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Abstract

Evidence suggests that noradrenergic signaling may play a role in mediating alcohol-drinking

behavior in both rodents and humans. We have investigated this possibility by administering

clonidine to alcohol-drinking rats selectively bred for alcohol preference (P line). Clonidine is an

α2-adrenergic receptor agonist which, at low doses, inhibits noradrenergic signaling by decreasing

norepinephrine release from presynaptic noradrenergic neurons. Adult male P rats were given 24-h

access to food and water and scheduled access to a 15% (v/v) alcohol solution for 2 h daily. Rats

received intraperitoneal (IP) injections with clonidine (0, 10, 20, 40, or 80 µg/kg body weight

[BW], 10–11 rats/treatment group) once/day at 30 min prior to onset of the daily 2-h alcohol

access period for 2 consecutive days. Clonidine, in doses of 40 or 80 µg/kg BW, significantly

reduced alcohol intake on both days of treatment (p < 0.001). Two weeks later, rats were treated

with clonidine for 5 consecutive days and clonidine, in doses of 40 or 80 µg/kg BW, reduced

alcohol intake on all 5 treatment days (p < 0.001). Clonidine did not alter water consumption

during the daily 2-h free-choice between alcohol and water. In a separate group of male P rats,

clonidine (40 µg/kg BW) suppressed intake of a saccharin solution (0.04 g/L). These results are

consistent with and complement our previous findings that the α1-adrenergic receptor antagonist,

prazosin, decreases voluntary alcohol drinking in alcohol-preferring rats, but suggests that effects

of clonidine may not be specific for alcohol. The results suggest that although activation of the

noradrenergic system plays an important role in mediating voluntary alcohol drinking, care is

needed in selecting which drugs to use to suppress central noradrenergic signaling in order to

maximize the selectivity of the drugs for treating alcohol-use disorders.
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Introduction

It has been suggested that excessive noradrenergic activation which accompanies anxiety

and hyperarousal may contribute to increased alcohol drinking in an effort to self-medicate,

since alcohol is sympatho-suppressive, anxiolytic, and sedating (Edwards, Chandler,

Hensman, & Peto, 1972; Koob & LeMoal, 1997; Kushner, Sher, & Beitman, 1990; Kushner,

Sher, & Erickson, 1999; Shirao et al., 1988). Numerous lines of evidence support this view:

a) anxiety is associated with increased brain noradrenergic and associated sympathoadrenal

activation (Kopin, 1984; Sullivan, Coplan, Kent, & Gorman, 1999), b) “anxious” rats

consume more alcohol than “non-anxious” rats (Spanagel et al., 1995), c) blocking

norepinephrine biosynthesis decreases alcohol self-administration by rodents (Amit, Brown,

Levitan, & Ogren, 1977; Brown, Amit, Levitan, Ogren, & Sutherland, 1977; Davis, Smith,

& Werner, 1978), d) alcoholics commonly state that relief of anxiety is an important reason

for drinking (e.g., Edwards et al., 1972), e) alcoholism co-occurs at high rates with anxiety

disorders (Kushner et al., 1990), suggesting that the two disorders represent manifestations

of similar underlying mechanisms (Merikangas, Risch, & Weissman, 1994; Merikangas et

al., 1998; Sinha, Robinson, & O'Malley, 1998), f) patients with co-morbid anxiety and

alcoholism more frequently report that they use alcohol to control anxiety and panic

symptoms as compared to other reasons for alcohol use (Kushner et al., 1990), g) increased

sympathetic activation is seen during periods of increased anxiety and during prolonged

alcohol abstinence (Ehrenreich et al., 1997; Sullivan et al., 1999), and h) increased

sympathoadrenal activation and anxiety-like behavior is observed for long periods following

termination of chronic alcohol consumption in rats (Rasmussen, Mitton, Green, & Puchalski,

2001; Rasmussen, Wilkinson, & Raskind, 2006). Taken together, these findings suggest that

excessive sympathetic activation may contribute not only to maintenance of alcohol drinking

and alcohol abuse but may also be one of the aversive physiological events that occur during

alcohol withdrawal and abstinence that increases risk of relapse to alcohol drinking (Koob &

LeMoal, 1997).

