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Abstract

Immunodeficiency in chronic granulomatous disease (CGD) is well characterized. Less 

understood are exaggerated sterile inflammation and autoimmunity associated with CGD. 

Impaired recognition and clearance of apoptotic cells resulting in their disintegration may 

contribute to CGD inflammation. We hypothesized that priming of macrophages (Mϕs) with IFN-

γ would enhance impaired engulfment of apoptotic cells in CGD. Diverse Mϕ populations from 

CGD (gp91phox−/−) and wild-type mice, as well as human Mϕs differentiated from monocytes and 

promyelocytic leukemia PLB-985 cells (with and without mutation of the gp91phox), demonstrated 

enhanced engulfment of apoptotic cells in response to IFN-γ priming. Priming with IFN-γ was 

also associated with increased uptake of Ig-opsonized targets, latex beads, and fluid phase 

markers, and it was accompanied by activation of the Rho GTPase Rac. Enhanced Rac activation 

and phagocytosis following IFN-γ priming were dependent on NO production via inducible NO 

synthase and activation of protein kinase G. Notably, endogenous production of TNF-α in 

response to IFN-γ priming was critically required for inducible NO synthase upregulation, NO 

production, Rac activation, and enhanced phagocytosis. Treatment of CGD mice with IFN-γ also 

enhanced uptake of apoptotic cells by Mϕ in vivo via the signaling pathway. Importantly, during 

acute sterile peritonitis, IFN-γ treatment reduced excess accumulation of apoptotic neutrophils and 

enhanced phagocytosis by CGD Mϕs. These data support the hypothesis that in addition to 

correcting immunodeficiency in CGD, IFN-γ priming of Mϕs restores clearance of apoptotic cells 

and may thereby contribute to resolution of exaggerated CGD inflammation.

Chronic granulomatous disease (CGD) is traditionally characterized by immunodeficiency 

due to the lack of a functioning NADPH oxidase (1–4). Additionally, this disorder is 

characterized by autoimmunity and over-exuberant sterile inflammation (1–3, 5). It is 
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hypothesized that inflammatory complications of CGD result from the lack of inhibitory 

signals downstream of the NADPH oxidase. The nature of such anti-inflammatory signals is 

not fully elucidated (2, 6, 7). However, both a critical absence of proper signaling by 

apoptosing CGD neutrophils with inadequate exposure and modification of 

phosphatidylserine (7–10), as well as the inability of improperly programmed CGD 

macrophages (Mϕs) to recognize and engulf apoptosing cells, have been documented (11). 

Apoptosing neutrophils, in particular, if not cleared, degrade and release injurious 

intracellular constituents (e.g., proteases and cationic proteins) that further spur 

inflammation and can lead to autoimmunity (12). Conversely, apoptotic cell recognition is 

potently anti-inflammatory, driving the production of anti-inflammatory mediators, such as 

TGF-β, that actively suppress production of inflammatory cytokines, chemo-kines, and 

eicosanoids (13). Diminished production of these aforementioned anti-inflammatory 

mediators accompanying Mϕ phagocytosis of apoptotic cells has been shown in CGD (6).

Recombinant human IFN-γ has been used therapeutically for CGD patients for a number of 

years since it was demonstrated to reduce the frequency and severity of infections (14, 15). 

The mechanisms for its efficacy are likely multifactorial (16-19) and remain controversial 

(20, 21). For instance, IFN-γ enhancement of antimicrobial activity includes upregulation of 

Fc and complement receptor expression and enhanced phagocytosis of opsonized pathogens, 

as shown in some (22, 23), but not all, studies (24). In addition to antimicrobial effects, anti-

inflammatory effects downstream of IFN-γ treatment are also recognized (25). Recently, it 

was shown that IFN-γ, when administered with the tryptophan metabolite kynurenine, 

suppressed inflammation and enhanced survival in fungal infection in CGD mice by a 

mechanism theorized to include enhanced metabolism of kynurenine and generation of 

regulatory T cells (2). Additionally, IFN-γ priming has been shown to enhance clearance of 

apoptotic cells by several Mϕ populations although the mechanisms have not been fully 

elucidated (26, 27) (see Discussion). The effects of IFN-γ on apoptotic cell clearance have 

not been investigated in CGD. Accordingly, we hypothesized that IFN-γ priming of CGD 

Mϕs would enhance apoptotic cell clearance, reversing the contribution of this defect to 

exaggerated CGD inflammation.

In this study, we demonstrate that IFN-γ priming enhances the uptake of apoptotic cells by 

both CGD and wild-type (WT) Mϕs, reversing the impaired uptake of apoptotic cells of the 

former in vitro and in vivo. The IFN-γ–driven intracellular pathway leading to enhanced 

engulfment is defined. Investigation showed that the effects of IFN-γ priming were not 

isolated to the engulfment of apoptotic cells; that is, IFN-γ priming enhanced the uptake of 

fluid phase markers (pinocytosis), Ig-opsonized targets, and latex beads, all thought to be 

dependent on activation of the Rho GTPase Rac (28, 29). Mechanistic studies utilizing both 

murine and human Mϕs demonstrated that the IFN-γ–enhanced phagocytic capacity was 

dependent on the sequential production of TNF-α leading to upregulation of inducible NO 

synthase (iNOS), NO production, and the activation of protein kinase G (PKG); these events 

led ultimately to the activation of Rac. We hypothesize that IFN-γ treatment in CGD aids in 

the removal of apoptotic inflammatory cells before their disintegration, and it thereby may 

help to overcome pervasive CGD Mϕ impairment (11) in apoptotic cell clearance that 

results in proinflammatory consequences.
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Materials and Methods

Reagents

Recombinant mouse IFN-γ was purchased from R&D Systems (Minneapolis, MN), and 

PMA and 1α,25-dihydroxycholecalciferol (vitamin D3) were from Sigma-Aldrich (St. 

Louis, MO). N6-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL) from Cayman Chemical 

(Ann Arbor, MI) was used to inhibit iNOS. S-Nitroso-N-acetylpenicillamine (SNAP) from 

Cal-biochem (San Diego, CA) was used as a spontaneous NO donor. Texas Red dextran 

from Invitrogen (Carlsbad, CA) and Lucifer yellow (LY) from Molecular Probes (Eugene, 

OR) were used as indicators of fluid phase uptake. Rabbit anti-LY and isotype rabbit IgG 

(Molecular Probes) were used to amplify the signal and were detected using FITC-labeled 

anti-rabbit Ab (Jackson ImmunoResearch Laboratories, West Grove, PA). A546 phalloidin 

(Molecular Probes) was used to demonstrate assembled actin. KT5823 from Calbiochem 

was used to inhibit PKG. TNF-α–neutralizing Ab and goat IgG isotype Ab (10 μg/ml) were 

obtained from R&D Systems. Latex beads (5 μm) came from Bangs Laboratories (Fishers, 

IN). Anti-human CD3 Ab (1 μg/106 cells) from eBioscience (San Diego, CA) was used to 

opsonize viable Jurkat T cells.

