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ABSTRACT

Clauser, Creasy A. M.S.B.M.E., Purdue University, May 2015. In Vivo Tibial Loading
of Healthy and Osteolathrytic Mice. Major Professor: Joseph M. Wallace.

Although the in vivo tibial loading model has been used to study the bone forma-

tion response of mice to exercise, little emphasis has been placed on the translation

of architectural and compositional modifications to changes in mechanical behaviour.

The goals of the studies discussed below were to investigate the mechanical response

in both healthy and osteolathrytic mice to this loading model and to determine the

dose-depended effects of strain level on these properties. In two separately designed

studies, strain levels ranging from 1700 to 2400 µε were applied to the right tibiae

of 8 week old female C57BL/6 mice, while the left tibiae were used as non-loaded

control. The first study consisted of loading both PBS- and BAPN-injected mice to

1750 µε which resulted in little bone formation but some tissue-level changes in me-

chanical analyses and an improvement in fatigue-resistance in terms of microdamage

accumulation. The second study loaded healthy mice to three strain levels (1700,

2050, and 2400 µε). Results indicated that the low end of the strain range did not

engender a robust formation response, while the high end of the strain range resulted

in a woven bone response in half of the animals in that group. Future studies will

focus on the mid-strain level of 2050 µε which induced both significant architectural

and mechanical improvements.
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1. INTRODUCTION

1.1 Bone Structure and Function

Bone is a dynamic hierarchical material that spans several orders of magnitude in

length scale [1]. It has many functions, including structural support, housing of bone

marrow, protection of vital organs, and mineral ion homeostasis, but the primary

function is to support load and work in conjunction with muscles in order to make

locomotion possible. In order to do so, bone must be mechanically strong under

multidirectional forces and strains that come with a mobile lifestyle, a feat that is a

function of geometry, mass, and material properties [2]. It is additionally important

to understand that bone is not a static structure, but instead models as the skeleton

matures and remodels in response to external stimuli.

Before describing the process of bone formation, it is necessary to describe the hi-

erarchical structure of bone. Though there are many different bone types in the body,

the primary focus of this thesis is on long bones, such as the tibia. The illustration

below (Figure 1.1) demonstrates the different structures at each length scale within a

long bone. On the whole bone level long bones are made up of cancellous (trabecular)

bone in the proximal and distal ends, and cortical bone along the midshaft. Cortical

bone is dense and provides a significant portion of a bones mechanical integrity. Tra-

becular bone is porous and composed of struts called trabeculae that vary in length

and thickness and link together to create a three-dimensional network. This network

is responsible for absorbing shock from loading and responding to deformation [4].

It is organized into lamellar sheets. Interestingly, both types of bone extracellular

matrix (ECM) are composed primarily of collagen, the most abundant protein in the

body [5]. Specifically, bone is made up of type I collagen, which comprises 90% of the

total collagen content in the body [6]. The synthesis and organization of collagen in
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Fig. 1.1. Illustration of the hierarchical structure of bone from tissue
level to molecular structure [3].

bone is discussed below. Additionally, mature bone has a mineral component which

accounts for 2/3 of the weight of bone. This mineral is a form of geological hydrox-

yapatite [7]. The mineralization process occurs slowly as the crystals form and grow

into fully mature crystalline lattices [8]. The organic and inorganic components of

bone exist in different ratios depending on the main function and load environment

of the particular bone. Bone has been shown to adapt both its chemical makeup and

structural organization in response to mechanical stimulation, which will be discussed

more in depth in subsequent sections.
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1.2 Bone Growth and Remodeling

The skeleton grows and remodels over time, both in the radial and longitudi-

nal directions. Remodeling involves removing old or damaged bone and replacing it

with new bone. The skeleton is constantly remodeling. During early development,

bone formation occurs faster than bone degradation. With age, the balance becomes

constant, with formation and degradation being relatively equal. With old age, degra-

dation can begin to overcome formation, resulting in bone deficiency diseases such as

osteoporosis. The processes of bone growth and remodeling are a complex integration

of three different types of cells: osteoclasts, osteoblasts, and osteocytes. Osteocytes

reside in the bone extracellular matrix (ECM) and are sense and signaling cells.

When bone is damaged, osteocytes sense the damage and signal to osteoclasts and

osteoblasts to differentiate and migrate to the damaged area. The osteoclasts eat

away the damaged bone, followed by osteoblasts that lay down new bone. In periods

of bone growth, a complex process occurs, beginning with the generation of collagen.

Collagen synthesis begins on the cellular level in the endoplasmic reticulum. Three

amino acid chains consisting of repeating triplets of glycine and other amino acid,

represented by X and Y, are translated. Many prolines and some lysines in the X and

Y positions are hydroxylated to provide chain stability. Next, glycosylation occurs.

Disulfide bonds form between chains in the C-peptide region, providing the means

for a molecular zipper to coil the three chains together into a right-handed triple

helix [9]. The structure at this point is referred to as procollagen. The procollagen

strands are transported from the endoplasmic reticulum to the Golgi apparatus and

then out of the cell. During this process, peptidases cleave the C and N terminals.

The now named tropocollagen strands assemble into fibrils. Multiple fibrils orient

together to form the bone tissue. The newly formed tissue is then enzymatically

cross-linked and mineralized over time, resulting in mature bone. The cross-linking

process is important to the mechanics of bone [10,11] and is discussed further at the

end of this chapter.
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1.3 Response to Mechanical Stimuli

As mentioned above, bone is a dynamic material. It has been shown that re-

modelling of bone chemical makeup and structural organization occurs in response to

external and internal stimuli [12–16]. The rates of bone response to load differ with

age when comparing young, rapidly growing bone to mature, adult bone [17–19].

Using rodent models to investigate the mechanistic responses of bone to mechanical

loading are useful in a lab setting. Exercise models such as running, jumping, and

swimming have been used in mice and rats to induce bone adaptation [20–24]. These

models are physiologically relevant but prevent having control over loading parame-

ters, in addition to the whole-body systemic response both in the skeletal and other

organ systems.

Alternatively, in vivo loading of the ulna has been successfully used in both mice

and rats [25–27]. In addition the tibial loading model has been used over the last

ten years to induce bone adaptation in mice [28, 29]. As with ulnar loading, this

model provides control over experimental parameters such as load/strain magnitude,

number of cycles, cyclic waveform, and frequency of loading which are uncontrollable

or relatively controllable in exercise models. In addition, it allows for easier animal

handling because the mice are maintained under anaesthesia for the duration of load-

ing. In this loading model, direct compression loading is applied in the axial direction

leading to a bending modality (Figure 1.2) which differs from the complex loading

induced by running but allows for a more simplistic understanding of the load being

applied. The advantage of tibial loading over ulnar loading is that the anatomy of

the joints on either end of the tibia prevent direct loading on the surface of the tibia,

instead transferring the load through the distal femur and calcaneus bone of the foot,

compared to the ulnar model where load is applied directly to the olecranon process.

The tibial method of loading allows for experimental focus on the outcomes and

mechanisms underlying a response to mechanical cues without having to consider sys-

temic effects in the cardiovascular system. Because of these benefits, the model has
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Fig. 1.2. Schematic of loading fixtures and direction of loading applied
during in vivo tibial loading [30].

been used to determine the effects of loading on bone as a function of age [30–35], gen-

der [36–38], inbred strain [39,40], disease [41,42], fracture healing [27], and load/strain

level [28, 29, 43–46]. While many of these studies showed that loading significantly

alters bone formation and structural architecture, few have looked at the effect of

loading on mechanical properties. This is an important consideration that warrants

investigation. Does increasing the quantity of bone improve bone structure and func-

tion in diseased models, or is it necessary to improve bone quality as well? In order

to address this question, not only do structural properties need to be evaluated but

also mechanical properties. Studies investigating load/strain level have consistently

shown that higher magnitudes of load engender more a robust bone formation re-

sponse, however it has been suggested that loading to even moderate levels can induce

joint-damage and osteoarthritis [47,48]. As it has been shown that low levels of strain

(800-1200 µε) will induce a detectable formation response [29,43], there may not be a
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need to load to damaging strain levels to induce adequate bone formation to modify

mechanical properties.

Although the tibial loading model has been frequently used over the past ten years,

only three papers have addressed mechanical properties, including direct loading of a

fracture site [49], axial loading to failure following 6 weeks of tibial loading [39], and

an indirect calculation of elastic modulus using ash mineral density obtained from

microcomputed tomography (µCT) [50]. Of these, the axial loading to failure study

was most relevant to investigating mechanical properties affected by tibial loading.

It was found that ultimate displacement, energy to failure, and ultimate force were

significantly increased in loaded tibiae. However, in a pilot study performed to test

proof of concept of the loading model, axial loading to failure by our methods resulted

in frequent failure of the bone at the epiphysis. This could be due to the young age

of mice being used in our studies, which are still rapidly growing and may not yet

have fully fused growth plates.

1.4 Experimental Design

As noted above, bone mass, geometry, and material properties contribute to overall

bone strength. Therefore, to fully investigate the effects of loading on bone strength,

properties in all three categories should be assessed. One of the goals of this thesis

was to evaluate each of these properties using a variety of outcomes.

First, to investigate geometric properties, the techniques of µCT and histomor-

phometry were used. µCT is a technique that uses a serial x-ray to create three-

dimensional images of bone. These images can then be analyzed using post-processing

tools. The usefulness of µCT in bone and mineral research has been described in the

context of evaluating cortical and trabecular bone architecture [51]. Analysis of cor-

tical bone allows for evaluation of geometric parameters such as cortical area, corti-

cal thickness, total cross-sectional area, and tissue mineral density (TMD). Analysis

of trabecular bone allows for evaluation of parameters such as bone volume frac-
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tion (BV/TV), bone surface density (BS/TV), trabecular thickness (Tb.Th), number

(Tb.N), spacing (Tb.S), connectivity, and structural model index (SMI) which is a

measure of trabecular structure. An SMI close to 0 indicates plate-like struts, while

a SMI close to 3 indicates struts like cylindrical rods. All of these parameters provide

geometric and structural information about the bone.

Histomorphometry is a technique in which animals are injected in vivo with flu-

orescent markers. These markers are chelating agents that bind to calcium and are

then incorporated into newly formed bone. After the bones are embedded and sec-

tioned, the length and distance between markers injected a specific number of days

apart (Ir.L.t) can be quantified in order to calculate mineralizing surface (MS/BS),

mineral apposition rate (MAR) and bone formation rate (BFR/BS). MS/BS is the

amount of periosteal or endocortical surface that has been mineralized normalized to

the surface perimeter, indicative of osteoblast proliferation, number, and formation

activity. MAR is the rate at which mineralization is occurring measured between

two specific time points, indicative of the activity of individual teams of osteoblasts.

BFR/BS combines the previous two parameters to evaluate the rate of bone for-

mation normalized to the bone surface. Equations 1.1-1.3 below show the methods

for calculating these parameters according to ASBMR standards [52]. The follow-

ing measurements are obtained from the analysis and used in the equations below:

bone perimeter, known as bone surface (BS), length of single (sLS) and double (dLS)

calcein labels, and in the case of double labels the interlabel width (Ir.L.Th).

