONTINUTATION

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

9905 GroupA V V V V V V V V V

GroupB V V V V V V V V V

GroupC V V V V V V V V V

GroupD V V V V V V V V V

Day 281 288 295 302 309 316 323 330 337 344 351 358 365 372 379 386 393 400 407 414 421 428 435 442 449 456 463 470 477 484 491 498 505 512 519 526 533 540 547 554

Week 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

9905 GroupA V V V

GroupB V V V

GroupC V V V V

GroupD V V V V

Day 561 568 575 582 589 596 603 610 617 624 631 638 645 652 659 666 673 680 687 694 701 708 715 722 729 736 743 750 757 764 771 778 785 792 799 806 813 820 827 834

Week 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

9905 GroupA V V V V

GroupB V V V V

GroupC V V V

GroupD V V V

Day 841 848 855 862 869 876 883 890 897 904

Week 121 122 123 124 125 126 127 128 129 130

9905 GroupA

GroupB

GroupC V

GroupD V

1
1
5
 



 

 

 

 

 

 
 

       Vincristine dose regimen scheme in POG 9906 trial 

      Figure 6.1. Vincristine dosage regimens for POG 9904, 9905 and 9906 trials. 

 

 

 

  

 DELAYED INTENSIFICATION- RECONSOLIDATION

Day 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274

INDUCTION CONTINUTATION INTERIM MAINTENANCE  DELAYED INTENSIFICATION- REINDUCTION

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

9906 V V V V V V V V V V V V V V V V V V V V V V V V V

Day 281 288 295 302 309 316 323 330 337 344 351 358 365 372 379 386 393 400 407 414 421 428 435 442 449 456 463 470 477 484 491 498 505 512 519 526 533 540 547 554

Week 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

9906 V V V V V V V V V V V V

Day 561 568 575 582 589 596 603 610 617 624 631 638 645 652 659 666 673 680 687 694 701 708 715 722 729 736 743 750 757 764 771 778 785 792 799 806 813 820 827 834

Week 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

9906 V V V V V V V V V V

Day 841 848 855 862 869 876 883 890 897 904

Week 121 122 123 124 125 126 127 128 129 130

9905 V V

1
1
6
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2.2 Genotype Data and Quality Control 

             DNA(500ng) was digested with restriction enzymes, amplified, labeled, and 

hybridized to the Affymetric GeneChip Human Mapping  6 set for P9004 and 9005 and 

500K for 9006. The genotypic data included raw data files, genotypes, quality scores, 

intensity values, SNPs and sample summary tables. QC was performed to remove both 

samples and markers which were unreliable in the following fashion. Samples with >5% 

missing rate were excluded. Furthermore, SNPs with a study-wide missing data rate of 

>5% and/or evidence of Hardy-Weinberg disequilibrium (p≤ 0.0001) were discarded. 

SNPs with minor allele frequency (MAF) of <0.05 were also removed from the analysis 

because previous studies have shown that these SNPs have little power to detect 

association and are more prone to genotypic errors resulting in false positive evidence of 

association. In addition, MAF < 0.10 cutoff was applied for the recessive model in the 

analysis. PLINK was proposed to manipulate the data by generating both per sample and 

per SNP metrics to assess the quality of the genotypic data (Purcell et al., 2007). 

2.3 Population Stratification 

             A principal components approach (Price et al., 2006) was applied to correct for 

any possible stratification errors. A subset of the genome-wide SNP data was used to 

identify components that reflect population structure. Scores for each individual from 

the initial principal component assessment were calculated and included as covariates in 

the subsequent association analyses. 

2.4 Phenotype Identification 

             Vincristine is associated with highly variable cumulative dose-dependent 

peripheral neurotoxicity that often necessitates chemotherapy dose reductions, thereby 
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compromising efficacy. To do this association analysis, the first step was to define our 

phenotype of interest. National Cancer Institute Common Terminology Criteria for 

Adverse Events, version 3.0 (CTCAE v3.0) was used to capture and grade adverse events 

in this study. We defined neuropathy for the purposes of this analysis as any sensory or 

motor neuropathy  grade 2. Neuropathic pain was also captured in this study. For the 

purpose of this analysis, we designate neuropathic pain as secondary neuropathy as any 

sensory neuropathy, motor neuropathy or neuropathic pain   grade 2. 

2.5 Genome-Wide Association Study 

         The analysis started with association analysis of genotype frequencies with primary 

neuropathy (CTCAT V3.0 sensory or motor neuropathy). Neuropathy was treated as a 

binary variable; ie, 1 for having neuropathy and 0 for no neuropathy.  Clinical, 

demographic, and population stratification variables were tested as covariates in the 

regression analyses. Genotype frequencies were tested in dominant, recessive and 

additive (gene-dose) model. This strategy was also used to test the association between 

SNPs and secondary neuropathy. These analyses were performed in R coxph package 

(Therneau et al., 2014). The corresponding p-value of each SNP was summarized across 

chromosomes in Manhattan and QQ plots.  

2.6 Gene Enrichment Analysis  

              The gene enrichment analysis was done by focusing on enrichment of specific 

target genes (Shamir, 2010). In this case, the target genes are genes previously identified 

as being related to neuropathy or pain. The initial step of the analysis was to obtain SNP 

rsIDs along with their genomic positions and p-value from the SNP6.0 Affymetrix COG 

data which was previously analyzed in the survival analysis with neuropathy phenotype. 
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SNPs were annotated with their respective genes using their positions and with the 

annotation file from UCSC genome browser. This was done by matching the SNP 

chromosome number with the gene chromosome number and then looking for SNPs that 

within the gene base pair co-ordinates.  Upstream or downstream regions of the genes 

were not considered. Using the significance frequency table, a Fisher’s exact test was run 

to calculate the odds ratio based on equation 1 for each gene.  

 
 

Odds Ratio = N11*N22/N12*N21 (Equation 1) 

N is the number of SNPs in each category. The p-value was estimated in Fisher’s extract 

test. Based on the criteria of p-value <0.05 from Fisher’s extract test and calculated odds 

ratio >1, genes which passed the criteria were selected. 

2.7 Pathway Analysis  

             Significant pathways in biological processes were identified in an interactive 

pathway analysis from Ingenuity systems (Ingenuity systems analysis). The following 

steps were used in the analysis: “(1) Genes identified as significant from the experimental 

data sets were overlaid onto the interactome. Focus genes we re-identified as the subset 

having direct interaction(s) with other genes in the database. (2) The specificity of 

connections for each focus gene was calculated by the percentage of its connections to 

other significant genes. The initiation and growth of pathways proceeded from genes with 

the highest specificity of connections. Each pathway had a maximum of 35 genes. (3) 
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Pathways of highly interconnected genes were identified by statistical likelihood using 

the following equation: 

Score=-log10(  ∑
  (     (        

 (    

   
     

where N is the number of genes in the genomic network, of which G are focus genes, for 

a pathway of genes, f of which are focus genes, and C (n,k) is the binomial coefficient. (4) 

Pathways with a score greater than 4 (P < 0.0001) were combined to form a composite 

network representing the underlying biology of the process.”  

2.8 Gene Expression Analysis  

             Gene expression omnibus(GEO) is a public functional genomics data repository 

supporting MIAME-compliant data submissions (Lehnhardt et al.,2005). To explore 

whether the gene expression level was changed after treating with vincristine, a keyword 

search of vincristine in GEO database was performed. SNPs in COG data were annotated 

with their respective genes using their positions and with the annotation file from UCSC 

genome browser. These genes were compared with the genes in GEO. Those overlapped 

genes were further filtered by the gene expression level with a threshold of greater than 

50% up-regulation or down-regulation of the vincristine treated replicates compared to 

the control. For those genes which passed the threshold, the SNPs with their p-values 

from the GWAS study were evaluated and visualized in the QQ plot.  

