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ABSTRACT 

Josetta Lynn Houlihan 

THE ROLE OF HSPs IN MHC CLASS II PRESENTATION OF SELECT ANTIGENS 

 

The function of major histocompatability complex (MHC) class II molecules is to present 

antigenic peptides to CD4+ T cells.  Typically, MHC class II molecules present peptides 

derived from exogenous sources.  Yet, certain endogenous antigens (Ags) have been 

found to be presented by class II molecules. Studies suggest that specific heat shock 

protein family members may play a role in Ag processing and subsequent class II 

presentation.  The studies presented here using B lymphoblasts demonstrate the 

importance of HSP90α, HSP90β, and possibly HSP70 in selectively regulating MHC 

class II presentation.   

 

Inactivation of HSP90 function using pharmacological inhibitors inhibited class II 

presentation of exogenous and endogenous GAD, but did not perturb the presentation of 

several other intra- and extracellular Ags.  Individual knockdown of HSP90 isoforms 

using isoform specific siRNA selectively inhibited GAD Ag presentation.  These results 

demonstrate a requirement for HSP90α and HSP90β in regulating MHC class II 

presentation of select Ags.   

 

Studies to explore mechanistically the roles of HSP90α and HSP90β in regulating GAD 

Ag presentation were pursued.  The pathways of exogenous and endogenous MHC class 

II presentation of GAD Ag are distinct yet converge with shared terminal processing of 

GAD within endosomal/lysosomal vesicles.  The effect of HSP90 manipulation on 

various shared components of the MHC class II pathway was examined.  The studies 

presented here suggest that HSP90α and HSP90β regulate MHC class II presentation of 

GAD Ag at discrete steps most likely involving HSP90 binding to GAD Ag rather than 

perturbing overall MHC class II function.   
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Studying the role of HSP90 in MHC class II presentation in B cells revealed the potential 

requirement for HSP70 in the presentation of select Ags.  The studies presented here 

demonstrate a possible role for HSP70 in the presentation of Ags such as SMA or Ig 

kappa by MHC class II molecules. 

 

Also included in this work is a study of a rare case of diabetes caused by type B insulin 

resistance due to development of insulin receptor autoantibodies during the treatment of 

hepatitis C with interferon alpha and ribavirin.  Clinical and laboratory findings in the 

case are presented.   

                                                        

                                          

                                                                                                 Janice S. Blum, Ph.D. 
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INTRODUCTION 

The immune system 

The human body is constantly challenged by numerous foreign agents such as bacteria, 

viruses, fungi, and parasitic worms.  Some of these invading microorganisms are 

infectious or pathogenic, and their own survival can lead to the death of the individual 

host.  To ensure protection from these invading pathogens, the human body has evolved a 

defense network known as the immune system to identify and destroy potential threats.  

The immune system consists of multiple, biological effector mechanisms, but is generally 

divided into two branches, the innate immune system and the adaptive immune system.   

 

The innate immune system is widely known as the first line of defense against invading 

pathogens.  A foreign invader first encounters the host’s barrier defenses, which are key 

to innate immunity.  Most simply, structures such as the skin and mucous coated 

membranes provide a physical barrier which the invading agent must breach to gain entry 

into the body.  Additionally, the innate immune system employs chemical barriers to 

disarm disease causing agents.  In the stomach, gastric acid lowers the pH and inhibits the 

growth of many microorganisms while lysozyme in mucous, tears, and saliva can damage 

bacterial cell walls.  If pathogens do breach the body’s physical and chemical barriers, the 

innate immune system can launch an immediate, but non-specific response.  Immune 

cells such as natural killer (NK) cells, macrophages, and neutrophils are recruited to the 

primary infection site.  These cells function to capture and destroy invading pathogens as 

well as to clear damaged or infected host cells.  These innate immune cells can efficiently 

clear pathogens or keep them in check until more specialized reinforcements arrive.   

 

Following the action of the innate response, the more specialized cells of the adaptive 

immune system are recruited.  A hallmark of the adaptive immune system is the ability to 

recognize antigens (Ags) found on or within pathogens.  One group of specialized cells of 

the adaptive immune system responsible for this pathogen specific recognition are called 

lymphocytes.  Lymphocytes are divided into B and T cells based on their distinct 

locations for development and their response to internal and external signals.  Both B and 

T cells recognize specific pathogenic targets via cell surface receptors.  The B cell 
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receptor is a cell surface bound antibody (Ab) and can recognize either whole or 

processed Ag.  In contrast, the T cell receptor can only recognize processed Ags when 

coupled with a self major histocompatability complex (MHC) molecule.  

 

 B cells function as professional antigen presenting cells (APCs), processing whole Ag 

into antigenic fragments and displaying those fragments via MHC molecules to T cells.  

In addition to Ag processing and presentation, B cells are responsible for Ab secretion.  

Secreted Abs identify and neutralize extracellular foreign Ags or tag them for attack by 

other immune cells.  B cells also play key roles in the memory response to Ags.  Upon 

pathogenic infection, certain memory B cells are generated and retained in the body after 

the infection is cleared.  Each memory B cell recognizes antigenic epitopes on a specific 

pathogen.  Upon re-infection with that same pathogen, subsets of memory cells 

recognizing these epitopes will rapidly proliferate and differentiate into effector cells able 

to rapidly clear the pathogenic infection (1).     

 

T cells are key players in the immune response functioning in Ag recognition, targeted 

cell destruction, and regulating the immune system.  T cells are further divided into two 

major groups, CD4+ and CD8+ T cells, based on their surface co-receptors.  Both these 

groups recognize their target antigenic peptides in the context of different classes of 

MHC molecules.  Naïve CD4+ T cells recognize specific antigenic peptides in the 

context of MHC class II molecules, while CD8+ T cells recognize specific antigenic 

peptides in the context of MHC class I molecules.  Upon antigenic recognition, naïve 

CD4+ T cells differentiate into effector CD4+ T cells.  As effector cells, CD4+ T cells 

secrete cytokines that stimulate B cells to differentiate and produce specific antibodies 

against extracellular pathogens and activate macrophages to specifically kill infected 

cells.   Effector CD8+ T cells are cytotoxic T cells that search for and kill infected cells.  

 

Two other types of APCs that play critical roles in the immune system are known as 

dendritic cells (DCs) and macrophages.  Macrophages are a key component of the innate 

immune system.  They are widely distributed in the body and are immediately available 

to combat a variety of pathogens without requiring prior exposure.  At the site of 



 3 

infection, they function as key APCs, initiate inflammation, and recruit additional 

immune cells.  DCs play a key role in bridging the gap between innate and adaptive 

immunity.  Immature DCs migrate from the blood into various tissues and specialize in 

phagocytosis.  When they encounter an Ag, they rapidly mature and migrate to lymphoid 

tissues where they specialize in Ag presentation to T cells.   

 

Autoimmune type I diabetes and GAD 

The goal of the immune system is to protect and defend the human body from foreign 

invaders.  This requires the ability to distinguish self from non-self.  However, sometimes 

the immune system loses this ability and begins to recognize self Ags as non-self, 

resulting in the body attacking itself.  This loss of self-recognition results in the 

development of autoimmunity.  Currently, there are over 70 autoimmune diseases 

ranging from well known disorders such as multiple sclerosis to lesser known diseases 

such as scleroderma.  Interestingly, studies show that autoimmune diseases are much 

more common among women than men (2).  Research has yet to determine the exact 

events that result in the loss of self-tolerance and the development of autoimmune 

diseases.  Studies suggests that there are genetic components involved, as well as the 

possibility of microbial triggers (3, 4).   

 

Type I diabetes (TID) is one of the most common autoimmune disorders affecting 

approximately 1 in every 300 children (5).  The rising incidence of TID worldwide 

suggests the need for a better understanding of the pathogenesis of TID in order to 

develop prevention and treatment strategies.  Current studies are attempting to develop 

cell based therapies based on either replacement of pancreatic islet cells with islet-like 

cells derived from embryonic or adult stem cells or re-establishing immunological 

tolerance to self Ags using regulatory T cells and other tolerance promoting cells (6).  

The only effective therapy available involves the lifetime requirement for daily injections 

of exogenous insulin, which treats the symptoms of the disease, but is not a cure.  An 

alternative therapy is whole pancreas or islet transplantation, but this treatment is 

reserved only for severely ill patients and does not typically cure disease.   
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TID is characterized by the selective destruction of the insulin-producing, pancreatic β 

cells by the body’s own immune system.  The pathogenesis of TID has been extensively 

studied; however, the exact mechanisms involved in the initiation and progression of the 

disease is unclear.  One hallmark of disease progression is the presence of insulitis, the 

infiltration of the pancreas by immune cells.  Animal studies indicate that macrophages 

and DCs are among the first infiltrating cells (7).  Autoreactive CD4+ and CD8+ T cells 

have also been shown to infiltrate the pancreatic β cells and mediate islet destruction (5, 

7-9).  One of the earliest signs of disease progression is the appearance of islet-reactive 

antibodies (10-12).  Studies have found B lymphocytes play an important role in the 

pathogenesis of TID, functioning as APCs in the autoimmune response to islet cell Ags 

(13).  In both rodents and humans, genetic susceptibility and also resistance to TID is 

strongly linked to the inheritance of certain MHC class II alleles (14).  However, it is still 

somewhat controversial whether resident as well as recruited MHC class II-positive cells 

function to present islet cell Ags in the islets of TID (14).      

 

Glutamic acid decarboxylase (GAD) has been identified as a key target autoantigen in the 

development of TID (10, 12).  GAD is an enzyme involved in the synthesis of gamma-

aminobuturic acid (GABA), a key downregulating neurotransmitter in the central nervous 

system.  There are two isoforms of GAD differentiated by their molecular weight, 

GAD65 and GAD67.  Both isoforms are detected in the brain, but GAD65 appears to be 

the predominant form within the pancreas.  Research has clearly determined the role of 

GAD and GABA in the brain, but the role of GAD in the pancreas has yet to be 

understood (10).  Within β cells and neural cells, the GAD protein associates with 

intracellular membranes due to palmitoylation occurring at the N-terminus (15).    

 

GAD was originally identified as a diabetes autoantigen when studies showed that 85% 

of newly diagnosed TID patients contain antibodies directed against this protein (16).  

Since this first observation, much research has focused on determining a role for GAD in 

TID.  Unfortunately, it is controversial as to how central a role GAD plays in TID 

pathogenesis.  Some studies in young NOD mice found that immunization with purified 

GAD65 protein can induce tolerance preventing insulitis and diabetes while 
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immunization with other autoantigens conferred only partial protection (17, 18).  

However, another study found that immunization with GAD Ag resulted in only delayed 

onset of diabetes (19).  Studies have identified specific epitopes within the GAD protein 

that are highly immunogenic and can activate T lymphocytes (20-22).  Moreover, GAD-

reactive CD4+ Th1 cells were shown to induce diabetes in NOD/SCID mice (23).  While 

the majority of studies conclude that GAD plays a key role in TID development, there are 

a few studies that suggest otherwise.  One study found isolated GAD-specific T cell 

clones that do not induce diabetes (24). Another study found in NOD mice that β-cell 

specific suppression of GAD expression prevented diabetes progression (25).  Moreover, 

an additional study found that even GAD65 knockout mice developed diabetes (26).  It 

has been speculated that the controversy in determining the importance of GAD in TID 

pathogenesis is due to differences in laboratory techniques, substrains of NOD mice, and 

the preparation of GAD Ag, GAD peptide, and GAD-reactive T cell clones (27).  

Although there are a few studies that disagree, a majority of studies support a role for 

GAD in TID.  However, the exact role GAD plays in pathogenesis has yet to be defined.     

 

Previous studies in our lab have found that GAD Ag can be processed and presented by B 

cells.  Current and future studies are focused on determining the molecular mechanisms 

involved in GAD Ag processing by B cells.  Understanding how APCs process and 

present GAD to CD4+ reactive T cells could provide clues as to how GAD is involved in 

TID.   

 

MHC class I and class II molecules 

MHC class I molecules are surface, transmembrane glycoproteins consisting of an α 

heavy chain associated with a small subunit known as β2 microglubulin (β2M) (Fig. 1).  

MHC class I molecules are expressed on all nucleated cells.  The peptide binding groove 

of MHC class I molecules is closed; thus the peptides presented by MHC class I 

molecules typically range between 8-12 amino acids in length.   There are two anchor 

residues within the binding groove located at the carboxyl terminus and at an internal 

residue (28).   
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MHC class II molecules are also transmembrane glycoproteins, but they are comprised of 

an α heavy chain and a β heavy chain (Fig. 1).  Unlike MHC class I molecules, MHC 

class II molecules are selectively expressed by only certain cell types.  Primarily, MHC 

class II molecules are expressed on professional APCs which include B cells, 

macrophages, and DCs.  However, their expression on additional cell types can be 

induced.  The binding groove of MHC class II molecules is open-ended allowing for the 

binding of longer peptides up to 24 amino acids in length (29). 

 

Figure 1.  The basic structure of MHC molecules.   Left, The MHC class I molecule is 

a heterodimer composed of a 45 kD α subunit consisting of 3 domains and a 12 

kD β2 microglobulin (β2M) subunit.  Within the α subunit, the N-terminus α1 and 

α2 domains form the membrane-distal region of the complex and the peptide 

binding groove.  The C-terminal α3 domain forms the membrane-proximal 

domain linked to the transmembrane, and cytoplasmic regions of the complex.  

Right, The MHC class II molecule is a heterodimer composed of a 33 kD α 

subunit and a 28 kD β subunit.  The peptide binding groove is formed by the N-

terminal regions of both subunits, α1 and β1 domains.  In contrast to MHC class I 

molecules, the C-terminal domains of both subunits, α2 and β2, are linked to the 

transmembrane and cytoplasmic regions of the MHC class II molecule.     
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In humans, both MHC class I and II molecules are encoded by genes within the MHC 

locus on chromosome 6.  Human MHC class I molecules are encoded by three 

predominant allele families:  HLA-A, HLA-B, and HLA-C.  Human MHC class II 

molecules are encoded by three sets of genes: HLA-DR, HLA-DQ, and HLA-DP.  MHC 

molecules are expressed in a co-dominant manner. The genes encoding the MHC 

molecules are the most polymorphic genes known to date with hundreds of alleles 

already characterized (30).  The polymorphism and co-dominant expression of MHC 

molecules results in great genetic diversity among humans with regards to their HLA 

type.   

 

Classical MHC class I and class II presentation pathways 

Classically, MHC class I molecules have been recognized as presenting peptides derived 

from intracellular sources.  A schematic representation of this pathway is depicted in 

Figure 2.  MHC class I heterodimers formed by the association of an α heavy chain and a 

small β2M subunit are assembled in the ER.  The α chain is partially folded and 

associated with calnexin until it binds the β2M subunit.  Upon formation of the MHC 

class I α:β2M heterodimer and release from calnexin, the complex binds to multiple 

chaperone proteins including calreticulin and ERp57 and is tethered to the transporter 

associated with antigen processing (TAP) via tapasin.  Concurrently, cytosolic proteins 

are degraded to peptides via the multicatalytic proteasome and other cytosolic proteases.  