Animals

All mice received care in accordance with the guidelines of the Institutional Animal Care 

and Use Committee at National Jewish Health (Denver, CO). C57BL/6, X-CGD 

(gp91phox−/−), TNFR1−/−, and iNOS−/− mice were purchased from The Jackson Laboratory 

(Bar Harbor, ME). All mice were maintained on food and water ad libitum in the Animal 

Care Facility at National Jewish Health. Except where otherwise indicated, mice were used 

between 8 and 16 wk of age and strains were age and gender matched for each experiment. 

The mice provided a source of bone marrow-derived Mϕs (BMDMϕs), resident and 

thioglycollate-elicited peritoneal Mϕs, and thymocytes (see below for cell culture 

conditions). Thioglycollate-elicited peritoneal Mϕs were obtained according to previously 

established methods (30). Briefly, mice were injected i.p. with 1.0 ml of a 4% sterile and 

aged (1 mo) solution of Brewer thioglycollate medium (Difco Laboratories, Detroit, MI). At 

3 d postinjection, mice were euthanized with CO2, and the peritoneal cavity was lavaged 

with 5–10 ml of sterile HBSS (Cellgro, Kansas City, MO) supplemented with 1 mM EDTA 

and 10 mM HEPES (pH 7.2). Peritoneal cells were collected, centrifuged at 1000 rpm for 10 

min at 4°C, and resuspended in DMEM (Cellgro) supplemented with 10% heat-inactivated 

FBS (American Type Culture Collection [ATCC], Manassas, VA), 2 mM L-glutamine, 100 

μg/ml streptomycin, and 100 U/ml penicillin in humidified 10% CO2 at 37°C. After 1 h of 

culture, nonadherent cells were aspirated and prewarmed fresh media was added to each 

well. For resident peritoneal Mϕ isolations, naive mice were used and the harvested cells 

handled as above.

Where indicated, mice were treated with IFN-γ (500 ng, 42,000 U i.p.) verus PBS on a 

single occasion, and resident peritoneal Mϕs were harvested 24 h later, plated, and tested ex 

vivo for phagocytosis (see below). In the acute, sterile peritonitis model, mice were treated 

with IFN-γ or PBS at time −24 h, then zymosan (1 mg i.p.) at time 0 h, and then IFN-γ or 

PBS at time 24 h. Mice were euthanized and peritoneal cells were harvested at either time 6 
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or 48 h after zymosan instillation. Peritoneal cells were harvested by lavage as indicated 

above, and absolute cell numbers were obtained using a Coulter counter (Coulter 

Channelyzer 256). Cytospins of cells from peritoneal lavages were prepared, fixed, and 

stained with modified Wright-Giemsa (Fisher Scientific, Pittsburg, PA) and read in a 

blinded fashion to determine cell differentials, phagocytic indices, and apoptosis of 

neutrophils by nuclear morphology from microscopic examinations.

Human monocyte-derived Mϕs

Healthy subjects were the source of whole blood obtained by venipuncture in accordance 

and with the approval of the National Jewish Health Institutional Review Board. Written 

informed consent was obtained from each subject. Monocytes were isolated from whole 

blood using a Percoll gradient centrifugation, as previously described (31). Monocytes (5 × 

105) were plated in 24-well tissue culture plates (BD Biosciences, San Jose, CA) and 

matured to Mϕs by culturing in X-Vivo medium (BioWhittaker, Walkersville, MD) 

containing 10% human serum at 37°C in 10% CO2 for 6 d. Medium was changed on days 3 

and 6.

Cell culture

Peritoneal resident and thioglycollate-elicited Mϕs were cultured in DMEM supplemented 

with 10% heat-inactivated FBS (ATCC), 2 mM L-glutamine, 100 μg/ml streptomycin, and 

100 U/ml penicillin in humidified 10% CO2 at 37°C for 24 h before use. Mouse BMDMϕs 

were prepared and cultured in DMEM containing 10% (v/v) FBS and 10% (v/v) L cell-

conditioned medium as a source of M-CSF for 5 d as previously described (32). Murine 

J774 Mϕ-like cells (ATCC) were cultured as described for peritoneal Mϕs. Murine RAW 

264.7 Mϕ-like cells (ATCC) were cultured in the same medium as above in humidified 5% 

CO2 at 37°C. Promyelocytic leukemia PLB-985 cell lines, both functionally sufficient for, 

and devoid of, NADPH oxidase activity, were maintained in RPMI 1640 medium 

supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 

100 μg/ml streptomycin. These cells have been described previously, and the latter cells 

carry an in-frame deletion (exon 3) within gp91phox, rendering them with a nonfunctional 

NADPH oxidase (33). Differentiation into Mϕ-like cells was done by plating 3.0 × 105 

cells/ml in a 24-well tissue culture dish and stimulated using 30 nM PMA and 200 nM 

vitamin D3 for 3 d prior to use. Differentiation into Mϕ-like cells was determined by 

assessment of morphological features (34). The human leukemia Jurkat T cell line was 

obtained from ATCC and was cultured in RPMI 1640 (MediaTech, Herndon, VA) 

containing 10% heat-inactivated FBS supplemented with 2 mM L-glutamine, 100 U/ml 

penicillin, and 100 μg/ml streptomycin (Sigma-Aldrich) in humidified 5% CO2 at 37°C.

Induction of apoptosis

Jurkat T cells were exposed to UV irradiation at 254 nm for 10 min and cultured for 2.5 hin 

5% CO2 at 37°C. Apoptosis was quantified by evaluation of nuclear morphology at the light 

microscopic level. By these methods, these cells were typically 70–90% apoptotic. 