2.9 eQTL(GTEx) Analysis  

             In addition to the GEO database, tissue data from GTEx (Genotype-Tissue 

Expression) project (Gibbs et al., 2010) was explored to determine the correlations 

between genotype and the tissue-specific gene expression level. This could help to 

identify the expression quantitative trait locus (eQTL) that might regulate the expression 

level of mRNAs or proteins. Based on the available data from the published tissue bank, 
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four of the brain tissues including cerebellum, frontal cortex, temporal cortex and pons 

were considered in the correlation analysis with neuropathy. 

3. Results 

3.1 ALL Patient Characteristics 

             Within 2154 ALL patients enrolled in POG 9904, 9905 and 9906 trials, 

genotyping of 1888 individuals were eligible. To further insure the genotyping quality, 

only patients from POG 9904 and 9905 who were genotyped using Affymetrix 6.0 were 

included in the initial analysis. Furthermore, a principle component approach was applied 

to correct the population stratification error by using Hapmap references of Han Chinese 

in Beijing, China (CHB), Utah residents with Northern and Western European ancestry 

from the CEPH collection (CEU) and African ancestry in Southwest USA (ASW). Based 

on the result of the two principal component analyses (PC1 and PC2) in Figure 6.2, 

Caucasians were better overlapped with the reference and represented the majority of the 

population. In addition, data which did not pass the additional quality control including 

samples or SNP with >5% missing data rate and/or evidence of Hardy-Weinberg 

disequilibrium (p≤ 0.0001) and/or MAF <0.05 for dominant and additive model and/or 

MAF< 0.10 for recessive model were excluded, and a total of 587,014 SNPs of 1068 

individuals remained in the analysis (Figure 6.3).  
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Figure 6.2. Flowchart of ALL patient selection in the final GWAS analysis. 

MAF: minor allele frequency; dom: dominant model; add: additive model; rec: recessive model; 

HW: Hardy Weinberg equilibrium.  
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Figure 6.3. Population stratification using principal component analysis. 

HapMap reference was used to compare the data. CHB: Han Chinese in Beijing, China. 

CEU:Utah residents with Northern and Western European ancestry from the CEPH. ASW: 

African ancestry in Southwest USA. 
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3.2 Identification of Genomic Loci Associated with ALL Neuropathy Risk in GWAS  

Analysis 

       The initial step of the analysis coded homozygous major alleles, heterozygous, and 

homozygous minor alleles as 0, 1 and 2, respectively using PLINK. After the data was 

manipulated, a Cox proportional hazard model was performed to test association between 

markers and the primary and the secondary neuropathy in three genetic models. The p-

values in –log10 were shown across chromosomes in Manhattan plot and QQ plot for 

primary neuropathy and secondary neuropathy in Figure 6.4 A, B, C, D, E and F and 

Figure 6.5A, B, C, D, E and F, respectively. 
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      A                                                                   B

                                                                          

      C                                                                  D 

 
       E                                                                 F 

 
Figure 6.4. Manhattan plot and QQ plot of GWAS association analysis with primary 

neuropathy.  

A and B: dominant model; C and D:  recessive model; E and F: additive model. 
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       A                                                                B   

 
      C                                                                  D   

 
       E                                                                 F   

     
Figure 6.5. Manhattan plot and QQ plot of GWAS association analysis with secondary 

neuropathy.  

A and B: dominant model; C and D:  recessive model; E and F: additive model. 
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     In order to determine the candidate SNPs for validation, a threshold of p-value of 

1x10
-4

 was selected. Those candidate SNPs with p-value < 1x10
-5

 were further 

investigated and identified the location of gene region and visualized closely in zoom-in 

plot (Figure 6.6).  A total of 23 genes were identified across both neuropathy phenotypes 

and three genetic model structures. The rsID, position, minor allele, MAF and hazard 

ratio of those candidate SNPs as well as its corresponding gene were summarized in 

Table 6.1.  
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Gene Zoom-in plot Corresponding SNPs 
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Figure 6.6. Zoom-in plots of each candidate gene from GWAS study and their 

corresponding SNPs. NE:neuropathy( primary neuropathy); NEP:neuropathy and  neuropathic 
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pain (secondary neuropathy); DOM: dominant model; REC: recessive model; DOSE: additive 

model. 
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Table 6.1. Candidate genes selected from GWAS study.  
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3.3 Identification of Genomic Loci Associated with ALL Neuropathy Risk in Gene- 

Enrichment Analysis 

         A gene-enrichment analysis based on a bottom-up approach was conducted to 

explore genes previously identified as drug targets for treating neuropathy or pain. A total 

of 101 genes were identified for evaluation in this analysis. Among these 101 target 

genes, the SNPs were enriched in the gene regions were tested using Fisher’s extract test. 

The threshold of significance was set to be p-value at 0.05. A total of eight genes 

including CACNA1D, SLC29A4, CACNA1C, GRIK1, SCN8A, CACNB1, GRIN3A and 

SLC22A1 with odds ratio greater than 1 were identified and listed in Table 6.2. The 

zoom-in plots of those genes with their p-values were summarized in Figure 6.7. 
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Table 6.2. Candidate genes selected from gene-enrichment analysis. 
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Gene 

 

 

P-value 

 

Odds ratio 

 

Zoom-in plot 
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Figure 6.7. Zoom-in plots of each candidate gene from Gene enrichment analysis study and 

their corresponding P-value and odds ratio.  
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3.4 Pathway Identification of Genomic Loci Associated with ALL Neuropathy Risk 

         The candidate genes selected from the association analysis were further evaluated in 

an interactive pathway analysis. Only one pathway, pregenolone biosynthesis, passed the 

p-value threshold. In addition, two networks were selected based on the score that the 

system calculated.  The first network had a score of 35 with 14 focus moles including 

ACTN2, CNTNAP2, CSNK1G, ERCC8, ERLEC1, FGF12, GRM8, MICAL3, 

NAALADL2, NDUFAF2, NEK6, NOD1, PHACTR1 and TDRD1; it is cell-to cell 

signaling and interaction, infectious disease, inflammatory (Figure 6.8). The second 

network with a score of 15 with 7 focus moles including CADPS2, ELOVL7, FHIT, 

LPPR5, PDE8B, PRKG1 and ZFPM2  is tissue development, tumor morphology, cancer 

(Figure 6.9). 
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Figure 6.8. The network of cell-to cell signaling and interaction, infectious disease and 

inflammatory.   14 genes included ACTN2, CNTNAP2, CSNK1G, ERCC8, ERLEC1, FGF12, 

GRM8, MICAL3, NAALADL2, NDUFAF2, NEK6, NOD1, PHACTR1 and TDRD1 were 

identified in this network.  
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Figure 6.9. The network of tissue development, tumor morphology and cancer.                                                     

7 genes including CADPS2, ELOVL7, FHIT, LPPR5, PDE8B, PRKG1 and ZFPM2 were 

identified in this network. 
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3.5 The Change in Gene Expression of Genomic Loci Associated with ALL 

Neuropathy Risk 

         The correlation of genetic information and toxicity was further evaluated at the 

gene expression level to consider whether the genes of interest are functional and 

expressed.  A study of a fibrosarcoma cell line response to various cytostatic drugs was 

utilized in which the control cell line was compared to that (Figure 6.10). The gene 

expression level of the sample treated with vincristine was normalized by the control. A 

total of 4619 and 16893 SNPs reached the threshold of greater than 50% down-regulation 

and up-regulation, respectively. Based on the QQ plots, most of the p-values of SNPs 

were shown to approximately lie on the line y = x meaning that the p-values of the SNPs 

are likely to be randomly distributed.  Few SNPs were deviated from the line y=x. These 

are summarized in Figures 6.11 and 6.12 with their corresponding genes. 
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Figure 6.10. Fibrosarcoma cell line response to various cytostatic drugs in the GEO database. 