Peptide fragments are then delivered into the lumen of the ER through TAP and 

selectively loaded onto MHC class I molecules.  Folding of the MHC class I molecule is 

completed upon peptide binding at the binding groove.  MHC class I:peptide complexes 

are then exported from the ER via the Golgi secretory pathway.  Once the complexes 

reach the cell surface, they can interact with surveying CD8+ T cells and initiate a T cell 

response.  Clonal expansion of specific CD8+ T cells results in the generation of 

cytotoxic effector T cells as well as memory T cells (31, 32).   
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Figure 2.  Classical MHC class I presentation of endogenous antigens.  Endogenous, 

cytoplasmic Ags are digested into antigenic peptide fragments by cytoplasmic 

proteases such as the proteasome.  The antigenic peptides generated are 

transported into the ER by TAP1/2 heterodimers.  With the help from additional 

ER proteins such as tapasin, calreticulin, and Erp57, these peptides are loaded 

onto the peptide binding grooves of MHC class I molecules.  MHC class I:peptide 

complexes dissociate from these ER proteins, transit through the Golgi secretory 

network, and are displayed on the cell surface for screening by circulating CD8+ 

T cells.   

 

In contrast to MHC class I molecules, MHC class II molecules classically present 

peptides derived from extracellular sources.  Figure 3 schematically depicts this classical 

pathway.  DCs and macrophages internalize extracellular pathogens by either pinocytosis 

or phagocytosis while B cells internalize extracellular pathogens by either receptor 

mediated endocytosis or less efficiently, pinocytosis.  Once internalized, extracellular 

Ags transit through the endosomal/lysosomal network from early to late endosomes, 

lysosomes, and the MHC class II rich compartment (MIIC).  Within these low pH 
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compartments, engulfed Ags are degraded by various proteases and denaturing reactions 

into smaller peptide fragments capable of binding MHC class II dimers (33-36).    

 

 

 

Figure 3.  Classical MHC class II presentation pathway.  Exogenous Ags are 

internalized by APCs and degraded into peptide fragments while they are sorted 

through the endosomal/lysosomal network.  MHC class II molecules are 

assembled in the ER and associated with the chaperone invariant chain (Ii).  MHC 

class II:Ii complexes transit through the secretory network.  During transit, Ii is 

sequentially degraded into smaller peptide fragments, ultimately leaving the final 

CLIP fragment in the peptide binding groove of MHC class II molecules.  

Vesicles from the endosomal/lysosomal network containing antigenic peptide 

fragments fuse with secretory vesicles containing MHC class II:Ii complexes, 

resulting in the formation of MHC class II containing compartments (MIIC).  In 

this compartment, HLA-DM and HLA-DO catalyze the dissociation of CLIP 

fragment and the loading of antigenic peptide onto MHC class II molecules.  

MHC class II:peptide complexes continue to transit to the cell surface to be 

displayed to circulating CD4+ T cells.  
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In the ER, newly synthesized MHC class II α and β chains are assembled into 

heterodimers.  The chaperone molecule invariant chain (Ii) associates with the MHC 

class II dimers and performs various chaperone functions (37, 38).  The physical binding 

of Ii within the peptide binding groove of the MHC class II dimers prevents premature 

peptide loading of the dimers.  A targeting sequence within the cytoplasmic tail of Ii 

guides the Ii:MHC class II complexes to the secretory pathway and mediates intracellular 

sorting.  While progressing through the secretory network, Ii undergoes stepwise 

degradation by proteases to a final fragment called the class II-associated invariant chain 

peptide (CLIP), which remains associated with the MHC class II peptide binding groove 

(31, 39-47).  A schematic of Ii degradation is shown in Figure 4.  When MHC class 

II:CLIP complexes reach the MIIC compartment, the non-classical class II  molecule 

HLA-DM  catalyzes the removal of CLIP from the peptide binding groove and the 

capture of an antigenic peptide by a MHC class II molecule (39, 42, 43, 48-51).   HLA-

DM activity is regulated by its interaction with another non-classical class II molecule 

HLA-DO (51-55).   A schematic of the activity of HLA-DM and HLA-DO in the removal 

of CLIP and peptide loading of MHC class II molecules is depicted in Figure 5.  MHC 

class II molecules have been found to bind to peptides at different points in the 

endosomal pathway; however, the major point of association appears to be in the MIIC, a 

mature endosomal or prelysosomal vesicle (39).  The MHC class II:peptide complex is 

then trafficked to the cell surface where it can be surveyed by CD4+ T cells resulting in T 

cell activation and an immune response (31, 39-44, 47-49).  Recycling of MHC class 

II:peptide complexes can occur by reinternalization of surface MHC class II:peptide 

complexes via the endocytic network.  Within recycling early endosomes, MHC class II 

molecules can exchange their peptides for new peptides, resulting in further 

diversification of the spectrum of ligands bound to MHC class II molecules (56-58).  
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Figure 4.  Schematic of Ii processing in B cells.  In B cells, Ii binds to MHC class II 

molecules in the ER and chaperones MHC class II dimers as they transit through 

the secretory network.  During transit, Ii is sequentially degraded into smaller 

peptide fragments.  The C-terminal of Ii is cleaved leaving the leupeptin induced 

peptide, LIP.  Further processing on the C-terminus cleaves LIP into the small 

leupeptin induced peptide, SLIP.  Ultimately, the N-terminus anchoring Ii to the 

vesicle membrane is cleaved resulting in the final Ii fragment called class II-

associated invariant chain peptide, CLIP.  CLIP remains in the MHC class II 

peptide binding groove until HLA-DM/HLA-DO remove it.   
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Figure 5.  Schematic of HLA-DM and HLA-DO function in B cells.  In the MIIC, 

HLA-DM functions to remove CLIP from the MHC class II binding groove and 

facilitate the binding of antigenic peptides. HLA-DO regulates the activity of 

HLA-DM.   

 

MHC class II presentation of cytoplasmic Ags 

Classically, MHC class I and class II molecules were viewed as having distinct and non-

overlapping functions with MHC class I molecules presenting peptides derived from 

intracellular Ags and MHC class II molecules presenting peptides derived from 

internalized, extracellular Ags.  In recent years, it has been determined that there is 

significant crosstalk between these two classical pathways of Ag presentation.  It has 

been well established that MHC class I molecules can present peptides derived from 

exogenous sources by a process called cross-presentation (59, 60).  It is also well 

established that that MHC class II molecules are capable of binding peptides derived 

from endogenous sources and presenting them to CD4+ T cells (36, 47, 61-74).   

 

Biochemical approaches such as peptide-elution from MHC class II molecules in 

combination with peptide sequencing via tandem mass spectrometry have detected MHC 

class II ligands originating from endogenous proteins.  While the majority of these 

cytoplasmic peptides are derived from endogenous proteins found at the cell surface or 

within endocytic and secretory vesicles, a significant number were found to originate 

from cytosolic proteins (36, 47, 61-74).  Analysis of the peptides bound by MHC class II 

molecules in mice also revealed the presence of many cytosolic-derived epitopes.  One 

such study found the majority of MHC class II ligands to be derived from self-proteins 



 13 

such as transmembrane and secretory proteins.  However, 21% of the ligands detected 

were peptides derived from cytosolic proteins such as actin, tubulin, and 

glyceraldehydes-3-phosphate dehydrogenase (GAPDH) (68).  Another study in human B 

cells detected greater than 85% of the MHC class II ligands to be derived from 

endogenous proteins including cytosolic proteins (75).     

 

Additionally, studies with viruses and tumor cells have also shown that epitopes from 

cytoplasmic Ags access MHC class II molecules and trigger T cell responses (61, 73, 74, 

76, 77).  Viral Ags such as the matrix and nucleocapsid proteins from the measles virus 

and the M1 matrix protein of the influenza virus were all shown to be presented by MHC 

class II molecules, and viral-specific T cell responses were detected (78, 79).  Epitopes 

derived from two different human melanoma tumor Ags, a mutated form of the human 

melanoma Ag CDC27 and a mutated version of triosephosphate isomerase, were both 

detected as ligands for MHC class II-restricted presentation and recognized by tumor 

specific CD4+ T cells (77).  Studies also suggest that during T cell development in the 

thymus, MHC class II restricted presentation of cytosolic Ags is a requirement for 

complete elimination of autoreactive T cells.  For example, in mice transgenic for either 

endogenous or cell surface pigeon cytochrome c, both forms of the Ag were presented by 

MHC class II molecules and induced CD4+ T cell tolerance (80).     

 

Many cell types appear capable of presenting cytoplasmic Ags via MHC class II 

molecules.  To date, B cells, DCs, MHC class II-transfected tumor and epithelial cells, 

thymic epithelial cells (TECs), and myeloid progenitor cells have all been shown to 

present cytoplasmic Ags via MHC class II molecules.  However, these different cell types 

vary in their epitope repertoire as well as their efficiency of cytoplasmic Ag presentation.  

 

Functional and biochemical studies have found that depending upon the specific HLA-

DR allele analyzed, the contribution of cytosolic peptides to the ligand repertoire varies 

(61, 65, 67, 75, 77, 78, 81-83).  Moreover, not all cytoplasmic proteins appear to be a 

source of MHC class II peptide ligands (66, 78, 84).   For example, endogenously 

synthesized membrane associated viral glycoprotein (GP) from the lymphocytic 
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choriomeningitis virus (LCMV) can be efficiently presented by MHC class II molecules, 

but the LCMV nucleoprotein (NP) cannot (66).  Moreover, in vivo studies with LCMV 

infected animals determined that CD4+ T cells can recognize LCMV-GP, but not 

LCMV-NP (84).     

 

Taken together, it appears that MHC class II molecules have evolved mechanisms to 

sample select antigenic peptides from the cytoplasm and present them to CD4+ T cells in 

order to enhance helper T cell responses to intracellular pathogens and tumors and to 

maintain self tolerance (61, 66, 67, 69, 73, 74, 77, 80).  However, the mechanisms 

involved in cytoplasmic Ag presentation by MHC class II molecules remain rudimentary.   

 

Possible pathways of MHC class II presentation of endogenous Ags 

Endogenous Ags may access MHC class II molecules for presentation to CD4+ T cells 

via different routes.  One possibility is that endogenous Ags may be released during cell 

death and presented by bystander APCs via the classical MHC class II pathway (Fig. 3).  

While studies have shown that APCs can present Ags released from apoptotic or lysed 

cells, studies also suggest few cytoplasmic epitopes are released by viable cells (67, 69, 

70, 74, 85).   This pathway may be engaged during cytopathic viral infections when 

damage and death of infected cells are quite common.  Another possible route is via 

autophagy which involves the sequestering of cytoplasmic and nuclear Ags into 

autophagosomes prior to Ag processing and MHC class II presentation (Fig. 6).  Bulk 

autophagy can be subdivided into two types of autophagy, macroautophagy and 

microautophagy, distinguishable by chemical inhibitors and microscopy.  In 

macroautophagy, ER membranes bud and randomly enclose nuclear and cytoplasmic 

material within vacuoles termed autophagosomes that eventually fuse with lysosomes for 

content degradation.  While macroautophagy can occur at low levels in healthy cells, it 

can be up-regulated with serum starvation (86).  In contrast, microautophagy has only 

been observed in yeast and is regulated by starvation.  This pathway involves the direct 

sequestering of proteins into lysosomes for protein degradation.  The role of 

macroautophagy in MHC class II presentation is controversial.  Some studies using 

chemical agents blocking macroautophagy suggest that macroautophagy is involved in 
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the MHC class II presentation of some nuclear and cytoplasmic Ags (74, 83, 87).  

However, other studies found MHC class II presentation of cytoplasmic Ags unaffected 

by inhibition of macroautophagy (69, 70, 73, 85).  A third possible route of MHC class II 

presentation of endogenous Ags  involves the processing of cytoplasmic Ags within the 

cytoplasm and the selective translocation of the resulting cytoplasmic peptides into MHC 

class II-rich organelles (Fig. 6).  Chaperone proteins direct the processing and 

translocation of Ags through this pathway; thus, the pathway is termed chaperone 

mediated autophagy (CMA).  

 

Figure 6.  Alternative pathways of MHC class II presentation of cytoplasmic Ags.  

Endogenous, cytoplasmic Ag can gain access to the MHC class II machinery via 

different routes of autophagy.  In macroautophagy, ER membranes bud and 

randomly enclose cytoplasmic material forming intracellular vesicles called 

autophagosomes.  Autophagosomes can directly fuse with lysosomes, empting 

their contents into the lysosomes for degradation.  In microautophagy, random 

cytosolic proteins are directly sequestered into the lysosomes for protein 

degradation by lysosomal proteases.  In contrast, selective degradation of 

cytosolic proteins occurs in chaperone mediated autophagy (CMA).  Two 

proteins, lamp2 and HSC70, have been shown to play critical roles in this 

pathway by facilitating entry of antigenic peptides into the lysosomes.     
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Key players in MHC class II presentation 

Invariant chain (Ii)   

As mentioned previously, it is well established that Ii functions as an MHC class II 

chaperone by facilitating proper MHC class II αβ folding, stabilizing and targeting dimers 

through the secretory network, and preventing premature peptide loading.  Research 

suggests Ii expression alters MHC class II expression.  Ii deficiency in Ii knockout mice 

resulted in low MHC class II expression in APCs (37, 88).  Loss of Ii chain in NOD mice 

resulted in decreased surface MHC class II expression and the retention of MHC class II 

aggregates in the ER (89).    

 

Studies suggest that Ii plays a role in MHC class II presentation of exogenous and 

endogenous Ags.  Our lab recently implicated Ii in MHC class II recycling and peptide 

presentation (90).  APCs from Ii knockout mice exhibited decreased exogenous Ag 

presentation, but enhanced presentation of peptides due to their ability to bind directly to 

MHC class II molecules (91).  Studies in Ii transfected fibroblast cells also correlated Ii 

expression levels with Ag presentation; the amount of exogenous Ag required to induce a 

T cell response was inversely correlated with the level of Ii expression (92).  However, 

low Ii expression is thought to promote the presentation of endogenous Ags.  The 

presentation of a cytosolic peptide from the influenza virus matrix protein was efficiently 

presented by Ii deficient cells and inhibited by the expression of Ii (79).  MHC class II 

expressing myeloid progenitor cells are efficient at presenting cytosolic peptides (81).  

Another study found that loss of Ii in MHC class II cancer vaccines resulted in enhanced 

activation of tumor reactive T cells (93).    

 

Alterations in Ii expression have been shown to alter the immune response.  In mice, Ii 

deficiency altered the Th-2 immune response resulting in a preferential Th-1 immune 

response (94).  Another study found Ii deficient mice to have an impaired ability to 

mount cellular and humoral immunity upon viral infections (95).  Ii may play a role in the 

development of autoimmunity as suggested by the finding that loss of Ii in NOD mice 

prevented the onset of TID (96).    
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While Ii expression is typically linked to MHC class II expression and function, there are 

some circumstances where this is not the case.  There is evidence that MHC class II 

proteins are expressed even in the absence of Ii (89, 97-101).  This may reflect that 

different MHC class II alleles are more or less dependent on Ii expression as well as 

variation in MHC class II biosynthesis in different cell types.  Studies suggest the 

existence of Ii independent pathways of MHC class II presentation (102).  Ii deficiency in 

NOD mice did not substantially alter Ag presentation.  Yet, taken together, studies 

overall suggest that regulation of Ii expression may provide a way to modulate MHC 

class II Ag presentation.  Thus, understanding the role of Ii in MHC class II presentation 

may prove important for the development of novel immunotherapeutics against malignant 

diseases, viral infections, as well as autoimmune disorders.   