We previously tested the hypothesis that noradrenergic activation promotes and maintains

alcohol drinking by assessing whether alcohol drinking in rats is decreased by prazosin

treatment. Prazosin is a drug that is centrally active when administered peripherally and that

decreases brain noradrenergic signaling by blocking postsynaptic α1-adrenergic receptors.

Prazosin dose-dependently reduced withdrawal-induced operant self-administration of

alcohol in alcohol-dependent Wistar rats (Walker, Rasmussen, Raskind, & Koob, 2008).

Prazosin also suppressed voluntary alcohol drinking by rats selectively bred for alcohol

preference (P line) when administered either acutely (Rasmussen, Alexander, Raskind, &

Froehlich, 2009) or chronically (Froehlich, Hausauer, Federoff, Fischer, & Rasmussen,

2013; Froehlich, Hausauer, & Rasmussen, 2013). The ability of prazosin to reduce alcohol

drinking has been confirmed in humans; Simpson and colleagues (2009) reported that

prazosin decreased relapse alcohol drinking in treatment-seeking alcohol-dependent men.
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These results from both rodents and humans provide compelling evidence that noradrenergic

activation plays an important role in mediating alcohol drinking and alcohol relapse.

If alcohol drinking is due in part to activation of the noradrenergic system, any drug that

decreases noradrenergic signaling might be expected to decrease alcohol drinking. We

recently determined that combined treatment of P rats with both prazosin and propranolol

(which block α1- and β-adrenergic receptors, respectively) decreased alcohol drinking more

effectively than treatment with either drug alone (Rasmussen, Beckwith, Kincaid, &

Froehlich, 2014), suggesting that α1- and β-adrenergic receptors may have complementary

roles in facilitating alcohol drinking. This suggests that administration of an α2-adrenergic

receptor agonist such as clonidine, which can decrease noradrenergic signaling by

decreasing norepinephrine release from presynaptic terminals (Aghajanian &

VanderMaelen, 1982; Starke, Montel, Gayk, & Merder, 1974) and thus decrease the amount

of norepinephrine available for binding to either α1- or β-adrenergic post-synaptic receptors,

may be especially effective in decreasing alcohol drinking. Accordingly, in the present study

we evaluated the effect of clonidine on voluntary alcohol drinking in selectively bred

alcohol-preferring (P) rats.

Materials and methods

Animals

Male P rats (n = 51 in Study 1; n = 20 in Study 2) from the 60th generation of selective

breeding for alcohol preference served as subjects. The rats were individually housed in

stainless-steel hanging cages in an isolated vivarium with controlled temperature (21 ± 1 °C)

and a 12-h light/dark cycle (lights off at 1000 hours). Standard rodent chow (Laboratory

Rodent Diet #7001, Harlan Teklad, Madison, WI) and water were available ad libitum at all

times throughout the study. All experimental procedures were approved by the Indiana

University Institutional Animal Care and Use Committee and conducted in strict compliance

with the NIH Guide for the Care and Use of Laboratory Animals.

Six months prior to onset of the current study, the rats in Study 1 were treated acutely with

intra-peritoneal (IP) prazosin for 2 consecutive days and then, 3 weeks later, for 5

consecutive days (Rasmussen et al., 2009). The rats were then held for 6 months without

drug treatment prior to onset of the current clonidine study. During this time, all rats

received 2-h access to alcohol (15 % v/v) for 2 h/day, 5 days/week until the current

investigation. The rats were 13 months old with a mean body weight of 679 g at the start of

clonidine treatment.

Drugs

Clonidine hydrochloride (Sigma-Aldrich Co., St. Louis, MO) was dissolved in 0.9% NaCl.

In Study 1, each rat received an IP injection of saline vehicle or 10, 20, 40, or 80 µg

clonidine/mL saline/kg BW. In Study 2, each rat received an IP injection of saline vehicle or

40 µg clonidine/mL saline/kg BW.

