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Abstract

Aims/hypothesis—The aim of this work was to assess the association between continuous 

glucose monitoring (CGM) data, HbA1c, insulin-dose-adjusted HbA1c (IDAA1c) and C-peptide 

responses during the first 2 years following diagnosis of type 1 diabetes.
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Methods—A secondary analysis was conducted of data collected from a randomised trial 

assessing the effect of intensive management initiated within 1 week of diagnosis of type 1 

diabetes, in which mixed-meal tolerance tests were performed at baseline and at eight additional 

time points through 24 months. CGM data were collected at each visit.

Results—Among 67 study participants (mean age [± SD] 13.3 ± 5.7 years), HbA1c was inversely 

correlated with C-peptide at each time point (p < 0.001), as were changes in each measure 

between time points (p < 0.001). However, C-peptide at one visit did not predict the change in 

HbA1c at the next visit and vice versa. Higher C-peptide levels correlated with increased 

proportion of CGM glucose values between 3.9 and 7.8 mmol/l and lower CV (p = 0.001 and 

p=0.02, respectively) but not with CGM glucose levels < 3.9 mmol/l. Virtually all participants 

with IDAA1c < 9 retained substantial insulin secretion but when evaluated together with CGM, 

time in the range of 3.9–7.8 mmol/l and CV did not provide additional value in predicting C-

peptide levels.

Conclusions/interpretation—In the first 2 years after diagnosis of type 1 diabetes, higher C-

peptide levels are associated with increased sensor glucose levels in the target range and with 

lower glucose variability but not hypoglycaemia. CGM metrics do not provide added value over 

the IDAA1c in predicting C-peptide levels.
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Introduction

Partial recovery of endogenous insulin production (measured by C-peptide secretion) in the 

first few months after the onset of type 1 diabetes results in a significant restoration of 

glycaemic control with lower doses of exogenous insulin, commonly referred to as the 

remission or ‘honeymoon’ phase of type 1 diabetes [1, 2]. The Diabetes Control and 

Complications Trial (DCCT) [3] demonstrated that even beyond the first year of insulin 

treatment, maintenance of measurable C-peptide secretion was associated with significantly 

lower HbA1c levels, reduced insulin dose requirements and a reduced risk of hypoglycaemia 

when compared with patients without residual beta cell function. The DCCT also showed 

that better metabolic control of diabetes though intensive insulin therapy could slow the rate 

of loss of residual insulin secretion [3]. More recently, Mortensen and colleagues 

demonstrated that an insulin-dose-adjusted HbA1c level (IDAA1c = HbA1c [%] + 4 × total 

daily insulin dose [U/kg body weight]) < 9.0 is a metric that consistently predicts substantial 

residual endogenous insulin secretion in young people with type 1 diabetes [4].

We recently completed a randomised trial that evaluated whether intensive diabetes 

management initiated within the first week of treatment of type 1 diabetes with an initial 

period of inpatient closed-loop insulin delivery followed by outpatient sensor-augmented 

pump (SAP) therapy could lead to greater preservation of beta cell function as compared 

with conventional intensive insulin therapy [5]. In both the intensive group and standard 

(usual care) treatment groups, data on insulin use were collected, HbA1c levels were 

measured and residual C-peptide responses to mixed-meal tolerance tests (MMTTs) were 
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determined during frequent follow-up visits over the first 2 years of treatment. In this study, 

the intensively treated participants were asked to use their SAP continuously using the 

Medtronic MiniMed Sof-Sensor, and the usual-care group wore a blinded Medtronic 

Guardian CGM for 3 days after each visit. Since the patterns of changes in HbA1c levels and 

C-peptide responses did not differ between the two treatment groups, we were able to pool 

the results from both treatment groups to examine the impact of changes in residual insulin 

secretion over time on CGM indices of glycaemic control, as well as on changes in HbA1c 

levels. We also sought to determine whether CGM data could be used, like the IDAA1c, as a 

metric to predict C-peptide levels in patients with type 1 diabetes. CGM is now commonly 

available and, unlike an MMTT, does not require admission to a research unit, or an 

intravenous line with multiple blood draws and C-peptide assays. If use of CGM data could 

serve as a surrogate for determining C-peptide levels by MMTT then there would be 

multiple benefits to the patient (no admission, no time lost from work and no intravenous 

catheter or multiple blood draws) as well as economic advantages (costs of the admission, 

blood processing, C-peptide assays and personnel time). In this study we therefore assessed 

several CGM indices of glycaemic control (per cent in range during the day and overnight 

and glycaemic variability) as surrogate measures of residual C-peptide secretion during the 

early phase of type 1 diabetes treatment.