 

Cathepsins 

The endosomal/lysosomal network contains numerous hydrolases including proteases. 

The most well known endosomal/lysosomal proteases are the cathepsins.  In humans, 

there are 11 known cysteine proteases, cathepsins B, C, F, H, K, L, O, S, V, X, and W.  

There are also three aspartic proteases, cathepsins D, cathepsin E, and AEP, and one 

serine protease, cathepsin G.  Cathepsin family members have been shown to be involved 

in numerous biological functions including the immune response and Ag processing 

(103).  Cathepsins B, C, D, X, H, L, and S have all been shown to have clear roles in the 

immune system, and cathepsins S and L are the only ones shown to have non-redundant 

roles (103).  In general, these cysteine proteases are optimally active within the slightly 

acidic, reducing environment of endosomes and lysosomes.   

 

Cathepsin S is primarily expressed in phagocytic APCs and is believed to be the major 

cysteine protease involved in MHC class II Ag processing and presentation (104-106).  

Various studies in cathepsin S null mice support this theory.  The APCs from cathepsin S 

deficient mice exhibited a severe decrease in Ii degradation and alterations in MHC class 

II-bound Ii fragments and MHC class II presentation of exogenous Ags (46, 107).   

Inhibition of cathepsin S in B cells prevented complete proteolysis of Ii (44).  Studies 

also found cathepsin S to be required for the normal trafficking, maturation, and peptide 
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loading of MHC class II molecules (108, 109).  Inhibition of cathepsin S with small 

molecule inhibitors resulted in diminished Ag presentation by MHC class II molecules 

(104, 107).  Cathepsin S deficiency has also been shown to decrease the presentation of 

certain epitopes, suggesting that cathepsin S can directly affect the processing of select 

Ags (107, 110).  In contrast to other cathepsins, cathepsin S retains considerable stability 

and proteolytic activity over a broad pH range, functioning in both endosomes and 

lysosomes (103, 109, 111, 112).  In human DCs and B cells, the selective inhibition of 

cathepsin S resulted in the accumulation of incompletely processed Ii fragment, 

suggesting that cathepsin S plays a non-redundant role in Ii processing (44, 113).  While 

studies have analyzed various Ii fragments, the exact cathepsin S cleavage sites on Ii 

were unknown until recently (114).  This discovery may prove helpful in identifying 

cathepsin S cleavage sites within Ags and determining the relevance of this protease in 

generating antigenic peptides for MHC class II presentation.  Studies also suggest that 

cathepsin S is an immunomodulator of immune diseases such as rheumatoid arthritis and 

bronchial asthma; thus, cathepsin S inhibitors are currently being evaluated as potential 

therapeutics for certain immune disorders (115, 116).    

 

Cathepsin L is primarily expressed in cortical thymic epithelial cells (cTECs) and 

minimally in professional APCs.  Cathepsin L deficient mice exhibit decreased numbers 

of CD4+ T cells and defective Ag presentation by MHC class II molecules in their cTECs 

due to incomplete Ii processing (45).  Thus, cathepsin L is thought to regulate positive 

selection in the thymus.  Additional studies identified cathepsin L as an essential enzyme 

for the development of TID in NOD mice (117).  Studies suggest that Cathepsin L 

mediates the final cleavage of Ii to the CLIP fragment (40, 103).  As shown with 

cathepsin S, cathepsin L deficient APCs show decreased Ag presentation of select Ags. 

This suggests that like cathepsin S, cathepsin L may also mediate MHC class II 

presentation of select Ags (110).  Interestingly, a splice variant of Ii, p41, has been shown 

to inhibit cathepsin L activity, suggesting a negative feedback control mechanism (112).     

 

Studies from our own lab and others suggest a role for the cathepsins B and D in both Ii 

processing and MHC class II presentation (35, 67, 118-120).  Treatment of APCs with 
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specific cathepsin B and D inhibitors resulted in decreased Ag presentation and Ii 

expression (35, 118, 119).  Treatment of B cells with cathepsin B inhibitor II slightly 

inhibited both endogenous and exogenous GAD presentation, while treatment with a 

cathepsin D inhibitor only altered exogenous GAD presentation (67).  Our results suggest 

that cathepsins B and D may play roles in endogenous and exogenous GAD Ag 

presentation by MHC class II molecules.  Recent studies found activation of cathepsin D 

to be required for the processing and presentation of a mycobacterial Ag in macrophages 

(120).  However, some evidence suggests their activity may be redundant and dispensable 

for MHC class II presentation.  One study found that cathepsin B and D deficiency in 

knockout mice only moderately shifted the efficiency of Ag presentation of select 

epitopes, but did not perturb the overall capacity of APCs (121).  Another study found 

cathepsin D deficiency actually enhanced the presentation of certain peptides and 

suggests some redundancy among the lysosomal proteases (122).  Taken together, these 

results suggest that like cathepsin S, cathepsin B and D may be required for the 

presentation of select Ags for MHC class II presentation.   

 

Asparagine endopeptidase (AEP)  

 AEP is an asparagine-specific cysteine protease found within endosomes and lysosomes.  

Although it is a cysteine protease, AEP is not grouped with cathepsins S and L as it is 

homologous with the caspases (123).  Unlike the other lysosomal cysteine proteases, AEP 

is leupeptin insensitive (124, 125).   Evidence suggests that AEP is involved in MHC 

class II presentation.  In B cells, AEP was found to initiate the processing of the 

exogenous Ag tetanus toxin (125).  Moreover, disruption of a single AEP cleavage site in 

the microbial Ag tetanus toxin C fragment resulted in a dramatic decrease in its ability to 

be processed and presented to T cells (126).  The role of AEP in Ii processing remains 

controversial.  A study with B cell lines and monocyte-derived DCs showed that AEP can 

initiate Ii processing and that inhibition of AEP results in delayed Ii processing (127).  

However, another study in AEP-deficient mice found Ii processing, MHC class II 

maturation, and Ag presentation unaffected by AEP deficiency (128).    
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AEP activity has been linked to autoimmunity as well as to neuronal injury during 

neuroexcitotoxicity or ischemia.  In reference to autoimmunity, studies found an AEP 

processing site within the myelin basic protein (MBP) autoantigen.  Moreover, the 

presentation of MBP was found to be inversely proportional to the amount of cellular 

AEP activity. It is suggested that the destruction of epitopes within MBP may limit its 

display in the thymus and prevent central tolerance to this autoantigen (129).  A current 

study found AEP to play a crucial role in mediating kainic acid or stroke elicited 

neurotoxicity (130).  In this study, AEP was found to be activated under acidic 

conditions, responsible for the cleavage of neuronal protein, and the cause of DNA 

damage in the brain.  Thus, understanding the role of AEP may have implications on 

immune tolerance and neuronal cell death.   

 

HLA-DM and HLA-DO 

Our lab and others have found HLA-DM and HLA-DO to play critical roles in MHC 

class II mediated Ag presentation in APCs.  HLA-DM is mainly localized in the 

endosomal/lysosomal vesicles of APCs (51).  In these compartments, HLA-DM assists 

the peptide loading of MHC class II molecules by catalyzing the exchange of CLIP for 

antigenic peptide fragments within endocytic compartments (39, 42, 43, 48-51).   

Additionally, HLA-DM edits the repertoire of peptides loaded onto MHC class II 

molecules by preferentially loading peptides with high affinity to MHC class II (51).  

Studies in mice with an HLA-DM deficiency in APCs resulted in almost all the surface 

MHC class II molecules loaded with CLIP (131).  Studies in our lab found that MHC 

class II presentation of endogenous and exogenous GAD was affected by the expression 

level of HLA-DM; high HLA-DM levels inhibited GAD presentation (132).  The 

function of HLA-DO is still controversial as it may function as a positive or negative 

regulator of HLA-DM (51-55).  Studies also suggest that HLA-DM and HLA-DO 

function may have implications in autoimmune disorders (133).  Certain MHC class II 

alleles confer protection and susceptibility to certain autoimmune disorders.  It is 

suggested that this is possibly due differences in MHC class II affinity for CLIP and 

peptides.  Since HLA-DM and HLA-DO regulate the binding and release of CLIP based 

on MHC class II affinity, manipulation of HLA-DM and HLA-DO function is considered 
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a possible therapeutic target. Taken together, studies suggest that HLA-DM and HLA-

DO function together to influence the repertoire of epitopes presented by MHC class II 

molecules.  

 

Cytoplasmic proteases:  proteasome and calpain 

 While exogenous Ags are processed by proteases within endosomes/lysosomes for MHC 

class II presentation, cytoplasmic Ags for MHC class I presentation are primarily 

processed by the cytoplasmic protease proteasome within the cytosol.  Both cytosolic and 

endo/lysosomal proteases may be required for MHC class II presentation of endogenous 

Ags. Studies in our lab and others found Ag processing by cytoplasmic proteases to be a 

requirement for MHC class II presentation of cytoplasmic Ags (67, 69).  Treatment of 

PriessGAD B cells with chloroquine, an anti-malarial drug that raises the pH of 

endo/lysosomes, completely inhibited MHC class II presentation of exogenous GAD Ag, 

but only slightly decreased presentation of cytoplasmic GAD Ag (67).  Treatment of 

PriessGAD cells with calpeptin, an inhibitor of the cytoplasmic protease calpain, 

completely inhibited MHC class II presentation of cytosolic GAD Ag, but did not affect 

exogenous GAD Ag presentation (67).  Moreover, treatment with lactacystin or 

epoxomicin, proteasome inhibitors, selectively inhibited cytoplasmic GAD presentation 

(67 and data not shown).  MHC class II molecules have been shown to present peptides 

from Ags introduced into the cytosol via hyperosmotic lysis of pinosomes (69).  MHC 

class II presentation of these Ags was blocked by inhibition of the proteasome by 

inhibitors such as lactacystin (69).  Taken together, these results suggest that the 

cytoplasmic proteases calpain and the proteasome are required for MHC class II 

presentation of endogenous Ags.  However, further trimming of those peptides within the 

endosomes/lysosomes may also be required.   
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Heat shock proteins are potential players in MHC class II presentation 

Links between heat shock proteins (HSPs) and the immune system have been suggested.  

Roles for HSPs have been identified in immune responses, tumor surveillance, and Ag 

presentation (134-136).  Research by our laboratory and others suggests that HSPs can 

act as chaperones to facilitate Ag processing for MHC class I and II presentation (85, 

137-144).  HSPs are a group of highly conserved proteins that primarily serve as 

molecular chaperones.  They are grouped into families based on their molecular size, 

sequence homologies, and antigenic cross reactivities (145).  HSPs have been found to 

play various intracellular roles including assisting in protein folding, assembly, and 

degradation, scavenging for peptides produced during Ag proteolysis, and facilitating 

protein translocation (146-148).  The term HSP originated due to the inducibility of some 

of these proteins upon heat or cellular stress.  However, many of these proteins are 

expressed constitutively, sometimes at high levels, suggesting a critical role in the 

everyday functions of a cell (145).     

 

HSC70 

The constitutively expressed heat shock cognate protein HSC70, also known as HSC73, 

is a member of the HSP70 family and makes up 1% of the total cellular protein content 

(149).  Unlike other HSPs, HSC70 is only slightly induced by heat shock even though the 

gene contains functional heat-shock regulatory elements (150).  The structure of HSC70 

is typical of an HSP70 family member, an ATP-binding domain at the amino-terminus 

followed by a peptide binding domain in the middle (151).  The carboxyl-terminal 

domain provides binding sites for cofactors whose role is to modulate HSC70 activity 

(152).  HSC70 is depicted schematically with key protein domains labeled in figure 7.  

Like other HSPs, peptide binding by HSC70 is ATP-dependent; in the ATP bound state, 

HSC70 binds peptides, but upon ATP hydrolysis to ADP, HSC70 releases bound peptides 

(151).  HSC70 recognizes short peptide motifs with a minimal size of 5-7 residues via a 

ligand binding groove, but is preferential to ligands with hydrophobic and basic residues, 

originally termed the KFERQ motif (153, 154).  Further research has revised this 

sequence to include more flexibility (155).   
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Figure 7.  Schematic diagram of HSPs.  The structure of HSC70, HSP90, and HSP70 

are schematically represented above. The N-terminus of HSC70, HSP90, and 

HSP70 contains an ATPase domain. A peptide binding domain is located within 

the center of the HSC70, at the N-terminus of HSP90, and at the C-terminus of 

HSP70.  The C-terminus of HSP90 contains a dimerization domain, allowing the 

formation of HSP90 homodimers.         

 

Endogenous HSC70 is predominately localized in the cytoplasm (156).  In the cytosol, 

HSC70 operates as part of a molecular chaperone complex.  This complex includes 

cofactors such as Hip, Hop, HSP40, BAG-1, and HSP90.  Hip functions to stimulate the 

assembly of HSC70 with HSP40 and its substrate, while BAG-1 functions to uncouple 

the binding of substrate proteins from the ATPase cycle of HSC70 (157-160).   HSP40 

stimulates the ATPase activity of HSC70.  HSP90 is linked to HSC70 by the co-

chaperone Hop (157, 161).  HSC70 is also localized on the luminal and cytoplasmic face 

of endosomes and lysosomes (162, 163).  It is proposed that this localization allows 

HSC70 to assist in the transport of cytoplasmic peptides to these organelles (164).  While 
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luminal HSC70 does not associate with any of its cytoplasmic chaperones, HSC70 on the 

cytoplasmic face acts in concert with the lysosomal associated membrane protein-2a 

(lamp2a) (162, 163).  Lamp-2a is a transmembrane endosomal/lysosomal protein that 

assists in the translocation of peptides into lysosomes (165, 166).  Studies in our lab and 

others indicate that HSC70 is required for peptide transport into the lysosome (85, 163).  

Our lab has previously shown in B cells that alteration of either HSC70 or Lamp-2a can 

disrupt MHC class II presentation of numerous cytoplasmic autoantigens leading one to 

deduce that CMA may regulate immunity (85).    

 

HSP90 

HSP90 is also found within the cytoplasmic multi-chaperone complex (167).  HSP90 is a 

highly conserved, constitutively expressed cytosolic chaperone protein.  In eukaryotes, 

HSP90 is a critical protein chaperone as indicated by studies finding HSP90 null 

mutations lethal.  Under normal conditions, HSP90 constitutes 1-2% of the total cellular 

protein content, but under stressed conditions such as heat shock, HSP90 levels can 

increase to 4-6% (168).  HSP90 functions include controlling protein folding, turnover, 

and trafficking.  While HSP90 has been linked to almost 100 different client proteins, 

many of the known HSP90 substrates are signal transduction molecules such as the 

glucocorticosteroid receptor (143, 151, 168, 169).  Thus, the best characterized example 

of HSP90 chaperone activity is the HSP90 dependent signaling pathway of steroid 

hormone receptors (169).  Typically, HSP90 binds to client proteins that are in a near 

native state or late stages of folding, recognizing unfolded regions within the proteins 

(155, 170).  Like HSC70, HSP90 is an ATP-dependent chaperone in that HSP90 

chaperone activity requires both binding and hydrolysis of ATP (171-173).  The structure 

of HSP90 is similar to other HSPs and is depicted schematically in Figure 7 with key 

domains labeled.  The N-terminus houses the ATPase and peptide binding domains, a 

charged domain is in the middle, and a dimerization domain is found at the C-terminus 

(174).     