MS/BS =
(1
2
sLS + dLS)

BS
∗ 100 (1.1)

MAR =
Ir.L.Th

Ir.L.t
(1.2)

BFR/BS = MS/BS ∗MAR (1.3)
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The mineral and organic chemical content of bone is also important to mechani-

cal behavior. The relative content of organic and inorganic components in bone can

be evaluated using Raman spectroscopy, a method that measures the vibrations of

molecular bonds. For this technique, a laser is focused on the bone surface. The laser

penetrates the bone surface, shifting the light energy through its interactions with

the chemical bonds it encounters and is reflected back to a detector. The Raman shift

is output in the form of a wavenumber diagram which is used to calculate the area

under specific peaks (PO4
3- (phosphate), CO3

2- (carbonate), and various measures of

collagen (amide III, CH2 wag, and amide I envelope)). The full width at half maxima

(FWHM) of the phosphate peak is measured and its inverse relates to crystallinity

(the size, shape, and perfection of the mineral crystals). Matrix mineralization can be

evaluated using the ratio of phosphate to collagen signals. Carbonate substitution is

calculated using carbonate/phosphate. Amide I to amide III has been shown to pro-

vide insight to changes in secondary structure of collagen which is important because

while amide III is relatively stable, amide I is very sensitive to polarization effects

and collagen orientation. The use of this ratio helps to support matrix mineralization

findings [53].

Finally, in order to relate tibial loading-induced bone growth to changes in me-

chanical properties, a question that has not been the focus of current literature,

several mechanical testing methods can be applied. First, whole-bone mechanics can

be assessed by using four-point bending to failure. From obtained load-displacement

curves, stiffness, deformation characteristics (deformation to yield, postyield displace-

ment, and total deformation), strength (yield force and ultimate force), and energy

dissipation (work to yield, postyield work, and work to failure) can be calculated.

Using geometry from µCT, force-displacement can be converted to stress-stain using

the four-point bending equations shown below. From the new curves, elastic mod-

ulus, strain (strain to yield and strain to failure), stress (yield and ultimate), and

toughness (preyield toughness (resilience) and total toughness) can be calculated.
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σ =
Fac

2I
(1.4)

ε =
6cd

a(3L− 4a)
(1.5)

The above equations (1.4 and 1.5) are functions of force (F), loading span dis-

tance (a), support loading span distance (L), distance from the fracture site to the

neutral axis (c) obtained from µCT, and moment of inertia (I) about the bending

axis obtained from µCT.

A second mechanical technique is fracture toughness. This technique involves

creating an anatomically-sharp starter crack in the bone and then testing the bone

to failure in three-point bending directly above this notch. Combined with scanning

electron microscopy (SEM) images of the fracture surface, stable and unstable crack

growth can be separated in order to calculate fracture toughness using a linear elastic

fracture mechanics approach [54]. Testing of mouse femurs in a fracture toughness

set-up was thoroughly described by Ritchie et al. [55] and adapted for use here in

mouse tibiae.

Reference point indentation (RPI) allows for the determination of mechanical

properties of the cortical diaphysis by cyclically-indenting the same location and

evaluating properties such as material stiffness, creep, and energy dissipation. RPI

is an advantageous testing method despite the damage caused to the bone surface

because it can be used clinically to assess mechanical function and has been used to

differentiate patient populations who are prone to fracture [56–59]. A schematic of

the RPI method is shown in Figure 1.3.

It has been shown that the presence of microdamage in vivo triggers the initiation

of intracortical bone remodelling [60], and that microdamage can be induced ex vivo

by fatigue loading [61]. Microdamage can be induced by fatiguing bones to a stress

level high enough to alter bone structure without catastrophically fracturing the bone.

Subsequent en bloc fuchsin staining of the bones allows for the identification and
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Fig. 1.3. A reference point indentation system includes a reference
probe that is positioned on the bone surface and an indentation probe
that repeatedly indents the bone. Figure courtesy of Max A. Ham-
mond.

quantification of these cracks. The presence of microdamage in vivo has been linked

to a decrease in bone toughness [62]. A goal of this study was to investigate if loading

of bones in vivo changes the bone matrix in such a way as to protect them from ex vivo

microdamage formation due to fatigue. Loading improves the quality of bone tissue,

and this improvement may make it more resistive to damage that naturally occurs

over time in vivo under normal loading and activity. Investigating damage produced

via ex vivo fatigue will allow us to gain some insight into this possible mechanism.
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If mechanical loading has the capacity to improve the mechanical properties of

healthy bone, it is possible that it could be used as a therapeutic method to restore

mechanical properties of diseased bone. In order to test this hypothesis, a disease

model must be chosen. Osteolathrysm is a disease caused by over-ingestion of the

seeds from the drought resistant lathyrus pea plant, which is commonly found in the

areas of East Africa and Asia [63]. Consumed in excessive amounts, a compound

inside of the seed called beta-aminopropionitrile (BAPN) induces a disruption in the

collagen cross-linking process resulting in a cross-linking deficiency. BAPN reduces

cross-linking by irreversibly binding to the lysyl oxidase (LOX) active site preventing

the formation of telopeptide aldehydes and abolishing the formation of new cross-

links (Figure 1.4) [64, 65]. This model can easily be induced in animals by injecting

BAPN daily [66, 67]. Pre-existing bone is not affected while any newly formed bone

is cross-link deficient. This is a simplistic and easily induced model of diseased bone

with reduced mechanical properties.

Fig. 1.4. Cross-linking pathway during collagen maturation process.
BAPN irreversibly binds to LOX, which inhibits the formation of
aldehydes necessary for cross-link formation. Figure courtesy of Max
A. Hammond.

It should be noted that the concentration and volume of BAPN commonly injected

in mice does not completely inhibit cross-link formation, but instead decreases the

amount of cross-links formed. This partial inhibition in murine bone has been shown

to cause a downward shift in collagen D-spacing and increased crystallinity [68].
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2. LOW STRAIN TIBIAL LOADING STUDY

Based on the understanding of the in vivo tibial loading model and effect of mechanical

loading on mice, along with the investigative techniques discussed in the introduction,

the following hypotheses and experimental design were made. It was hypothesized

that loading of mice to a relatively low strain level would improve mechanical proper-

ties, that loading can prevent the degradation of properties in a drug-induced disease

model, and that loading will better equip bones to resist the formation of ex vivo

fatigue-induced damage.

2.1 Materials and Methods

2.1.1 Animals

Animals (n = 109, female, C57BL/6NHsd) were obtained from Harlan Labora-

tories at approximately 7 weeks of age and allowed to acclimate for one week prior

to the start of in vivo loading. Animals were handled following Indiana University

School of Science Institutional Animal Care and Use Committee (IACUC) approval

(SC210R) and group-housed with access to food, water and cage activity ad libitum

in a light/dark controlled room. Body weight was recorded one day prior to the

beginning of loading and animals were randomly sorted into weight-matched groups

(n = 5 calibration, n = 52 PBS, n = 52 BAPN). Animals were weighed every other

day after the start of loading to assess overall health. From 8 weeks of age until sac-

rifice, animals in the disease group were subcutaneously injected daily with 0.2 mL

of BAPN (300 mg/kg) in solution with sterile phosphate buffered saline (PBS), and

animals in the control group were injected daily with 0.2 mL of sterile PBS. Animals

were sacrificed at 10 weeks of age via CO2 inhalation. In addition to the PBS or
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BAPN injection, 40 mice (20 control, 20 BAPN) were given intraperitoneal injections

of calcein (30 mg/kg of 0.6% calcein) on days three and ten to quantify the dynamics

of new bone formation.

2.1.2 Load-Strain Calibration

One day prior to beginning in vivo loading, five mice were sacrificed via CO2 in-

halation. Immediately after sacrifice, a small incision was made through the skin of

the right tibia of each mouse in order to attach a single-element microstrain gauge

(Vishay, Shelton, CT: EA-06-015DJ-120) to the anteromedial surface of the bone,

proximal to the tibia-fibula junction [1]. The exposed bone surface was first cleaned

using chloroform and the gauge was attached using an adhesive kit (M-Bond 200).

After drying, the gauge was coated with polyurethane (M-Coat A). Using a mechan-

ical testing machine (Bose Corporation, Eden Prarie, MN: Electroforce 3200) and a

custom loading fixture, the tibiae were loaded using a 2 Hz sine wave and load was

stepped up from 2 N to 12 N in 1 N increments. Load and strain were recorded

simultaneously. Load vs. strain curves were plotted and a linear fit was applied to

obtain the relationship between load and strain. Using this calibration curve, it was

determined that to achieve 1750 µε an applied compressive load of -7 N needs to be

applied.

2.1.3 In Vivo Loading

The right tibiae of all PBS and BAPN injected mice (n = 52 per group) were loaded

in vivo. Isoflurane-induced anaesthesia (2%) was used to anesthetize mice prior to

loading and mice were maintained under anesthesia for the duration of loading. The

right tibiae were loaded (cyclic compression, 2 Hz) over a 14 day period with a day

of rest after every third day of loading, resulting in 9 loading days (Figure 2.1).

The loading profile consisted of four haversine waveforms followed by 3 seconds of

rest repeated 55 times for a total of 220 cycles of loading per day. After the final
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bout of loading, mice were allowed to rest for two days before sacrifice. Animals

were euthanized at 10 weeks of age via CO2 inhalation. Right and left tibiae were

harvested, total length was measured using calipers, and each bone was wrapped in

PBS-soaked gauze and stored at -20 ◦C.

Fig. 2.1. Schematic of loading schedule and profile used in tibial
loading experiment.

2.1.4 Microcomputed Tomography

88 full tibiae (n = 22 per group) were scanned using a high-resolution µCT system,

(Bruker-MicroCT, Kontich, Belgium: Skyscan 1172) in order to obtain geometric

measurements. Calibration was performed daily prior to scanning the bones using

two cylindrical hydroxyapatite phantoms (0.25 and 0.75 g/cm3 CaHA). Scans were

performed at an isotropic voxel size of 17.2 µm resolution (V = 50 kV, I = 167 µA).

Scans were reconstructed for use in cortical and trabecular analyses.

For cortical bone analysis,a standard diaphyseal site was chosen to be 1.5 mm

proximal to the tibia-fibula junction. Seven transverse slices were obtained from this

site and converted to binary images using a standard greyscale threshold value of 60.
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Geometric properties and tissue mineral density (TMD) were obtained from these

images.

Trabecular analysis was performed on 12% of the total length of the bone in

the proximal metaphysis, starting at the distal end of the growth plate and extend-

ing distally. Regions of interest including only trabecular bone were automatically

segmented using a custom Matlab code. Parameters of trabecular architecture and

volumetric bone mineral density (vBMD) were obtained.

2.1.5 Four-Point Bending to Failure

Following µCT, 44 tibiae (n = 11 per group) were monotonically tested to fail-

ure using four-point bending in displacement control at 0.025 mm/sec while fully

hydrated. A loading span of 3 mm and support span of 9 mm were used. The tibia-

fibula junction was placed just outside of the right-most loading point and oriented

such that the bone was tested in the medial-lateral direction with the medial surface

in tension. The distance from the distal end of the bone to the location of fracture

initiation was measured using calipers. Seven transverse slices were obtained from the

µCT images at the location of fracture and calculated geometric properties (bending

moment of inertia and distance from the centroid to the extreme fiber in tension)

were used to map load-displacement to stress-strain. Pre- and post-yield mechanical

properties were obtained from the resulting curves, as previously described [2].