Methods

The randomised trial in which the data for this secondary analysis was collected was 

conducted at five clinical centres and was approved by each of the local institutional review 

boards. Written informed consent was obtained from adult patients and parents/guardians of 

minor patients, who themselves also provided written assent. The study is listed on 

www.clinicaltrials.gov (registration no. NCT00760526) and the full protocol is available 

online (http://direcnet.jaeb.org/Studies.aspx). The methods for the randomised trial have 

previously been described [5]. In brief, 67 individuals (aged 7–45 years, mean [± SD] 13.3 ± 

5.7 years; all but three were < 18 years old) with positive pancreatic autoantibodies were 

enrolled within 6 days of diagnosis of type 1 diabetes (mean 2.9 ± 1.7 days). Participants 

were randomly assigned to the intensive group or usual-care group in a 2: 1 ratio. The 

intensively treated group received 3 days of hybrid closed-loop control (HCLC) using the 

Medtronic MiniMed ePID system (Medtronic MiniMed, Northridge, CA, USA) [6–8] 

followed by SAP therapy while the usual-care group received standard diabetes 

management. Study visits occurred 2, 6 and 13 weeks after study entry and every 3 months 

thereafter until 2 years. All 67 participants completed the 12 month visit and 65 completed 

the 24 month visit.

Two hour MMTTs were performed to measure residual C-peptide levels using the standard 

TrialNet protocol [9, 10] at study entry, at 2 and 6 weeks, and at 3, 6, 9, 12, 18 and 24 

months. HbA1c was measured at the Northwest Lipid Metabolism and Diabetes Research 

Laboratories using a dedicated TOSOH analyser (Biosciences, South San Francisco, CA, 

USA) and insulin use data were collected to calculate the IDAA1c, as previously described 

[4]. CGM data were collected using the Medtronic MiniMed Sof-Sensor. For the intensive-

treatment group, the CGM was downloaded at each visit. For the usual-care group, a blinded 

Medtronic Guardian CGM was worn for 3 days after each visit. CGM data were available 
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for 267 (82%) of 327 completed visits in the intensively treated group and 98 (77%) of 128 

completed visits in the usual-care group. The median number of hours of CGM data used for 

analysis at each visit was 168 (interquartile range 94–266) h in the intensive group and 70 

(interquartile range 66–72) h in the usual-care group.

Total daily insulin doses were obtained from pump downloads for those using an insulin 

pump. For those using multiple daily injections (MDI), insulin doses were obtained at the 

time of a visit by asking participants and their parents about their usual pre-meal and pre-

snack insulin doses as well as their usual daily basal insulin doses.

The peak MMTT C-peptide level was highly correlated with C-peptide AUC (Spearman r = 

0.95–1.00, electronic supplementary material [ESM] Fig. 1) and was used as a measure of 

residual C-peptide secretion. Since there were no treatment-group differences in peak C-

peptide levels at any time points, as previously reported [5], data from both groups were 

pooled for the analyses. All C-peptide values were transformed into a log scale using the 

formula y = loge (x + 1) due to the non-normal distribution of the data.

Spearman correlation calculations were used to assess the cross-sectional association of 

HbA1c, IDAA1c [4] and CGM indices with C-peptide levels at each visit. Repeated measure 

least square models were used to assess the longitudinal associations, with within-subject 

effect and between-subject effect evaluated separately. The associations between CGM 

glucose indices, IDAA1c and C-peptide levels also were assessed at each visit to determine 

whether CGM measurements had an additional advantage beyond IDAA1c as a predictor of 

C-peptide levels.

Results

There was a gradual decline in C-peptide levels over the 2 years of the study and the 

percentage of participants with a peak C-peptide level > 0.2 pmol/ml decreased from 98% at 

3 months to 59% at 24 months (ESM Fig. 2).

Association of CGM glycaemic indices with C-peptide levels

The proportion of CGM-measured glucose values between 3.9 and 7.8 mmol/l was 

consistently associated with peak C-peptide levels across visits (p = 0.001 for both within-

subject effect and between-subject effect, Table 1). When 60% or more of the sensor values 

were in the range of 3.9–7.8 mmol/l, the peak C-peptide level was always > 0.2 pmol/ml. 