 

In the cell, HSP90 functions in a multi-chaperone complex in association with other heat 

shock proteins such as HSC70, HSP70, and HSP40 as well as co-factors such as BAG-1, 
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HOP, CHIP, and HIP (152, 167, 175, 176).  Through interactions with its co-factors, 

HSP90 is linked to the ubiquitin-proteasome pathway (152).  While HSP90 null 

mutations have proven lethal, conditional inhibition of HSP90 by the use of 

pharmacological inhibitors has proven useful in understanding HSP90 structure and 

function.  The benzoquinon ansamycin antibiotic geldanamycin (GA) and the 

macrocyclic drug radicicol (RA) are two such HSP90 inhibitors that bind to the ATP-

binding site of HSP90 and inhibit the ATPase activity of HSP90, thus inhibiting HSP90 

chaperone activity (177).     

 

In humans, HSP90 is expressed as two closely related isoforms, HSP90α and HSP90β, 

which are both constitutively expressed and induced by cellular stress (170, 174, 178).   

Assays using pharmacological inhibitors such as RA and GA fail to distinguish between 

the function of these two isoforms, with both proteins inactivated by these compounds 

(174).  Therefore, until recently, both isoforms were referred to simply as HSP90.  While 

both isoforms bind similarly to their intracellular co-chaperones, in some cases HSP90α 

and HSP90β were found to behave differently with respect to substrate interactions (178).  

HSP90 has been implicated in regulating both direct and cross-presentation pathways for 

MHC class I molecules.  HSP90 ligands include peptides which can bind MHC class I 

molecules, and inhibition of HSP90α expression disrupts cytoplasmic Ag presentation by 

MHC class I molecules (141).  HSP90 also appears to regulate human DC functions 

including cell maturation, MHC class I and II expression, and MHC class II presentation 

(143).  However, the role of HSP90 in MHC class II Ag presentation in B cells as well as 

the contribution of the individual HSP90 isoforms has yet to be determined.   

 

HSP90 has been shown to play a key role in chaperoning client proteins in a variety of 

cellular processes including cell proliferation, differentiation, and apoptosis (174).  

Manipulation of HSP90 activity has been used to modulate protein folding and to induce 

the proteolysis of misfolded or mutant proteins in a variety of disease conditions 

including a wide range of malignancies and neurological disorders including Alzheimer’s 

disease, Parkinson’s disease, autoimmune encephalomyelitis, and polyglutamine diseases 

(179-182).  HSP90 inhibitors have also been tested in human clinical trials to promote 
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tumor regression (181).  Studies also suggest that HSP90 and MHC class II presentation 

may play a role in TID.  B lymphocytes play an important role in the pathogenesis of 

TID, functioning as APCs in the autoimmune response to islet cell Ags such as GAD 

(13).  However, it is still somewhat controversial whether resident as well as recruited 

MHC class II-positive cells function to present β cell Ags in the islets of TID patients 

(183).  Notably, in TID, β cell stress results in an induction of HSP90 expression (184).  

An increase in select anti-HSP90 Ab isotypes has also been noted in type I diabetics and 

family members, suggesting the potential release of this HSP from cells (185).  Thus, 

understanding the role of HSP90 isoforms in MHC class II presentation may yield 

mechanistic insights regarding the presentation of autoantigens such as GAD.   

 

HSP70 

Another HSP found to interact with both HSP90 and HSC70 is HSP70.  HSP70 is an 

inducible HSP found in the cytosol and in lysosomal compartments (166).  As with 

HSC70 and HSP90, HSP70 also contains an amino-terminal ATPase subunit and a 

carboxyl-terminal peptide binding domain, as depicted schematically in figure 7 (186).  

HSP70 has been shown to perform a variety of cellular functions including stabilizing 

newly synthesized or unfolding polypeptides, facilitating translocation of nascent chains 

across membranes, mediating assembly or disassembly of multimeric protein complexes, 

and targeting proteins for degradation within lysosomes (187-189).  Due to its wide 

variety of functions, HSP70 recognizes and binds a wide variety of client proteins in a 

promiscuous manner.  However, studies suggest that HSP70 recognizes and binds 

hydrophobic regions of polypeptides that are typically buried within proteins and exposed 

during misfolding or denaturation (140, 153).    

 

In response to stress, HSP70 is secreted from a variety of cell types (190-195).  However, 

it is still controversial as to the mechanisms involved in the HSP70 secretion pathway.  

Some studies suggest that HSP70 is released by a non-specific process such as cell lysis 

while others suggest specialized membranes such as lipid rafts or exosomes are involved 

(190, 192, 193, 196).  Studies in tumor cells found that HSP70 was secreted by tumor 

cells through a pathway involving lysosomal endosomes (197).  Studies suggest that 
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extracellular HSPs including HSP70 may play important immunoregulatory functions 

(198-206).   For example, treatment of monocytes and DCs with recombinant HSP70 

stimulated cytokine production, upregulated co-stimulatory molecules, and enhanced 

MHC class II Ag presentation (200, 204).   

 

HSP70 has been highly studied as a key player in the pathogenesis of amyloidosis.  

Amyloidosis is a group of diseases characterized by the assembly of protein fibrils that 

are deposited extracellulary in various organs and tissues.  HSP70 has been shown to 

promote the proteasomal degradation of the proteins that make up these fibrils, 

potentially regulating fibril accumulation (207).  Studies have detected extracellular 

HSP70:peptide complexes in MHC class II-enriched compartments after receptor-

mediated endocytosis (208).  Interestingly, HSP70 has been shown to interact with MHC 

class II molecules (209).  Studies also suggest HSP70 mediated enhancement of MHC 

class II restricted peptide presentation (137, 209).  And relevant to autoimmunity, HSP70 

has been shown to promote myelin autoantigen presentation by MHC class II molecules 

(139).  Thus, a better understanding of the role of HSP70 in amyloidosis and 

autoimmunity may have implications on developing better therapeutics for these types of 

diseases.    

 

ER chaperones and MHC class II presentation 

The ER is a specialized environment where newly synthesized polypeptides are 

translocated, properly folded into functional proteins, and transported to their final 

destinations.  Nearly one third of all eukaryotic cellular proteins are translocated into the 

ER for processing (210).  Additional ER chaperones, folding enzymes, and resident 

proteins are also abundant in the ER at even higher levels than newly synthesized 

polypeptides.  Thus, the protein concentration in the ER lumen can be greater than 100 

mg/ml (211).    

 

Within the ER, there are quality control mechanisms that maintain homeostasis.  While 

properly folded proteins are exported from the ER, misfolded proteins are retained in the 

ER and selectively degraded.  Under some conditions, the cellular demand on ER 
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protein-folding activities exceeds the ER’s capacity.  This situation of imbalance, termed 

ER stress, results in the accumulation of misfolded proteins and the triggering of 

intracellular signaling pathways called the unfolded protein response (UPR).  The UPR 

temporarily halts protein translocation, degrades the misfolded proteins, and induces ER 

chaperones and folding enzymes in order to increase ER folding and degradation capacity 

(212, 213).  If proteins cannot be folded correctly, they are targeted for removal from the 

folding pathway via the ER-associated degradation (ERAD).  Through ERAD, proteins 

are exported from the ER into the cytosol for proteasomal degradation.         

 

ER chaperones play critical roles within the ER under both homeostatic conditions and 

ER stress.  Two main ER chaperones, grp94 and BiP, are chaperones of the HSP families. 

Grp94 is an ER homolog of cytosolic HSP90 and is expressed at high levels within the 

ER.  The ER chaperone binding immunoglobulin protein (BiP or grp78) is a homolog of 

cytosolic HSP70 and is one of the most abundant ER chaperones.  Parallels are being 

drawn between the grp94/BiP chaperone complex in the ER and HSP90/HSP70 in the 

cytosol.  BiP functions in both protein folding and in ERAD.  Similar to HSP70, BiP 

recognizes hydrophobic regions that are exposed in misfolded or unassembled proteins 

and functions in an ATP-dependent manner.  However, additional research indicates that 

HSP90 may also be linked to the cellular transcriptional response to ER stress, suggesting 

that chaperones on both sides of the ER are involved in the ER stress response (214).     

 

Studies suggest that ER chaperones play critical roles in mammalian development and are 

linked to a wide variety of diseases.  ER chaperones are linked to the prevention of 

protein misfolding in neurodegenerative diseases, cancer progression and tumor 

immunity, atherosclerosis, type II diabetes, and autoimmune disease such as TID (215).  

In reference to autoimmune diseases, BiP has been shown to associate with autoantigens 

suggesting a possible mechanism for triggering autoimmunity (216).  Additional research 

has shown that in Ii deficient cells, MHC class II molecules can bind grp94 (217).  This 

suggests that in the absence of Ii, ER stress chaperones such as grp94 may bind to MHC 

class II molecules and retain them in the ER.  This process could prevent endogenous 

peptide loaded MHC class II molecules from exiting the ER and minimize the 
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autoimmune responses to endogenous self Ags.  Taken together, ER chaperones play 

critical roles in protein assembly and degradation under both normal and stressed 

conditions and may prove crucial to the maintenance of homeostasis in the immune 

system.   

  

Research summary 

As previously stated, studies suggest that HSPs such as HSC70 play important roles as 

chaperones in MHC class II presentation of exogenous and endogenous Ags.  I 

hypothesize that in addition to HSC70, both HSP90 and HSP70 can modulate MHC class 

II presentation of select Ags in B cells.  To determine if HSP90 is involved in MHC class 

II presentation, two pharmacological inhibitors of HSP90, GA and RA, were used to 

inhibit HSP90 chaperone activity.  The effect of HSP90 inhibition on MHC class II 

presentation of a variety of endogenous and exogenous Ags was measured.  Manipulation 

of HSP90 isoform expression was performed by using isoform specific siRNA.  The 

effect of inhibition of HSP90 isoform expression on MHC class II presentation of a 

variety of endogenous and exogenous Ags, including the autoantigen GAD, was 

measured.  Studies were performed to identify a possible mechanism for HSP90 

involvement in MHC class II presentation of select Ags.  A role for HSP70 in MHC class 

II presentation was also explored using additional endogenous and exogenous Ags.  

These studies should provide insights into the involvement of HSP90 and HSP70 in 

MHC class II presentation of select Ags such as GAD and may prove helpful in 

understanding the link between GAD, MHC class II, HSPs, and autoimmunity.  

 

This work also includes a study of a rare case of diabetes caused by type B insulin 

resistance due to development of insulin receptor autoantibodies during treatment for 

hepatitis C with interferon α and ribavirin.  Clinical and laboratory findings in the case 

are presented.  Literature on type B insulin resistance and interferon-induced 

autoimmunity is reviewed.  This case demonstrated that type B insulin resistance can 

occur as a complication of interferon α therapy.  This was the first case in the United 

States of type B insulin resistance with insulin receptor autoantibodies during treatment 

with interferon α.   
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MATERIALS AND METHODS 

Cell lines 

 The human B lymphoblastoid cell line (B-LCL) Priess is homozygous for HLA-DR4 

(DRA1*0101,DRB1*0401) expression.  Retroviral transduction of Priess cells with 

GAD65 cDNA resulted in constitutive endogenous expression of GAD65 yielding 

PriessGAD cells (67).  Another human B-LCL, Frev, expresses both the HLA-DR4 

(DRA*0101, DRB1*0401) and HLA-DR1 (DRA*0101, DRB1*0101) class II alleles.  

Transfection of Frev with a CMV promoter driven plasmid encoding SMA, a mutant 

form of immunoglobulin (Ig) light chain κ4, followed by drug selection with 500 µg/ml 

hygromycin resulted in constitutive endogenous expression of SMA yielding FrevSMA 

cells (207).  These B-LCL cells were maintained in Iscove’s MEM (Invitrogen, Grand 

Island, NY) supplemented with 10% heat-inactivated fetal calf serum (Hyclone, Logan, 

UT), 100 µ/mL penicillin, and 100 µg/mL streptomycin (Gibco BRL Life Technologies, 

Grand Island, NY).   

 

The T cell hybridoma 33.1 recognizes the GAD273-285 epitope within the context of HLA-

DR4 (L. Wicker, Merck Research Laboratories, Rahway, NJ).  The 1.21 T cell 

hybridoma recognizes the κII145-159 (kappa II) epitope of Ig κ within the context of HLA-

DR4 (P. Whitley, Merck). The T cell hybridoma 2.18 recognizes the κI188-203 (kappa I) 

epitope of Ig κ within the context of HLA-DR4 (P. Whitley, Merck).  The 17.9 T cell 

hybridoma recognizes the HSA64-76 epitope from human serum albumin (HSA) within the 

context of HLA-DR4 (Merck Research Laboratories, Rahway, NJ).  The HT-2 cell line is 

an IL-2 dependent T cell hybridoma (Merck Research Laboratories, Rahway, NJ). All T 

cell hybridomas were maintained in RPMI 1640 (Invitrogen, Grand Island, NY) 

supplemented with 10% fetal calf serum (Hyclone, Logan, UT), 50 µM β 

mercaptoethanol (βME) (Gibco BRL Life Technologies, Grand Island, NY), 100 µ /mL 

penicillin, and 100 µg/mL streptomycin.  For HT2 cells, an additional 20% T-Stim (BD 

Biosciences, Bedford, MA) was added to the T cell media. 
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CHO, Chinese hamster ovary cells, and CHO/IR cells (Jeffrey Pessin, University of Iowa, 

Iowa City, Iowa) were cultured in α MEM (Hyclone, Logan, UT)  with 10% heat-

inactivated calf serum. 

 

Antibodies 

The following antibodies were used in various immunoprecipitations, Western 

immunoblots, and flow cytometry assays in order to study HSP90 and HSP70 function in 

MHC class II presentation.  All of the following primary antibodies were to human 

proteins.  The rabbit anti-human kappa light chain pAb and the rabbit anti-GAD65 pAb 

were purchased from Sigma Aldrich (St. Louis, MO).  The mouse anti-GAPDH mAb was 

purchased from Chemicon (Temecula, CA).  The mouse anti-actin mAb, rabbit anti-

HSP90α pAb, rabbit anti-HSP90β pAb were all purchased from Neomarkers/Thermo 

Fisher (Fremont, CA).  The mouse anti-KDEL mAb, mouse anti-HSP90 mAb, rabbit 

anti-HSP40 pAb, mouse anti-HSP70 mAb, and rat anti-HSC70 mAb were all purchased 

from Assay Designs (Ann Arbor, MI).  The mouse anti-MHC class II DRα (DA6.147) 

and mouse anti-MHC class II dimers (L243) were provided by Peter Cresswell (Yale).  

The GAD6 Ab (mouse anti-GAD65) was obtained from the Developmental Studies 

Hybridoma Bank, Univ. Iowa (Iowa City, IA).  Various secondary antibodies were used 

in these studies. The goat anti-rabbit IgG-HRP Ab, goat anti-rat IgG-HRP Ab, and goat 

anti-mouse IgG-HRP Ab were all purchased from Jackson Laboratories (West Grove, 

PA).  The goat anti-mouse IgG-PE was purchased from Dako (Carpinteria, CA).  To 

detect ovalalbumin protein, specific rabbit anti-serum from Cappel Laboratoris was used 

(Downington, PA).  