2.1.6 Fracture Toughness

44 tibiae (n = 11 per group) were hand-notched with a scalpel blade in an alu-

mina suspension such that the notch entered the intramedullary cavity but did not

proceed more than halfway through the bone. The location of the notch was in

the anterior-medial region of the mid-diaphysis, proximal to the tibia-fibula junction.

After notching, bones were tested in three-point bending with the notched side in

tension and the notch located directly under the applied load. The tibiae were tested
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to failure at 0.001 mm/sec. After the test, the distance to the fracture site was

measured using calipers, which was then used in conjunction with µCT to determine

the structural properties at the location of fracture. Following the mechanical test-

ing, bones were dehydrated with graded ethanol, mounted, gold-coated, and then the

fracture surface was imaged using SEM. Images obtained were used to determine the

angles of stable and unstable crack growth. The force and displacement data from the

mechanical test, the structural properties from the µCT, and the crack growth angles

from the SEM were then used in a custom MATLAB script to determine fracture

stress intensity (K) as described by Ritchie et al. [3].

2.1.7 Raman Spectroscopy

Fig. 2.2. A representative Raman spectrum with baseline-corrected
and labeled peaks of interest. Ratios of interest were PO4

3-/Amide I,
PO4

3-/CH2 wag, PO4
3-/Amide III, CO3

2-/PO4
3-, and Amide I/Amide

III. Crystallinity is calculated using 1/FWHM.
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Raman spectroscopy was performed using a LabRAM HR 800 Raman Spectrom-

eter (HORIBA Jobin Yvon, Edison, NJ) paired with a BX41 microscope (Olympus,

Tokyo, Japan), as previously described [4]. The posterior surface of 40 whole tibiae

(n = 10 per group) was gently scraped using a flat scalpel blade to remove the pe-

riosteum. The bone was then placed in a petri dish modified with a foam support

to orient the bone with the posterior surface facing upwards. The dish was filled

with enough PBS to saturate the foam but not submerge the bone. The dish was

then placed under the microscope, and a 50X objective was used to focus a spot size

of approximately 10 µm on the surface. Three to five locations approximately 1mm

apart and distal to the tibia-fibula junction were acquired for each sample. Five 20

second acquisitions were averaged into a single spectrum at each location and baseline

corrected (LabSpec 5, HORIBA Jobin Yvon). OriginPro 8.6 (OriginLab, Northamp-

ton, MA) was used to fit a single Guassian peak to the PO4
3- peak. Additional peaks

(CO3
2-, Amide III, CH2 wag, and Amide I envelope) were located and the area under

each peak was calculated at each axial location. The locations were then pooled into

a single value from each bone. Ratios of these peak areas have been shown to corre-

late to various compositional parameters. The full width at half maxima (FWHM)

of the phosphate peak was measured and its inverse relates to crystallinity. Matrix

mineralization (MMR) was calculated using three ratios, phosphate/amide I (MMR

Amide I), phosphate/CH2 wag (MMR CH2), and phosphate/amide III (MMR Amide

III). Carbonate substitution is calculated using carbonate/phosphate. Amide I/amide

III has been shown to provide insight to the changes in secondary structure [5]. A

representative baseline-fit Raman spectrum is shown in Figure 2.2.

2.1.8 Reference Point Indentation

The same 40 tibia used for Raman spectroscopy were tested using a Biodent

Reference Point Indentation (RPI) system (Active Life Scientific, Santa Barbara, CA).

Calibration indents were first performed on a PMMA block. Bones were submerged up
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to but not covering the indentation surface in PBS. The posterior surface of each bone

was cyclically indented (10 cycles, 2 N, 2 Hz) at 4 locations approximately 1 mm apart

and distal to the tibia-fibula junction in regions that roughly corresponded to those

used for Raman. A custom MATLAB program was used to analyze each indentation

cycle to calculate indentation distance (ID), energy dissipation (ED), unloading slope

(US), and creep indentation distance (CID) of the first cycle and indentation distance

increase (IDI) , total indentation distance (TID), total energy dissipation, average

CID, average ED, and average US of each remaining cycle (2-10). The locations of

measure of some of these parameters are indicated in the schematic of an RPI force-

distance output curve in Figure 2.3. If the initial indentation distance was determined

to be much greater than the group average, it was excluded. Therefore 3-4 indentation

locations were averaged to create a single value per parameter measured for each bone.



25

Fig. 2.3. Schematic of RPI cyclic indentation and measured parame-
ters. Figure courtesy of Max A. Hammond.

2.1.9 Ex Vivo Fatigue

Using the cortical geometric and mechanical analysis data, the average force re-

quired to achieve 120 MPa in 4-point bending was found to be 8.2 N. This value is

67% of the ultimate stress from the non-loaded control group subjected to four-point

bending to failure. 40 tibiae (n = 10 per group) from mice that received calcein in-

jections were loaded in four-point bending in fatigue (20,000 cycles, 2 Hz, haversine)

to this force using a mechanical testing machine. Bones were kept hydrated by fully

submerging in lactate Ringers solution for the duration of the fatigue profile. Before

and after fatigue, a single load-unload curve (0.5 Hz, haversine, 8 N) was taken to

evaluate the change in stiffness and energy dissipation due to fatigue.
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2.1.10 Dynamic Histomorphometry and Microdamage Analysis

The 40 fatigued bones (n = 10 per group) and 40 non-fatigued bones (n = 10

per group), all from the 40 animals that received calcein injections, were dehy-

drated, stained en bloc with basic fuchsin, and embedded in polymethyl methacrylate

(PMMA). Six 120 µm-thick sections proximal to the tibia-fibula junction were ob-

tained using a diamond-wire saw. Two sections were cleaned and fixed to slides to

be examined for microdamage analysis. Two different sections were hand ground to

approximately 40 µm using 600 then 400 grit sand paper, then cleaned and fixed to

slides for histomorphometric analysis. The remaining two sections were kept in case

of damaged or unmeasurable sections, but otherwise not measured.

Histomorphometric analysis was performed (n = 2 slides per bone analysed) using

a fluorescence microscope system (Nikon Optihot-2, X-cite 120 UV System) and Bio-

Quant software (Bioquant Osteo 2012) to measure bone perimeter (BS), area, length

of single (sLS) and double (dLS) calcein labels, and in the case of double labels the

interlabel thickness (Ir.L.Th) to assess mineralizing surface (MS/BS), mineral appo-

sition rate (MAR), and bone formation rate (BFR) on both the endocortical and

periosteal surfaces. In the event that no labels were present on either surface, the

values from those bones were excluded from analysis. If no Ir.L.Th was measurable

on a surface, the values for MAR and BFR were excluded from analysis.

Length measurements were pooled from the two analysed slides per bone into a

single value for each measure. Microdamage analysis was performed on the same

system (n = 2 slides per bone analysed). Cracks were measured to obtain number of

cracks (Cr.N), average crack length (Cr.Le), crack density (Cr.Dn), and crack surface

density (Cr.S.Dn). All measurements were pooled into a single value for each bone.

Analyses were performed first including all samples, and then again excluding bones

with no cracks present.
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2.1.11 Statistics

All values are reported as mean ± standard deviation. All data sets were checked

for normality and homogeneity and any violations were restored using transforma-

tions. For all comparisons except fatigue analysis, 2-way ANOVA with main effects

of loading and disease were performed with p<0.05 being significant. For cases of in-

teractions between main effects, a one-way ANOVA was performed and if significant

(p<0.05) a Tukeys HSD post hoc test was performed to compare groups (p<0.05).

For the fatigue analysis, repeated-measures ANOVA with main effects of fatigue,

loading, and disease were performed with p<0.05 being significant. Statistical tests

were performed using SAS 9.4 (SAS Institute Inc., Cary, NC).

2.1.12 Methods Overview

Below is a schematic overview of the methods and group sample sizes used in this

study. Study outcomes are shaded in gray. Calibration mice are not included. It

should be noted that the shown sample sizes are the intended sample size per group

for each method, not the sample sizes used in the analysis. A detailed explanation

of the sample sizes used for each method in the analysis can be found in the results

section below.
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2.2 Results

2.2.1 Calibration

Strain calibration was successfully performed. The linear-fit calibration curve is

shown in Fig. 2.5 below. Data points from 12 N were excluded due to observable

changes in bending at that load level which could have been a result of the load level

itself but is more likely due to the progressive increase in load combined with the

stiffening of the surrounding tissues with time.

Fig. 2.5. Strain-load calibration determined by applying strain gauges
to five mouse hind limbs ex vivo.
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2.2.2 Micro Computed Tomography

The sample size for cortical analysis was n = 22 per group with the exception of

the loaded BAPN group, which had n = 21 due to a bone breaking during harvest. All

measured parameters were statistically analysed looking at the main effects of loading

and disease. The results from the cortical analysis are shown in Table 2.1. It was

found that cortical area (p = 0.0206) and cortical thickness (p<0.0001) significantly

increased as an effect of loading. The only effect of disease was a significant increase

in TMD (p = 0.0288), which indicates that the bones from BAPN treated mice were

more highly mineralized than PBS treated mice.

Table 2.1
Cortical Analysis from µCT

Total CSA
(mm2)

Marrow
Area

(mm2)

Cortical
Area

(mm2)*

Cortical
Thickness

(mm)*

TMD
(g/cm3)†

Non-Loaded
PBS

0.85 ± 0.06 0.32 ± 0.03 0.53 ± 0.03 0.20 ± 0.004 1.81 ± 0.02

Loaded
PBS

0.86 ± 0.06 0.31 ± 0.04 0.55 ± 0.03 0.21 ± 0.01 1.81 ± 0.03

Non-Loaded
BAPN

0.86 ± 0.05 0.32 ± 0.03 0.54 ± 0.03 0.20 ± 0.01 1.82 ± 0.03

Loaded
BAPN

0.87 ± 0.06 0.31 ± 0.04 0.55 ± 0.03 0.21 ± 0.01 1.83 ± 0.02

*indicates a significant difference (p<0.05) between non-loaded and loaded tibiae
†indicates a significant difference (p<0.05) between PBS and BAPN treated tibiae

For the trabecular analysis, main effects of loading included a significant increase

in trabecular thickness (Tb.Th, p<0.0001) paired with a significant decrease in tra-

becular number (Tb.N, p = 0.0066). Additionally, the structural modelling index

(SMI) was increased with loading (p<0.0001), indicating that the trabecular struts

were shaped more like rods than plates. Trabecular parameters are shown in Table

2.2. There were no effects of BAPN treatment on any parameter. There were also no

significant interaction terms for either cortical or trabecular analyses.
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Table 2.2
Trabecular Analysis from µCT

MS/BS
(%)

Tb.Th
(µm)*

Tb.Sp
(µm)

Tr.N
(1/mm)*

SMI*

Non-Loaded
PBS

4.46 ± 0.90 71.6 ± 3.7 460 ± 32 0.63 ± 0.12 2.64 ± 0.13

Loaded
PBS

4.31 ± 0.80 76.7 ± 3.4 472 ± 46 0.56 ± 0.11 2.78 ± 0.11

Non-Loaded
BAPN

5.15 ± 1.30 73.2 ± 2.6 472 ± 36 0.70 ± 0.17 2.58 ± 0.12

Loaded
BAPN

4.40 ± 0.80 76.1 ± 3.6 480 ± 34 0.58 ± 0.11 2.71 ± 0.12

*indicates a significant difference (p<0.05) between non-loaded and loaded tibiae

Cortical bone profiles were generated by plotting the radii from the centroid to

both the endocortical and periosteal surfaces at 0.5 degree angular increments for all

bones and then averaged for each group. These profiles qualitatively demonstrate

where bone modeling due to loading is occurring. For both PBS (Figure 2.6A) and

BAPN (Figure 2.6B) injected mice, geometric changes occurred in loaded bones on

the same locations of the periosteal and endocortical surfaces but there was not a

robust formation response.