The cell line was treated with Vincristine, doxorubicin or actinomycin. 
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Figure 6.11. QQ-plots of genomic loci associated with ALL neuropathy risk in fibrosarcoma 

cell line. 
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Figure 6.12. Genes and corresponding SNPs of genomic loci associated with ALL 

neuropathy risk in fibrosarcoma cell line 
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3.6 Genomic Loci Associated with ALL Neuropathy Risk in Genotype-Tissue 

Expression eQTL 

         In addition to the GEO database, the correlation was also tested in the GTEx 

database. In this database, mRNA expressions were estimated in the different tissues. 

Based on current available tissues in the database, this study was carried out to analyze 

data from four brain tissues which are potentially related to our phenotype of interest. 

After matching the SNPs between our data and the GTEx database, p-values of these 

matched SNPs were further visualized in QQ plots across three genetic models and two 

phenotypes in Figure 6.13. Similar to GEO strategy, the SNPs with deviated –log10 p-

values from the line y = x were selected. eQTLs can be described as being cis, where the 

genotyped marker is within 2 MB of the expressed gene, or trans, in which the genotyped 

marker is far away from the expressed gene or even on another chromosome (Gibbs et al., 

2010). The corresponding genes of the selected SNPs were based on the probe position 

where the gene expression level was measured in the original eQTL study.  As Figure 

6.14 showed, in the brain cerebellum tissue, rs10153783 was found to correlate to the 

gene expression of collectin sub-family member 11 (COLEC11) in the dominant model 

for both primary and secondary neuropathies. Another SNP, rs359436, is associated with 

hydroxysteroid (17-beta) dehydrogenase 4 (HSD17B4) gene expression in both dominant 

and additive models for the secondary neuropathy. 
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Figure 6.13. QQ-plots of genomic loci associated with ALL neuropathy risk in eQTL data of 

four brain tissues.  
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 Tissue Phenotype Genetic 
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Figure 6.14.  Indirect association of ALL neuropathy risk with eQTL expression.  
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4. Discussion 

         Based on a previous study from Dennison and colleagues, they concluded that 

CYP3A5 expressers experienced less vincristine-induced peripheral neuropathy and had 

lower metabolic ratios compared to CYP3A5 non-expressers (Dennison, et al., 2006). 

This finding stimulates our interests in identifying potential genetic explanations for the 

difference in the pharmacokinetic exposures in a large population and identifying 

associations between genetic markers and drug-induced neuropathy. In fact, a subgroup 

of patients had to discontinue the treatment because of the severity of the neuropathy and 

its major impact on their quality of life. Even though this study focused on initial 

discovery of association, we believe that this might be useful to suggest an alternative 

therapy for those patients before administration of vincristine. In this genome-wide 

association study, we identified several genetic loci associated with an incidence of VIPN 

 grade 2.  Based on the top-ranked SNPs in Table 6.1, 23 genes were identified in the 

association with either the primary or secondary neuropathy.   

          Among these 23 genes, one example is CSNK1G3. CSNK1G3 (Casein kinase 1, 

gamma 3) is an isoform of a monomeric serine-threonine protein kinase. Casein kinase 

has been implicated in a wide range of signaling activities such as cell differentiation, 

proliferation and apoptosis. Sakurai et al. previously found that the percentage of CK1ε-

positive neurons and the expression level of CK1ε protein were increased in dorsal root 

ganglion and the spinal cord of the neuropathic mice (Sakurai et al., 2009). Another 

example is Nek6 (NIMA-related kinase 6).  As RNA interference depletion studies 

reported by Yin et al., Nek6 and family isoforms are required for cell cycle progression 

through mitosis. Nek6 together with Nek7 and 9 form a mitotically activated module, 
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which plays a role in mitotic progression and more specifically spindle organization. Loss 

of Nek6 can lead to failure of centrosome separation in prophase and formation of weak 

mitotic spindles with reducing microtubule density (Yin et al., 2003).  This modification 

of microtubule dynamic through the change of Nek6 expression can potentially lead to an 

association with neuropathy.  In addition, MICAL3 is microtubule associated 

monooxygenase, calponin and LIM domain containing, which is an important regulator 

for microtubule polymerization (Terman et al., 2002; Fischer et al., 2005). Furthermore, 

ERCC8 is excision-repair-cross-complementing group 8. A study has shown that 

mutations in ERCC8 are associated with Cockayne syndrome, which is characterized by 

some neurological abnormalities including dys- or demyelinating neuropathy (Ohnishi et 

al., 1987; Smits et al., 1982).  

         Additional eight genes were discovered in an association with neuropathy from the 

gene enrichment analysis. In these eight genes, three (CACNAID, CACNA1C, CACNB1) 

are calcium channel, voltage-dependent subunits, and one (SCN8A) is a sodium channel, 

voltage gated subunit (Bock et al., 2011; Tan et al., 2011; Samak et al., 2011;  Hori et al., 

2012; Kloiber et al., 2012; Yang et al., 2012; Soeiro-de-Souza et al., 2012; Burgess et al., 

1995).  In particular, the phenotypes of mice with a mutation in SCN8A gene were found 

to be consistent with a defect in a neuronal sodium channel expressed in motor neuron 

(Burgess et al., 1995). Another two genes are in the transporter category. One (SLC29A4) 

is an equilibrative nucleoside transporter 4, which catalyzes the reuptake of monoamines 

into presynaptic neurons (Duan et al., 2013; Barnes et al., 2006). Another (SLC22A1) is a 

solute carrier family 22 member 1 which is a polyspecific organic cation transporter in 

many organs for elimination of endogenous small organic cations and toxins (Koehler et 
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al., 1997). In addition, two glutamate receptor, ionotropic subunits (GRIK1, GRIN3A) 

were also identified in the analysis. These two receptors have a critical role in excitatory 

synaptic transmission and plasticity in the CNS (Braga et al., 2009; Kaminski et al., 2004; 

Gryder et al., 2003; Rogawski et al., 2003). They govern a range of physiological 

conditions including neurological disorders caused by excitotoxic neuronal injury, 

psychiatric disorders and neuropathic pain syndromes (Petroff et al., 2002). These can be 

potential targets for further understanding of VIPN mechanism.  

          In the gene expression analyses, the expression levels were changed over 50% in 

eleven genes when treated with vincristine in the fibrosarcoma cell line. Interestingly, 

two (MICAL3 and ERCC8) and one (CANA1C) of these eleven genes were previously 

identified in the association and gene enrichment analyses, respectively. These findings 

confirmed that these genetic variants altered the gene expression, and the changes in 

expression may lead to toxicity. Different to the GEO analysis, two genes (COLEC11 

and HSD18B4) found in the eQTL data were in a trans- association with the probe genes, 

and this indicated an indirect association with lipid biosynethsis. In fact, similar to what 

we observed in the pathway analysis, an association between VIPN and lipid biosynethsis 

mechanism was shown. 