 

For the co-immunoprecipitation assays performed in the case study of type B insulin 

resistance, the following antibodies were used.  The rabbit anti-insulin receptor α (N-20): 

sc-710 pAb and the rabbit anti-insulin receptor β (C-19): sc-711 pAb were purchased 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  The goat anti-β actin pAb was 

purchased from Abcam (Cambridge, MA).   
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Antigens, peptides, and proteins 

A variety of Ags, peptides, and proteins were used in the following study.  The human 

GAD65 Ag was provided by J. Elliott (University of Alberta) or purchased from Diamyd 

(Pittsburgh, PA).  The HSA Ag was purchased from Sigma Aldrich (St. Louis, MO).  The 

synthetic peptides GAD273-285 (IAFTSEHSHFSLK), kappa I 188-203 

(KHKVYACEVTHQGLSS), kappa II145-159 (KVQWKVDNALQSGNS), and HSA64-76 

(VKLVNEVTEFAKTK) were generated using FMOC technology, HPLC purified, and 

mass analyzed to confirm purity and structure.  Purified native, human HSP90 protein 

was purchased from Assay Designs (Ann Arbor, MI). Ovalbumin (OVA) protein was 

purchased from Sigma Aldrich (St. Louis, MO).  Kappa Ag isolated from human Bence 

Jones protein was purchased from Accurate Chemical and Scientific Corporation 

(Westbury, NY).    

 

Pharmacological inhibitors 

The HSP90 inhibitors, geldanamycin (GA) and radicicol (RA), were purchased from 

EMD (Rahway, NJ) and solubilized in DMSO.  GA was used at concentrations ranging 

from 0.09 to 1.8 µM, and RA was used at concentrations ranging from 1-5 µM.   

The lysosomal protease inhibitor leupeptin was solubilized in PBS and used at a 

concentration of 50 µM (Sigma Aldrich, St. Louis, MO). The toxicity of all inhibitors 

was tested to ensure a typical cell viability at > 85% following cell treatments. 

 

Amaxa siRNA nucleofection 

Target specific siRNA was used to specifically knockdown HSP90α and HSP90β 

expression.  HSP90α and HSP90β siRNA oligomers as well as RISC-free siRNA controls 

were produced by Dharmacon (Lafayette, CO).  As previously described, the target 

sequences for hsp90α knockdown were 5′-AAAGCGUUCAUGGAAGCUUUG-3′ and 

5′-AAGGCUGACUUGAUCAAUAAC-3′ while the siRNA specific for hsp90β was 5′-

AAGGCCAAGCACGACAAGTAC-3′. All oligonucleotides had 3′ dTdT overhangs 

(141).  HSP90α, HSP90β, and RISC-free control siRNA were used at concentrations 

between 20-200 pMol.  RISC-free siRNA lacks a signal for nuclear translocation and 

functions as a negative control siRNA for nucleofection.  Nucleofection of B cells with 
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siRNA and a GFP-expression plasmid was performed using the Lonza (Gaithersburg, 

MD) nucleofection kit V and program Y-01.  After nucleofection, B cells were incubated 

for 48 hours.     

 

Flow cytometry  

Flow cytometry was used to detect expression of MHC class II, CLIP, Ii, HLA-DM, and 

HLA-DO.  For cell surface expression, 5 x 10
5 

B cells were incubated with primary Ab 

for 60 min on ice, washed with ice cold phosphate buffered saline (PBS), and incubated 

with either FITC- or PE-conjugated F(ab’)2 fragments of goat anti-mouse IgG (1:200 

dilution) prior to aldehyde fixation.  For total expression, 5 x 10
5 

B cells were fixed in 1% 

paraformaldehyde (10 min, 25°C) and permeabilized with PBS + 1% bovine serum 

albumin (BSA) + 0.1% sodium azide (NaN3) + 0.1% saponin for 30 minutes on ice prior 

to Ab staining.  Flow cytometry was performed on a FACScan
TM

 and data analyzed using 

CELLQuest software.  

 

Antigen presentation assay 

To measure MHC class II presentation of endogenous Ags, treated B cells were washed 

in cold PBS, fixed in 0.5% paraformaldehyde (10 min, 25°C), and washed in cold B cell 

media to remove the paraformaldehyde.  For exogenous Ag or peptide presentation, B 

cells were pre-incubated with serially diluted Ags or peptides for 16 hours at 37°C prior 

to fixation.  Variable numbers of B cells (ranging from 1-5 x 10
4
 cells) were added to 

peptide specific T cells (1 x 10
4
) and incubated for 24 hours at 37°C.  The IL-2 dependent 

T cell line, HT2, was used to measure IL-2 production during the APC/T cell incubation.  

HT2 cells (5 x 10
3 

cells) were incubated with supernatants from the APC/T cell co-

cultures for 18 hours at 37°C.  [
3
H]-thymidine (2 µCi/well) was added to the HT-2 cells 

and incubated for another 8 hours at 37°C.  The cells were then harvested using a 96-well 

plate cell harvester (Skatron, Sterling, VA), and [
3
H] -thymidine incorporation was 

measured by liquid scintillation counting using a Wallac Microbeta plate reader 

(Gaithersburg, MD).  Data is expressed as the average counts per minute (CPM) of 

triplicate samples.  
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Immunoprecipitations 

For co-immunoprecipitation assays with B cells, 1 x 10
7
 cells per sample were lysed in 

500 µl of either 1% Triton-X lysis buffer (10 mM Trizma base, 150 mM NaCl, 0.2 mM 

PMSF, 0.1 mM TLCK, 1% Triton-X 100, pH = 7.4) or 1% N-octyl-β-glucopyranoside 

lysis buffer (10 mM Trizma base, 150 mM NaCl, 0.2 mM PMSF, 0.1 mM TLCK 1% N-

octyl-β-glucopyranoside, pH = 7.4) for 15 minutes on ice.  Lysates were first centrifuged 

at 1000 RPM for 5 minutes, then re-centrifuged at 14,000 RPM for 10 minutes.  Pre-

clearing of the lysates was performed to remove any non-specific binding.  Normal rabbit 

serum (1:1,000 dilution) was added to the lysate and incubated at 4°C for 30 minutes 

while rocking.  Blocked, cold PBS-washed protein G sepharose beads (Sigma-Aldrich, 

St. Louis, MO) were added and incubated for an additional 15 minutes at 4°C while 

rocking.  The protein G sepharose beads were centrifuged at 7000 RPM at 4°C and the 

supernatant was collected.  Prior to use, protein G sepharose beads were blocked with a 

30 minute incubation at 4°C with rocking in TNNB buffer (50 mM Trizma base /HCL 

with pH= 8.0, 250 mM NaCl, 0.1% BSA, 0.02% NaN3, 0.2 mM PMSF, 0.1 mM TLCK), 

then washed and resuspended 1:1 with cold PBS.  Specific Abs or isotype control Abs 

were incubated with blocked, PBS-washed protein G sepharose beads overnight at 4°C 

while rocking.  After incubation, Ab-PGS complexes were washed with cold PBS and 

resuspended 1:1 with cold-PBS.  Pre-cleared cell lysates were added to the Ab-PGS 

complexes and incubated at 4°C for 18 hours while rocking.  The beads were then 

washed three times with lysis buffer without protease inhibitors.  Ag-Ab complexes were 

eluted with 50 µl 2X reducing sample buffer, boiled for 5 minutes, and briefly 

centrifuged.  Elutes were resolved on 10% SDS-PAGE and Western immunoblotting was 

performed as described below.   

 

For the co-immunoprecipitation assays CHO and CHO/IR cells were collected by 

scraping cells from plates with 10 mM Trizma Base, 150 mM NaCl, 0.2 mM PMSF, 0.1 

mM TLCK (pH = 7.4) buffer.  Cells were then homogenized with Daunce homogenizer 

and passed through a 20 gauge needle.  Following ultracentrifugation, cells were lysed in 

1% Triton-X 100, 10 mM Trizma Base, 150 mM NaCl, 0.2 mM PMSF, 0.1 mM TLCK 

(pH = 7.4).  Cell lysates were then pre-cleared, and co-immunoprecipitation was 
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performed. Cell lysates were pre-cleared with SACI.  Patient or control serum was added 

to cell lysates at 4°C overnight, followed by protein G sepharose for 1 hour at 4°C.  Ag-

Ab complexes were collected and washed prior to elution and analysis by 10% SDS-

PAGE and Western immunoblotting.   

 

Gel electrophoresis and Western immunoblotting 

 For cell lysates, 5 x 10
6 
cells were lysed in 250 ul of 1% Triton-X lysis buffer (10 mM 

Trizma Base, 150 mM NaCl, 0.2 mM PMSF, 0.1 mM TLCK, pH = 7.4) on ice for 15 

minutes.  Lysates were first centrifuged at 1000 RPM for 5 minutes, then re-centrifuged 

at 14,000 RPM for 10 minutes.  Cellular protein concentrations were determined by 

BioRAD protein assay (Hercules, CA).  Equal amounts of cell protein (50-100 µg) in 

either non-reducing or reducing sample buffer was resolved by either 10% or 12% SDS-

PAGE and transferred onto nitrocellulose membranes (BioRAD, Hercules, CA).  

Reducing sample buffer contained βME and was used in all cases except for the detection 

of invariant chain and MHC class II dimers.  Membranes were blocked in Blotto 

overnight at 4°C and incubated with specific antibodies.  HRP-conjugated secondary 

antibodies and enhanced chemiluminescence from Pierce (Rockford, IL) was used to 

visualize antibodies on membranes.  Densitometry was performed using the Quantity One 

program and electronic imaging (BioRAD, Hercules, CA).   

 

For analysis of additional proteins on the blots, the blots were stripped and reprobed with 

additional antibodies of interest.  Following development of the blot, any residual ECL 

was rinsed with TBS-T.  The blots were then stripped of bound antibodies by incubating 

the blots for 30 minutes at 65°C in a stripping solution containing 100 mM βME and 2% 

SDS. After washing to remove any residual stripping solution, the blots were blocked in 

Blotto and probed with additional antibodies.  This procedure could be repeated at least 3 

times with reproducible results.   

 

Media concentration for Western analysis 

Fresh and conditioned media was concentrated from 13 ml to approximately 50 µl using 

Centricon centrifugal filter devices with 50,000 and 30,000 NMWL Ultracel YM 
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membranes (Millipore, Billerica, MA).  Cultured cells were centrifuged at 1000 RPM for 

5 minutes to separate the cells from the media.  The supernatant was removed and 

centrifuged at 5000 x g max for 60 minutes in a Centricon filter device with 50,000 

NMWL membrane.  The concentrated media was removed and recentrifuged at 5000 x g 

for 30 minutes in a Centricon filter device with 30,000 NMWL membrane.   

 

Semi-quantitative RT-PCR 

Total RNA was extracted from treated B cells with an RNEasy Mini kit (Qiagen, 

Valencia, CA) following the manufacturer’s instructions. cDNA was generated from 

RNA using an Advantage RT for PCR kit from BD Biosciences.  Primers for PCR 

amplification were designed using the Custom Primers - OligoPerfect™ Designer 

software (Invitrogen, Grand Island, NY). The primers used for human Ii were 5'-GCT 

GTC GGG AAG ATC AGA AG-3'  (sense) and 5'-GCC ATA CTT GGT GGC ATT CT-

3' (antisense); for HLA-DRα 5'-CAA AGA AGG AGA CGG TCT GG-3' (sense) and 5'-

AGC ATC AAA CTC CCA GTG CT-3' (antisense); for human cathepsin S 5'-GGA TCA 

CCA CTG GCA TCT CT-3' (sense) and 5'-CCA GCT TTC CTG TTT TCA GC-3' 

(antisense); for human cathepsin B 5'-GCT ATC CTG CTG AAG CTT GG-3' (sense) and 

5'-CAT TGT CAC CCC AGT CAG TG-3' (antisense);  for human cathepsin D 5'-AGC 

TGG TGG ACC AGA ACA TC-3' (sense) and 5'-CTC TGG GGA CAG CTT GTA GC-

3' (antisense);  and for human cathepsin L 5'-TGT GGT TCT TGT TGG GCT TT-3' 

(sense) and 5'-CAG GCC TCC ATT ATC CTG AA-3' (antisense).  GAPDH primers 

were obtained from the Advantage RT for PCR kit. Amplification reactions were 

performed using 1.1×ReddyMix
TM

 PCR Master Mix (ABgene/Thermo Fisher, Rockford, 

IL) with different cycle times in a MJ Research thermal cycler. The number of 

amplification cycles for analysis was 20, 28, 30, 36, or 50 cycles.  The cycling  

parameters used were: 95°C, 15 sec; 50°C, 30 sec; and 68°C, 1 min. PCR products (10 

µl) were electrophoresed on 1% agarose gels, stained with SYBR
®
 safe DNA gel stain 

(Invitrogen, Grand Island, NY), and detected with UV transillumination using 

ChemiDoc
TM

 XRS (BioRad, Hercules, CA).  
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Cathepsin activity assays 

The following protocol for measuring cathepsin activity was adapted from the published 

protocol described by Kirschke and Wiedernanders (218).  For these assays, 5 ml glass 

tubes were used.  For each sample, 2 x 10
7
 cells were suspended in 0.5 ml of 20 mM 

Hepes, 0.5% Triton-X 100, pH = 6.5 with HCL and incubated for 3 minutes on ice.  Cells 

were homogenized with a Dounce homogenizer for 20 strokes on ice.  Homogenates were 

centrifuged at 1000 RPM for 5 minutes at 4°C.  Samples were serially diluted (1:2, 1:4, 

and 1:10) in diluent.  Buffer/Activator (50 µl) for each assay was added to the diluted 

samples and incubated for 2 minutes at room temperature.  50 µl of substrate solution 

was added and incubated for exactly 30 minutes for cathepsin B, 10 minutes for cathepsin 

S/L, and 60 minutes for cathepsin S assays.  After incubation, 200 µl of stopping buffer 

was added and mixed.  For each sample, 200 µl was transferred to a 96 well plate and 

analyzed for fluorescence with excitation at 360 nm and emission at 460 nm.  Samples 

were compared to a 0.5 µM 7-amino-4-methylcoumarin (AMC) standard.  The 

instrument was set to read 1000 arbitrary fluorescence units (FU) for the 0.5 µM AMC 

standard.  Cathepsin activity was calculated as the change in sample fluorescence units 

(FU) after 30 minutes.  Here, the observed FU for samples with protease at 30 minutes 

was corrected for background substrate hydrolysis by subtracting the FU of a control or 

blank sample lacking enzyme.   For cathepsins, international convention holds that 1 mU 

of enzyme activity can catalyze a change of 1000 FU per minute.  Thus, for a 30 minute 

assay, the following equation was used:  (X FU/30 minutes) x (1 min/1000 FU) = Y 

microunits of protease (µU).  The BioRad protein assay was performed to determine the 

total protein concentration of each sample.  Using the protein concentration, the total 

cathepsin activity per mg protein was calculated using the equation: (Y µU/ml lysate 

added)/ (mg/ml) protein concentration = X µU/mg. 