Fig. 2.6. Cortical perimeters reconstructed from µCT geometric data
for non-loaded and loaded bones within a. PBS injected mice and b.
BAPN injected mice.
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2.2.3 Whole Bone Mechanical Testing

One-half of the 88 tibiae analysed using CT were tested to failure in four-point

bending, n = 11 per group. After the failure tests, five bones were excluded from

analysis as statistical outliers. The sample size for PBS injected mice remained n =

11, and the BAPN mice were reduced to sample sizes of n = 9 for non-loaded and n

= 8 for loaded bones. There were no significant interaction effects for any four-point

bending parameter. Structural mechanical properties are shown in Tables 2.3 and

2.4. Deformation to yield (p = 0.0343) and work to yield (p = 0.0023) increased with

loading. There were no main effects of disease, however there was a trending increase

in preyield work (p = 0.07) in diseased animals.

Table 2.3
Preyield Structural Mechanical Properties from Four-Point Bending to Failure

Yield Load
(N)

Stiffness
(N/mm)

Deformation
to Yield
(µm)*

Work to
Yield
(mJ)*

Non-Loaded
PBS

11.4 ± 1.2 60.1 ± 11.0 216 ± 44 1.35 ± 0.29

Loaded
PBS

12.7 ± 1.0 55.8 ± 14.3 271 ± 78 1.86 ± 0.54

Non-Loaded
BAPN

12.1 ± 0.6 53.6 ± 5.9 248 ± 23 1.64 ± 0.20

Loaded
BAPN

13.0 ± 0.7 52.7 ± 6.2 285 ± 80 2.03 ± 0.59

*indicates a significant difference (p<0.05) between non-loaded and loaded tibiae

Tables 2.5 and 2.6 show tissue-level mechanical properties. There was a significant

increase in yield stress (p = 0.0369) and resilience (p = 0.0092) due to loading. The

only effect of disease was a significant increase in strain to yield (p = 0.0441).
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Table 2.4
Postyield Structural Mechanical Properties from Four-Point Bending to Failure

Ultimate
Load (N)

Postyield
Displace-

ment
(µm)

Total De-
formation

(µm)

Postyield
Work (mJ)

Work to
Failure
(mJ)*

Non-Loaded
PBS

14.6 ± 2.0 694 ± 232 911 ± 224 8.8 ± 3.3 10.2 ± 3.3

Loaded
PBS

14.6 ± 0.9 691 ± 158 962 ± 155 8.9 ± 2.1 10.7 ± 2.0

Non-Loaded
BAPN

15.4 ± 2.7 762 ± 99 1010 ± 117 9.5 ± 1.6 11.2 ± 1.7

Loaded
BAPN

14.5 ± 0.7 732 ± 215 1017 ± 166 9.5 ± 2.6 11.6 ± 2.3

Table 2.5
Preyield Tissue-Level Mechanical Properties from Four-Point Bending to Failure

Yield
Stress

(MPa)*

Elastic
Modulus
(MPa)

Strain to
Yield (µε)†

Resilience
(MPa)*

Non-Loaded
PBS

167 ± 45 10.8 ± 3.4 17613 ± 3345 1.60 ± 0.49

Loaded
PBS

202 ± 50 11.9 ± 3.8 20009 ± 5248 2.20 ± 0.75

Non-Loaded
BAPN

168 ± 27 9.4 ± 2.2 19945 ± 2430 1.81 ± 0.28

Loaded
BAPN

193 ± 43 10.0 ± 2.9 22468 ± 6647 2.35 ± 0.81

*indicates a significant difference (p<0.05) between non-loaded and loaded tibiae
†indicates a significant difference (p<0.05) between PBS and BAPN treated tibiae
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Table 2.6
Postyield Tissue-Level Mechanical Properties from Four-Point Bending to Failure

Ultimate
Stress
(MPa)

Strain to
Failure (µε)

Toughness
(MPa)

Non-Loaded
PBS

214 ± 63 75114 ± 22713 12.8 ± 7.4

Loaded
PBS

230 ± 48 71401 ± 10344 12.6 ± 3.4

Non-Loaded
BAPN

217 ± 60 81247 ± 11753 12.4 ± 2.5

Loaded
BAPN

215 ± 46 80015 ± 13246 13.4 ± 3.4

2.2.4 Fracture Toughness

The remaining tibiae from the µCT analyses that were not tested to failure in

four-point bending were used to determine fracture toughness (n = 11 per group).

Four bones were lost during notching, so the sample sizes analysed were n = 10 for

non-loaded PBS, n = 11 for loaded PBS, n = 9 for non-loaded BAPN, and n = 10 for

loaded BAPN. Fracture stress intensity (K) was calculated using three different forces

obtained from the three-point bending tests [6]. K initiation was calculated using the

yield force and notch angle. K max load was calculated using the ultimate force

and notch angle. K unstable was calculated using failure load and instability angle.

All three calculated values are shown in Table 2.7. The only significant difference

was a significant decrease in K max load with loading (p = 0.0181). There were no

significant effects of disease or interactions.

2.2.5 Raman Spectroscopy

Forty bones (n = 10 per group) were used to evaluate molecular composition via

Raman spectroscopy. The results are shown in Table 2.8. There was no significant

effect of loading for any property. The three mineral-to-matrix ratios, MMR Amide

I (p = 0.0181), MMR Amide III (p = 0.019), and MMR CH2 (p = 0.0223), were all
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Table 2.7
Fracture Toughness

K, initiation K, max load* K, unstable

Non-Loaded
PBS

4.10 ± 0.57 5.30 ± 0.38 5.73 ± 0.97

Loaded
PBS

3.98 ± 0.39 4.85 ± 0.66 5.21 ± 1.01

Non-Loaded
BAPN

4.24 ± 0.38 5.32 ± 0.51 5.69 ± 0.99

Loaded
BAPN

3.95 ± 0.23 5.01 ± 0.26 5.67 ± 0.67

*indicates a significant difference (p<0.05) between non-loaded and
loaded tibiae

significantly increased due to disease, indicating higher mineralization of bone tissue

in BAPN injected animals. Amide I/Amide III, an indicator of secondary structure

stability, had a significant interaction term (p = 0.0046). The subsequent one-way

ANOVA had a p-value of 0.0108, indicating that post hoc Tukeys HSD tests could

be used to compare groups. The result was that within the loaded groups, there was

a significant effect of BAPN (p = 0.005), and within the BAPN groups there was a

significant decrease due to loading (p = 0.0004).

2.2.6 Reference Point Indentation

The same forty bones used for Raman spectroscopy were intended for reference

point indentation. Two bones were lost during RPI testing and one bone was lost

due to improper storage between Raman and RPI tests. Therefore the sample sizes

used for RPI were n = 10 non-loaded PBS, n = 9 loaded PBA, n = 9 non-loaded

BAPN, and n = 9 loaded BAPN. The results are shown in Table 2.9. There were no

significant effects of disease or interactions. There were also no significant effects of

loading either, although total energy (p = 0.0812), average CID (p = 0.0796), and

energy dissipation (p = 0.0679) all had trending decreases.
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2.2.7 Fatigue

Forty bones were fatigued, n = 10 per group. Three bones broke during the

fatigue test and three more were excluded from the analysis due to incomplete data

sets obtained from the testing machine. The sample sizes per group were n = 9

non-loaded PBS, n = 10 loaded PBS, n = 7 non-loaded BAPN, and n = 8 loaded

BAPN. Stiffness was calculated from single load-unload curves obtained just prior

to the start of and immediately after the conclusion of fatigue. Using a repeated

measures ANOVA looking at the effects of loading, disease, and fatigue, it was found

that there was a significant increase in stiffness due to fatigue (p<0.0001) (Figure

2.7).

Fig. 2.7. Stiffness values obtained from load-unload curves before and
after fatigue.There were no significant effects of loading or disease.
There was a significant increase as a main effect of fatigue.
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2.2.8 Histomorphometry and Microdamage Analysis

The thirty-four tibiae used to analyse change in stiffness and forty additional non-

fatigued tibiae were stained and processed for histomorphometric and microdamage

analyses. These bones all came from animals that were given in vivo calcein injec-

tions. Ten bones were damaged or lost during processing. Additionally, there were

some cases where only 3 sections could be obtained from an embedded block or all

sections obtained were not measurable due to the grinding process required for his-

tomorphometry. In those cases, the bones were only used for microdamage analysis

and excluded from histomorphometry, with the exception of one bone which was used

for histomorphometry and not microdamge because two of the sections had already

been ground. For histromorphometry, non-fatigued and fatigued bones were pooled

together, reducing 8 groups to 4 because fatigue has no effect on histomorphometry

indices since the labels were given in vivo prior to ex vivo fatigue. Further exclusions

were made when no calcein label was present on either the periosteal or endocortical

surfaces of all 6 sections as it was not possible to determine if no label was present

as a function of bone remodelling or if no label was present due to failed calcein

injections during loading, leading to 11 additional exclusions. The final sample sizes

for histomorphometric analysis were n = 13 non-loaded PBS, n = 11 loaded PBS, n

= 16 non-loaded BAPN, and n = 12 loaded BAPN. These sample sizes further re-

duced for calculations of MAR and BFR. If labels were present but none were double

labels, it was not possible to calculate an Ir.L.W. In this case, MAR and BFR are

both zero values and were excluded from analysis as they would skew the resulting

means. Reduced sample sizes for these measures are shown alongside the data in

Tables 2.10 and 2.11. The only detectable effect of loading was a significant increase

in endocortical MS/BS. There were no effects of disease or interactions.