Study 1: effects of clonidine treatment on alcohol intake—The alcohol solution

was prepared by diluting 95% alcohol (ethanol; Decon Laboratories Inc., King of Prussia,

Rasmussen et al. Page 3

Alcohol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



PA) with distilled, deionized water to make a 15% (v/v) solution. Alcohol (15% v/v) and

water were presented in calibrated glass drinking tubes, with positions of the tubes

alternated daily to control for potential side preferences. Daily fluid intakes were recorded to

the nearest mL. Alcohol intake was converted from mL alcohol/kg BW to g alcohol/kg BW.

During the week prior to clonidine administration, baseline alcohol and water intakes during

the daily 2-h alcohol-access period (1100–1300 hours) were calculated for each rat over 4

consecutive days and the rats were ranked in descending order in terms of average daily

alcohol consumption. The rats were assigned to drug treatment groups in a manner that

ensured that the groups did not differ in baseline alcohol intake prior to clonidine

administration. Specifically, the top 5 alcohol drinkers were randomly assigned to the

vehicle or one of four clonidine-treatment groups (10, 20, 40, or 80 µg clonidine/kg BW),

followed by the next 5 highest alcohol drinkers likewise randomly assigned, etc.

2-day clonidine treatment: To reduce stress associated with IP drug administration, all rats

were handled as if they were going to receive an IP injection for 5 consecutive days prior to

onset of drug treatment, and all rats received an IP injection of vehicle on the day preceding

onset of drug treatment. Clonidine in doses of 10, 20, 40, or 80 µg/kg BW (n = 10–11/dose)

or an equivalent volume of vehicle (n = 10–11) was administered 30 min prior to the daily 2-

h alcohol-access period (1100–1300 hours, beginning 1 h after lights out) on each of 2

consecutive days.

5-day clonidine treatment: After completion of the 2-day clonidine treatment regimen, rats

continued to receive 2-h (1100–1300 h) daily access to alcohol 5 days/week for 3 weeks

prior to initiating 5 days of clonidine treatment. To reduce the stress associated with IP drug

administration, all rats were again handled as if they were going to receive an IP injection

for 5 days prior to treatment and were given an IP injection of vehicle on the day preceding

onset of 5 days of drug treatment. Average daily alcohol and water intakes were determined

in the week preceding drug treatment and the rats were rank ordered, based on alcohol

intake, and re-assigned to treatment groups as previously described. Clonidine, in doses of

10, 20, 40, or 80 µg/kg BW, or an equivalent volume of vehicle, was administered 30 min

prior to the daily 2-h alcohol access period on each of 5 consecutive days.

Study 2: effect of clonidine treatment on saccharin intake—A separate group of

20 male P rats were each provided access to a saccharin solution (0.04 g/L) during a 2-h

daily access period (1100–1300 hours, beginning one hour after lights out) 5 days/week for

16 days until saccharin intake stabilized (as determined by 2-way ANOVA with repeated

measures on days 13–16, with no significant effect of day on saccharin intake). Food and

water were freely available for 24 hours/day throughout this study. Saccharin and water

intakes were recorded daily and body weights were recorded twice weekly. The rats were 4

months old and had a mean body weight of 455 g at the start of clonidine treatment.

The 0.04 g/L saccharin solution was prepared by dissolving 99+% saccharin (Sigma-Aldrich

Co., St. Louis, MO) in distilled, deionized water. Saccharin and water were presented in

calibrated glass drinking tubes, and daily fluid intakes were recorded to the nearest mL.
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Saccharin and water intakes are reported in mL/kg BW to control for size-based variation in

fluid requirements/gastric capacity.

Baseline saccharin intake was calculated for each rat during the 2 days prior to clonidine

treatment. Rats were ranked in descending order in terms of average daily saccharin

consumption and assigned to treatment groups (vehicle or 40 µg clonidine/kg BW) in a

manner that ensured that the groups did not differ in baseline saccharin intake prior to

clonidine administration, as described for alcohol intake in Study 1.

To reduce the stress associated with IP drug administration, all rats were handled as if they

were going to receive an IP injection for 5 consecutive days prior to initial drug treatment.