However, for a given percentage of glucose values in this range, there was a broad range of 

peak C-peptide levels (Fig. 1a). When evaluated together with IDAA1c, time, for glucose 

values in the range of 3.9–7.8 mmol/l, did not provide additional value in predicting C-

peptide levels (Table 1). There was a broad range of peak C-peptide levels for a given 

fasting CGM glucose level (readings between 04:00 and 06:00 hours) (Fig. 1b). If at least 

40% of the fasting CGM measurements were within range, then 96% of the time the peak C-

peptide level was > 0.2 pmol/ml. The positive predictive value for a given C-peptide level to 

predict the percentage of glucose values in range or for the percentage of glucose values in 

range to predict a C-peptide level was weak, Table 2.
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With respect to hypoglycaemia, peak C-peptide levels did not predict the percentage of 

glucose readings < 3.9 mmol/l, and individuals with peak C-peptide levels of 0.6–1.4 

pmol/ml could still have frequent hypoglycaemic readings (Fig. 2a). With respect to glucose 

variability, higher peak C-peptide levels were associated with lower glucose variability (p = 

0.02) (Fig. 2b). However, when evaluated together with IDAA1c, glucose variability did not 

provide additional value in predicting C-peptide levels (Table 3).

Association of C-peptide levels and HbA1c

For each individual and for the group as a whole, there was a correlation between peak C-

peptide level and HbA1c level across time points (p < 0.001 and p = 0.01, respectively, for 

within-subject and between-subject effects, ESM Table 1). At all time points where the 

HbA1c level was < 6.0% (42 mmol/mol) the peak C-peptide level was > 0.2 pmol/ml. There 

was, however, a broad range of C-peptide levels for each HbA1c level and a broad range of 

HbA1c levels for each peak C-peptide level (Fig. 3); so, the positive predictive value for a 

given C-peptide level to predict an HbA1c level or for an HbA1c level to predict a C-peptide 

level was weak.

There also was an association between changes in C-peptide levels between time points and 

changes in HbA1c levels between time points (p < 0.001 for both within-subject effect and 

between-subject effect) (ESM Table 2). However, longitudinal data showed that the HbA1c 

level at a particular visit did not predict the change in C-peptide levels at the subsequent 

visit and likewise peak C-peptide levels at a visit did not predict the change in HbA1c levels 

at the next visit (ESM Fig. 3).

Association of C-peptide levels and IDAA1c

IDAA1c levels and C-peptide levels were associated at each visit (p ≤ 0.001) (ESM Table 3) 

as were changes between visits in IDAA1c and C-peptide levels (p = 0.03 to < 0.001) (ESM 

Table 4). In 99% of cases, when IDAA1c was < 9, peak C-peptide levels were > 0.2 pmol/ml 

compared with only 40% when IDAA1c was ≥ 12 (ESM Table 5).

Discussion

This analysis provided a rich dataset for evaluating the associations of C-peptide levels, 

HbA1c and CGM measures of time in range, hypoglycaemia, and glucose variability early in 

the course of type 1 diabetes through both cross-sectional and longitudinal analyses. There 

was a strong correlation at all time points for the percentage of CGM values between 3.9 and 

7.8 mmol/l and peak C-peptide levels > 0.2 pmol/ml (p = 0.001). Although we found strong 

statistical associations between C-peptide levels, CGM measures and IDAA1c levels at each 

time point as well as in changes from one time point to the next, CGM indices were not 

predictive of C-peptide levels after accounting for IDAA1c.

The only other published study using CGM data as a marker of C-peptide secretion involved 

islet transplantation in which CGM data were used as a measure of graft function (C-peptide 

secretion) [11]. In that study, a composite score was used to assess graft survival (the β-

score [12]) and the peak C-peptide level following an MMTT was not specifically measured; 

eight subgroups were used for the β-score, whereas we had a continuous variable (peak C-
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peptide concentration). They found a strong negative association between the β-score 

(higher score equals more graft function) and the mean CGM blood glucose level (r = 

−0.65), the glucose standard deviation (r = −0.71), hyperglycaemia (r = −0.71) and 

hypoglycaemia (r = −0.45) [11]. At 3 month intervals over the first 2 years following 

diagnosis of type 1 diabetes we found correlation coefficients ranging from 0.36 to 0.55 for 

peak C-peptide levels and the percentage of CGM glucose values between 3.9 and 7.8 

mmol/l. We found a weaker association between the CV of glucose values and peak C-

peptide levels (r = −0.12 to −0.53) and an even weaker association between peak C-peptide 

levels and the percentage of hypoglycaemic readings (r = 0.07–0.31).

The IDAA1c has been proposed as a surrogate marker for a partial remission by Mortenson 

et al [4] who found that there was a significant correlation between the IDAA1c score and 

stimulated C-peptide levels at 12 months following diagnosis of diabetes (R2 = 0.31). Our 

results are similar to those of Mortenson et al. We found a correlation coefficient of −0.65 

between IDAA1c and stimulated peak C-peptide levels at 12 months post-diagnosis of type 1 

diabetes, with an IDAA1c level of < 9 being virtually always associated with a peak C-

peptide level > 0.2 pmol/ml. However, when IDAA1c levels were ≥ 9, C-peptide levels were 

often > 0.2 pmol/ml (ESM Fig. 4 and ESM Table 5). A similar situation was seen when 

using CGM data to predict the presence of residual C-peptide secretion. As seen in Fig. 1a, 

if > 60% of sensor values were between 3.9 and 7.8 mmol/l, 100% of patients had a peak C-

peptide > 0.2 pmol/ml; however, a large majority of patients with < 60% of their readings 

between 3.9 and 7.8 mmol/l also had positive C-peptide secretion. Glucose variability, as 

measured by the glucose CV, did not provide a clear cut point for determining C-peptide 

levels > 0.2 pmol/ml (Fig. 2).