Sample size for microdamage analysis were n = 10 non-fatigued/non-loaded PBS,

n = 8 fatigued/non-loaded PBS, n = 7 non-fatigued/loaded PBS, n = 10 fatigued/loaded

PBS, n = 10 non-fatigued/non-loaded BAPN, n = 7 fatigued/non-loaded BAPN, n
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Table 2.10
Histomorphometry of Periosteal Surface

MS/BS
(%)

Reduced
Sample
Size (n)

MAR
(µm/day)

BFR/BS
(µm/day)

Non-Loaded
PBS

13.6 ± 9.3 4 0.9 ± 0.3 17.8 ± 15.3

Loaded
PBS

15.4 ± 15.6 2 0.7 ± 0.007 31.7 ± 4.4

Non-Loaded
BAPN

14.8 ± 11.3 5 1.1 ± 0.4 22.5 ± 25.3

Loaded
BAPN

18.0 ± 11.0 4 0.9 ± 0.6 27.3 ± 21.8

Table 2.11
Histomorphometry of Endocortical Surface

MS/BS
(%)*

Reduced
Sample
Size (n)

MAR
(µm/day)

BFR/BS
(µm/day)

Non-Loaded
PBS

48.1 ± 17.0 7 1.1 ± 0.2 62.4 ± 18.8

Loaded
PBS

56.4 ± 16.9 6 1.2 ± 0.2 82.4 ± 38.1

Non-Loaded
BAPN

46.1 ± 20.1 8 1.3 ± 0.3 80.0 ± 34.3

Loaded
BAPN

65.0 ± 22.8 9 1.2 ± 0.6 87.3 ± 60.6

*indicates a significant difference (p<0.05) between non-loaded and loaded tibiae

= 9 non-fatigued/loaded BAPN, n = 8 fatigued/loaded BAPN. Upon analysis, it was

discovered that no microcracks were present in any of the non-fatigued bones, so these

groups were excluded from the analysis. The remaining groups were first analysed

including all samples, and it was found that no significant effects of loading or dis-

ease occurred. The analysis was then repeated after excluding bones in which there

was no damage, reducing the sample sizes to n = 4 fatigued/non-loaded PBS, n = 5

fatigued/loaded PBS, n = 5 fatigued/non-loaded BAPN, and n = 5 fatigued/loaded

BAPN. The data from this analysis is shown in Table 2.12.
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Table 2.12
Microdamage Analysis of Fatigued Tibiae

Cr.N (#)* Cr.L (µm)*
Cr.D

(#/mm2)*
Cr.S.D

(µm/mm2)*
Non-Loaded

PBS
15.5 ± 13.3 472 ± 474 15.7 ± 13.1 478 ± 468

Loaded
PBS

2.5 ± 3.5 74 ± 109 2.5 ± 3.6 75 ± 111

Non-Loaded
BAPN

9.6 ± 5.9 254 ± 150 9.7 ± 5.9 254 ± 142

Loaded
BAPN

4.8 ± 4.3 88 ± 109 4.8 ± 4.1 88 ± 105

*indicates a significant difference (p<0.05) between non-loaded and loaded tibiae

While there were no effects of disease, Cr.N (p = 0.0452), Cr.Le (p = 0.0186),

Cr.D (p = 0.0407) and Cr.S.D (p = 0.0166) all significantly decreased due to loading,

indicating that in vivo loading protected the tibiae against microdamage formation

caused by ex vivo fatigue.

2.3 Discussion

The goals of this study were two-fold: to evaluate the effect of in vivo tibial loading

on geometric, molecular, and mechanical properties, and to investigate the ability of

the in vivo tibial loading model to mitigate the effects of a bone disease, in this case

osteolathrysm. Therefore, a low strain level of 1750 µε was chosen, as higher strain

levels have been shown to induce osteoarthritis in a murine model [7].

The effects of loading on cortical bone were small, with slight increases in both

cortical area and thickness, indicating that any detectable changes in mechanical

properties are due to changes in pre-existing bone rather than newly formed bone.

Additionally, the increase in cortical area paired with no change in total cross-sectional

area indicates that any change in geometry is primarily driven by the endocortical

surface, which was supported by both the perimeter profiles and histomorphometric

analysis in which the presence of labels, particularly double labels, was on the endo-
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cortical surface. The trabecular response was that loading resulted in fewer, thicker,

rod-like trabeculae. These cortical and trabecular changes indicate that while the ex-

pected robust changes in geometric structure were not present, some bone modelling

was occurring. Perhaps loading for a longer period of time (more total days of load-

ing) would drive an increased geometric response. These findings are consistent with

a concurrent multistrain study, discussed in the next chapter. Histomorphometry

failed to identify significant effects of loading, however this is likely due to the small

sample sizes analyzed. The question of whether the reductions of sample size were

driven by ineffective injections or the absence of bone growth cannot be definitively

answered, but based on the presence of labels in some samples within all groups and

the small cortical differences it is likely due to lack of growth. There was a significant

increase in endocortical mineralizing surface, the parameter with the largest sample

sizes per group, but no change in periosteal mineralizing surface.

As expected based on the lack of robust geometric change, there were limited

effects of loading on mechanical parameters. Preyield mechanical properties were sig-

nificantly affected by loading, driven purely by changes in the yield point. There was

no significant change in stiffness or elastic modulus, however the structural mechan-

ical property deformation to yield increased and because yield force did not change,

likely drove an increase in work to yield as well. Interestingly, though not translated

to structural mechanical properties as a change in yield force, yield stress significantly

increased due to loading and likely drove the increase in resilience. Yield stress is a

tissue-level property, and a change here paired with little change in geometry is evi-

dence of a change in quality of pre-existing tissue. It is important to note that while

not statistically significant the means of both yield force and strain to yield were

increased by 9% and 13%, respectively, in the loaded groups compared to non-loaded.

Therefore it cannot be said that the change in deformation to yield alone drove the

other changes in structural and tissue-level mechanical properties.

Three measures of fracture toughness were calculated and though all three trended

down, the only significant effect of loading was a decrease in K max force. This would
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indicate that loading decreased the ability of the bone to resist fracture, a negative

impact, and is supported by trending decreases in total energy dissipation, average

energy dissipation, and creep from reference point indentation, though none were

significant. In contrast, microdamage analysis showed that while fatigue-induced

microcracks formed in a majority of bones, and even formed in more total bones

in the loaded verses control limbs (60% non-loaded vs. 67% loaded) the number

and length of these cracks decreased with in vivo loading, even when normalized

to cortical area. This could be explained by the trending decrease in stiffness with

loading, though significance was not reached. The absence of microdamage in non-

fatigued bones indicates that in vivo loading was not detrimental on its own and all

cracks formed were due to fatigue. Therefore, loading did not equip bones to resist

fatigue-induced damage completely, but did reduce the severity of damage formation.

The effects of BAPN treatment were few. Tissue mineral density was increased

in the BAPN group, indicating that more mineral was present in those bones. In

agreement with this measure, all three MMR ratios from Raman spectroscopy were

increased with BAPN. This suggests that there is some BAPN-induced change in

collagen structure allowing for mineralization to occur in greater quantity around and

between fibrils, such as an increase in spacing between fibrils as a result of reduced

cross-linking. The only other effect of BAPN treatment was an increase in strain to

yield, though this was not translated to the structural property of deformation to

yield. There was a trending increase in pre-yield work with BAPN (p = 0.07) that

did not reach significance. The overall absence of influence of reduced cross-linking

on mechanical outcomes suggests that the treatment was not successful in altering

bone structure. Despite the fact that this age and sex of mouse should be undergoing

rapid growth, this lack of BAPN-induced effects is likely due to little bone growth

occurring, since BAPN only interrupts newly formed cross-links and does not affect

pre-existing tissue. This indicates that in order to affect more tissue, BAPN injections

should be carried out over a longer period of time or a higher strain level must be
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used to induce more bone growth in order to successfully create a diseased state of

bone.

There were several limitations to this study. Because bone is rapidly forming at

8 weeks of age, it is possible that in order to overcome expected growth due to aging

over the loading period, a higher strain level needs to be used. The lack of a baseline

group used in this study prevented comparisons between bone geometry at the start of

loading to the non-loaded tibiae to isolate growth due to age from growth induced by

loading. A second limitation was that using a scanning resolution of 17 µm in order to

scan the entire bone eliminated the ability of accurately measuring trabecular bone

mineral density, which is why it is absent from the results. Additionally, bending

and fatiguing in a four-point bending set-up is not physiological. It would be more

accurate to perform these tests in an axial compression set-up, however as previously

mentioned preliminary work investigating testing in this orientation resulted in a

majority of the tibiae failing at or just distal to the growth plate, which could be

due to the growth plates of these young animals not being entirely fused, creating

a weaker bone cross-section at that location. The young age of animals chosen also

limited the number of locations used in Raman spectroscopy and RPI analysis due to

the short region of bone available for these tests. An additional limitation is the lack

of assays measuring cellular activity and contributions to the measured effects on bone

growth. While this was outside the scope of this study, future studies should consider

cellular effects, as they are important to understanding the relationship between in

vivo mechanical stimulation and bone adaptation.

In conclusion, while there was not an overwhelming response of the bone tissue due

to loading, the ability of a short loading experiment to a low strain level to provide

protection against the formation of microcracks is promising feedback. In addition,

there was no outward signs, in terms of animal behavior, that loading to these levels

induced pain or joint damage. Trends in geometric and mechanical properties indicate

that higher strain levels or a longer loading experiment may result in the hypothesized

bone response. Therefore, the next step was to determine what strain level is required
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to engender a robust bone formation response due to loading in young, rapidly growing

mice. This is addressed in the next chapter.
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3. MULTISTRAIN TIBIAL LOADING STUDY

The following chapter was submitted as a paper with the title Cortical and Can-

cellous Structural Adaptation and Improvements to Mechanical Integrity are Strain

Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice to PLOS

ONE on February 2015 in its entirety and is currently under review. Authors on the

paper, in the order listed, were Alycia G. Berman (co-first author), Creasy A. Clauser

(co-first author), Caitlin Wunderlin, Max A. Hammond, and Joseph M. Wallace (cor-

responding author).

3.1 Abstract

Strain-induced adaption of bone has been well-studied in an axial loading model

of the mouse tibia. However, most outcomes of these studies are restricted to changes

in bone architecture and do not explore the mechanical implications of those changes.

Herein, we studied both the mechanical and morphological adaptions of bone to

three strain levels using a targeted tibial loading mouse model. We hypothesized

that loading would increase bone architecture and improve mechanical properties in

a dose-dependent fashion. The right tibiae of female C57BL/6 mice (8 week old)

were compressively loaded for 2 weeks to one of three strain levels (1700 µε, 2050 µε,

and 2400 µε as determined by a strain calibration), while the left limb served as an

non-loaded control. Following loading, ex vivo analyses of bone architecture and me-

chanical integrity were assessed by micro-computed tomography and 4-point bending.

Results indicated that loading improved bone architecture in a dose-dependent man-

ner and improved mechanical outcomes at 2050 µε. Loading to 2050 µε resulted in a

strong and compelling formation response in both cortical and cancellous regions. In

addition, both structural and tissue level strength and energy dissipation were posi-
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tively impacted. Loading to the highest strain level also resulted in rapid and robust

formation of bone in both cortical and cancellous regions. However, these improve-

ments came at the cost of a woven bone response in half of the animals. Loading

to the lowest strain level had little effect on bone architecture and failed to impact

structural- or tissue-level mechanical properties. Potential systemic effects were iden-

tified for trabecular tissue mineral density, bone volume fraction, and in the pre-yield

region of the force-displacement and stress-strain curves. Future studies will focus

on a moderate load level which was largely beneficial in terms of cortical/cancellous

structure and mechanical function.

3.2 Introduction

Bone is a dynamic hierarchical material that spans several orders of magnitude in

length scale [1]. Bone has been shown to adapt its chemical makeup and structural

organization in response to mechanical stimulation across these hierarchical length

scales. Rodent models are often used to study specific aspects of bones adaptive

response to loading. Exercise models including jumping, swimming, and running

have been used as effective loading models in mice and rats with well-documented

effects on skeletal structure and function [2–6]. These models have the advantage

of being simplistic in design and physiologically relevant. However, in addition to

whole body systemic effects, they prevent having control over loading parameters

such as load/strain stimulus, cyclic design, and orientation of loading. Direct loading

of individual limbs overcomes these obstacles and provides a way to control all aspects

of loading to focus on the mechanisms underlying a response to specific mechanical

cues.