 

For all assays, the stop solution was 100 mM sodium monochloracetate (CH2ClCOONa), 

30 mM sodium acetate (NaCH3COO), 70 mM acetic acid (CH3COOH), pH = 4.3.  The 

10 mM AMC standard reconstituted in DMSO was diluted to a working concentration of 

0.1 µM with a 1:1 mixture of assay buffer:stopping reagent each day of use.  The diluent, 

buffer/activator, and substrates for each assay is listed as follows.  For cathepsin B, the 
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diluent was 0.1% Brij 35 detergent (Sigma), the buffer/activator was 352 mM 

monopotassium phosphate (KH2PO4), 48 mM disodium phosphate (Na2HPO4), 4 mM 

EDTA, pH = 6.0 with 8mM dithiothreitol (DTT) added on day of use, and the stock 

substrate solution was 1mM Z-Arg-Arg-AMC in DMSO, diluted to a working solution of 

20 uM in ddH20 on day of use.  For cathepsin S/L assays, the diluent was 0.1% Brij 35 

detergent (Sigma), the buffer/activator was 340 mM sodium acetate (NaCH3COO), 60 

mM acetic acid (CH3COOH), 4 mM EDTA, pH = 5.5 with 8mM DTT added on day of 

use, and the stock substrate solution was 1mM Z-Phe-Arg-AMC in DMSO, diluted to a 

working solution of 20 µM in ddH20 on day of use.  For cathespin S, the diluent was 

0.01% Triton-X-100, .1M potassium phosphate buffer, mM EDTA, pH=7.5; the 

buffer/activator was 0.1M potassium phosphate buffer/5mM disodium EDTA with 5mM 

DTT added on day of use; and the stock substrate solution was 10mM Z-Val-Val-Arg-

AMC in DMSO diluted to a working solution of 12.5 µM in ddH20 on day of use.   
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RESULTS 

Chapter 1.  HSP90 modulates GAD antigen presentation in B cells  

In order to study MHC class II presentation of GAD, two model B cell lines, Priess and 

PriessGAD, were utilized.  Both Priess and PriessGAD are EBV transformed human B 

cell lines homozygous for the diabetes susceptible MHC class II allele HLA-DR4.  

PriessGAD cells were generated by retroviral transduction of Priess with cDNA encoding 

the 65 kD form of human GAD (67).  Within the cytoplasm of cells, GAD is primarily 

associated with the outer face of vesicular organelles.  Previous studies from our lab 

showed that similarly in PriessGAD cells, GAD is also primarily associated with the 

cytoplasmic face of intracellular membranes (67).  Effective MHC class II presentation of 

the immunodominant T cell epitope GAD273-285 resulted from the expression of human 

GAD within the cytoplasm of PriessGAD cells (219).  Western immunoblotting of 

conditioned media from PriessGAD cells failed to detect any secreted GAD Ag 

suggesting that endogenous GAD is processed via an endogenous pathway (67).  When 

pulsed with exogenous human GAD Ag, Priess cells can present the immunodominant 

GAD273-285 epitope via MHC class II molecules (219).  Thus, the autoantigen GAD can 

be efficiently presented by MHC class II molecules either by cytoplasmic or extracellular 

(exogenous) routes.    

 

Pharmacological inhibition of HSP90 specifically decreases MHC class II 

Presentation of GAD 

HSP90 is constitutively expressed by all cells including islet beta cells and APCs.   In 

addition to cytoplasmic GAD, PriessGAD cells also express endogenous HSP90 at 

relatively high levels.  Previous studies in our laboratory implicated HSC70 as a player in 

MHC class II presentation of endogenous GAD.  HSC70 has been shown in the literature 

to interact with HSP90 (162).  Therefore, experiments were performed to determine 

whether HSP90, like HSC70, is involved in MHC class II presentation of GAD.  In order 

to explore the role of HSP90 in GAD Ag processing and presentation in B cells, we 

utilized two HSP90 inhibitors, GA and RA.  GA, a benzoquinone ansamycin antibiotic, 

and RA, a macrocyclic drug, have been shown to bind to HSP90 and inhibit its chaperone 

activity in cell lines and animals (177).  PriessGAD cells were treated for 18 hours with 
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increasing concentrations of GA and RA and analyzed for MHC class II presentation of 

endogenous, intracellular GAD.  Both GA and RA treatment of PriessGAD cells resulted 

in a dose-dependent decrease in MHC class II presentation of endogenous GAD (Fig. 8).  

Treatment of cells with GA and RA for 18 hours did not alter cell viability as assessed by 

trypan blue staining (data not shown).   

 

 

 

Figure 8.  Pharmacological inhibition of HSP90 reduces MHC class II presentation 

of endogenous GAD Ag.  PriessGAD cells were treated with increasing 

concentrations of HSP90 inhibitors GA (A) or RA (B) for 18 hours prior to 

paraformaldehyde fixation.  MHC class II presentation of endogenous GAD was 

analyzed by T cell assays. Multiple control assays were carried out including 

analysis of the production of IL-2 by APCs or T cells cultured alone.  The 

negative control indicated here represents proliferation of HT-2 cells without 

addition of IL-2.  Results are representative of at least 3 separate experiments. 
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Drug-treated PriessGAD cells were also analyzed for their capacity to present epitopes 

from another endogenous Ag, the kappa light chain of human Ig Ab.  The kappa light 

chain subunit is produced via the secretory pathway, transiting from the ER to the Golgi 

and routed to endosomes for secretion or to the cell surface via endosomes.  Previous 

studies in our lab using inhibitors of endo/lysosomal Ag processing suggest that kappa 

light chain is processed in acidic compartments.  Further studies have shown that epitopes 

of kappa light chain Ag are displayed by MHC class II molecules on the cell surface of 

Priess and PriessGAD cells.  PriessGAD cells were treated with increasing concentrations 

of GA or RA and analyzed for MHC class II presentation of both the dominant kappa I 

and sub-dominant kappa II epitopes from endogenous Ig kappa light chain.  GA or RA 

treatment did not alter MHC class II presentation of endogenous kappa I or kappa II 

epitopes (Fig. 9).  These results indicate that HSP90 inhibition by either GA or RA 

appears to perturb MHC class II presentation of select endogenous Ags such as GAD.  

These results point to a potential selectivity or specificity in HSP90 modulation of MHC 

class II presentation which may be linked to Ag or Ag localization.       
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Figure 9.  Pharmacological inhibition of HSP90 function does not affect MHC class 

II presentation of endogenous IgG kappa Ag.  PriessGAD cells were treated 

with increasing concentrations of HSP90 inhibitors GA (A and C) or RA (B and 

D) for 18 hours.  MHC class II presentation of two endogenous peptide epitopes 

encoded within the Ag IgG, termed kappa I (A and B) and kappa II (C and D) was 

analyzed by T cell assays. Control assays were carried out as in figure 8.  Here, 

the negative control indicates HT2 cell proliferation without IL-2 addition.   

Results are representative of at least 3 separate experiments.  
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The question remained whether HSP90 is involved in the classical exogenous MHC class 

II pathway or functions only in the endogenous MHC class II presentation pathway.  

Thus, Priess cells were treated with GA or RA and pulsed with several exogenous Ags 

and peptides prior to testing for MHC class II presentation.  Priess cells were first 

analyzed for the effect of GA and RA on MHC class II presentation of exogenous GAD 

Ag (Fig. 10A and B).  GA or RA treatment inhibited MHC class II presentation of 

exogenous GAD Ag by Priess cells.  To determine if the effect of GA and RA treatment 

was specific for Ag processing, GA or RA treated Priess cells were pulsed with the 

exogenous, synthetic GAD273-285 peptide and analyzed for MHC class II presentation of 

that specific epitope.  Neither GA nor RA affected MHC class II presentation of GAD 

epitope from exogenous GAD peptide (Fig. 10C and D).   
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Figure 10.  Pharmacological inhibition of HSP90 diminishes MHC class II 

presentation of exogenous GAD Ag, but not exogenous GAD peptide.  Priess 

cells were treated with either 0.18 µM GA (A and C) or 2 µM of RA (B and D) 

for 18 hours.  After 2 hours of drug treatment, exogenous GAD Ag (A and B) or 

GAD peptide (C and D) were added to these B cells for an additional 16 hours.  

MHC class II presentation of exogenous GAD (A and B) and exogenous GAD 

peptide (C and D) by B cells prior to paraformaldehyde fixation and T cell assays. 

Control assays were carried out as in Figure 8.  Here, the negative control is 

GA/RA treated Priess cells without exogenous Ag/peptide added.  Results are 

representative of at least 3 separate experiments. 
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To further address the Ag specificity of GA and RA treatment on MHC class II 

presentation in B cells, the effect of drug treatment on the presentation of an epitope from 

human serum albumin (HSA) Ag was examined.  PriessGAD cells pulsed with whole 

HSA Ag can present HSA epitopes including the HSA64-76 epitope via MHC class 

molecules.  GA and RA treated PriessGAD cells were pulsed with exogenous HSA Ag 

and measured for MHC class II presentation of this HSA epitope.  Neither GA nor RA 

treatment of PriessGAD cells affected MHC class II presentation of HSA64-76 epitope 

from exogenous HSA Ag (Fig. 11A and B).  GA or RA treated PriessGAD cells were 

also pulsed with the exogenous, synthetic HSA64-76 peptide and analyzed for MHC class 

II presentation of this epitope.  MHC class II presentation of the exogenous HSA64-76 

peptide was not affected by GA or RA treatment.  Taken together, these results suggest 

that disruption of HSP90 function by GA and RA selectively inhibits MHC class II 

presentation of GAD epitopes derived from both exogenous and endogenous sources of 

GAD Ag.   
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Figure 11.  Pharmacological inhibition of HSP90 function does not affect MHC class 

II presentation of exogenous HSA Ag or exogenous HSA peptide.  PriessGAD 

cells were treated with either 0.18 µM GA (A and C) or 1 µM of RA (B and D) 

for 18 hours.  After 2 hours of drug treatment, exogenous HSA Ag (A and B) or 

HSA peptide (C and D) were added to PriessGAD B cells.  MHC class II 

presentation of exogenous HSA (A and B) and exogenous HSA peptide (C and D) 

by these B cells was analyzed by T cell assays.  Control assays were carried out as 

in Figure 9.  Here, the negative control is GA/RA treated Priess cells without 

exogenous Ag/peptide added. Results are representative of at least 3 separate 

experiments.  
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Pharmacological inhibition of HSP90 induces a stress response in B cells 

Prolonged exposure of cells to HSP90 inhibitors can induce a stress response, as 

monitored by increased cellular expression of HSP70, HSP90, HSC70, and HSP40 

protein levels (179, 220, 221).  To determine if RA and GA were inducing a stress 

response in B cells, levels of intracellular HSP90, HSP70, HSC70, and HSP40 protein 

were measured by Western immunoblotting.  Results show that both RA and GA 

treatments significantly induce HSP70 expression and to a lesser extent HSP40 (Fig. 12).   

HSP90 expression is also slightly induced by RA treatment as cells attempt to 

compensate for loss of HSP90 function as previously reported (Fig. 12) (179, 220, 221).    

However, statistical analysis determined this induction was not statistically significant.  

These results indicate that inhibition of HSP90 function by RA and GA treatment induces 

a stress response in B cells.   
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Figure 12.  Pharmacological inhibition of HSP90 induces a stress response. 

PriessGAD cells were treated with either RA, GA, or DMSO as a control for 18 

hours.  (A)  Whole cell lysates from treated cells were fractionated on 10% SDS-

PAGE gel and Western immunoblotted for HSP90, HSC70, HSP70, HSP40, and 

actin protein expression.  (B)  Densitometry of the representative experiment in 

panel A.  Results are representative of at least 2 separate experiments.  (C)  The 

average relative expression of HSP/HSC +/- SEM as determined by analysis of at 

least 2 separate experiments.  *Statistically significant as determined by student t 

tests.   
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Studies have shown that cell stress such as heat shock can promote enhanced Ag 

processing and MHC class II presentation of some exogenous and endogenous Ags by B 

cells (222).  It is possible that the altered Ag presentation seen in drug treated PriessGAD 

cells was due to their induction of a stress response rather than HSP90 inhibition. 

Experiments were performed to determine if cell stress by heat shock altered GAD Ag 

presentation. PriessGAD cells were heat shocked to mimic the stress response that was 

observed upon RA/GA treatment.  PriessGAD cells were incubated at 37, 40, or 42°C for 

20 minutes followed by a 24 hour incubation at 37°C.  Exposure of PriessGAD cells to 

40 or 42°C resulted in significantly increased HSP90, HSP70, and HSP40 expression 

confirming an induced stress response (Fig. 13).  Previous studies in the lab have shown 

that this increase in HSP/HSC expression was maintained for up to 48 hours (data not 

shown).  To determine the effect of this stress on Ag presentation, heat stressed 

PriessGAD cells were assayed for endogenous GAD, exogenous HSA Ag, and HSA 

peptide presentation.  Heat stressing PriessGAD cells did not alter MHC class II 

presentation of endogenous GAD, exogenous HSA Ag, or exogenous HSA peptide 

(Fig.14).  These results indicate that while RA and GA each induced a stress response 

and upregulated overall HSP/HSC expression in B cells, cellular stress alone does not 

contribute to the observed decrease in MHC class II presentation of GAD Ag associated 

with pharmacological inhibition of HSP90.   
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Figure 13.  Heat stress induces HSP expression in B cells.  PriessGAD cells were 

incubated for 20 minutes at 37, 40, or 42°C in medium plus 10% heat inactivated 

serum followed by a 24 hour incubation at 37°C.  (A)  Whole cell lysates were 

fractionated on 10% SDS-PAGE gels and Western immunoblotted for HSP90, 

HSC70, HSP70, HSP40, and actin protein expression.  Blot is representative of at 

least 2 separate experiments.  (B) Average relative expression of HSP/HSC +/- 

SEM as determined by densitometry from at least 2 separate experiments is 

displayed in the table. *Statistically significant as determined by student t tests. 
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Figure 14.  Heat stress does not alter MHC class II presentation of endogenous GAD 

Ag, endogenous IgG kappa Ag, exogenous HSA Ag, or exogenous HSA 

peptide.  PriessGAD cells were incubated for 20 min at  37, 40, or 42 °C 

followed by a 24 hr incubation at 37°C with either 5 µM of exogenous HSA Ag 

(C) or exogenous HSA peptide (D) added after 8 hours.  Samples of B cells were 

divided and assayed by T cell assay for MHC class II presentation of endogenous 

GAD epitope (A), endogenous kappa II epitope (B), or HSA epitopes from 

exogenous HSA Ag (B) or HSA peptide (C).  Control assays were carried out as 

in Figure 8.  Here, the negative control indicates HT2 cell proliferation without 

IL-2 addition. Results are representative of at least 3 separate experiments.  
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Pharmacological inhibition of HSP90 does not alter MHC class II expression 

In a study using macrophages, HSP90 overexpression was found to enhance MHC class 

II dimer stability while GA and RA treatments decreased dimer stability (142).  Both 

HSP90 overexpression and inhibition were reported not to alter surface and total MHC 

class II protein expression in these murine cells (142).  To evaluate whether GA or RA 

inhibition of HSP90 altered MHC class II expression levels in human B cells, PriessGAD 

cells were treated with either agent, and then evaluated for total cellular MHC class II 

mRNA and protein expression as well as MHC class II surface expression.  To determine 

if HSP90 inhibition affects MHC class II transcription, RT-PCR was performed on RA, 

GA, or control treated cells.  HSP90 inhibition by RA or GA did not alter MHC class II 

RNA expression levels (Fig. 15A).  Western immunoblotting was performed on RA, GA, 

or control treated cells to measure the total cellular content of MHC class II DRα 

monomers or dimers.  Neither GA nor RA significantly altered the total cellular content 

of MHC class II DRα monomers as detected by Western immunoblotting (Fig. 15B).  