Thymocytes isolated from 4-wk-old C57BL/6 mice were exposed to UV radiation for 5 min 

in RPMI 1640 with 10% FBS and cultured in 5% CO2 at 37°C for × h. Apoptosis of these 

cells was confirmed by Alexa Fluor 488-annexin V (Invitrogen) and propidium iodide 
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(Sigma-Aldrich) staining. Thymocytes were 50–70% apoptotic (annexin V+, propidium 

iodide−) by these methods. PKH26 (10 μM; Sigma-Aldrich) was used to label thymocytes 

for 15 min in a 37°C water bath. The reaction was stopped with 10% FBS and cells were 

washed twice in RPMI 1640 and resuspended in PBS (20 × 106 cells/ml).

Phagocytosis assays

In vitro phagocytosis assays were performed as previously described (35). For these assays, 

Mϕ cultures were as follows (number per well in 24-well plates): BMDMϕs (1 × 105) for 5 

d, thioglycollate-elicited Mϕs (3 × 105) overnight, resident peritoneal Mϕs (5 × 105) 

overnight, human monocyte-derived Mϕs (HMDMϕs; 5 × 105) for 6 d, and PLB-985 cells 

(1 × 105) for 2 d. Where pretreated, the Mϕs were washed with warm media before 

treatment with IFN-γ (50 ng/ml for 24 h), L-NIL (0.5 mM for 15 min), SNAP (0.05 mM for 

24 h), anti–TNF-α (10 μg/ml for 30 min before IFN-γ), or KT5823 (10 μM for 30 min 

before IFN-γ). The cells were washed three times before adding apoptotic or opsonized 

Jurkat T cells at a ratio of 4:1 (Jurkat T cells to phagocytes), or latex beads at a ratio of 1:4 

resuspended in phagocyte media. The cells were cocultured with targets for 90 min at 37°C 

in 5% CO2, washed three times with PBS, and stained with a modified Wright-Giemsa stain 

(Fisher Scientific). Wells were read without knowledge of treatments. The phagocytic index 

was calculated by multiplying the percentage of Mϕs that phagocytosed a target by the 

average number of targets engulfed per Mϕ (30). A minimum of 200 Mϕs were counted and 

each condition was tested in duplicate and results averaged and repeated at least three times. 

Expressing the phagocytic index as a percentage of control allowed for comparison of 

experiments from various murine strains, Mϕ sources, and cell line passage numbers.

In vivo phagocytosis was assessed in sterile peritonitis following examination of uptake by 

Mϕs on cytospins. Alternatively, and where indicated, in vivo phagocytosis by resident Mϕs 

of the peritoneum was assessed by injecting 10 × 106 PKH-labeled apoptotic thymocytes 

(see above) i.p. for 1 h, and lavages were performed after mice were euthanized. The 

phagocytic index was calculated as above from cytospin slides read without knowledge of 

mouse genotype or treatment (PBS or IFN-γ).

Uptake of fluid phase markers

RAW 264.7 Mϕs were plated at 1.0×105 for 24 h and treated with IFN-γ (50 ng/ml) for 24 h. 

LY was added at a final concentration of 0.5 mg/ml for the last 10 min of incubation. The 

cells were then washed three times with cold PBS and fixed with 4% paraformaldehyde 

(Electron Microscopy Services, Ft. Washington, PA) on ice for 20 min. The cells were 

washed again three times with PBS and the nuclear stain DAPI (Invitrogen) was added at 

1/1000 in PBS for 10 min at room temperature. After three further washes with PBS, the 

cells were permeabilized in PBS 0.5% Triton X-100, blocked in PBS plus 2% BSA before 

being incubated with a 15/00 dilution of anti-LY Ab, washed, and counterstained with FITC 

anti-rabbit IgG Ab. The cells were then analyzed by fluorescent microscopy (Leica 

Microsystems, Wetzlar, Germany) with imaging software Slidebook (Intelligent Imaging 

Innovations, Denver, CO).
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NO detection

NO was detected in the supernatants after stimulation using a modified colorimetric assay 

based on the assay described by Green et al. (36). The colorimetric assay is a two-step 

process. The first step involves chemical or enzymatic reduction of nitrate to nitrite; the 

second step requires reaction of nitrite with the Griess reagent, diazotization of 

sulfanilamide, and coupling to naphthylene diamine. The samples are compared with a 

standard curve and measured at an absorbance of 550 nm in an ELISA reader.

ELISA measurements

For cytokine measurements, BMDMϕs were cultured and treated with the various reagents 

as described above, and the supernatants were carefully removed and immediately frozen at 

−70°C. ELISAs were performed according to the manufacturer's instructions (BD 

Pharmingen, San Diego, CA). OptEIA reagents were used for these ELISAs and sensitivity 

was ∼7 pg/ml.

Western blot analysis

Cell lysates (10 μg of protein) were analyzed using 10% SDS-PAGE gel, transferred onto 

polyvinylidene difluoride membrane, blocked for 1 h (PBS plus 5% nonfat milk), and 

incubated with Ab (anti-mouse iNOS from Calbiochem; 1/1000) for 20 h followed by 

addition of secondary Ab (1/1000) for a half hour. Detection was performed using ECL 

substrate (Amersham Biosciences, Piscataway, NJ) following the manufacturer's 

instructions.

Rac activity assays

Rac activity assays were performed according to the manufacturer's indications (Upstate, 

Charlottesville, VA). Briefly, 2.5 × 106 BMDMϕs were plated for 5 d and, where indicated, 

they were stimulated with IFN-γ (50 ng/ml for 24 h). Samples were lysed and active Rac 

was isolated using Sepharose-bound PAK. Lysates were incubated for 1 h, washed, boiled, 

and run on a 12% SDS-PAGE gel. To ensure equal loading, 50 l of whole-cell lysate were 

run on the gel for each condition, and total Rac levels were evaluated after being transferred 

onto polyvinylidene difluoride membrane, blocked for 1 h (H2O plus 5% nonfat milk), and 

incubated with Ab (anti-mouse Rac provided with kit; 1/1000) for 20 h followed by addition 

of secondary Ab (1/1000) for a half hour. Detection was performed using ECL substrate 

(Amersham Biosciences) following the manufacturer's instructions.

Densitometry analysis

Western blots were scanned and analyzed using ImageJ analysis from the National Institutes 

of Health. The scans were inverted and the background was subtracted before measuring the 

relative protein amounts. All conditions were expressed as a percentage of the untreated 

control. For Rac activity, the amount of protein was expressed as a ratio of active Rac to 

total Rac.
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Statistical analysis

All experiments were performed at least three times. Statistical analysis and p value 

calculations were conducted using ANOVA (JMP statistical program [SAS Institute, Cary, 

NC]). The Dunnett's and Tukey-Kramer nonparametric tests were used for single and 

multiple comparisons, respectively.