The ulnar loading model has been successfully used for more than 15 years to

study the response to loading in mice and rats [7–9]. More recently, axial loading

of the mouse tibia has become a well-accepted model and has provided insight into

the effects of loading as a function of age [10–18], sex [19–21], inbred strain [22],
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disease [23–26], fracture healing [27, 28], and load/strain level [29–33]. Interestingly,

despite the increasing use of tibial loading in mice, few studies have placed significance

on mechanical outcomes. One study looked at mechanics in a fracture healing model,

where the fracture site was directly loaded [28]. A second study performed axial

loading to failure following a 6 week tibial loading experiment and reported an increase

in structural mechanical properties [22]. A third study indirectly calculated elastic

modulus by assuming a relationship between ash mineral density and the attenuation

coefficient obtained from micro-computed tomography (µCT) [18].

The majority of studies have investigated the effect of tibial loading on bone for-

mation using dynamic histomorphometry and/or µCT. These outcomes are important

to assess how and where bone forms in response to loading. However, if changes in

formation fail to improve functional properties of the bone, an increase in bone for-

mation could be less compelling. For example, if more bone is formed due to loading,

but that bone is not better equipped to bear load or resist fracture, loading did not

achieve a beneficial functional outcome. For this reason, it is important to investigate

mechanical outcomes alongside formation.

To remain consistent with the majority of tibial loading studies, female C57BL/6

mice were used here. Although studies have used this strain of mice with starting

ages ranging from 8 weeks to 19 months, we chose to use mice at 8 weeks of age

to be consistent with previous studies in our lab utilizing treadmill running [34–36].

The goal of this study was to investigate the mechanical implications of targeted

in vivo loading in addition to changes in cortical and trabecular architecture. We

hypothesized that loading in female mice would lead to dose-dependent increases

in cortical and trabecular architectural parameters as well as increased mechanical

stiffness, strength, and ductility.
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3.3 Materials and Methods

3.3.1 Animals

Animals (n = 35, female, C57BL/6NHsd) were obtained from Harlan Laboratories

(Indianapolis, IN) at approximately 7 weeks of age and allowed to acclimate for one

week prior to the start of in vivo loading. Animals were handled following Indiana

University School of Science Institutional Animal Care and Use Committee (IACUC)

approval (SC210R) and group-housed with access to food and water ad libitum in

a light/dark controlled room. Body mass was recorded two days prior to the begin-

ning of loading and animals were randomly sorted into weight-matched groups (three

groups of 10 for loading, one group of 5 for calibration). Animals were weighed every

other day after the start of loading to assess overall health.

3.3.2 Strain Calibration

One day prior to beginning in vivo loading, five mice were sacrificed via CO2 in-

halation. Immediate after sacrifice, a small incision was made through the skin of

the right tibia and the skin was retracted in order to attach a single-element micros-

train gauge (Vishay, Shelton, CT: EA-06-015DJ-120) to the anteromedial surface of

the bone, proximal to the tibia-fibula junction. The exposed bone surface was first

cleaned using chloroform and the gauge was attached using an adhesive kit (M-Bond

200). After briefly drying, the gauge was coated with polyurethane (M-Coat A) and

the skin was released to cover the wound. Using a mechanical testing machine (Bose

Corporation, Eden Prairie, MN: Electroforce 3200) equipped with a 45 N load cell

and a custom loading fixture, the tibiae were loaded using a 2 Hz haversine waveform

and load was stepped up from 2 N to 12 N in 1 N increments. Load and strain were

recorded simultaneously. Load versus strain curves were plotted and a linear fit was

applied to obtain the relationship between load and strain. Using this calibration
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curve, it was determined that to achieve 1700 µε, 2050 µε, and 2400 µε, applied loads

of 8.8 N, 10.6 N, and 12.4 N were needed, respectively.

3.3.3 In Vivo Loading

The three remaining groups of mice (n = 10 each) were randomly assigned to low

strain, mid strain, and high strain loading. Isoflurane-induced anesthesia (2%) was

used to anesthetize mice prior to loading and mice were maintained under anesthesia

for the duration of loading. Right tibiae were loaded (cyclic compression, 2 Hz) over

a 14 day period with a day of rest after every third day of loading, resulting in 9

loading days (Figure 3.1A). The loading profile consisted of four haversine waveforms

followed by 3 seconds of rest repeated 55 times for a total of 220 cycles of loading per

day (Figure 3.1B). After the final bout of loading, mice were allowed to rest for two

days before sacrifice. Animals were euthanized at 10 weeks of age via CO2 inhalation.

Right and left tibiae were harvested, total length was measured using calipers, and

each bone was wrapped in phosphate buffered saline (PBS)-soaked gauze and stored

at -20 ◦C.
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Fig. 3.1. Timeline for tibial loading study and waveform profile. A)
The right tibia of each mouse was loaded using the waveform to a set
force (8.8 N, 10.6 N and 12.4 N) to elicit a desired strain level (1700
µε, 2050 µε and 2400 µε) over a 14 day period. B) The loading profile
consisted of four haversine waveforms followed by 3 seconds of rest
repeated 55 times for a total of 220 cycles of loading per day.

3.3.4 Micro Computed Tomography (µCT)

All tibiae were scanned using a high-resolution CT system (Bruker-MicroCT, Kon-

tich, Belgium; Skyscan 1172). Calibration was performed daily prior to scanning the

bones using two cylindrical hydroxyapatite phantoms (0.25 and 0.75 g/cm3 CaHA).

Scans were performed on hydrated bones with the long axis oriented vertically at an

isotropic voxel size of 10.2 µm resolution (V = 60 kV, I = 167 µA), then reconstructed

for use in cortical and trabecular analyses. For cortical bone analysis, a standard dia-

physeal site was chosen 45% of the bones total length away from the proximal growth

plate (Figure 3.2). Seven transverse slices were obtained from this site and converted

to binary images with a grayscale threshold value of 75. Cortical geometric proper-

ties and tissue mineral density (TMD) were obtained from these images. Trabecular

analysis was performed on 12% of the total bone length in the proximal metaphysis

starting at the distal end of the growth plate. Regions of interest including only can-
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cellous bone were automatically segmented using a custom Matlab code. Parameters

of trabecular architecture and TMD were obtained.

Fig. 3.2. Location of mechanical tests and micro-computed tomogra-
phy (µCT) regions of interest. The diaphysis of each bone was loaded
using 4-point bending with the medial surface in tension. The bot-
tom support points (green) were located 9 mm apart and the top
loading points (blue) were located 3 mm apart. The metaphyseal
region used for trabecular analyses began just distal to the growth
plate in the proximal metaphysis and extended distally by 12% of the
overall bone length. The cortical standard site was located 45% the
total bone length from the proximal growth plate. Strain gauges used
for calibration were in the region spanning the cortical standard site
on the anteromedial surface.

3.3.5 Mechanical Testing

Following µCT, all tibiae were monotonically tested to failure using four-point

bending in displacement control at 0.025 mm/sec while fully hydrated. A loading

span of 3 mm and support span of 9 mm were used (Figure 3.2). The tibia-fibula

junction was placed just outside of the right-most loading point and oriented such that

the bone was tested in the medial-lateral direction with the medial surface in tension.

The distance from the proximal end of the bone to the location of fracture initiation

was measured using calipers. Seven transverse slices were obtained from µCT images
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at the location of fracture and the calculated geometric properties (bending moment

of inertia and distance from the centroid to the extreme fiber in tension) were used to

map load-displacement into stress-strain. Pre- and post-yield mechanical properties

were obtained from the resulting curves, as previously described [37].

3.3.6 Statistics

The assumptions of normality and homoscedasticity were assessed and any viola-

tions were corrected using transformations. A repeated-measures ANOVA tested the

main effects of loading (within-subject effect), strain level (between-subject effect),

and their interaction (α = 0.05). If strain level had a significant main effect in the

absence of an interaction effect with loading, Tukeys HSD tests examined pairwise

differences between strain levels (α = 0.025) within loaded and non-loaded limbs sep-

arately. If an interaction was indicated, paired t-tests evaluated the effect of loading

at each of the three strain levels (i.e. control limb versus loaded limb) and a one-

way ANOVA evaluated the effect of strain level separately within the loaded and

non-loaded limbs. After a Bonferroni correction, the significance level for the paired

t-tests and one-way ANOVAs was set to α = 0.01. If strain level had a significant

effect from the ANOVA in either limb, post hoc pairwise differences were examined

using Tukeys HSD tests in that limb (α = 0.01). For the comparison of body mass

between the start and end of loading, a repeated-measures ANOVA tested the main

effects of age (day -1 vs. day 14) and strain level. Statistical tests were performed

using SAS 9.4 (SAS Institute Inc., Cary, NC) and values are reported as the mean ±

the standard deviation (SD).

3.4 Results

Following sacrifice, the tibiae were first scanned by µCT to analyze the structural

adaptation of the bones. During the initial characterization of these scans, a woven

cortical response was discovered in the loaded tibiae of five mice from the 2400 µε
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group. The decision was made to remove both the loaded and non-loaded contralateral

limbs from all future analyses (µCT and mechanical), reducing the sample size in each

2400 µε group to n = 5. Data from the woven bone response have been included in

the supplemental information, although no statistics were performed with those data

included.

3.4.1 Animal Body Mass and Tibial Length

The body mass of each animal was recorded two days prior to the start of loading

at Day -1 (1700 µε: 18.8 ± 1.0 g; 2050 µε: 18.8 ± 0.9 g; 2400 µε: 18.3 ± 1.1 g) and

again on the final day of loading (1700 µε: 19.5 ± 1.2 g; 2050 µε: 19.2 ± 1.0 g; 2400 µε:

18.5 ± 1.3 g). Body mass and tibial lengths from animals with woven bone response

were excluded. There was a significant increase in mass due to age (p<0.001), but

no difference in body mass between groups. Tibial length was recorded at the end of

the study. The length was compared between the control (1700 µε: 16.9 ± 0.6 mm;

2050 µε: 17.3 ± 0.4 mm; 2400 µε: 17.0 ± 0.3 mm) and loaded limbs (1700 µε: 16.9

± 0.5 mm; 2050 µε: 17.2 ± 0.5 mm; 2400 µε: 17.0 ± 0.5 mm). There was no main

effect of loading or strain level on tibial length.

3.4.2 Cortical and Cancellous Architecture

In a standard cancellous region of interest in the proximal metaphysis, all prop-

erties had main effects of loading, strain level, or interaction effects (Table 3.1). Tra-

becular thickness had a significant interaction effect (p = 0.038), and post hoc paired

t-tests indicated that it was significantly higher in the loaded versus control limb at

all three strain levels (p<0.001 in all cases). Trabecular thickness also increased as a

function of strain level in the loaded limbs (p<001). Bone volume fraction (BV/TV)

and TMD had significant main effects of strain level without a significant interactive

effect (p = 0.027 and p = 0.002, respectively) indicating systemic effects of loading for

these parameters, which were generally enhanced as strain increased. In addition to
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the effect of strain level, there was also a significant main effect of loading in BV/TV

and TMD (p = 0.013 and p<0.001, respectively) with both increasing in the loaded

limb. There was a main effect of loading which increased trabecular separation (p

= 0.012), decreased trabecular number (p = 0.001), and increased structural model

index (p<0.001). These results suggest that loading caused fewer, thicker, and more

rod-like trabeculae resulting in a greater bone volume in the metaphysis.
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Fig. 3.3. Schematic Representations of Standard Site Geometric Pro-
files. A) 1700 µε group. B) 2050 µε group. C) 2400 µε group. There
was a dose-dependent increase in cortical parameters with robust pe-
riosteal and endocortical formation, especially at the higher strain
levels. D) 2400 µε group with the addition of those animals that
experiences a woven bone response due to loading.