         With the design of the analyses by using different association approaches, some 

direct or indirect associations between genomic variations and VIPN in children with 

ALL were identified. In the discovery phase of potential targets, we came across some 

similar correlations observed from different approaches which provided an additional 

confirmation of the findings. These findings could be clinical relevance given the 

widespread use of vincristine in treating childhood cancers. To validate these 
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observations, candidate genes will be sequenced, and the association between genomic 

variations and VIPN will be further examined in the sequencing data. 
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CHAPTERVII: Genetic signature to predict vincristine neuropathy and relapse in 

children with acute lymphoblastic leukemia  

1.Introduction 

         A genome-wide association study (GWAS) is an examination of many common 

genetic variants in different individuals to determine if any variant is associated with a 

trait, and a way for scientists to identify genes involved in human disease. This method 

searches the genome for small variations that occur more frequently in people with a 

particular disease than in people without the disease. Each study can look at hundreds or 

thousands of single-nucleotide polymorphisms (SNPs) at the same time. Researchers use 

data from this type of study to pinpoint genes that may contribute to a person’s risk of 

developing a certain disease. Typically, GWAS focuses only on associations 

between SNPs and traits. There has been an increasing interest in relating genetic profiles 

to survival phenotypes such as time to event. Because of high dimensionality of SNP data, 

there is a limitation of collinearity in fitting a prediction model such as the Cox 

proportional hazards model (Sohn et al., 2009).  To avoid the collinearity problem, 

several methods based on penalized Cox proportional hazards models have been 

proposed. One of the approaches that we used is a LASSO penalized Cox proportional 

hazard model (Tibshirani, 1997).  

         The benefit of using a LASSO approach, instead of other penalized regression 

Smodels, is that this approach allows shrinking coefficients of insignificant predictors to 

exact zero which can simplify the model building in selecting a complex signature. In 

addition, this approach may potentially improve the predictability of genetic biomarkers 

to drug-induced toxicity as well as drug efficacy and provide a comprehensive and 

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphisms
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unique signature. The objective of the study is to apply an alternative modeling approach 

to evaluate genetic biomarkers in predicting vincristine-induced neuropathy and relapse 

in childhood acute lymphoblastic leukemia patients.  With this signature approach, a risk 

assessment of patients treated with vincristine can be further applied to distinguish the 

clinical outcome in a population based on the accuracy of the model performance and to 

provide clinically useful information to avoid unnecessary exposure to patients who are 

likely to experience severe toxicity but not benefit from the treatment. 
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Figure 7.1. Model strategies using the LASSO penalized regression approach. 

Model 1: demographic and clinical variables were tested in the LASSO model; Model 2: 

demographic, clinical variables and SNPs with p-value < 1x 10
-5

 from the previous univariate 

analysis were tested in the LASSO model; Model 3: demographic, clinical variables and SNPs 

with p-value < 1x 10
-4

 from the previous univariate analysis were tested in the LASSO model.  

Dom: dominant model; Rec: recessive model; Add: additive model. 
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2. Materials and Methods 

2.1 Acute Lymphoblastic Leukemia (ALL) Patient Population and Study Design 

             Children with precursor B cell acute lymphoblastic leukemia from Pediatric 

Oncology Group (POG) 9904 and 9905 trials treated with 1.5mg/m
2
/dose vincristine 

doses and other chemotherapy treatments were included in the analysis as a training data 

set. The number of vincristine doses per patient over the course of treatment ranged from 

18-23, depending on specific protocol and treatment arm. In this population, genotyping 

of germline samples from a total of 1068 subjects using an Affymatrix 6 assay remained 

in the analysis after a sequential data quality control including population stratification, 

sample and SNP missing call rate, Hardy-Weinberg disequilibrium and minor allele 

frequency. The details of data quality control were described in CHAPTER VI (Fareed 

et al., 2013). In addition, genotyping and clinical data of 122 ALL subjects from POG 

9906 trial were used as a validation data set. 

2.2 Phenotype Identification 

         As an extension to the association studies between genomic variations and 

vincristine-induced neurotoxicity in Chapter VI, this study continually evaluated and 

focused on both primary and secondary neuropathy as toxicity endpoints.  The definition 

of the primary neuropathy based on National Cancer Institute Common Terminology 

Criteria for Adverse Events, version 3.0, is when patients experience sensor or motor 

neuropathy (grade 2). Time to event in this case means that the time to the first 

neuropathy event.          

         A secondary neuropathy which is considered as any sensory neuropathy, motor 

neuropathy or neuropathic pain   grade 2 was also tested in the model. In addition to the 
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toxicity endpoints, an efficacy endpoint, the time to first relapse, was also taken into 

evaluation. By the definition of relapse of ALL patients, it included four types of relapse: 

an isolated bone marrow relapse: the presence of ≥ 25% lymphoblasts in a bone marrow 

aspirate following the first complete remission (CR); CNS relapse:Positive 

cytomorphology and > 5 WBC/μL or positive cytomorphology with cerebrospinal 

fluid(CSF) WBC 0-4/μL on two successive occasions; testicular relapse: the histological 

evidence of lymphoblastic infiltration in one or both testes; and combined ALL relapse 

( protocol 9004; protocol 9905). 

2.3 Genome-Wide Association Study 

         An association analysis of genotype frequencies with each phenotype was first 

carried out for the biomarker pre-selection process. Each phenotype was treated as a 

binary variable; ie, 1 for the event and 0 for no event.  Clinical, demographic, and 

population stratification variables were also tested as covariates in the regression analyses. 

Genotype frequencies were evaluated in dominant, recessive and additive (gene-dose) 

models, and these analyses were performed in R coxph package (Therneau et al., 2014).  

2.4 Genotype Imputation 

         To infer missing genotypes in the data, an imputation software called MACH (Li et 

al., 2009; Li et al., 2010) was applied to impute sporadic missingness of typed markers 

using a phasing approach with the following command: mach1 -d sample.dat -p 

sample.ped --states 200 -r 50 --dosage --prob --geno –phase After the imputation, the 

genotypes were coded as 0, 1 and 2 for minor allele copies.  
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2.5 LASSO Penalized Regression Model 

         After the association analysis in the GWAS study, each SNP was extracted with a 

statistical p-value and a hazard ratio
 
(Therneau et al., 2014).

   
Then, the SNPs were 

selected based on a pre-selection process which was defined in the modeling strategies 

(Figure 7.1).  Frist, the smallest p-value across three genetic models was identified for 

each SNP. After ranking the p-value of each SNP, three following signature models were 

conducted. In model 1, only demographic and clinical variables were tested in the 

association. In model 2, in addition to variables tested in model 1, SNPs with a p-value < 

1x10
-5 

were included in the association analysis. Furthermore, an extended SNP pool with 

p-value <1x10
-4 

were tested in model 3. The same modeling sequence was also examined 

with SNPs selected from only the dominant and additive models. 

         A particular feature of GWAS studies specifies that the dimension of the predictor 

space (number of genes) is typically larger than the number of samples (Sohn et al., 2009; 

Tibshirani et al., 1997; Benner et al., 2010; Fan et al., 2002). A penalized log partial 

likelihood in the LASSO method was utilized in conjunction with the proportional 

hazards model. The LASSO solution proposed by Tibshirani (Tibshirani et al., 1997) and 

Fan and Li (Fan et al., 2002) allows for parameter estimation by minimizing the log 

partial likelihood. The log partial likelihood was calculated using the following equation: 

  (  = ∑ (       ∑ exp (                 ) subject to ∑|  |    where s is a tuning 

parameter. If ∑|  |   , the regression coefficients are shrunken toward zero. In this 

context, imputed SNPs as well as clinical and demographic variables were analyzed in 

relation to the phenotype using the LASSO penalized Cox model in R package glmnet 
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(Friedman et al., 2010).  A cross-validation was implemented in the program to optimize 

lambda for model selection.  