While MHC class II monomer expression was not affected, dimerization of MHC class II 

α and β chains could be altered.  Therefore, the effect of RA and GA on MHC class II 

dimerization in B cells was explored.  Western immunoblotting for MHC class II dimers 

showed that steady state levels of MHC class II dimers were also unchanged by GA or 

RA treatment (Fig. 15B).   
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Figure 15.  Pharmacological inhibition of HSP90 does not alter MHC class II mRNA 

or protein expression.  PriessGAD cells were treated with DMSO as a control, 

RA (2 µM), or GA (0.18 µM) for 18 hours.  (A) Following treatment, mRNA was 

prepared and transcribed to cDNA.  From each sample, cDNA was subjected to 

PCR to amplify sequences from MHC II α chain and GAPDH.  PCR products 

were resolved on an agarose gel with SyberSafe stain. Results shown are 

representative of at least 2 separate experiments.  (B) Whole cell lysates from 

treated cells were analyzed by Western immunoblotting for expression of MHC 

class II DRα chain (left) or MHC class II DR αβ dimers (right).  Results shown 

are representative of at least 3 separate experiments. (C) The table depicts the 

average relative expression of MHC class II DRα and Dr αβ dimers +/- SEM.  

Student t tests determined no significant change in MHC class II expression.      
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Additionally, flow cytometry of RA and GA treated cells was used to examine total 

cellular levels of MHC class II dimers.  This analysis confirmed no alteration of total 

MHC class II dimer expression (Fig 16A).  The observed decreases in MHC class II 

GAD Ag presentation could result from decreased surface expression of MHC class II 

dimers, even though total monomer and dimer expression remained stable.  Therefore, 

surface levels of MHC class II dimers were also examined by flow cytometry.  Analysis 

indicated that GA and RA did not decrease surface MHC class II dimer expression (Fig. 

16B).  Taken together, these results indicate that the decrease in MHC class II GAD Ag 

presentation observed with GA or RA treatment is not due to alterations in MHC class II 

expression or dimer stability in B cells. 

 

 

Figure 16.  Pharmacological inhibition of HSP90 does not alter total or surface 

MHC class II expression  PriessGAD cells were treated with DMSO as a 

control, RA (2 µM), or GA (0.18 µM) for 18 hours.  (A)  Following treatment, 

cells were fixed in 1% paraformaldehyde, permeabilized, and stained for total 

MHC class II expression or isotype control (Iso).  (B)  For surface MHC class II 

expression, cells were first stained for surface MHC class II expression or isotype 

control (Iso) and then fixed in 1% paraformaldehyde.  MHC class II expression 

was detected by flow analysis.  Thick black line indicates control cells, thin gray 

line indicates GA treated cells, dashed black line indicates RA treated cells, and 

thin gray line indicates isotype control staining.  Results shown are representative 

of at least 3 separate experiments.  
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HSP90 selectively associates with GAD Ag 

HSP90 can bind to both proteins and peptides to potentiate intra- and extracellular 

transport, folding, and proteolysis.  HSP90 has been shown to bind peptides for both 

direct and indirect MHC class I presentation (223).  While results thus far suggest HSP90 

is involved in MHC class II presentation of GAD Ag, it is unknown whether HSP90 

interacts with native GAD Ag.  Thus, experiments were performed to determine whether 

HSP90 naturally associates with cytoplasmic GAD Ag using the human B cell line 

PriessGAD.  Using lysates from PriessGAD cells, immunoprecipitations were performed 

with either GAD specific or IgG isotype control Abs.  Following SDS-PAGE and transfer 

onto nitrocellulose, blots were probed with an HSP90 specific antibody.  The results 

show that GAD co-immunoprecipitated with HSP90, while an IgG isotype control Ab 

failed to immunoprecipitate HSP90 confirming specificity (Fig.17A).  These results 

demonstrate intracellular association of HSP90 and GAD in cells co-expressing these 

proteins.  Our results suggest that HSP90 inhibition does not affect MHC class II 

presentation of endogenous Ig kappa.  One explanation for this result is that unlike GAD 

Ag, Ig kappa Ag may not be a client protein for HSP90.  Co-immunoprecipitation 

experiments were performed on PriessGAD whole cell lysates to determine if Ig kappa 

Ag associates with HSP90 in PriessGAD cells co-expressing these proteins.  Unlike GAD 

Ag, Ig kappa Ag was not found associated with HSP90 (Fig. 17A).   

 

Intracellularly, HSP90 has been shown to work in concert with other HSPs including 

HSC70, HSP70, and HSP40 (162, 167).  The association of HSP90 with GAD could be 

due to a direct interaction of these two molecules or an indirect interaction via binding 

through an additional HSP.  In order to determine if HSP90 and GAD can directly 

interact, purified HSP90 protein was incubated with purified GAD Ag followed by 

immunoprecipitation with GAD, HSP90, or IgG isotype control Abs.   

Immunoprecipitates were Western immunoblotted with GAD and HSP90 Abs.  HSP90 

was detected co-precipitating with GAD, indicating that HSP90 can bind directly to GAD 

(Fig. 17B).  As a control, HSP90 was also incubated with purified Ig kappa light chain 

and immunoprecipitated with HSP90, Ig kappa light chain, or IgG isotype control Abs.  

Western immunoblotting did not detect Ig kappa light chain associated with HSP90 
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confirming that the interaction between HSP90 and GAD is not due to nonspecific 

binding.  These results suggest the association of HSP90 and GAD seen in PriessGAD 

lysates is likely due to a direct association of these two proteins.  HSP90 inhibition by 

GA was found to decrease MHC class II presentation of exogenous OVA (ovalbumin) 

Ag in APCs (142).  The authors suggested that the effect of HSP90 inhibition on OVA 

Ag presentation was due to alterations in overall MHC class II expression.  However, 

another possible explanation could be that HSP90 may bind to OVA Ag and selectively 

chaperone OVA Ag for MHC class II presentation.  To determine if HSP90 could 

directly interact with OVA Ag, purified HSP90 was pre-incubated with purified OVA Ag 

and immunoprecipitated with HSP90, OVA, or IgG isotype control Abs.  HSP90 was 

found to co-immunoprecipitate with OVA Ag, indicating that HSP90 and OVA Ag can 

directly interact in vitro (Fig. 17B).  These results suggest that the previously published 

results could be due to selective chaperone activity of HSP90 and not due to overall 

alterations in MHC class II expression or function.   
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Figure 17.  HSP90 selectively associates with GAD Ag.  (A and B)  PriessGAD whole 

cell lysates were incubated overnight at 4°C with anti-GAD Ab, anti-HSP90 Ab, 

anti-kappa light chain, or the isotype control IgG Ab bound to protein-G 

sepharose beads.  Immunoprecipitated proteins eluted with 2X reducing sample 

buffer were subjected to 10% SDS-PAGE and Western immunoblotting with anti-

HSP90 Ab.  Whole cell lysate (WCL) was run as a positive control.  (B)  Purified 

GAD, kappa light chain, or OVA protein was pre-incubated with HSP90 at a 3:1 

molar ratio overnight at 37°C prior to immunoprecipitation with anti-HSP90 Ab, 

anti-GAD Ab, anti-kappa light chain, anti-OVA Ab, or isotype control IgG Ab 

bound to protein-G sepharose beads.  Immunoprecipitated proteins eluted with 2X 

reducing sample buffer were subjected to 10% SDS-PAGE and Western 

immunoblotting with anti-HSP90 Ab.  WCL was run as a control for 

immunoblotting.  Gamma settings were adjusted in panel B.  Results are 

representative of at least 3 separate experiments.   
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HSP90α and HSP90β isoform expression is altered with isoform specific siRNA 

In humans, HSP90 is constitutively expressed as two closely related isoforms, HSP90α 

and HSP90β (170).  Assays using pharmacological inhibitors such as RA and GA fail to 

distinguish between the function of these two isoforms, with both proteins inactivated by 

these compounds (174).  While both isoforms bind similarly to their intracellular co-

chaperones, in some cases HSP90α and HSP90β were found to behave differently with 

respect to substrate interactions (178).  Research has implicated HSP90α, but not HSP90β 

in regulating class I presentation (141).  However, a role for HSP0α and HSP90β isoform 

in MHC class II presentation in B cells has yet to be explored.  To investigate the 

function of HSP90 isoforms in MHC class II presentation of GAD Ag in B cells, a panel 

of B cells was examined for steady state HSP90α and HSP90β expression.  Equal 

amounts of protein from Priess, PriessGAD, Frev, and FrevSMA whole cell lysates were 

Western immunoblotted with HSP90α and HSP90β specific antibodies.  Both HSP90α 

and HSP90β isoforms were detected in Priess, PriessGAD, Frev, and FrevSMA (Fig. 18).  

Moreover, HSP90α and HSP90β isoforms appear to be expressed at measurable levels at 

steady state conditions in all B cells tested.  

 

 

Figure 18.  HSP90α and HSP90β are abundantly expressed in B cells.  Equal amounts 

of  protein from Priess (P), PriessGAD (PG),  Frev (F), and FrevSMA (FS) whole 

cell lysates were fractionated by 10% SDS-PAGE and Western immunoblotted 

with either HSP90α or HSP90β specific Abs.          

 

To further evaluate the biological function of these HSP90 isoforms in MHC class II 

presentation, siRNA specifically designed to disrupt HSP90α and HSP90β mRNA 

expression were utilized (141).  PriessGAD cells were nucleofected with HSP90α or 

HSP90β siRNA as well as controls such as a RISC-free siRNA.  Co-nucleofection with a 

GFP-containing plasmid was performed as a nucleofection control.  Flow cytometry of 
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nucleofected cells to detect GFP positive cells indicated that DNA transfection efficiency 

ranged from 45-55% of cells.  Total protein expression of HSP90α, HSP90β, actin, and 

GAPDH was determined by Western immunoblotting.  Treatment of B cells with 

HSP90α siRNA specifically knocked down HSP90α expression, but did not affect 

HSP90β levels (Fig. 19).  Densitometry indicated that HSP90α siRNA treatment resulted 

in a 66% decease in HSP90α protein expression compared to either HSP90β or control 

siRNA treated cells.  HSP90β siRNA treatment of B cells decreased HSP90β protein 

expression, but did not consistently affect HSP90α protein abundance (Fig. 19).  HSP90β 

protein expression was decreased to 60% when compared to HSP90α siRNA treated or 

control siRNA treated cells.   

 

 

Figure 19.  HSP90 isotype specific siRNA specifically inhibits HSP90α and HSP90β 

expression.   PriessGAD cells were nucleofected with siRNA for HSP90α, 

HSP90β, or controls such as RISC-free siRNA as well as the plasmid pMaxGFP 

and incubated for 48 hr at 37˚C.  Flow cytometry of nucleofected cells to detect 

GFP-positive cells indicated the DNA transfection efficiency ranged from 45-

55% cells.  (A)  Whole cell lysates were analyzed for HSP90α, actin, HSP90β, 

and GAPDH expression by Western immunoblotting.  (B)  Densitometry 

confirmed specific disruption of each HSP90 isoform expression by its respective 

siRNA. Results are representative of at least 3 separate experiments.  
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In contrast to HSP90 inhibition by RA and GA, neither HSP90α nor HSP90β siRNA 

treatment altered HSP70, HSC70, or HSP40 protein expression levels in cells (Fig. 20).  

This may be due to low levels of residual HSP90α or HSP90β in siRNA treated cells.   

 

 

Figure 20. Inhibition of HSP90α or HSP90β by siRNA does not induce a heat stress 

response. PriessGAD cells were treated with HSP90α, HSP90β, or control siRNA 

and incubated for 48 hours as previously described.  (A) Whole cell lysates from 

treated cells were fractionated on 10% SDS-PAGE gel and Western 

immunoblotted for HSC70, HSP70, HSP40, and GAPDH. (B) Densitometry of 

the representative experiment.  Results are representative of at least 3 separate 

experiments.  

 

Total cellular MHC class II monomer and dimer protein abundance were unaffected by 

siRNA treatment as confirmed by Western immunoblotting (Fig. 21A).  Flow cytometry 

of permeabilized and non permeabilized cells indicated no affect of these siRNAs on 

MHC class II expression (Fig. 21C).  Together, these results suggest that HSP90α or 

HSP90β siRNA treatment specifically knocks down the expression of discrete HSP90 

isoforms, respectively, without altering the expression of MHC class II and other HSPs.   
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Figure 21.  Inhibition of HSP90α or HSP90β by siRNA does not alter MHC class II 

expression.  PriessGAD cells were treated with HSP90α, HSP90β, or control 

siRNA and incubated for 48 hours as previously described.  (A)  WCLs of treated 

cells were analyzed by Western immunoblotting for MHC class II α chain (left) 

and MHC class II dimers (right).  Results are representative of at least 2 separate 

experiments.  (B)  The table depicts the average relative expression of MHC class 

II α and αβ dimers +/- SEM as determined by densitometry of at least 2 separate 

experiments.  (C)  PriessGAD cells treated with siRNA were fixed in 1% 

paraformaldehyde, permeabilized, and stained for total MHC II dimers by flow 

cytometry.  Thick black line indicates control siRNA treated cells, thin black line 

indicates HSP90α siRNA treated cells, hashed black line indicates HSP90β 

siRNA treated cells, and thin gray line indicates isotype control staining (Iso).  

Results are representative of at least 2 separate experiments.   
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Disruption of HSP90α or HSP90β specifically inhibits MHC class II presentation of 

GAD   

To determine the role of HSP90α and HSP90β in MHC class II presentation, PriessGAD 

cells were treated with siRNA for HSP90α, HSP90β, or controls such as RISC-free 

siRNA followed by analysis of MHC class II presentation for several Ags and epitopes. 

Treatment of PriessGAD cells with either HSP90α or HSP90β siRNA resulted in 

decreased MHC class II presentation of endogenous GAD (Fig. 22).  

 

Figure 22.  HSP90α and HSP90β siRNA inhibits MHC class II presentation of 

endogenous GAD Ag.  PriessGAD cells were treated with either HSP90α (A), 

HSP90β (B), or control siRNA (A and B) and incubated for 48 hours as 

previously described.  Following siRNA treatment of B cells, MHC class II 

presentation of endogenous GAD was measured by T cell assays.  In each panel, 

black bars represent control cells, dotted bars represent HSP90α siRNA-treated 

cells, and hashed bars represent HSP90β siRNA-treated cells.  Control assays 

were carried out as in Figure 8.  Results are displayed as proliferation above 

background.  Results are representative of at least 3 separate experiments.   

 

Neither HSP90α nor HSP90β siRNA affected MHC class II presentation of endogenous 

kappa I or kappa II epitopes from endogenous IgG kappa light chain (Fig. 23). These 

results indicate that individual inhibition of HSP90α and HSP90β isoform expression by 

isoform specific siRNA perturbs MHC class II presentation of select endogenous Ags 
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such as GAD.  These results point to a potential selectivity or specificity for HSP90α and 

HSP90β modulation of MHC class II presentation which is linked to Ag.   