Results

IFN-γ priming enhances uptake of apoptotic cells by both CGD and WT Mϕs in vitro and in 
vivo

To test the hypothesis that IFN-γ priming enhances clearance of apoptotic cells by CGD 

Mϕs, BMDMϕs, and harvested peritoneal Mϕs from gp91phox−/− and WT mice were 

incubated with or without recombinant IFN-γ (50 ng/ml) for 24 h before assaying uptake of 

apoptotic cells in vitro. Initial pilot experiments indicated that these were the optimal dose 

and time for assessment of uptake (Supplemental Fig. 1). As described previously, uptake of 

apoptotic cells by CGD BMDMϕs and peritoneal Mϕs, both resident and thioglycollate-

elicited, was impaired relative to the respective WT Mϕ populations (Fig. 1A–C) (11). For 

example, phagocytic indices were consistently 30% or lower for CGD versus WT BMDMϕs 

(p ≤ 0.05). Significantly, overnight priming with IFN-γ in vitro enhanced apoptotic cell 

engulfment by all CGD Mϕ populations such that uptake was “normalized” or surpassed 

that of respective control WT Mϕs. These same findings were demonstrated for 

phagocytosis of apoptotic cells in vivo (Fig. 1D). In this study, fluorescently labeled 

apoptotic cells were injected into the peritonea of CGD and WT mice, cells were harvested 1 

h later, and uptake of apoptotic cells into Mϕs was determined (see Materials and Methods). 

The phagocytic index for CGD peritoneal Mϕs was significantly less than for WT.

Whereas a single i.p. injection of either IFN-γ or PBS did not induce obvious peritoneal 

inflammation based on harvested cell numbers or differentials (data not shown), following 

IFN-γ treatment, in vivo uptake of apoptotic cells into CGD peritoneal Mϕs was markedly 

enhanced. Notably, treatment of WT Mϕ populations with IFN-γ, both in vitro and in vivo, 

significantly enhanced uptake of apoptotic cells over the respective baselines as well, 

demonstrating a generalized effect of IFN-γ priming for apoptotic cell uptake that was 

independent of the NADPH oxidase. Furthermore, just as with primary Mϕs, overnight 

priming of RAW 264.7 and J774 cells with IFN-γ enhanced uptake of apoptotic cells by 500 

and 160%, respectively (data not shown).

To determine whether IFN-γ enhanced phagocytosis in human cells, monocytes were 

isolated from whole blood and matured into Mϕs over a period of 6 d. These HMDMϕs also 

showed enhanced engulfment of apoptotic cells after overnight priming with IFN-γ (Fig. 

1E). Finally, the effect of IFN-γ was investigated using human promyelocytic leukemia 

PLB-985 cells, with and without a functional gp91phox, following their differentiation into 

Mϕ-like cells. As reported recently by Sanmun et al. (34), and consistent with the other 

populations shown, the PLB-985 cells with functionally deficient gp91phox (X-CGD PLB 

cells) demonstrated diminished uptake of apoptotic cells at baseline in comparison with 

nonmutated PLB-985 cells. As in the other Mϕs, IFN-γ priming enhanced uptake 
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significantly in both cell types (Fig. 1F). Taken together, these data demonstrated the 

pervasiveness of the deficit in apoptotic cell uptake in CGD Mϕs relative to normal Mϕs, 

and they showed that IFN-γ enhanced uptake of apoptotic cells in all of the populations 

tested.

Notably, in the literature, IFN-γ treatment has been associated with both enhancement and 

suppression of phagocytic responses depending on the Mϕs, target for phagocytosis, or 

conditions investigated (22–24, 37–41). Under conditions of this investigation, IFN-γ 

priming of RAW 264.7 cells resulted in obvious uptake of LY (Fig. 2B–D) or Texas Red 

dextran (molecular mass, 10,000 kDa) (not shown), staining that largely colocalized to areas 

of ruffling and assembled actin (Fig. 2B–D). These observations suggested the possibility 

that enhanced uptake of apoptotic cells into IFN-γ–primed Mϕs might represent a more 

generalized enhancement of phagocytosis. Phagocytosis of Ig-opsonized cells and 

unopsonized 5 μm latex beads were next investigated in BMDMϕs from CGD and WT mice 

to test for specificity of the target engulfed. IFN-γ priming resulted in enhancement of 

phagocytosis of Ig-opsonized viable Jurkat cells by both WT and CGD Mϕs (Fig. 2E). 

Similarly, the uptake of unopsonized latex beads was also enhanced by IFN-γ priming, 

demonstrating clearly that under these conditions, IFN-γ enhancement of phagocytosis was 

not specific for apoptotic cells (Fig. 2F).

IFN-γ priming enhances phagocytosis of apoptotic cells by a mechanism dependent on 
NO production

Previous reports have demonstrated that IFN-γ stimulation frequently results in de novo 

synthesis of iNOS and increased NO production (19) implicated in IFN-γ–associated host 

defense (e.g., increased ability to kill ingested microbes that is ablated by inhibitors of 

iNOS) (18, 42, 43). Furthermore, NO production itself has been associated with enhanced 

phagocytosis by LPS-stimulated Mϕs (44). We proposed that IFN-γ–driven enhancement of 

phagocytosis was mediated by NO. As shown, overnight priming of CGD and WT 

BMDMϕs with IFN-γ resulted in increased levels of iNOS detected in cell lysates and 

detectable NO in culture supernatants (Fig. 3A). Provision of the NO donor SNAP in place 

of IFN-γ resulted in similar enhancement of engulfment (Fig. 3B). Furthermore, a 

requirement for NO at the time of engulfment was demonstrated in that addition of an iNOS 

inhibitor, L-NIL, for 15 min prior to uptake assays abrogated enhancement due to IFN-γ 

priming, while having no effect on the constitutive ability of either cell type to ingest 

apoptotic cells. Additional support that iNOS-dependent NO production was required for 

IFN-γ–enhanced engulfment was obtained using BMDMϕs from iNOS−/− mice. Following 

priming of these cells with IFN-γ, neither increased NO levels (Fig. 3C) nor enhanced 

apoptotic cell engulfment was demonstrated (Fig. 3D). On the contrary, in the absence of 

NO production, IFN-γ priming of these cells resulted in diminished uptake of apoptotic 

cells.