2.6 Model Evaluation  

         The predictive accuracy of a survival model was summarized using extensions of 

the proportion of variation explained by the model. The time-dependent sensitivity and 

specificity, and time-dependent receiver operating characteristic (ROC) curves were 

applied to evaluate the survival regression model by focusing on the correct classification 

rates.  For survival data, there are several potential extensions of cross-sectional 

sensitivity and specificity. In this study, a cumulative/dynamic approach was performed 

to define the population who is classified as either a case or a control on the basis of vital 

status at time t at any fixed time t. Each individual serves as a control for time t < Ti , but 

as a case for time t  Ti  (Heagerty et al., 2000; Heagerty et al., 2005). At any time point t, 

the sensitivity and specificity for a given threshold c are defined as  

Sensitivity: P (Mi > c | Ti   t) 

Specificity: P (Mi  c | Ti  > t) 

Where Ti  is either time to event or censoring for the subject i, Mi is a risk factor for the 

subject i. Furthermore, the nearest neighbor estimation (NNE) approach was applied to 

create a monotonic ROC curve. The sensitivity and specificity are based on joint and 

marginal distributions for time to event and risk factors, and the estimators of sensitivity 

and specificity were defined below 

  (  =
∑ (     

 
  e e   (      is the indicator function. 

   
(    =

 

 
∑     ( | =     (     )  
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 ̂  
( | =    = ∏ {  

∑  (| ̂ (  )  ̂ (   |     (        

∑  (| ̂ (  )  ̂ (   |     (       
}          with a chosen 

  =       

Where  ̂ (   is an estimator of the risk factor distribution;  ̂  
(     is an estimator of the 

joint survival function;  ̂  
( | =     is an estimator of the conditional survival 

function with a specific risk factor. 

Then, the sensitivity and specificity were defined as 

Sensitivity=
    (      

(    

     
(     

 

Specificity=  
   

(    

   
(     

 

2.7 Signature Models Validation  

         A signature for each phenotype constructed in the training data (POG 9904 and 

9905 trials) was further validated in a completely independent validation dataset (POG 

9906 trial) with a total of 122 ALL patients. To do so, SNPs which were identified in 

both training and validation data were first mapped. Among these selected SNPs and 

demographic variables, the estimated coefficient of each covariate from the univariate 

analysis in the training data were multiplied by the value of covariate in the validation 

data to generate a predictive risk score for each ALL patient in the validation data. 

2.8 Clinical Application  

         To consider the clinical application, sensitivity and specificity calculated from ROC 

curves were evaluated to determine the cutoff for the risk score. Patients with a risk score 

less than the threshold were considered to be a low-risk group. In contrast, those who 

have a score above the threshold were assigned to be a high- risk group.                                                                               
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3. Results 

        To avoid the collinearity problem and high-dimensionality, a LASSO penalized Cox 

proportional hazard model was applied to the analysis. Different to a typical Cox 

proportional hazard mode, the LASSO approach cannot handle missing genotypes which 

were observed commonly in the high-dimensional genome wide association study. In 

order to overcome this limitation, an imputation of typed SNPs was performed by MACH 

based on the haplotype of the dataset. At the initial stage of the model development, a 

signature model was introduced independently to test SNPs selected from each genetic 

model. As we moved forward to design a more comprehensive signature model, the 

strategy was modified and represented in Figure 7.1. For each phenotype, a minimum of 

p-value of each SNP was selected across either strategy 1, which included all three 

genetic models, or strategy 2, which only included the dominant and additive models. As 

Figures 7.2 A to L showed, the LASSO regression model in glmnet package allowed 

conducting a 10-fold cross-validation to optimize lambda which is a parameter to 

determine which coefficient was shrunken toward 0. The y-axis represented the partial 

likelihood error. The line on the right was drawn at the minimum error, and the other was 

drawn at the maximum value of lambda within 1 standard error of the minimum. At the 

maximum lambda, the LASSO coefficient paths were shown in Figures 7.2 M to X. The 

model was further evaluated by the ROC curves. This ROC analysis provided tools to 

select the optimal model, and the accuracy of the model was measured by the area under 

the ROC curve (AUC). The accuracy of the model represents how well the model 

separates the group being tested into those with and without the phenotype in question. 

For the primary neuropathy, no biomarker was selected in model 1 when only the 
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demographic and clinical factors were considered. The AUC is 0.7069419 in model 2, 

and the AUC increases to 0.9472682 in model 3. When the model was tested under the 

strategy of considering all three genetic models, the numbers of SNPs were increased in 

the test. As a result, the calculated AUCs improve to 0.908435 in model 2 and 0.9710504 

in model 3, respectively. For the secondary neuropathy, the AUC is 0.5412067 without 

considering any genetic information. Furthermore, the AUCs increase to 0.7668192 and 

0.9254674 in models 2 and 3, respectively. When the SNPs from the recessive model 

were also tested, the AUCs are 0.8876722 and 0.9691573 in models 2 and 3, respectively. 

The numbers of the selected predictors in each model were listed in Figures 7.3 E to F. 

For relapse, the accuracy of the model was evaluated in a time dependent manner. As the 

duration of clinical follow-up lasted almost 10 years for some patients, the sensitivity and 

specificity of the model at four time points (1, 2, 4 and 8 years) were evaluated.  In 

Figures 7.4 E to F, the AUCs are between 0.687354 and 0.712445 across four time points 

in model 1. Under the strategy 1, the AUCs are between 0.731131 and 0.756252 in model 

2 and between 0.925097 and 0.933578 in the model 3 across time points. When 

additional SNPs selected from the recessive model were tested, the AUCs are between 

0.837579 and 0.861887 in model 2 and between 0.926813 and 0.969303 in model 3. 

Overall, signature models with model 3 approach predicted both neuropathy and relapse 

more accurately than the models 1 and 2 based on the ROC curve evaluation. 
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Figure 7.2. Cross-validation and LASSO coefficient path plots for primary neuropathy, 

secondary neuropathy and relapse.  

A-L represents the 10-fold cross-validation result with Model 2 and 3 as well as Dom/Rec/Add 

and Dom/Add genetic model strategies. 
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M-X represents the LASSO coefficient path result with Model 2 and 3 as well as Dom/Rec/Add 

and Dom/Add genetic model strategies. With the selected lambda, the coefficient of marker 

shrunk toward 0 on the right. 

Dom: dominant model; Rec: recessive model; Add: additive model. 
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       Furthermore, model 3 was used to identify patients who are at high risk of having an 

event based on selected sensitivity and specificity. A threshold of sensitivity at 

0.90308144 and specificity at 0.901608868 were selected for primary neuropathy. The 

survival curves of high risk vs. low risk groups were plotted in Figures 7.5A and B.  For 

the secondary neuropathy, sensitivity at 0.901325 and specificity at 0.900154 were 

selected to distinguish the survival of high risk vs. low risk groups in Figures 7.6A and B. 

Survival curves of high risk vs. low risk groups based on sensitivity at 0.900651992 and 

specificity at 0.9000682719 for relapse were shown in Figures 7.7A and B.  