Clonidine (40 µg/kg BW; n = 10) or an equivalent volume (1 mL) of saline vehicle (n = 10)

was administered 30 min prior to the daily 2-h saccharin vs. water access period on each of

3 consecutive days.

Data analyses

In Study 1, alcohol intakes during drug treatments were analyzed by 2-way mixed analysis

of variance (ANOVA) with repeated measures (dose × day with repeated measures on day)

followed, when justified by determination of significant main effects or interactions in the

ANOVA, by pairwise multiple comparisons using Fisher’s least significant difference (LSD)

tests. Alcohol intakes on 2 post-treatment days were likewise analyzed by 2-way mixed

ANOVA with repeated measures on day, followed by pairwise multiple comparisons with

Fisher’s LSD tests. Alcohol intakes within the pre-treatment day were similarly analyzed,

but with 1-way ANOVA. As discussed in the Results section, Kruskal-Wallis 1-way

ANOVA on ranks was used to analyze water intake. In Study 2, saccharin intakes on the 3

treatment days were likewise analyzed by 2-way mixed ANOVA with repeated measures on

day, followed by pairwise multiple comparisons with Fisher’s LSD tests. All analyses were

conducted using the SigmaStat 3.5 program (Systat Software, Inc., Chicago, IL) with

significance accepted at p < 0.05. Data are presented as mean ± SE.

Results

Daily alcohol intake during the 2-h alcohol-access period prior to onset of drug treatment in

Study 1 averaged 1.3 ± 0.2 g/kg BW/2 h, which is lower than the intake seen in some of our

previous studies using 2-h alcohol access in P rats. This is likely because the rats in the

current study were older and larger than those we have previously used (which have

averaged only about 350–400 g BW and have consumed approximately 2.0 g alcohol/kg

BW during 2 h of alcohol access). Weight gain above 400 g in rats is due to addition of fat;

fat tissue has poor blood supply, low water content, and only 10–20% of the alcohol

concentration found in blood, so reporting alcohol intake in g/kg BW in fat rats

underestimates alcohol intake (Bloom, Lad, Pittman, & Rogers, 1982; Westerfeld &

Schulman, 1959; York, 1983).

Effect of 2-day clonidine treatment on alcohol and water intakes

The effects of clonidine treatment on alcohol intake during the daily 2-h freechoice between

alcohol and water in a 2-day treatment trial are presented in Fig. 1. There was no significant
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difference among treatment groups on the pre-drug day. During the 2 treatment days there

was a significant effect of dose [F(4,46) = 17.95, p < 0.001] but no significant effect of day

and no significant dose × day interaction. Further pairwise comparisons using the Fisher’s

LSD test revealed that alcohol intake was decreased (p < 0.001) by clonidine at doses of 40

or 80 µg/kg relative to treatment with vehicle, independent of day. On post-treatment days 1

and 2, there was a significant effect of dose [F(4,46) = 4.51, p < 0.01] but no significant

effect of day and no significant dose × day interaction. Further pairwise comparisons using

the Fisher’s LSD test revealed that alcohol intake was decreased (p ≤ 0.05) by previous

treatment with clonidine 40 or 80 µg/kg relative to previous treatment with vehicle,

independent of day.

The effect of clonidine on water intake during the daily 2-h free-choice between alcohol and

water is presented in Fig. 2. No commonly used data transformations were effective in

achieving homogeneity of variance and normal distribution of the water data. Since non-

parametric 2-way ANOVA with repeated measures tests are not available, 5 separate non-

parametric 1-way ANOVA analyses were conducted, i.e., one each for the Pre-Drug Day,

Drug Days 1 and 2, and Post-Drug Days 1 and 2. Kruskal-Wallis 1-way ANOVA on ranks

indicated that water intake was not significantly different among the treatment groups on

any day.