NO was originally recognized as an endogenous vasodilator, and in vascular endothelium 

PKG is the principal effector of this response. To explore the role of PKG in IFN-γ–

primed/NO-mediated phagocytosis, an inhibitor of PKG, KT5823, was added to CGD and 

WT BMDMϕs before IFN-γ priming and subsequent uptake was assayed. The PKG 
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inhibitor significantly abolished the effects of priming by IFN-γ (Fig. 3E). Similarly, 

enhancement of uptake mediated by the NO donor, SNAP, was inhibited by KT5823. These 

results suggest that IFN-γ/iNOS/NO-cGMP–PKG signaling is required in the IFN-γ–

dependent enhancement of apoptotic cell phagocytosis. To test whether this same pathway 

was used by human Mϕ populations, which are thought to produce less NO in response to 

IFN-γ than to murine Mϕs (45), we investigated HMDMϕs and the PLB-985 cells. As 

shown in Fig. 3F, these Mϕs responded identically, suggesting that the IFN-γ/iNOS/NO-

cGMP–PKG signaling is operant in these human cells as well.

Endogenous production of TNF-α is required for NO-dependent enhancement of apoptotic 
cell engulfment following IFN-γ priming

There is growing evidence for TNF-α mediating IFN-γ–induced NO production. IFN-γ–

induced expression of iNOS and production of NO is enhanced by addition of TNF-α (46), 

and, more importantly, IFN-γ is known to upregulate endogenous TNF-α production in 

Mϕs, including BMDMϕ (47). Furthermore, IFN-g–mediated NO production after 

trypanosome infection requires signaling via the TNF-α p55 receptor (48), and endogenous 

production of TNF-α was necessary for NO-driven uptake of opsonized yeast by phagocytes 

(49). In light of these data, the role of TNF-α in IFN-γ–primed Mϕs and the enhanced 

uptake of apoptotic cells was investigated. Enhancement in the level of secreted TNF-α was 

observed for both CGD and WT BMDMϕs following IFN-γ priming (Fig. 4A). To establish 

that TNF-α production was not downstream of PKG activation, BMDMϕs were pretreated 

with KT5823 and TNF-α levels were determined. As shown, inhibition of PKG had no 

effect on TNF-α production. Conversely, upregulation of iNOS and production of NO were 

dependent on endogenous TNF-α production as demonstrated by pretreatment with a 

neutralizing Ab to TNF-α (but not isotype control) in both CGD and WT BMDMϕs (Fig. 

4B). Although TNF-α itself has variable effects on apoptotic cell uptake depending on 

conditions (see Discussion), given the role of TNF-α in the upregulation of iNOS, we 

hypothesized that phagocytic enhancement associated with IFN-γ priming would be TNF-α 

dependent. To determine this, BMDMϕs were primed with IFN-γ overnight in the presence 

or absence of either anti–TNF-α Ab or isotype control Ab. As predicted, neutralization of 

TNF-α prevented enhancement of apoptotic cell uptake by IFN-γ–primed CGD and WT 

BMDMϕs, whereas isotype control Ab had no effect (Fig. 4C). Identical responses were 

demonstrated in IFN-γ– primed HMDMϕs and Mϕ-like PLB-985 cells (Fig. 4E, 4F). 

Additionally, BMDMϕs from TNFR1−/− mice did not show enhanced uptake of apoptotic 

cells following IFN-γ priming (Fig. 4D). Further confirmation of this sequential relationship 

was obtained when provision of the NO donor SNAP resulted in enhanced phagocytosis that 

was not inhibited by TNF-α neutralization (data not shown). These data establish that IFN-γ 

priming enhances the uptake of apoptotic cells by the sequential production of TNF-α, 

resulting in iNOS upregulation, NO production, and activation of PKG.

IFN-γ priming for enhanced uptake of Ig-opsonized cells is also dependent on the TNF-α–
driven, NO-dependent pathway

Generally, uptake of apoptotic cells involves uptake of fluid phase constituents into spacious 

phagosomes (but see Ref. 50) via unique signaling pathways (35), whereas phagocytosis of 

latex beads (5 mm) and Ig-opsonized cells is thought to occur by a tighter “zipper” 

Fernandez-Boyanapalli et al. Page 9

J Immunol. Author manuscript; available in PMC 2015 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanism (51). To test the specificity of the described pathway, IFN-γ priming for 

enhanced phagocytosisof Ig-opsonized cells was also investigated. Just as in the case of 

uptake of apoptotic cells, TNF-α neutralization, inhibition of NO production, or inhibition of 

PKG activation also inhibited the IFN-γ–enhanced phagocytosis of these targets in CGD and 

WT BMDMϕs (Fig. 5). Thus, the same pathway for IFN-γ enhancement was required 

regardless of particle phagocytosed and, by inference, was independent of the surface 

receptors employed to engage the particle.

Rac activation results from IFN-γ priming and is dependent on TNF-α, NO production, and 
PKG activation

Activation of the Rho GTPase Rac and consequent actin assembly are necessary for 

lamellipodia formation and membrane ruffling crucial to the uptake of apoptotic cells (52), 

pinocytosis (29), Ig-opsonized targets (28), and likely fungal conidia (53) and latex beads 

(54). Furthermore, NO and PKG have been shown to mediate effects on the cytoskeleton, 

and iNOS has been shown to localize to cortical actin and to physically interact with Rac in 

Mϕs (55). Given the data, as well as the ruffled appearance of IFN-γ–primed cells (Fig. 2), 

we hypothesized downstream activation of Rac following IFN-γ priming. Specifically, NO 

activation of Rac was hypothesized to be a likely effector mechanism underlying the 

enhanced phagocytic phenotype. As shown in Fig. 6, IFN-γ priming or provision of the NO 

donor SNAP strongly activated Rac in both CGD and WT BMDMϕs. As predicted, 

pretreatment with KT5823 prior to IFN-γ, or addition of L-NIL 30 min before assay, 

inhibited Rac activation. Finally, concurrent neutralization of TNF-α was effective in 

inhibiting Rac activation following IFN-γ priming, but not after provision of NO by SNAP, 

demonstrating that TNF-α acts upstream of NO production leading to Rac activation, just as 

in apoptotic cell uptake.

IFN-γ treatment of CGD mice primes Mϕs via the TNF-α/NO–dependent pathway

Because IFN-γ treatment of mice significantly enhanced the in vivo uptake of apoptotic cells 

by CGD and WT resident peritoneal Mϕs as shown in Fig. 1D, we investigated the in vitro 

mechanism as elucidated above for its role following in vivo IFN-γ treatment. Mice were 

treated as before with a single dose of IFN-γ or PBS, and 24 h later, Mϕs lavaged from the 

peritoneum were plated and treated in vitro with inhibitors as indicated for an additional 24 

h (Fig. 7A). Capacity for uptake of apoptotic cells was then determined and shown in Fig. 