         In order to evaluate the model predictability, the signature of each phenotype was 

further validated by predicting the risk score in a new population.  There are 265,126 

SNPs found in both training and validation sets. Among these SNPs, SNPs with p-value 

<1 x10
-3 

in the training set and p-value <1 x10
-2

 in the validation set were then evaluated. 

By taking the median risk score across the population, the time to primary neuropathy 

was compared between group 1 (>median risk score) and group 2 (<median risk score). A 

p-value of 0.00066 was given based on 
2 

distribution in the log rank test. Similarly, a 

significant p-value of 0.00791 in 
2 

distribution was observed when comparing the time 

to secondary neuropathy between group 1(>median risk score) and group 2 (<median risk 

score). For the efficacy endpoint, the difference of time to relapse between the two 

groups, based on a cutoff of the median predictive risk score from the validation data, 

was with a p-value of 0.000656. All these findings indicated that the signature of each 

phenotype was well validated in an independent population based on the proposed 

validation scenario. 
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         In addition, to apply the clinical utility of the signature model by identifying 

patients who are less likely to be benefited  from the treatment, patients at high risk of 

relapse were selected by a risk score greater than 222.009734 based on specificity at 

0.9000682719. Furthermore, a subgroup of those patients who are likely to experience 

primary neuropathy was identified based on a risk score greater than 1 at sensitivity of 

0.820777. A total of 48 individuals were identified in this category (Figure 7.8). A sub-

population who is most likely to receive the benefit of the treatment was also classified in 

Figure 7.8. Similar to the primary neuropathy, patients were divided into four sub-groups 

based on the risk assessment of both relapse and secondary neuropathy in Figure 7.9. 
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Figure 7.3. ROC curves  of primary and secondary neuropathy in two genetic model 

strategies and the numbers of tested and selcted biomarkers in the models. 

Dom: dominant model; Rec: recessive model; Add; addtivie model;Dem: demographic and 

clinical factors.  
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Figure 7.4. Time dependent ROC of relapse in two genetic models.  

A-B: ROC curves from 1 to 8 years 

C-D: The number of tested and selected biomarkers in model 1 to 3.  

E-F: Area under the ROC curve (AUC) of each model at time 1, 2, 4 and 8 years. 

Dom: dominant model; Rec : recessive model; Add: additive model. 

 

 

 



  
 

 

 

 

 
  Figure 7.5. Survival plot of high risk vs. low risk group of primary neuropathy with (A) sensitivity=0.903081 and (B) specificity=0.901608. 

(A) Patients have risk score greater than 9.15 considered as high risk group; (B) Patients have risk score greater than 7.26 considered     

as high risk group. 
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  Figure 7.6. Survival plot of high risk vs. low risk group of secondary neuropathy with (A) sensitivity=0.901325 and (B)  

  specificity=0.900154. 

  (A) Patients have risk score greater than 8.01 considered as high risk group; (B) Patients have risk score greater than 6.34 considered as high risk       

  group. 
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  Figure 7.7. Survival plot of high risk vs. low risk group of relapse with (A) sensitivity=0.900651 and (B) specificity=0.900068 . 

(A)  Patients have risk score greater than 204.74 considered as high risk group; (B) Patients have risk score greater than 222.01 considered as  

high risk group. 
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Figure 7.8. A graphical representation of the clinical application using the signature model to identify ALL patient in four subgroups (HR 

RE/HR NE; HR RE/ LR NE; LR RE/HR NE; LR RE/ LR NE) based on relapse and primary neuropathy endpoints and their clinical 

recommendation. 

NE: primary neuropathy; RE: relapse; HR: high risk; LR: low risk. 
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Figure 7.9. A graphical representation of the clinical application using the signature model to identify ALL patient in four subgroups (HR 

RE/HR NEP; HR RE/ LR NEP; LR RE/HR NEP; LR RE/ LR NEP based on relapse and secondary neuropathy endpoints and clinical 

recommendation. 

NEP: secondary neuropathy; RE: relapse; HR: high risk; LR: low risk
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4. Discussion 

        Our analysis of single nucleotide polymorphism data demonstrated that the LASSO 

penalized regression is capable of identifying pertinent predictors. The LASSO technique 

for variable selection in the Cox model seemed to be a worthy competitor to stepwise 

selection. It is less variable than the stepwise approach and still yields interpretable 

models. The computational time is relatively quick compared to the traditional GWAS 

study. Initially, we expected that the model would not only be capable of predicting time 

to event by a genetic pattern, but also would provide a reasonable prediction in a relative 

small association data set with no statistical significant association identified in the 

GWAS study.  Based on our study design, we constructed three models to compare how 

much information would be enough in the test to generate a reasonable prediction to the 

same phenotype.  As the model performed 10-fold cross-validation, it allowed the 

function to run 10fold+1 times to get the lambda sequence and compute the fit with each 

of the folds omitted. The optimal lambda was selected based on the mean of accumulated 

cross-validated error. This process was done repeatedly in each model and generated a 

unique signature for each phenotype.      

         Based on ROC curve evaluation, the area under the curve of ROCs in model 3, 

which contained demographic and SNPs with p-value <1x10
-4

 across both neuropathy 

and relapse, generally exceeded 0.9. This indicated that the model well predicted patients 

with and without event.  All important findings are subject to replication. This attitude 

allows us to define the most informative SNPs rather than only declaring their global 

significance. Our approach to data analysis is motivated by this consideration. In addition, 

the signature of each phenotype was further validated in the validation data set. In this 



 

                                                              180 
   

backward validation, the overlapped SNPs with a predefined p-value threshold were first 

identified; then, the predicted risk scores were calculated for each individual in the 

validation data using estimated coefficients from univariate analysis in the training data. 

As the result indicated a statistically significant separation of patients’ time to neuropathy 

or relapse based on the median of predicated risk score using the log-rank test, this 

validation gave a preliminary overlook of how well the model predicts based on the best 

scenario.  However, the current validation data set, which mainly has a population at high 

risk for treatment failure, may not be the best candidate to validate the signature model. 

Therefore, further analysis needs to be done, not only to validate the model by taking all 

the tested SNPs into consideration which may be more precise in evaluating the signature 

applicability, but also to evaluate the signature in a standard risk disease population 

similar to POG 9904 and 9905 trials. 

         In addition to validating the generalizability of the model, the clinical application of 

the signature model is also a major focus in this study. Clinically, as ALL relapse still 

carries a very poor prognosis and the majority of relapse continues to occur in patients 

without apparent “high-risk” features (Stanulla et al., 2009; Schrappe et al., 2000a; 

Schrappe et al, 2000b), the utility of the signature model becomes meaningful when a 

subgroup of patients who have no benefit from the treatment because of the high risk of 

relapse and neurotoxicity can be predicted and alternative treatments can be 

recommended. Similarly, for those who are either at high risk of relapse or high risk of 

neuropathy, the clinicians can evaluate the cost and effectiveness to recommend dose 

modification.  Those who are less likely to experience toxicity or relapse can be the best 

targets for the treatment and for understanding drug exposure variability. With all these 
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factors taken into account, our signature modeling approach not only provides an 

innovated assessment to high dimensional genomic data for identifying potential 

associations with toxicity and efficacy, but also integrates a statistical model with clinical 

useful application and interpretation.  
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CHAPTER VIII: Conclusions and future directions        

1. Conclusions 

          The major foci of this dissertation were to explore the impact of modeling and  

simulation in drug development and patient care: 1) where a population approach in  

pharmacometrics can be used to understand pharmacokinetics of drugs in humans from a  

translational in vivo model, the covariate effect on exposure variability in a special  

population, the pharmacodynamics of biomarkers for predicting  the clinical outcome of a  

treatment and the evaluation of a trial design based on a simulated virtual population; and  

2) how a statistical modeling approach can be utilized to evaluate the association between  

pharmacogenomic variations, drug-induced toxicity and efficacy to establish a signature  

pattern that determines patients’ risk of experiencing these effects. The analyses from this  

dissertation address limitations of each modeling approach presented.  These limitations  

are tied back to the underlying assumptions in the modeling approach as well as the  

potential sources of variability that can contribute to trial failure and should be accurately 

measured.  This dissertation also points out an integration between different modeling 

approaches which potentially allows more sophisticated understanding of the biomarker 

application and helps to capture disease status and treatment effect across a spectrum of 

modeling approaches and data types.  