There was no significant difference in 24-h water intake (data not shown) among treatment

groups on the pre-drug day. During the 2 treatment days there was a significant effect of

dose [F(4,46) = 28.53, p < 0.001] but no significant dose × day interaction (average water

intake for the vehicle-treated or 10, 20, 40, or 80 µg/kg clonidine-treated group was 32.5 ±

1.8, 32.0 ± 1.8, 39.5 ± 4.1, 46.9 ± 2.9, and 65.5 ± 2.1 mL/kg/24 h, respectively). Pairwise

comparisons using the Fisher’s LSD test revealed that 24-h water intake was increased (p ≤

0.001) by clonidine at doses of 40 or 80 µg/kg relative to treatment with vehicle,

independent of day. On post-treatment days 1 and 2, there was no significant effect of dose

or day and no significant dose × day interaction (average 24-h water intake for the vehicle-

treated or 10, 20, 40, or 80 µg/kg clonidine-treated group was 34.4 ± 1.9, 34.8 ± 1.9, 34.9 ±

3.5, 32.1 ± 1.8, or 34.3 ± 1.4 mL/kg/24 h, respectively).

Subsequent 5-day clonidine treatment effects on daily alcohol and water intakes

The effects of clonidine treatment on alcohol intake during the daily 2-h free-choice between

alcohol and water in the 5-day treatment trial are presented in Fig. 3. Pre-drug alcohol intake

was determined on a Friday, drug days 1–5 occurred on Monday–Friday, and the 2 post-

drug days occurred on the Monday and Tuesday following termination of drug treatment.

There was no significant difference in alcohol intake among treatment groups on the pre-

drug day. During the 5 treatment days there was a significant effect of dose [F(4,46) =

22.18, p < 0.001] and a significant effect of day [F(4,184) = 3.36, p < 0.05] on alcohol

intake, but no significant dose × day interaction. Pairwise comparisons using the Fisher’s

LSD test revealed that alcohol intake was decreased (p < 0.001), independent of day, by

clonidine at doses of 40 or 80 µg/kg relative to treatment with vehicle, independent of day.

Alcohol intake was decreased (p < 0.05) by treatment with clonidine 80 µg/kg relative to
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treatment with clonidine 40 µg/kg. On post-treatment days 3 and 4, there were no significant

effects of dose or day on alcohol intake and no significant dose × day interaction.

The effects of clonidine on water intake during the daily 2-h free-choice between alcohol

and water in this 5-day treatment trial are presented in Fig. 4. As in the previous 2-day

treatment trial, no commonly used data transformations were effective in achieving

homogeneity of variance and normal distribution of the water data, so eight separate non-

parametric 1-way ANOVA analyses were conducted, i.e., one each for the Pre-Drug Day,

Drug Days 1–5, and Post-Drug Days 3 and 4. Kruskal-Wallis 1-way ANOVA on ranks

indicated that water intake was not significantly different among the treatment groups on

any day.

Alcohol preference ratios during the 5 days of daily 2-h free-choice between alcohol and

water were significantly different among the treatment groups [F(4,46) = 8.55, p < 0.001],

with significant dose × day interactions [F(16,184) = 1.82, p < 0.05]. Pairwise comparisons

using the Fisher’s LSD test revealed that alcohol preference was decreased by clonidine

treatment at a dose of 80 µg/kg, relative to treatment with vehicle, on days 1 (p < 0.05), 2 (p

< 0.001), 3 (p < 0.001), 4 (p < 0.01), and 5 (p < 0.01). Treatment with clonidine at a dose of

40 µg/kg likewise decreased alcohol preference on days 3 (p < 0.05) and 5 (p < 0.01).

There was no significant difference in 24-h water intake (data not shown) among treatment

groups on the pre-drug day. During the 5 treatment days there was an error in 24-h water

intake determinations for day 5, so the 24-h intake analyses included only days 1–4. For

these 4 treatment days there was a significant effect of dose [F(4,46) = 60.20, p < 0.001] but

no significant dose × day interaction (average water intake for the vehicle-treated or 10, 20,

40, or 80 µg/kg clonidine-treated group was 35.0 ± 1.2, 32.5 ± 1.5, 38.4 ± 1.2, 50.9 ± 2.1, or

64.1 ± 2.2 mL/kg/24 h, respectively). Pairwise comparisons using the Fisher’s LSD test

revealed that 24-h water intake was increased (p < 0.001) by clonidine at doses of 40 or 80

µg/kg relative to treatment with vehicle, independent of day. On post-treatment days 3 and 4,

there was no significant effect of dose or day and no significant dose × day interaction

(average 24-h water intake for the vehicle-treated or clonidine 10, 20, 40, or 80 µg/kg

clonidine-treated group was 29.8 ± 2.7, 28.7 ± 1.6, 33.5 ± 1.6, 27.4 ± 3.6, or 35.5 ± 3.0

mL/kg/24 h, respectively).