7B. Forty-eight hours following injection of PBS in vivo, deficient uptake was again evident 

for CGD peritoneal Mϕ relative to WT Mϕs (indicated by the dashed line). Conversely, 48 h 

after IFN-γ treatment of CGD mice, enhanced apoptotic cell engulfment by CGD Mϕ was 

demonstrated with the level of uptake “normalized” to that of Mϕs from PBS-treated WT 

mice. Incubation of CGD Mϕs ex vivo with neutralizing Ab to TNF-α (but not isotype 

control) or KT5823 for 24 h prior to assay of apoptotic cell uptake inhibited the 

enhancement associated with in vivo IFN-γ treatment (Fig. 7B). As with in vitro priming 

with IFN-γ, the addition of the iNOS inhibitor L-NIL for 30 min before uptake assay 

inhibited the effect of in vivo IFN-γ treatment as well. For WT Mϕs, the enhancing effect of 

in vivo treatment with IFN-γ appeared to wane somewhat at 48 h, in that ex vivo apoptotic 

cell engulfment at this time point was only slightly increased in comparison with Mϕs 

harvested following PBS treatment (Fig. 7C and compare with 24 h in vivo data in Fig. 1D). 
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Nonetheless, WT Mϕs assayed ex vivo demonstrated the same responses to inhibitors. 

Taken together, these data confirm that the IFN-γ/TNF-α/iNOS/NO-PKG–dependent 

pathway (Fig. 7D), demonstrated initially in vitro for Mϕs, was also operant for peritoneal 

Mϕ following IFN-γ treatment of mice.

IFN-γ treatment of CGD mice results in reduced accumulation of apoptotic neutrophils and 
their enhanced phagocytosis by Mϕs during acute inflammation

These data demonstrated that IFN-γ treatment of mice resulted in enhanced uptake of 

apoptotic cells, both in vivo (Fig. 1D) and ex vivo (Fig. 7A–C), by resident Mϕs obtained 

from the uninflamed peritoneum, and established the mechanism (Fig. 7D). Next, it was 

important to determine whether IFN-γ treatment of CGD mice would enhance uptake of 

apoptotic cells in vivo during inflammation and potentially alter its exaggerated course. To 

answer this question, we used a well-described model of zymosan-induced peritonitis in 

which CGD mice demonstrate exaggerated neutro-philia and have accumulation of apoptotic 

neutrophils during the resolution of inflammation (56). Mice were treated with IFN-γ or 

PBS (i.p.) on the day before (−24 h) and the day after (24 h) i.p. zymosan injection (time 0) 

(Fig. 8A). Peritoneal cells were harvested for analysis at 6 and 48 h following zymosan. As 

shown, at 6 h after zymosan treatment, neutrophil and Mϕ numbers were not significantly 

altered by IFN-γ (versus PBS) treatment of mice of either genotype, suggesting that 

treatment had little effect on early recruitment of inflammatory cells (Fig. 8B). Apoptotic 

neutrophil numbers (as determined by nuclear morphology) were also not different between 

the treatment groups. However, a small but significant enhancement in the phagocytic 

indices for Mϕs from both WT and CGD mice treated with a single dose of IFN-γ (versus 

PBS) was observed. In a second group of mice receiving two doses of either PBS or IFN-γ 

on alternate days, peritoneal cell harvests at 48 h following zymosan treatment demonstrated 

striking differences during resolution of inflammation. Considering first mice treated with 

PBS, exaggerated neutrophilia was observed in the CGD mice compared with WT mice, in 

keeping with previous reports (7, 56, 57). Additionally, greater accumulations of apoptotic 

neutrophils and reduced phagocytic indices for Mϕs were observed in harvests from CGD 

compared with WT mice (Fig. 8C). These data are in accordance with a recent report by 

Rajakariar et al. (56), and they were consistent with defective clearance. In contrast to PBS 

treatment, treatment with IFN-γ resulted in significantly fewer neutrophils present in both 

CGD and WT mice, with near resolution of neutrophilia noted in the latter mice. 

Furthermore, the data from CGD mice supported enhanced clearance following IFN-γ 

treatment; accumulation of apoptotic neutrophils was significantly reduced and phagocytosis 

of apoptotic cells was significantly increased following IFN-γ treatment. Importantly, the 

clearance of cells by CGD Mϕs was nearly normalized to levels observed for WT Mϕs (Fig. 

8C).

Discussion

Uptake of apoptotic cells occurs by a unique process called efferocytosis (“to carry to the 

grave”) (58, 59). In efferocytosis, ligands on the apoptotic cell (e.g., phosphatidylserine and 

calreticulin) signal through various receptors or bridge molecule/receptor combinations on 

the Mϕs (59–61), and this signaling activates Rac1, leading to uptake into spacious 
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phagosomes in a process akin to macropinocytosis (35). Impaired efferocytosis has been 

demonstrated in murine CGD Mϕ populations, as well as in Mϕ-like cells derived from 

human PLB-985 cells lacking a functional gp91phox, relative to corresponding Mϕs with 

sufficient gp91phox function (Fig. 1) (11, 34). Impaired efferocytosis is hypothesized to 

contribute to exaggerated inflammation and autoimmunity characteristic of this disease (11). 

We have previously shown that efferocytosis (but not other phagocytic pathways) is restored 

in CGD with IL-4, a cytokine deficient in CGD Mϕs (11). Notably, heightened phagocytic 

capacity for various targets, and in various settings, has also been associated with IFN-γ 

(exogenous or endogenously produced), for example, the uptake of pathogens (23, 62) and 

apoptotic cells (27). Given that IFN-γ is used as a prophylactic treatment in CGD (see 

below), we sought to determine whether IFN-γ priming reversed impairment of CGD Mϕs 

in the uptake of apoptotic cells and, if so, to determine the mechanism.

As shown, IFN-γ priming, in vitro and in vivo, normalized the uptake of apoptotic cells by 

gp91phox-deficient Mϕs to levels equal to or surpassing gp91phox-sufficient Mϕs (Fig. 1). 