Cortical geometry was analyzed at a standard site within the mid-diaphysis of each

bone (Table 3.2, Figure 3.3). Strain level only affected the loaded limbs and there

were no main effects of strain level indicating no systemic effects at this site. Gener-

ally, loading increased the amount of bone present in a dose-dependent fashion. Total

cross-sectional area was increased with loading versus control in the 2400 µε group

(p<0.001). Cortical area and thickness were greater in the loaded limb at all strain

levels (p<0.001 at all levels) and this effect was more pronounced as strain increased.

Loading reduced marrow area and endocortical perimeter (main effect of loading,
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both p<0.001) indicating endocortical contraction. Loading increased maximum and

minimum principal moments of inertia and, taking the increasing trend in periosteal

perimeter into consideration (significant at 2400 µε, p<0.001), these results indicate

periosteal expansion accompanies the endocortical contraction. Periosteal expansion

occurred primarily in the anterior-posterior (AP) direction as seen by significant in-

creases in AP width as a function of strain in the loaded limb and the significant

increase in loaded versus control limbs at 2050 µε (p = 0.002), Medial-lateral (ML)

width was unaffected by loading or strain level, as was cortical TMD.
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3.4.3 Mechanical Properties from Four-Point Bending

Four-point bending was used to investigate changes in mechanical properties due

to in vivo loading. Structural and tissue-level mechanical properties are shown in

Table 3.3 and 3.4, respectively. In addition, schematic representations of mechanical

data are shown in Figure 3.4. These schematic curves were generated by averaging

data from the yield point, the point of maximum force/stress and the failure point

across all samples within a group. Although they were not statistically analyzed

in this form, the curves make a qualitative comparison between groups easier. As

noted above, loaded and contralateral limbs from animals experiencing a woven bone

response at the highest strain level were excluded from statistical analysis (data are

shown in the supplemental information for the purpose of qualitative comparison).

Excluding these bones dropped the sample size from n = 10 to n = 5 for the 2400 µε

group. In addition, the control group at that strain level had an excluded statistical

outlier which, in the paired post hoc analyses, resulted in n = 4 for both the control

and loaded groups.
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No structural or tissue-level mechanical properties in the 1700 µε or 2400 µε groups

had a significant change with loading, but there were several significant differences

within the 2050 µε group. At 2050 µε, loading significantly increased ultimate force

(p<0.001), postyield work (p = 0.010), and work to failure (p = 0.010). There was also

a trend towards increased yield force due to loading (p = 0.020). For estimated tissue-

level properties, ultimate stress was significantly increased with loading in the 2050 µε

group (p = 0.007). In addition, although not significant given the stringent statistical

threshold, toughness was marginally increased with loading (p = 0.012). Overall, the

data indicate loading results in stronger tissue and structure which dissipates more

energy prior to failure for the 2050 µε group. Stiffness, deformation to yield, and strain

to yield all exhibited systemic effects due to loading as indicated by the significant

main effect of strain level (p = 0.007, p = 0.012, and p = 0.017, respectively). Strain

to failure also had a significant main effect of strain (p = 0.050), but this effect was

dominated by effects in the loaded limb.
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3.5 Discussion

Over the past 10 years, axial loading of the tibia has become a well-accepted and

heavily utilized bone adaptation model. Despite this fact, few studies have explored

the mechanical impacts of targeted tibial loading [18,22,28], and instead have focused

on morphological changes. While investigating an adaptive formation response and

changes in bone architecture are important, failure to modify mechanical properties

may lessen the broader impact of loading or the potential to use the model to en-

hance properties of diseased bone. The goal here was to investigate how mechanical

properties change in response to targeted tibial loading while also exploring changes

in cortical and trabecular architecture. We hypothesized that loading would lead to

dose-dependent increases in cortical and trabecular architecture while also increasing

bone- and tissue-level stiffness, strength, and ductility. In general, the data confirmed

our hypothesis of a dose-dependent response of strain level improving cortical and can-

cellous architecture and increasing mechanical properties, but changes in mechanical

properties could not be explained by a simple linear dose-dependent model. The dif-

ferent relationships between morphological and mechanical properties highlight the

importance of assessing mechanics along with morphology in future loading studies.

Half of the mice loaded to 2400 µε experienced a woven bone response. As discussed

below, other factors indicated that loading to 2400 µε in future studies should be

avoided.

This study is not the first to investigate the strain-specific response to loading

[30–33]. However, because the age and loading parameters in the various studies

differ, there is no way to directly compare the responses. In addition, mechanical

outcomes were rarely assessed. One study using female B6 mice at the same starting

age as in our study (8 weeks) subjected the animals to load levels ranging from 5-

13 N [31], but calibrated strain values were only reported for 12 week old mice so

it is not clear what strain level these loads equated to at 8 weeks. In that study,

loading tended to increase trabecular and cortical parameters at all ages with greater
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responses at higher load levels. A similar positive response to loading was reported

for female B6 mice loaded between 0 and 14 N [32], but this group also reported a

woven response in cortical bone at 14 N, similar to what was seen at 12.4 N in the

current study. A third study loaded 26 week old female B6 mice to 5.9 N (1200 µε)

or 11.3 N (2100 µε) for 2 weeks [30]. In that case, adaptation only occurred at the

higher strain level where cancellous bone mass (via increased trabecular thickness)

and cortical area (via periosteal and endocortical apposition) both increased. As with

this previous work, a dose-dependent change in response to loading was noted in the

current study for trabecular and cortical morphological parameters.

Improvements in trabecular architecture were driven by increases in trabecular

thickness but at the cost of reducing trabecular number (Table 3.1). The reduc-

tion in trabecular number accounts for bone volume fraction only being significantly

improved in the high strain group of the loaded limbs despite gains in thickness at

all strain levels. Because the proximal metaphysis of this age and strain of mice

is sparsely filled with trabeculae and continually declines with age starting at 8

weeks [38, 39], small changes in the total number of trabecular struts could pro-

duce the significant decrease noted here. However, the decrease in the number of

trabeculae may be an artifact of adjacent trabeculae thickening in the loaded limb to

the point of closing their gap below the resolution of the µCT (approximately 10 m)

and being tallied as one trabecular strut.

Trabecular tissue mineral density was significantly decreased as a function of strain

level in both loaded and non-loaded limbs suggesting that there are systemic effects

from in vivo loading in the contralateral limb (Table 3.1). Loading did not induce

an osteogenic response in the contralateral limb, so while decreases in tissue miner-

alization could be explained by decreased tissue age in the loaded limb, this would

not explain decreased mineral density in the contralateral limb. A previous study

employing an additional caged control group did not detect systemic effects in vol-

umetric bone mineral density (vBMD) [22], but direct comparisons between tissue

mineral density and vBMD are difficult because vBMD superimposes changes in tis-
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sue mineral density onto changes in BV/TV. As in previous studies [22, 40], neither

cancellous nor cortical architecture displayed any systemic effects. However, in the

present study, both structural- and tissue-level mechanical properties were altered in

the non-loaded limb as a function of strain level, particularly in the pre-yield region,

indicating systemic effects. Loading to increasing strain levels systemically increased

stiffness (approximately 30% for non-loaded and loaded limbs from 1700 µε to 2400

µε) causing bones to reach yield at lower displacements (Table 3.3) and strains (Table

3.4). While the main effect of strain level on elastic modulus did not reach signifi-

cance, there was a general trend for increased elastic modulus at increasing strains,

especially in the non-loaded limbs. A previous study showed no systemic changes

in stiffness [22], but differences between these studies may be explained by age (22

weeks vs 10 weeks at sacrifice), duration of loading (6 weeks vs 2 weeks), mechanical

testing modality (axial compression vs four-point bending), or strain level (compres-

sive posterolateral 2800 µε vs tensile anteromedial 2050 µε) which, in the previous

report, was high enough to damage existing tissue resulting in reduced stiffness. The

implications that loading could improve the mechanical integrity of existing tissue in

the contralateral limb are intriguing, and these systemic effects should be considered

in future studies investigating mechanical properties or mineralization.

The current study is also not the first to characterize mechanical implications

following tibial loading [18, 22, 28]. Only one previous study performed a full me-

chanical characterization following loading, but only reported structural properties

by testing bones to failure in axial compression [22]. Given that the in vivo loading

model is performed in axial compression, assessing ex vivo mechanical properties in

this configuration is ideal since one would expect the adaptive response (if any) to be

strongest in that orientation. In a pilot study, we attempted to load bones to failure

in this manner but most failed at the epiphysis rather than in the diaphysis due to the

compressive/bending loads induced in the bone. It is possible that because the ani-

mals used in the previous study were skeletally mature [22] versus the growing mice

used here, the epiphyses were closed (or more fully mineralized) and therefore more
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structurally sound. Loading generally increased deformation and energy dissipation

when bones were loaded to failure in axial compression [22]. In the current study,

structural- and tissue-level energy dissipation were also increased, and although total

deformation and strain to failure trended up, they failed to reach significance in any

group. The current study also demonstrated increased ultimate force and ultimate

stress with loading (Tables 3.3 and 3.4, Figure 3.4). These significant mechanical

changes came specifically in the mid strain (2050 µε) group. The lowest strain level

(1700 of tension) had little effect on structural and tissue-level strength and energy

dissipation. The highest strain group (2400 µε of tension) showed little to no in-

creases in strength and energy dissipation versus those realized in the 2050 µε group.

Loadings effect size (loaded versus control) at 2400 µε was reduced due to values in

the non-loaded limb trending toward the loaded values compared to the effect at 2050

µε. Therefore, the lower sample sizes, only modest gains or losses in the loaded limbs,

and baseline drift in the non-loaded limbs all contributed to the effect of loading at

2400 µε not reaching significance.