         Based on the major findings outlined above, the overarching conclusion of  

each modeling and simulation application can be drawn concerning the body of work  

presented in this dissertation.  These are: 1) a translational PK modeling approach that  

was able to predict clozapine and norclozapine CNS exposures in humans relating these  

exposures to receptor binding kinetics at multiple receptors; 2) a population  
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pharmacokinetic analysis of a study of sertraline in depressed elderly patients with  

Alzheimer’s disease (DIADS-2) identified site specific differences in drug exposure 

contributing to the overall variability in sertraline exposure; 3) the utility of a longitudinal  

tumor dynamic model developed by the Food and Drug Administration for predicting  

survival in NSCLC patients drawn from NCI funded studies, including an exploration of  

the limitations of this approach; 4) a Monte Carlo clinical trial simulation approach that 

was used to evaluate a pre-defined oncology trial with a sparse drug concentration  

sampling schedule with the aim to quantify how well individual drug exposures, random  

variability, and the food effects of abiraterone and nilotinib were determined under these  

conditions; 5) a time to event analysis that facilitated the identification of candidate genes  

including polymorphisms associated with vincristine-induced neuropathy from several 

association analyses in childhood ALL patients; and 6) a LASSO penalized regression  

model that predicted vincristine-induced neuropathy and relapse in ALL patients and  

provided the basis for a risk assessment of the population. Each of these conclusions is  

summarized followed by further directions in the section which follows. 

A. A translational PK modeling approach that predicted clozapine and norclozapine 

CNS exposures in humans relating these exposures to receptor binding kinetics at 

multiple receptors 

         From a clinical perspective, it is important to understand the broad receptor 

coverage of clozapine that is thought to account for clozapine’s unique superiority in 

treatment resistant schizophrenia. With the innovation and improvement of measurement 

techniques, clozapine concentrations now can be measured at the target site using 

microdialysis so that the concentration can be more precisely related to response at the 
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effect site (Derendorf et al., 2000; Chefer et al., 2009; Jacobson et al., 2013). As part of 

this dissertation (CHAPTER II), we demonstrated that the proposed PK model can be 

extrapolated to predict human systemic exposure including clozapine brain 

concentrations and associated receptor occupancy profiles in humans at clinically 

relevant doses.  In addition, the model simultaneously captured the parent-drug and 

metabolite in the system.  This is relevant as norclozapine also has activity at multiple 

receptors in the CNS that could contribute to response (Bishara et al., 2008). This 

modeling approach could form the foundation for the design of the future comprehensive 

PK-PD models as well as extend our understanding of clozapine’s complex behavioral 

effects in humans. Furthermore, this model framework can serve to support the discovery 

of a new drug entity that may share the same mechanism of action as clozapine. 

B. A population pharmacokinetic analysis of a study of sertraline in depressed elderly 

patients with Alzheimer’s disease (DIADS-2) identified site specific differences in drug 

exposure contributing to the overall variability in sertraline exposure 

         This is the first population pharmacokinetic (PPK) study of sertraline focusing on 

AD patients with depression. Compared to younger patients, the elderly have a longer 

half-life, but there was no difference between elderly healthy volunteers in the literature 

and these AD patients in PK characteristics. In addition, a covariate analysis was 

conducted to explore whether the variability of the PK parameter estimates could be 

explained by patient specific characteristics. Based on the analysis, the clinical site was 

the only significant covariate explaining variability in the CL/F change. The clinical 

implications for subjects at the outlying site would be important if this represented a true 

bias in subject selection. As we discussed in CHAPTER III, no significant difference in 
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demographic or clinical attributes between this study site and the others were found; 

therefore, a potential source of variation is the implementation of study procedures at this 

site. In conclusion, site variability in trial procedures is critical to the validity of multi-site 

trials, and population pharmacokinetics may prove helpful in this assessment. With the 

application of the population PK model approach, a close monitoring of dosage regimen 

and administration is recommended in the future multicenter study especially with sparse 

PK sample collections so that patients would not exposed to unnecessary harm. This can 

also minimize what may be artificial systematic differences in exposure, and therefore 

potentially confound on the interpretation of response and/or toxicity. 

C. The utility of a longitudinal tumor dynamic model developed by the Food and Drug 

Administration for predicting survival in NSCLC patients drawn from NCI funded studies, 

including an exploration of the limitations of this approach 

         Previous studies have shown that modeling and simulation is an efficient means to 

support decision making at the Phase 2 to Phase 3 transition in drug development (Claret 

et al., 2012), therefore, it was thought that this longitudinal tumor model could serve as a 

framework to predict clinical outcomes of cancer patients ideally resulting in smaller 

trials with shorter observation  periods (Adjei et al., 2009; Dhani et al., 2009; Maitland et 

al., 2011; Maitland et al., 2011; Mandrekar et al., 2010; Stein et al., 2011; Yap et al., 

2010).  Based on this initial idea, we demonstrated in CHAPTER IV that a modeling 

strategy to assess the tumor load dynamics found that the tumor model parameter 

estimates of tumor shrinkage and progression rates were both lower than the findings 

from the previous FDA large registration trial data.  However, when the FDA trial was 

reduced to a similar size as our CALGB30203 study and patient characteristics matched, 
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the parameter estimates became comparable. The lower parameter values for tumor 

dynamics from the model using the data from the CALGB trials suggested that the 

prediction of overall survival using this metric was likely impacted by the sample size 

and heterogeneity in the tumor presentation. In addition, a simplified time to tumor 

growth (TTG) parameter was observed to be more robust in predicting overall survival in 

our small trial as a single factor, but the clinical interpretation and utility need to be 

further explored.  In conclusion, the data quality is critical for a model to give a 

meaningful contribution to predicting patient outcome. The limitations inherent in tumor 

measurement can lead to the misrepresentation of the true tumor growth dynamic. This 

variation can be more problematic when the sample size is small. Further analysis is 

required to explore the utility of the tumor dynamic model in predicting patients’ survival 

outcomes using alternative measurements such as automated capture of the three-

dimensional tumor volumes from raw CT scan data (Schwartz et al., 2000). It appears 

that this approach may be more accurate in describing the tumor change over time, and 

potentially eliminates the inter-rater variability from the traditional sum of the longest 

diameter measurement carried out by radiologists. In addition, a simulation approach 

could be applicable to evaluate how different level of variance of the tumor 

measurements can affect the overall tumor model parameter estimates.  Until more 

precise and/or accurate measures are available, it will also be difficult to ascertain the 

true relationship between tumor loads (especially across tumor types that may be treated 

with agents that are –static instead of –cidal in their effects) and patient specific outcomes 

such as progression free survival and overall survival. 
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D. A Monte Carlo clinical trial simulation approach was used to evaluate a pre-defined 

oncology trial with a sparse drug concentration sampling schedule with the aim to 

quantify how well individual drug exposures, random variability, and the food effects of 

abiraterone and nilotinib were determined under these conditions 

         Food intake is one important contributor to variability in oral bioavailability (Singh 

et al., 2004; Winstanley et al., 1989; Gu et al., 2007) in particular for some of the newer 

oral anticancer agents such as abiraterone and nilotinib (Ryan et al., 2010; Yin et al., 