Uptake by gp91phox-sufficient Mϕ populations was also significantly enhanced over baseline 

levels by IFN-γ treatment. Importantly, however, priming of Mϕs with IFN-γ led to Rac 

activation and heightened phagocytosis for various particles tested in addition to apoptotic 

cells (Fig. 2). Notably, these effects of IFN-γ priming were unlike the effect of IL-4, which 

specifically restored efferocytosis in CGD Mϕs while having no effect on the uptake of 

these nonapoptotic targets or on WT Mϕs (11). These findings extend those of Ren and 

Savill (27) who showed that IFN-γ priming increased both the percentage of Mϕs 

(differentiated from human monocytes after 4 d of culture) capable of taking up apoptotic 

cells and the number of cells ingested per Mϕ. In this earlier work, phospho-L-serine did not 

block this IFN-γ–enhanced uptake, suggesting independence of the lipid ligand, phoshati-

dylserine, exposed on the surface of almost all apoptotic cells (but reportedly deficient on 

apoptosing CGD neutrophils) (8, 9). Uptake of nonapoptotic targets was not reported in this 

previous work (27), and we hypothesize that IFN-γ treatment may have enhanced 

phagocytosis nonspecifically as described in this investigation, rather than having simply 

enhanced efferocytosis.

Mechanistically, TNF-α production, iNOS induction, NO production, and PKG activation 

(Fig. 6D) were essential for Rac activation and the enhanced phagocytic state associated 

with IFN-γ priming (Fig. 1). As such, priming with IFN-γ appears to result in enhancement 

of existing mechanisms for phagocytosis by acting downstream of various receptor-

mediated pathways, including those used in efferocytosis (see above). Such might be an 

important advantage in CGD where apoptosis, phosphatidylserine exposure, and its 

modification are reportedly deficient (8, 9). TNF-α is well known to act synergistically with 

IFN-γ for the production of iNOS (46), and this effect was shown to be critically required 

for NO production (Figs. 3, 4) necessary for the activation of Rac (Fig. 6). As proof of 

concept, it is hypothesized that Mϕs from CGD mice crossed with TNFR1- or iNOS-

deficient mice would not demonstrate IFN-γ–dependent normalization of apoptotic cell 

uptake, and these experiments are proposed for future investigations. In contrast to the 

combined effects of TNF-α and IFN-γ, TNF-α alone in the absence of IFN-γ has very 

different and variable effects on efferocytosis, depending on conditions and context (27, 63). 

For instance, treatment of mature (but not immature) BMDMϕs with TNF-α induced 
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transient inhibition of efferocytosis lasting 6–8 h due to production of oxidants downstream 

of cytosolic phospholipase A2 (63). Conversely, Ren and Savill (27) showed that, similar to 

IFN-γ, TNF-α enhanced engulfment of apoptotic cells by an unknown, but 

phosphatidylserine-independent, mechanism in relatively immature monocyte-derived 

human Mϕs. Whether NO production may have mediated enhanced uptake was not 

investigated in these studies.

IFN-γ has protean effects, including induction of antimicrobial pathways, differentiation of 

cells, and upregulation of Ag processing and presentation. More recently, its appearance in 

Th2 cells, so-called Th2+1 cells, has been associated with curtailment of inflammation, and 

the absence of these cells is associated with chronic inflammation (64, 65). Although it is 

not clear which of the many effects of IFN-γ play a role in its clinical efficacy in CGD, 

prophylactic treatment with IFN-γ (three times weekly) significantly (although only 

partially) prevents serious infection in CGD, and it has been used therapeutically in this 

disease in the United States since the mid-1990s (5, 14). Whether IFN-γ treatment is 

associated with either increased or decreased inflammatory aspects of this disease is unclear 

(2). Marciano et al. (66) in a recent review of patients with gastrointestinal involvement in 

CGD concluded that IFN-γ treatment was not associated with increased inflammatory 

manifestations. Clinical trials to formally answer whether IFN-γ treatment is associated with 

less inflammation in CGD have not been conducted and would likely be confounded by its 

antimicrobial effects. Additionally, given these observations, it is hypothesized that IFN-γ 

treatment may be useful in other inflammatory disorders where Mϕ phagocytosis is thought 

to be impaired (e.g., malakoplakia).

It is hypothesized that one effect of continuous treatment with IFN-γ in CGD may be the 

priming of Mϕs for enhanced phagocytosis. Such could contribute to necessary clearance of 

recruited and effete inflammatory cells as was demonstrated in CGD mice during acute 

sterile peritonitis (Fig. 8) in addition to enhanced clearance of pathogens (5, 14). While 

enhanced phagocytosis of apoptotic cells is associated with IFN-γ priming, anti-

inflammatory signaling characteristic of efferocytosis is quite possibly altered, and 

diminished production of anti-inflammatory TGF-β has been reported following IFN-γ 

treatment of Mϕs (67). Nonetheless, the stimulated removal of apoptotic inflammatory cells, 

especially dying neutrophils and other inflammatory cells, by a mechanism bypassing the 

need for phosphatidylserine exposure, before these cells become necrotic, may nevertheless 

be critically important for CGD inflammation and maintenance of tissue function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used in this paper

BMDMϕ bone marrow-derived macrophage

CGD chronic granulomatous disease

HMDMϕ human monocyte-derived macrophage

iNOS inducible NO synthase
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L-NIL N6-(1-iminoethyl)-L-lysine dihydrochloride

LY Lucifer yellow

Mϕ macrophage

PI phagocytic index

PKG protein kinase G

RPMϕ resident peritoneal macrophage

SNAP S-Nitroso-N-acetylpenicillamine

WT wild-type
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Figure 1. 
IFN-γ priming of CGD and WT Mϕ populations in vitro and in vivo enhances uptake of 

apoptotic cells. BMDMϕs (A), thioglycollateelicited Mϕs (B), RPMϕs (C), HMDMϕs (E), 

and Mϕ-like differentiated PLB-985 and mutated PLB-985 (X-CGD) cell lines (F) were 

primed overnight with IFN-γ (50 ng/ml, 4200 U) or PBS in vitro and uptake of apoptotic 

Jurkat cells was assayed (n = 5 for each condition). D, Mice were treated with IFN-γ (500 

ng, 42,000 U) or PBS i.p. and 24 h later, PKH-labeled apoptotic thymocytes were instilled 

into peritonea and in vivo uptake by Mϕs was assessed (see Materials and Methods) (n = 4). 