Half of the animals loaded to 2400 µε experienced a robust woven bone response,

suggesting a potentially pathological response to loading (Supplemental Figures 3.5-

3.7, Table 3.5). It is important to note that many of the mice in this high strain

group demonstrated a slight limping after recovering from anesthesia immediately

following loading. The limp was short lived, but suggests that the loading itself may

have been painful as previously shown when loading to 13 N [31]. When harvesting

tissues, it was clear that some of the tibiae from the high strain group had bumpy

nodules near the proximal end of the bone. When the woven response was discovered

in five of these animals upon analysis of cortical µCT data, the decision was made

to remove those animals from all analyses (both the loaded and its contralateral

limb). The contralateral limb was removed as there was a concern of a potentially

biasing a systemic response to loading. The data from the removed animals appear in

the supplemental information for comparison but was not included in any statistical

analyses. It is clear both from the mechanical data and to a lesser degree from the
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cortical and trabecular analysis that a woven response on the loaded side did in fact

alter the non-loaded control limbs. While we believe this was the proper way to handle

the data, the drawback of this decision was a loss of power [e.g. TMD is decreased

by the same amount in the control limb from both the 2050 µε and 2400 µε groups

versus the 1700 µε group but only reached significance in the 2050 group (Table

3.1)]. Our sample size started at n = 10 but the woven response dropped this to n =

5. The sample size was further reduced for the mechanical characterizations due to

mechanical testing anomalies (one mechanical sample was lost from each group except

the loaded bones of the 2400 µε group). Because of the paired nature of the post hoc

comparisons, this further reduces the sample size for the comparison of loaded versus

control limbs (n = 8 for 1700 µε and 2050 µε; n = 4 for 2400 µε). Although the starting

sample size was sufficient for mechanical studies, losing samples and the associated

lost power reduced our ability to detect differences in some groups. Therefore, despite

what appear to be morphological and mechanical benefits, the combination of pain,

a woven cortical response, and potential pathological nodule formation suggests that

loading above the 2050 µε level is unnecessary and should be avoided.
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Fig. 3.4. Schematic representations of mechanical testing curves. A)
Representative structural-level force/displacement curves. B) Esti-
mated tissue-level mechanical curves. At 1700 µε, there was no me-
chanical effect noted. Those limbs loaded to 2050 µε experienced
significant increases in structural- and tissue-level strength and en-
ergy dissipation. The 2400 µε group also experienced gains. How-
ever, when animals that experienced a woven bone response were
removed from the analysis, the gains were more modest (especially
at the tissue-level) and most failed to reach significance versus the
contralateral control limb given the loss in power. For all data points,
error bars represent the standard error of the mean (SEM).

When performing in vivo loading studies in individual limbs, the importance of

proper calibration cannot be overlooked. Some published papers lack the details of

their experiments [41]. A more widespread issue is that many papers do not perform

a new calibration and, instead, use data from previously published papers for the

same inbred strain, age, and sex [12,17,40,42]. This approach can be problematic, as
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exemplified by the following example. In some papers, the authors only publish the

slope of the calibration curve (often called the stiffness and reported as the inverse of

the slope, in N/µε). However, the actual calibration curve is linear, meaning it has

a slope and a y-intercept. If strain were on the y-axis, the intercept would be the

non-zero strain at zero load. Few papers show this intercept value but it has been

reported to be as high as 454 µε [13,20,33]. On its own, disregarding this component

of the strain calibration could alter the force necessary to attain the desired strain

level.

As part of ongoing studies in our laboratory, two other strain calibrations have

been performed. Animals used in all strain gauging studies were purchased from the

same vendor (Harlan Laboratories, Indianapolis IN). All were female mice from the

C57BL/6NHsd inbred strain, and all arrived at our facility at 7 weeks of age and

were allowed 1 full week of acclimation prior to the initiation of the studies. The

only difference between the mice was that they came from different animal lots, being

purchased individually for each experiment at three times over a roughly 12 month

period. For each study, the strain gauge application and calibration procedures were

identical and performed by the same operator. Surprisingly, results obtained from the

three studies were not the same. All three experiments produced linear force/strain

relationships (Supplemental Figure 3.7). However, data from the second experiment

differed from those obtained in experiments 1 and 3. This difference in calibration

could lead to incorrect strain values if used improperly. As an example, the highest

strain group in the current study was loaded to 12.4 N for a target strain of 2400 µε.

This same 12.4 N would have generated approximately 2300 µε using the calibration

and mice from experiment #1, likely within the error of the calibration curve and

loading device. However, 12.4 N would have generated 3150 µε in experiment #2.

Recalling that the only difference between the experiments was the lot of mice used

begs the question: why do mice from the same age, gender, and inbred strain from the

same vendor produce different calibration curves? The answer is not straightforward,

but may partially be driven by slight differences in animal body mass. According
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to growth curves provided by Harlan [43], 8 week old female B6 mice should weigh

approximately 17.9 g. The mice from the three lots used in this study were all greater

than this. For study #1 and #3, the average mass was 18.8 ± 1.3 g and 18.8 ± 0.9

g, respectively. However, the mass from study #2 was 19.4 ± 0.9 g and although it

was within the mean ± 2 SDs, may have caused the noted effect on the calibration.

Looking through the tibial loading literature, only one paper began loading female B6

mice at 8 weeks but did not include body mass data [31]. However, several started

loading just before or just after this age. In 2005, Fritton used B6 females from

Jackson Labs [29]. At 7 weeks of age, those mice weighed 21.4 g, considerably higher

than our 8 week mass. A 2013 study using 10 week old B6 females had a mass of 16.9

g, lower than our 8 week mass [23]. In 2014, Main et al. 10 week B6 females with a

mass of 18.6 g, similar to 2 of our groups at 8 weeks [10]. In the end, it is not possible

to determine if this difference in mass is responsible for the variation in calibration.

However, it highlights the importance of performing a new set of calibrations at the

start of every loading study on weight-matched mice from the same lot used for the

actual loading study and as close to the start of loading as possible.

In conclusion, the current study demonstrated the expected positive impact of

direct loading on cortical and cancellous architecture while also indicating that this

form of loading, even in a short-term model, can lead to significant increases in

structural- and tissue-level mechanical behavior. This focus on mechanical end points

is lacking in the literature but is important if the loading regimen is to used be for

functional gain (e.g. to enhance properties of diseased bone). A woven cortical

response initiated at the highest load level (12.4 N, 2400 µε) resulted in robust tissue

formation and mechanical gains, but came at the cost of animal discomfort and a

potential systemic response in the contralateral limb. Future studies utilizing this

model should focus on a more moderate load level which was largely beneficial in

young female mice both in terms of cortical/cancellous structure and mechanical

function.
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3.8 Supplemental

Fig. 3.5. Schematic representations of Standard Site Geometric Pro-
files from the 2400 µε group. There is a potential systemic response
when woven bone formation was initiated due to loading. The shaded
bone in the background is from the control limb of animals with a
normal formation response on the loaded contralateral side (solid yel-
low profile). When animals experienced a woven bone response due to
loading (outermost periosteal and innermost endocortical profiles in
red), the contralateral non-loaded limb (black) also appears to have
experienced a primarily periosteal response. As a point of comparison,
the periosteal perimeter of the non-loaded limb of animals experienc-
ing a woven response increased by 0.78% versus the non-loaded limb
of animals without a woven response. In the 1700 µε group, the effect
of loading was to increase the total cross sectional area by 0.34%.
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Fig. 3.6. Schematic representations of mechanical testing curves from
the 2400 µε group. This figure shows the systemic response when
woven bone formation was initiated due to loading. The contralateral
limb from animals which experienced a cortical woven bone response
(black, lowest curve in each panel) had decreased strength and stiff-
ness relative to the control limb from animals with no woven response
(grey dashed curve). For all data points, error bars represent the
standard error of the mean (SEM).
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Fig. 3.7. Calibration Curves from the current study and two previous
pilot studies. This figure demonstrates the difference in calibration
between three different studies performed. For all data points, error
bars represent the standard deviation.
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Table 3.5
Proximal Tibia Cancellous Architecture from the 2400 µε Group

Control
(n=5)

Loaded
(n=5)

Control
from

Woven
Response

(n=5)

Woven
Response

(n=5)

BV/TV (%) 5.31 ± 0.80 6.33 ± 0.89 5.22 ± 0.93 6.39 ± 0.82

Trabecular
Thickness (µm)

51.2 ± 1.3 66.0 ± 3.8 51.7 ± 1.7 72.6 ± 4.4

Trabecular Number
(1/mm)

1.04 ± 0.17 0.97 ± 0.18 1.01 ± 0.16 0.88 ± 0.07

Trabecular
Separation (mm)

0.33 ± 0.03 0.34 ± 0.04 0.35 ± 0.02 0.37 ± 0.03

Structural Model
Index

2.37 ± 0.08 2.61 ± 0.14 2.33 ± 0.11 2.65 ± 0.05

Tissue Mineral
Density (g/cm3)

1.03 ± 0.03 1.06 ± 0.03 1.05 ± 0.01 1.07 ± 0.02

Values are presented as mean ± standard deviation. As opposed to the cortical and
mechanical systemic response due to woven bone formation, the changes in cancellous
bone were less pronounced.
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4. CONCLUSIONS AND FUTURE DIRECTIONS

While the low strain study indicated that the chosen strain level, 1750 µε, did not

engender a robust bone formation response, the significant decrease in microdamage

accumulation, both in terms of number and length, indicates that loading is altering

the existing bone tissue in some way and protecting it against the effects of ex vivo

fatigue. It is possible that if the loading experiment was continued for several weeks,

instead of just two, that a quantifiable bone formation response could occur and

translate to geometric, molecular, and mechanical alterations. Further considerations

of frequency, waveform shape, and cycles per day and how these relate to strain

rates, should be made. The frequency used in the discussed studies, 2 Hz, was chosen

both based on published literature using the tibial loading model and because it is in

the range of physiologic loading. Increasing the rate could increase bone formation

by increasing strain rate. However, when the strain rate is increased, there may

be an increased risk of joint damage. Alternatively, the frequency could remain the

same and instead the shape of the waveform could be changed from haversine to

triangular, thus also affecting the strain rate. Finally, number of cycles per day could

be increased which would result in a longer loading period which could lead to more

bone formation, but also could lead to damage accumulation in the bone. Ultimately,

there is a need for a greater understanding of how all the various parameters of loading

affect bone formation in rapidly growing, female, C57BL/6 mice.

While loading parameters could be adjusted to stimulate more bone formation,

the multistrain study, designed based on preliminary results in the low strain study

and concurrently performed, provides proof that our loading set-up and profile can

successfully initiate significant bone growth. The multistrain study indicated that the

two week loading period used is adequate in engendering a bone formation response if
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the strain is increased to 2050 µε. These results are promising and future studies could

be designed utilizing this strain level without changing other loading parameters.

In future studies, age effects should be carefully considered. A baseline group

would allow for a separation of bone growth due to loading and bone growth due

to aging. Additionally, because a robust formation response was not seen here, as

indicated by the histomorphometric analysis, a different starting age may be consid-

ered as well. Perhaps slightly younger animals would have more bone growth over the

loading period, or perhaps a slightly older animal with more mature tissue would bet-

ter respond to the loading treatment. To further investigate the ability of mechanical

loading to recover losses due to disease, a different disease model could be chosen.

The osteogenesis imperfect (OI) disease model would provide diseased tissue at the

start of loading, compared to the BAPN injections which only affect newly formed

tissue. In addition, OI is more relevant to study as it affects more of the population

than osteolathrysm. OI bones are extremely brittle, and it is possible that the 2050

µε loading would cause in vivo fractures. Perhaps with an OI disease model, a longer

duration of loading at lower strain levels would reduce this fracture risk.

It was an original intention of the low strain tibial loading study to use atomic

force microscopy to image and quantify the mean and distribution of collagen fibril

D-spacing. It was decided after initial results indicated an absence of robust bone

formation response that this technique would not be used, as it is costly and time

consuming. Further studies could continue this technique on bones both from this

study and from future studies where mice are loaded to the mid-strain level.

In conclusion, though the expected bone response was not present in the initial

low strain tibial loading study, some tissue-level changes were identified and the mul-

tistrain tibial loading study allowed for the identification of a strain level that does

engender robust bone formation. The results from both of these studies, that low

strain loading can induce some tissue-level changes in a two-week loading experiment

and that a slightly higher strain level induces significant bone formation over the

same loading period, provide promising support for the use of in vivo tibial loading
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as a tool to investigate the mechanical implications of mechanical load on healthy

and diseased bone.