Study 2: clonidine effects on saccharin intake

The effect of clonidine 40 µg/kg treatment on intake of saccharin solution during 2-h trials

on each of 3 consecutive days is presented in Fig. 5. There was no significant difference in

pre-drug saccharin intake among treatment groups. During the 3 treatment days there was a

significant effect of clonidine treatment [F(1,18) = 12.97, p < 0.01] and a significant effect

of day [F(2,36) = 3.97, p < 0.05] on saccharin intake, but no significant treatment × day

interaction. Pairwise comparisons using the Fisher’s LSD test revealed that saccharin intake

was decreased (p < 0.01) independent of day by clonidine treatment relative to treatment

with saline vehicle.

There was no significant difference in water intake between treatment groups on the pre-

drug day. During the 3 treatment days, there was no significant effect of treatment or day
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and no treatment × day interaction effect on water intake. The 3-day average water intakes

were 3.1 ± 0.7 mL/2 h for the saline-treated group and 5.2 ± 1.2 mL/2 h for the clonidine-

treated group.

Discussion

Clonidine, the α2-adrenergic receptor agonist which in moderate doses decreases

noradrenergic signaling by stimulating inhibitory pre-synaptic α2-adrenergic receptors

(Aghajanian & VanderMaelen, 1982; Starke, Montel, Gayk, & Merder, 1974), decreased

voluntary alcohol drinking in a dose-dependent manner when administered to P rats for

either 2 or 5 consecutive days. These results are consistent with our reports that prazosin,

which decreases noradrenergic signaling by blocking post-synaptic α1-adrenergic receptors,

decreases alcohol drinking in P rats when administered acutely (Rasmussen et al., 2009) or

chronically (Froehlich, Hausauer, Federoff, et al., 2013;). The fact that two different

pharmacologic interventions that decrease noradrenergic signaling, but via different

mechanisms, are both capable of suppressing alcohol drinking is consistent with evidence

that activation of the noradrenergic system plays a key role in mediating voluntary alcohol

drinking. These results are also consistent with reports that: a) the α2-adrenergic receptor

agonist, lofexidine, reduces operant self-administration of alcohol by Wistar rats (Lé,

Harding, Juzytsch, Funk, & Shaham, 2005), b) clonidine and another α2-adrenergic receptor

agonist, guanfacine, decrease alcohol drinking by food-restricted rats selectively bred for

alcohol drinking (descendants of the Finnish Alko Alcohol (AA) rats) (Opitz, 1990), c)

depletion of brain norepinephrine decreases alcohol drinking (Amit, Brown, Levitan, &

Ogren, 1977; Brown et al., 1977) and alcohol self-administration in unselected rats (Davis et

al., 1978), and d) prazosin reduces acute withdrawal-induced operant self-administration of

alcohol by alcohol-dependent Wistar rats (Walker, Rasmussen, Raskind, & Koob, 2008).

Clonidine plasma half-life is approximately 24 h in humans (Arndts, Doevendans, Kirsten,

& Heintz, 1983) but less than 1 h in rats (Hui et al., 2007). Following intravenous

administration of clonidine doses similar to those administered IP in the current study,

clonidine is rapidly distributed throughout the rat brain (with peak levels within 2 min) and

then rapidly eliminated from the brain (with a brain tissue half-life of approximately 30–50

min) (Conway & Jarrott, 1980). Consequently, clonidine was administered IP at 30 min

before the start of alcohol access in the current study, consistent with the 30 min lead time

for IP administration commonly used for other investigations of clonidine effects on rat

behaviors (e.g., Shaham, Highfield, Delfs, Leung, & Stewart, 2000).