Dashed line represents baseline uptake by normal or WT Mϕs, and PI is shown for each cell 

type; *p ≤ 0.05 compared with control Mϕs of each cell type, respectively, and αp ≤ 0.05 

compared with uptake by normal or WT Mϕs of each cell type, respectively, at baseline. PI, 

phagocytic index; RPMϕ, resident peritoneal Mϕ.
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Figure 2. 
IFN-γ priming enhances ruffling, fluid phase uptake, and phagocytosis of opsonized viable 

cells and latex beads by Mϕs. Resting (A) and IFN-γ primed (50 ng/ml, overnight) (B–D) 

RAW 264.7 cells were analyzed for actin polymerization (red, C) and uptake of LY dye 

(green, D) at ×100 magnification. Yellow indicates colocalization of markers (B). BMDMϕs 

were primed with IFN-γ or not as in Fig. 1, and the uptake of Ig-opsonized Jurkat cells (E) 

(n = 3) or latex beads (5 μm) (F) (n = 3) was assayed. *p ≤ 0.05 compared with respective 

control cells.
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Figure 3. 
Enhanced phagocytosis of apoptotic cells by IFN-γ–primed CGD and WT Mϕs is dependent 

on NO production. IFN-γ priming of BMDMϕs was performed as in Fig. 1. A, iNOS was 

detected by immunobloting (inset) and NO was measured in supernatants following 

overnight culture (n = 3). B, Cells were IFN-γ primed (or not) or SNAP treated (50 μM for 

24 h) and, where indicated, cells were treated with L-NIL (0.5 mM) for 30 min before 

phagocytosis assayed (n = 3). BMDMϕs from WT and iNOS−/− mice were primed with 

IFN-γ and NO production (C) or uptake of apoptotic cells (D) was determined (n = 5). E, 

Cells were treated with the PKG inhibitor, KT5823 (10 μM for 30 min) before IFN-γ 

priming or treated with SNAP as in B, and uptake of apoptotic cells was determined for 

BMDMϕs (n = 5) (E), HMDMϕs (n = 10), and the PLB-985 Mϕ cell lines (n = 4) (F). *p ≤ 

0.05 compared with the untreated control Mϕs for each cell type, respectively; αp ≤ 0.04 

compared with IFN-γ–primed Mϕs of each cell type, respectively; #p ≤ 0.04 compared with 

SNAP-treated Mϕs of each cell type, respectively; δp ≤ 0.03 compared with IFN-γ–primed 

WT Mϕs.
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Figure 4. 
TNF-α production and action in response to IFN-γ priming is required for iNOS induction 

and NO production. A, TNF-α was measured in the supernatants of BMDMϕs following 

IFN-γ priming with and without treatment with the PKG inhibitor KT5823 as in Fig. 3 (n = 

5). B, BMDMϕs were primed with IFN-γ in the presence of A-TNF-α or isotype control and 

NO was measured in supernatants and iNOS was detected by immunoblotting (inset, one 

representative experiment). Following treatment as in B, phagocytosis of apoptotic cells was 

determined in Mϕs: BMDMϕs from WT and CGD mice (n = 5) (C), WT and TNFR1−/− 

mice (D) (n = 5), HMDMϕs (n = 10) (E), and PLB-X-CGD and PLB-985 cell lines (n = 4) 

(F). *p ≤ 0.04 compared with the untreated control Mϕs for each cell type, respectively; αp 

≤ 0.04 compared with IFN-γ–primed Mϕs of each cell type, respectively; #p ≤ 0.04 

compared with SNAP-treated Mϕs of each cell type, respectively; δp ≤ 0.02 compared with 

IFN-γ–primed WT Mϕs. A-TNF-α, neutralizing Ab to TNF-α.

Fernandez-Boyanapalli et al. Page 22

J Immunol. Author manuscript; available in PMC 2015 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
IFN-γ priming enhances phagocytosis of Ig-opsonized Jurkat cells by the TNF-α/iNOS/NO-

PKG–dependent mechanism. BMDMϕs from CGD (A) and WT (B) mice were treated with 

the agents/inhibitors as previously described, and phagocytosis of CD45-opsonized Jurkat 

cells was determined (n = 4). *p ≤ 0.05 compared with the control Mϕs for each cell type, 

respectively; αp ≤ 0.05 compared with IFN-γ–primed Mϕs of each cell type, respectively; #p 

≤ 0.02 compared with SNAP-treated Mϕ of each cell type, respectively.
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Figure 6. 
IFN-γ priming leads to Rac activation by the TNF-α/NO/PKG–dependent pathway. 

BMDMϕs from CGD (A) and WT (B) mice were tested for Rac activation using the agents/

inhibitors as in Fig. 3, and representative immunoblots are shown. C, Densitometry was used 

to determine the ratio of active Rac to total Rac (n = 3). *p ≤ 0.05 compared with the control 

Mϕs for each cell type, respectively; αp ≤ 0.05 compared with IFN-γ–primed Mϕs of each 

cell type, respectively; #p ≤ 0.05 compared with SNAP-treated Mϕs of each cell type, 

respectively.
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Figure 7. 
In vivo treatment with IFN-γ enhances ex vivo phagocytosis of apoptotic cells by resident 

peritoneal Mϕs via the TNF-α/NO/PKG pathway. A, Experimental design is shown. CGD 

(B) and WT (C) mice were injected i.p. with IFN-γ or PBS as in Fig. 1D; 24 h later 

peritoneal Mϕs were lavaged, plated, rested for 24 h in the presence or absence of the 

specified inhibitors/agents, and then phagocytosis of apoptotic Jurkat cells was assessed (n = 

5). Dashed line represents uptake in WT Mϕs following PBS treatment. *p ≤ 0.05 compared 

with control mice of each genotype injected with PBS, respectively; #p ≤ 0.05 compared 

with mice of each genotype injected with IFN-γ, respectively. D, Mechanism of IFN-γ 

enhancement of uptake operant both in vitro and ex vivo.
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Figure 8. 
IFN-γ treatment of CGD mice enhances phagocytosis of apoptotic cells by Mϕs during 

resolution of inflammation. A, Experimental design is shown. CGD and WT mice were 

injected i.p. with IFN-γ (500 ng, 42,000 U) or PBS and 24 h later all mice were injected with 

1 mg of zymosan i.p. B, Mice in subgroup I (6 h after zymosan treatment) were euthanized 

and peritoneal cells lavaged and analyzed for differentials, apoptotic neutrophils, and 

phagocytic indices. C, Mice in subgroup II were treated with a second dose of PBS or IFN-γ 

at 24 h after zymosan treatment, and peritoneal cells were analyzed at 48 h after zymosan 

treatment. *p ≤ 0.03 compared with mice treated with PBS for each genotype, 

respectively; αp ≤ 0.04 compared with WT mice treated with PBS.
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