We were initially disappointed that CGM-measured metrics did not seem to provide 

additional value to IDDA1c levels in predicting C-peptide levels. However, this is not 

completely unexpected since the CGM data reflect glucose values, similar to HbA1c, while 

the IDAA1c also adjusts for the amount of insulin the patient is taking.

Clinically, it has been commonly observed that near-normal fasting meter glucose values 

with a small standard deviation (fasting glucose values < 7.8 mmol/l and a standard 

deviation of < 2.8 mmol/l) correlate with the ‘honeymoon’ phase of diabetes. In the current 

study, if more than 50% of ‘fasting’ CGM readings (between 04:00 and 06:00 hours) were 

in the range 3.9–7.8 mmol/l there was a high probability of having a peak C-peptide level > 

0.2 pmol/ml. However, there were many individuals with 0–50% of their fasting glucose 

levels between 3.9 and 7.8 mmol/l who still had significant C-peptide levels, so overall 

fasting CGM levels did not predict peak C-peptide levels (Fig. 1b). It was even more 

surprising that there was a lack of association between C-peptide levels and CGM-measured 

hypoglycaemia. In the DCCT, maintaining residual C-peptide secretion was associated with 

a significant decrease in the incidence of severe hypoglycaemia [13]. In a previous study, a 

good correlation of residual C-peptide secretion with a lower incidence of hypoglycaemic 

readings on CGM was demonstrated [14]. In that study, 16 participants with recently 

diagnosed diabetes and measurable C-peptide levels (mean 0.96 ± 0.42 pmol/ml, ranging 

from 0.46 to 1.96 pmol/ml) had a 0.3% incidence of hypoglycaemia, and a group of 

individuals with a mean duration of diabetes of 7.6 years and who had similar HbA1c levels 
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(6.8% [51 mmol/mol]) had a 7.6% incidence of hypoglycaemia. Of interest, in that study an 

age-matched control group had 1.7% of their CGM readings < 3.9 mmol/l despite not having 

diabetes [14], which may be a result of false hypoglycaemic readings obtained with the 

CGM, which was the same CGM system as used in the current study. In the current study, 

76% of CGM downloads from study participants, more than 10% of whom had CGM 

readings < 3.9 mmol/l, showed significant residual C-peptide levels of 0.57–3.08 pmol/ml 

resulting in findings of a positive correlation between increased C-peptide levels and a 

higher incidence of hypoglycaemia. This may be explained by aggressive insulin 

management producing a higher incidence of hypoglycaemia even in individuals with 

residual C-peptide secretion.

In summary, the use of CGM holds the promise of correlating glucose levels, glucose 

variability and hypoglycaemic risk to residual C-peptide levels. With the accuracy 

limitations of the CGM sensor used in these studies (mean absolute relative difference of 

16% [15]), these correlations were no better than use of the IDAA1c. In home use, sensors 

may exhibit biofouling, which results in low sensor glucose readings; calibrations performed 

at times of rapid glucose rate of change or with inaccurate meter readings may also have 

significant impact on sensor accuracy. In addition, individual sensors may vary in accuracy 

due to the manufacturing process, and sensor artefacts can result from pressure (e.g. patients 

sleeping on sensors) [16–19]. We anticipate that newer, more accurate, quieter sensors may 

provide additional benefits in predicting C-peptide levels, but this will need to be 

determined in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Scatter plot for peak C-peptide levels compared with the percentage of sensor glucose 

values in the range 3.9–7.8 mmol/l for each visit; (b) Scatter plot for peak C-peptide levels 

compared with the percentage of fasted sensor glucose values in the range 3.9–7.8 mmol/l at 

04:00–06:00 hours for each visit. The horizontal line shows C-peptide at 0.2 pmol/ml
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Fig. 2. 
(a) Scatter plot for peak C-peptide vs the percentage of glucose ≤3.9 mmol/l; (b) Scatter plot 

for peak C-peptide vs the CGM measured glucose CV. The horizontal line shows C-peptide 

at 0.2 pmol/ml
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Fig. 3. 
Scatter plot of 2 h stimulated C-peptide levels compared with HbA1c at each visit. The 

horizontal line shows C-peptide at 0.2 pmol/ml
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