Clonidine treatment decreased voluntary alcohol drinking without significantly changing

water drinking during the daily 2-h free-choice between alcohol and water. A compensatory

increase in water intake did not accompany the clonidine-induced decrease in 2-h alcohol

intake even though we previously demonstrated that increases in water intake normally

accompanied reductions in 2-h alcohol intake produced by prazosin (Rasmussen et al.,

2009), and clonidine did increase subsequent water intake as revealed by increased 24-h

water intake. The lack of acute increase in water intake during the 2-h free choice between

alcohol and water in clonidine-treated rats suggests a possible confound due to potential

acute antidipsogenic effects of clonidine (Fregly, Kelleher, & Greenleaf, 1981).
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The lowest dose of clonidine to suppress alcohol drinking (40 µg/kg) had previously been

reported to produce no motor impairment in the rotarod test (De Luca, Nunes de Souza,

Yada, & Meyer, 1999) and not to compromise operant responding for food (Shaham et al.,

2000), suggesting that the decrease in alcohol intake after treatment with this dose of

clonidine was not due to sedation or motor impairment. To test this further, we assessed the

effect of this dose of clonidine on intake of a palatable saccharin solution and found that

saccharin intake was reduced as well as alcohol intake. This suppression of saccharin intake

may in part reflect motor or hypnotic effects, or may be due to a more generalized

suppression in intake of reinforcing substances. At the highest clonidine dose used in the

current study (80 µg/kg BW), it is likely that acute hypotensive/sedating effects, which are

known to be associated with high doses of clonidine, contributed to the profound clonidine-

induced suppression of alcohol consumption. It has been reported that when a bolus

intravenous (IV) injection of clonidine was followed immediately (within 10 min) by an IV

injection of 1 g alcohol/kg BW, clonidine acutely increased alcohol-induced sedation by an

α2A-adrenergic receptor-mediated mechanism (Bender & Abdel-Rahman, 2009). Hence, it

also is possible that the high (80 µg/kg) dose of clonidine enhanced the acute sedating

effects of alcohol, thus leading to a cessation of alcohol drinking early in the 2-h alcohol-

access period. Recent evidence suggests that some α2-agonist effects, including sedation,

can be mediated by α2-adrenoceptor receptors located on non-adrenergic cells rather than by

autoreceptor-mediated inhibition of norepinephrine release (Gilsbach et al., 2009).

In the present study, alcohol intake remained suppressed for 24 h following termination of 2

days of clonidine treatment. This is not likely due to the continued presence of circulating

clonidine since the half-life of clonidine is less than 1 h in rats (Hui et al., 2007). The

continued suppression of alcohol intake following termination of clonidine treatment could

reflect acute clonidine-induced alterations in α-adrenergic receptors. With more prolonged

clonidine treatment (5 consecutive days), suppression of alcohol drinking was maintained

over the course of treatment, indicating that drug tolerance to clonidine did not develop. In

the 5-day treatment paradigm, the last day of clonidine treatment was Friday, and the first

day of post-drug testing did not occur until the following Monday, so the duration of

suppression of drinking could not be comprehensively assessed. However, alcohol drinking

was no longer suppressed at 72 h after the final clonidine administration, indicating no long-

term residual effects of the drug.

It has been suggested that noradrenergic signaling may play a key role in mediating both

reinforcement by and relapse to various drugs of abuse. This view is supported by evidence

that clonidine attenuates symptoms associated with short-term opiate (Gold & Pottash,

1981), alcohol (Björkqvist, 1975), and nicotine (Glassman, Jackson, Walsh, Roose, &

Rosenfeld, 1984) withdrawal in humans. For example, clonidine decreases craving, anxiety,

tension, irritability, and restlessness associated with nicotine withdrawal (Glassman et al.,

1984). More recently, administration of clonidine or other α2-adrenergic receptor agonists

(e.g., lofexidine, guanfacine, guanabenz) has been demonstrated to attenuate stress-induced

reinstatement of opiate, cocaine, and alcohol seeking in rats (Erb et al., 2000; Highfield,