2010). This can cause a significant impact on systemic drug exposures that can lead to 

drug toxicity and/or therapeutic failure (Koch et al., 2009; Kang et al., 2010).  We 

demonstrated in CHAPTER V how a clinical trial simulation using a Monte Carlo 

method under the framework of a Pop PK approach provided understanding of a clinical 

oncology population pharmacokinetic trial design with a random sampling schema.  More 

specifically, we were able to quantify how well this design and the data collection 

scheme associated with it and were able to capture the variability and the magnitude of 

individual drug exposure in the presence of a large food effect in nilotinib and abiraterone 

trials. This simulated approach facilitated an early evaluation of the proposed trial design. 

However, clinical trial simulations are generated based on many trial assumptions, and 

these assumptions may include uncertainty.  For future studies, different scenarios with 

underlying assumptions can be tested to optimize the design. With the limitations of 

current analysis discussed in CHAPTER V, additional components such as a drop-out 

pattern of the trial and patient compliance, which may vary in the clinical practice setting, 

should be explored in future analyses. 
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         This study emphasizes the importance of addressing trial designs where intensive 

sampling cannot be obtained and yet there is a need to understand the drug exposure 

characteristics to what are otherwise medications with highly variable pharmacokinetic 

dispositions.    

E. A time to event analysis facilitated the identification of candidate genes including 

polymorphisms associated with vincristine-induced neuropathy from several association 

analyses in childhood ALL patients 

         Vincristine is among the most commonly used anticancer agents, however, little is 

known regarding its disposition and optimal dosing.  This gap in knowledge can lead to 

negative clinical outcomes such as toxicity due to drug overdosing or lack of efficacy due 

to sub-therapeutic dosing. Vincristine is associated with highly variable cumulative dose-

dependent peripheral neuropathy. To explore the association between germline variants 

and VIPN in pediatric ALL patients, a genome-wide association analysis was carried out 

initially. The analysis was expanded to examine the association using gene enrichment 

analysis. In both analyses, we identified several genetic loci associated with incidence of 

 grade 2 VIPN.  Based on the top-ranked SNPs, 31 genes were found in an association 

with either primary or secondary neuropathy.  In CHAPTER VI, a discussion was 

carried out to identify those candidate genes and their corresponding pathways. In this 

stage of discovery, we found that there are many genes which are indirectly associated 

with the mechanisms of leading vincristine-induced neuropathy, but we believe these 

findings can be potential focuses for the future in vitro studies after association is 

confirmed by sequencing an independent data set from a multi-center trial. Furthermore, 

the candidate genes selected from the association analysis were evaluated in the 
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interactive pathway analysis and gene expression analysis. Based on both the GEO and 

eQTL databases, few additional gene candidates appeared in association with neuropathy. 

In conclusion, we came across some similar correlations observed from different 

associations and data approaches that provided additional confirmation of the findings. 

These findings have significant potential clinical relevance given the widespread use of 

vincristine in treating childhood cancers. 

F. A LASSO penalized regression model predicted vincristine-induced neuropathy and 

relapse in ALL patients and provided the basis for a risk assessment of the population 

         As the previous section (CHAPTER VI) discovered the association between 

germline variants and VIPN using multiple association analyses, this chapter focused on 

an alternative modeling approach to identify a genetic signature pattern which allows 

predicting the traits and avoid the collinearity in fitting which is a common limitation 

found in typical Cox proportional hazards model (Sohn et al., 2009). By performing a 

LASSO penalized regression model, a signature was developed not only for neuropathy 

but also for relapse independently as previous study showed no correlation between two 

phenotypes. Under different model strategies, we demonstrated that a unique genetic 

signature was capable to predict neuropathy or relapse with reasonable precision based on 

ROC evaluations. In order to indicate the clinical utility of the signature model, a risk 

assessment was carried out under the structure of genetic signature. In sum, the whole 

population was divided into four major groups based on the statistical threshold for both 

relapse and neuropathy. This identification would provide clinicians an initial guidance 

for dose recommendations which might result in a more efficient treatment plan and 

avoid unnecessary drug exposure to patients. The utility of the signature model seems 
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promising in predicting time to event, but a more comprehensive validation plan will 

need to further explore and test the model predictability. In fact, instead of building a 

signature only based on typed SNPs from the genotyping data, an additional approach 

was suggested to expand the signature by examining the untyped SNPs from the 

imputation. This approach might provide a more representative pattern of predictive 

signature across different populations and data, but the quality of imputation data needs 

to be carefully evaluated as we found to be a challenge initially when we imputed our 

training data. In terms of clinical utility of the signature, a challenge we are facing right 

now is if there is a surrogate endpoint which can help us to understand the disease and 

treatment effect as early as possible and enhance the application of the modeling 

approach. To consider this, minimal residual disease which was suggested by some 

studies (Campana 2010; Borowitz MJ, et al., 2008) as an important predictor of ALL 

relapse may be valuable to explore in this case. 

         Overall, this dissertation demonstrated the utility of modeling and simulation in 

various study design scenarios and its application and contribution for the future studies 

in drug development and patient care. Although different population and disease were 

focused in each chapter to explore a specific underlying modeling approach, the whole 

dissertation provided a projection of how each approach can be integrated in drug 

development process. An integration of multiple modeling approaches is also suggested 

by this dissertation to overcome the challenges and to examine the proposed solutions for 

the limitations of the current modeling approach.  As recalled the drug development 

process in Figure 1.1, if there is a new compound targeted at early drug discovery phase, 

a combination of preclinical and translational modeling approach (CHAPTER II) can 
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capture its exposure-response relationship in vivo system, extrapolate a first to human 

dose and further predict some pharmacological relationships which have not been 

assessable in the human system. As this new compound is moved forward to the clinical 

phase, PPK model (CHAPTER III) can serve as a tool to continuously evaluate its 

exposure-response relationship, quantify the level of variability and identify covariate 

effect. This approach can be further expanded to predict PK in a special population such 

as elderly or another disease population. In addition to understand the PK profile of this 

new compound, assessment of the dynamics of a biomarker (CHAPTER IV, VI and VII) 

can provide insight into the disease progression and capture a therapeutic drug effect of 

this compound which might be useful for early go/no go decision or personalized 

medicine later on  before the clinical endpoints are available. Meanwhile, a clinical trial 

simulation (CHPATER V) can explore various dosage regimens of the compound and 

optimize the trial design which might allow reducing the numbers of the studies and be 

more efficient and informative in bridging studies from one phase to another. As a 

demonstration of how these approaches emphasized in the dissertation can be integrated 

in the drug development process, we also need to be aware that there are many more 

assessments could be done by modeling and simulation in the process.   

         In summary, modeling and simulation is a tool that enhances our understanding of 

pharmacokinetics and pharmacodynamics for specific drug entities and provides critical 

recommendations for dose selection and treatment plans. Leveraging the findings from 

biological studies, it will continue to be an essential element in drug development and 

patient care.  
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