Yap, Grimm, Shalev, & Shaham, 2001; Lé et al., 2005; Shaham et al., 2000). These results

are consistent with evidence that blocking post-synaptic α1-adrenergic receptors with

prazosin decreases consumption of cocaine, opiates, nicotine, and alcohol (Greenwell,
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Walker, Cottone, Zorrilla, & Koob, 2009; Rasmussen et al., 2009; Simpson et al., 2009;

Villégier, Lotfipour, Belluzzi, & Leslie, 2007; Wee, Mandyam, Lekic, & Koob, 2008;

Zhang & Kosten, 2005, 2007) and with the findings of the current study that inhibiting

noradrenergic signaling with the α2-adrenergic receptor agonist, clonidine, decreases

voluntary alcohol consumption.

Overall, these results suggest that drugs that suppress noradrenergic signaling could be

effective pharmacotherapeutic agents for the treatment of alcohol-use disorders, but care

will be required to choose the agents that will be particularly useful in reducing alcohol

drinking without introducing potentially deleterious side effects. More work is needed in

order to identify the optimal combination of agents that are selective for specific α2-

adrenergic receptor subtypes, or agents with mixed adrenergic receptor activity, that are

most effective for decreasing alcohol intake. An assessment of the ability of various

noradrenergic agents to decrease alcohol drinking is likely to result in the establishment of a

hierarchy of drug efficacy within this class of drugs that hold promise as potential

pharmacotherapeutic agents for the treatment of alcohol abuse and alcoholism.
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Figure 1. INITIAL 2-DAY TREATMENT
Effects of clonidine (10, 20, 40, 80 µg/kg BW, IP) on 2-h alcohol intake by adult male P

rats. Clonidine was injected on each of 2 consecutive days (Days 1 and 2) at 30 min prior to

onset of a 2-h free-choice between alcohol (15% v/v) and water. ***p < 0.001 vs. saline

control treatment, independent of drug treatment day; *p < 0.05 vs. previous saline control

treatment, independent of post-drug day.
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Figure 2. INITIAL 2-DAY TREATMENT
Effects of clonidine (10, 20, 40, 80 µg/kg BW, IP) on 2-h water intake by adult male P rats.

Clonidine was injected on each of 2 consecutive days (Days 1 and 2) at 30 min prior to onset

of a 2-h free-choice between alcohol (15% v/v) and water.
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Figure 3. SUBSEQUENT 5-DAY TREATMENT
Effects of clonidine (10, 20, 40, 80 µg/kg BW, IP) on 2-h alcohol intake by adult male P

rats. Clonidine was injected on each of 5 consecutive days (Days 1–5) at 30 min prior to

onset of a 2-h free-choice between alcohol (15% v/v) and water. Alcohol was not available

on weekends. The Pre-Drug Day was a Friday preceding Drug Days 1–5 (Monday–Friday of

the following week) and Post-Drug Days 3 and 4 were on Monday and Tuesday of the week

following termination of clonidine treatment. ***p < 0.001 vs. saline control treatment,

independent of drug treatment day.
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Figure 4. SUBSEQUENT 5-DAY TREATMENT
Effects of clonidine (10, 20, 40, 80 µg/kg BW, IP) on 2-h water intake by adult male P rats.

Clonidine was injected on each of 5 consecutive days (Days 1–5) at 30 min prior to onset of

a 2-h free-choice between alcohol (15% v/v) and water. Alcohol was not available on

weekends. The Pre-Drug Day was a Friday preceding Drug Days 1–5 (Monday–Friday of

the following week) and Post-Drug Days 3 and 4 were on Monday and Tuesday of the week

following termination of clonidine treatment.
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Figure 5. EFFECTS OF CLONIDINE ON SACCHARIN INTAKE
Clonidine (40 µg/kg BW, IP) was injected on each of 3 consecutive days at 30 min prior to

onset of a 2-h free-choice between water and saccharin solution (0.04 g/L). **p < 0.01 vs.

saline control treatment, independent of treatment day.
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