 

Figure 23.  HSP90α and HSP90β siRNA does not alter MHC class II presentation of 

endogenous kappa epitopes.  PriessGAD cells were treated with either HSP90α, 

HSP90β, or control siRNA and incubated for 48 hours as previously described.  

Following siRNA treatment of B cells, MHC class II presentation of endogenous 

kappa I or kappa II epitopes was measured by T cell assays.  In each panel, black 

bars represent control cells, dotted bars represent HSP90α siRNA-treated cells, 

and hashed bars represent HSP90β siRNA-treated cells. Control assays were 

carried out as in Figure 8. Results are displayed as proliferation above 

background. Results are representative of at least 3 separate experiments.   
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Pharmacological inhibition of HSP90 indicated that HSP90 modulates MHC class II 

presentation of a select GAD epitope from exogenous GAD Ag, but not exogenous GAD 

peptide.  To determine which HSP90 isoform is involved HSP90α or HSP90β siRNA 

treated cells were pulsed with either exogenous GAD Ag or synthetic GAD peptide and 

analyzed for MHC class II presentation of GAD epitope.  HSP90α or HSP90β siRNA 

treatment decreased MHC class II presentation of GAD epitope from exogenous GAD 

Ag, but not exogenous GAD peptide (Fig 24).   
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Figure 24.  HSP90α and HSP90β siRNA inhibits exogenous GAD Ag but not GAD 

peptide presentation. Priess cells were treated with either HSP90α, HSP90β, or 

control siRNA and incubated for 48 hours as previously described.  At 32 hours 

post nucleofection, 10 µg/ml exogenous GAD Ag (A and B) or 2 µM GAD 

peptide (C and D) was added to cells and incubated an additional 16 hours.  At 48 

hours post siRNA treatment of these cells, MHC class II presentation of GAD 

epitopes from either exogenous GAD Ag or GAD peptide was measured by T cell 

assays.  In each panel, black bars represent control cells, dotted bars represent 

HSP90α siRNA-treated cells, and hashed bars represent HSP90β siRNA-treated 

cells. Control assays were carried out as in Figure 8. Results are displayed as 

proliferation above background. Results are representative of at least 3 separate 

experiments. 
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HSP90α or HSP90β siRNA treated cells were also pulsed with either HSA protein or 

HSA peptide and assayed for MHC class II presentation of an HSA epitope.  HSP90α or 

HSP90β siRNA treatment did not alter MHC class II presentation of the HSA epitope 

using either exogenous HSA Ag or HSA peptide as a source of this epitope (Fig. 25).  

Taken together, these results indicate that both HSP90α and HSP90β isoforms can 

regulate MHC class II presentation of GAD Ag.  Thus, these studies establish that in 

contrast to MHC class I Ag presentation, both HSP90α and HSP90β can regulate the 

MHC class II pathway.  Furthermore, HSP90 appears to selectively promote MHC class 

II presentation of the diabetes autoantigen GAD.   
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Figure 25.  HSP90α and HSP90β siRNA does not affect MHC class II presentation 

of exogenous HSA Ag or exogenous HSA peptide.  PriessGAD cells were 

treated with either HSP90α, HSP90β, or control siRNA and incubated for 48 

hours as previously described.  At 32 hours post siRNA treatment, exogenous 

HSA Ag (5 µM) or HSA peptide (5 µM) was added to nucleofected cells and 

incubated an additional 16 hours.  At 48 hours post siRNA treatment of cells, 

MHC class II presentation of HSA epitopes from either exogenous HSA Ag or 

HSA peptide was measured by T cell assays.  In each panel, black bars represent 

control cells, dotted bars represent HSP90α siRNA-treated cells, and hashed bars 

represent HSP90β siRNA-treated cells. Control assays were carried out as in 

Figure 8.  Results are representative of at least 3 separate experiments.  
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Chapter 2.  Mechanistic analysis of HSP90 regulation of GAD Ag presentation in B 

cells 

HSP90α and HSP90β appear to regulate both endogenous and exogenous presentation of 

GAD Ag.  Analysis of MHC class II presentation of short synthetic GAD epitopes failed 

to reveal a role for HSP90 in the cell surface loading of MHC class II molecules or T cell 

recognition.  Thus, HSP90 may exert its effect on intracellular GAD Ag processing or 

MHC class II binding of GAD epitopes.  The pathways of exogenous and endogenous 

MHC class II presentation of GAD Ag are distinct yet converge with shared processing 

of GAD in endosomal and lysosomal compartments.  Studies from our lab and others 

showed endogenous Ag processing for MHC class II presentation to be dependent upon 

cytoplasmic proteases including the proteasome and calpain; exogenous Ag processing 

was not affected by inhibition of the proteasome or calpain (67, 69).   Further evidence 

has implicated HSC70 and lamp2a as chaperones of endogenous GAD presentation by 

MHC class II molecules (85).  Additional studies in our lab have shown that exogenous 

GAD Ag is processed via the classical MHC class II presentation pathway requiring 

endo/lysosomal acidification as well as cysteine and aspartyl proteases within those 

vesicles (67).     

 

However distinct, the two pathways of MHC class II presentation share some 

characteristics.  While endogenous GAD is processed in the cytoplasm by cytosolic 

proteases into peptide fragments, those peptides must be translocated into membrane 

organelles for MHC class II presentation.  Once translocated into those vesicles, further 

trimming of the GAD peptides is mediated by acidic proteases within endo/lysosomes 

(67).  Taken together, these studies indicate some overlap between the classical MHC 

class II presentation pathway for exogenous GAD and the alternative MHC class II 

presentation of endogenous GAD.  With evidence for a role for HSP90 in both of these 

pathways, further studies were carried out to determine whether HSP90 is affecting a 

shared component of these two pathways.   
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Inhibition of HSP90 and invariant chain processing 

During transit through the Golgi secretory network, MHC class II molecules are 

chaperoned by Ii.  Ii functions as a chaperone to stabilize MHC class II dimers, target 

them to secretory vesicles, and prevent premature peptide loading.  As shown 

schematically in Figure 5, while progressing through the endosomal/lysosomal network, 

Ii undergoes stepwise degradation by lysosomal proteases to the smaller peptide 

fragments LIP and SLIP and the final fragment called CLIP, which remains associated 

with the MHC class II peptide binding groove.  Ii is proteolytically cleaved by lysosomal 

proteases during transit (31, 40-44, 47).  Studies have shown that alterations in Ii 

processing result in altered MHC class II presentation (79, 81, 90-93).  Therefore, 

disruption of Ii or its chaperone function could be a possible explanation for decreased 

GAD presentation by HSP90 inhibition.   

 

To determine if HSP90 inhibition affects Ii processing, PriessGAD cells were treated 

with RA (2 µM), GA (0.18 µM), or DMSO solvent as a control for 18 hours and analyzed 

for Ii mRNA expression by semi-quantitative RT-PCR.  Neither RA nor GA altered Ii 

mRNA expression in PriessGAD cells (Fig 26).   

 

Figure 26.  Pharmacological inhibition of HSP90 does not alter Ii mRNA levels.  

PriessGAD cells were treated with either DMSO control, RA (2 µM), or GA (0.18 

µM) for 18 hours.  Following treatment, mRNA was isolated from cells and 

reverse transcribed to cDNA samples were subjected to PCR to amplify Invariant 

Chain (Ii) and GAPDH sequences using multiple cycles of amplification.  In this 

figure, 30 cycles was used to amplify Ii and GAPDH sequences.  PCR products 

were resolved on an agarose gel with SyberSafe stain.  Results are representative 

of at least 2 separate experiments.    
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Control, RA, and GA treated cells were also analyzed for total Ii expression by flow 

cytometry.  Neither RA nor GA affected total Ii expression in PriessGAD cells (Fig. 

27A).  To further determine if HSP90 inhibition could affect Ii processing, PriessGAD 

cells were treated with HSP90α, HSP90β, and control siRNA and analyzed for total Ii 

expression by flow cytometry.  Neither inhibition of HSP90α or HSP90β isoforms altered 

total Ii expression in PriessGAD cells (Fig. 27B).   

 

Figure 27.  Inhibition of HSP90α and HSP90β does not alter total cellular Ii 

expression.  (A)  PriessGAD cells were treated with DMSO as a control, RA (2 

µM), or GA (0.18 µM) for 18 hours.  (B)  PriessGAD cells were treated with 

HSP90α, HSP90β, or control siRNA as previously described and incubated for 48 

hours.  Following treatment, cells were fixed in 1% paraformaldehyde, 

permeabilized, and stained for total Ii expression using Abs and flow cytometry.  

(A) Black line indicates control cells, dark gray line indicates RA treated cells, 

light gray line indicates GA treated cells, and thin gray line indicates isotype 

control.  (B) Thick black line indicates siRNA control treated cells, thin black line 

indicates HSP90α siRNA treated cells, hashed black line indicates HSP90β 

siRNA treated cells, and thin gray line indicates isotype control staining.  Results 

shown are representative of at least 2 separate experiments.  

 

To determine if HSP90α and HSP90β inhibition influences Ii cleavage to CLIP, drug or 

siRNA treated PriessGAD cells were analyzed for total and surface CLIP expression by 

flow cytometry.  Total and surface CLIP expression in PriessGAD cells was not affected 
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by RA or GA treatment (Fig. 28A and B).  Additionally, neither HSP90α or HSP90β 

siRNA treatment altered total CLIP expression in PriessGAD cells (Fig. 28C).  

 

Figure 28.  Inhibition of HSP90α and HSP90β does not alter total or surface CLIP 

expression. (A and B) PriessGAD cells were treated with DMSO as a control, RA 

(2 µM), or GA (0.18 µM) for 18 hours.  (C)  PriessGAD cells were treated with 

HSP90α, HSP90β, or control siRNA and incubated for  48 hours as previously 

described.  Following treatment, cells were fixed in 1% paraformaldehyde, 

permeabilized, and Ab stained for total CLIP (A and C) or surface CLIP (B) 

expression by flow cytometry.  (A and B) Black line indicates control cells, dark 

gray line indicates RA treated cells, light gray line indicates GA treated cells, and 

thin gray line indicates isotype control staining.  (C) Thick black line indicates 

siRNA control treated cells, thin black line indicates HSP90α siRNA treated cells, 

hashed black line indicates HSP90β siRNA treated cells, and light gray line 

indicates isotype control staining.  Results shown are representative of at least 2 

separate experiments.  
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As previously described, the processing of Ii is dependent upon the activity of lysosomal 

proteases.  Treatment of B cells with the lysosomal protease inhibitor leupeptin results in 

LIP accumulation (224, 225).   To determine if HSP90 inhibition altered Ii processing in 

a manner similar to leupeptin, PriessGAD lysates were co-treated with or without 

leupeptin and GA.  Following theses treatments, whole cell lysates were Western 

immunoblotted for mature Ii and LIP fragment expression.  In both control and GA 

treated cells, only mature Ii was detected (Fig. 29).  Upon treatment with leupeptin, 

mature Ii and LIP fragment were detected in both control and GA treated cells (Fig. 29).  

The average relative expression as determined by densitometry revealed that mature Ii 

expression was not altered by GA, leupeptin, or GA + leupeptin treatment.  However, 

leupeptin induced LIP accumulation was decreased by 60% in GA treated cells compared 

to control treated cells.  Thus, treatment with these inhibitors appears to alter the steady 

state abundance of the intermediate LIP but not the final proteolytic product CLIP.  

Possibly, GA treatment might alter the kinetics of Ii processing by altering cellular 

cathepsin activity.    
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Figure 29.  Pharmacological inhibition of HSP90 alters leupeptin induced LIP 

accumulation.  PriessGAD cells were treated with either DMSO control, GA 

(0.18 µM), DMSO control and leupeptin (50 µM), or GA (0.18 µM) and leupeptin 

(50 µM) for 18 hours. (A)  WCLs of treated cells were fractionated on 12% SDS-

PAGE gels and Western immunoblotted for mature Ii, LIP, and actin.  Blot is 

representative of at least 3 separate experiments.  (B) Average relative expression 

of mature Ii and LIP expression as determined by densitometry from 3 separate 

experiments is displayed in the table.   
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To further explore this observation, PriessGAD cells were co-treated with leupeptin and 

either HSP90α or HSP90β siRNA.  Following treatment, Western immunoblotting for 

mature Ii and LIP fragment expression was performed on whole cell lysates. Only mature 

Ii expression was detected in HSP90α siRNA and control treated cells (Fig. 30A).  Upon 

leupeptin treatment of HSP90α siRNA and control treated cells, both mature Ii expression 

and LIP accumulation was detected (Fig. 30A).  Similarly, treatment with HSP90β 

siRNA and control alone resulted in detection of only mature Ii expression (Fig. 30A).  

Upon leupeptin treatment, LIP fragment accumulation was detected in both HSP90β 

siRNA and control treated cells (Fig. 30A).  The average relative expression as 

determined by densitometry revealed that mature Ii expression was not altered by either 

HSP90α or HSP90β siRNA treatment wjhen compared to control.  Leupeptin treatment of 

HSP90α siRNA, HSP90β siRNA, or controls did increase mature Ii expression (Fig. 

30B).  However, leupeptin induced LIP accumulation was unaffected by either HSP90α 

or HSP90β siRNA compared to controls (Fig. 30).   

 

While leupeptin induced LIP accumulation was affected by GA treatment, neither 

HSP90α nor HSP90β siRNA treatment appear to alter this step in Ii processing.  Previous 

results found that GA and RA treatment of cells induced a heat shock stress response 

(Fig. 13).  Neither HSP90α nor HSP90β siRNA treatment of B cells induced a heat shock 

stress response (Fig. 20).  While pharmacological inhibition of HSP90 by GA and RA 

affects MHC class II expression and function similarly to HSP90α and HSP90β siRNA 

treatment, the siRNA treatment is likely more specific than pharmacological inhibitors 

and less prone to inducing an overall stress response.  Potentially, the affects of GA on 

leupeptin induced LIP accumulation may be due to the stress response induced by this 

drug and not inhibition of HSP90.  Considering that neither pharmacological or siRNA 

treatment altered total Ii, total CLIP, or surface CLIP expression as determined by flow 

cytometry, these results suggest that Ii processing is not radically altered in cells cultured 

under these conditions (Fig. 27 and 28).  Thus, the decreased MHC class II presentation 

of GAD upon HSP90α and HSP90β inhibition is not likely a result of altered Ii 

expression or function.    
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Figure 30.  HSP90α and HSP90β inhibition does not alter leupeptin induced LIP 

accumulation.  PriessGAD cells were nucleofected with HSP90α and HSP90β 

siRNA as previously described.  After 30 hours, cell samples were split, and half 

of each set was treated with leupeptin (50 µM) for the remaining 18 hours.  (A)  

WCLs were fractionated on 12% SDS-PAGE gels and Western immunoblotted 

for mature Ii chain, LIP, and GAPDH. Blot is representative of at least 3 separate 

experiments.  (B)  Average relative expression of mature Ii and LIP expression as 

determined by densitometry from at least 2 separate experiments is displayed in 

the tables.   
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Pharmacological inhibition of HSP90 does not alter cathepsin expression, but does 

alter cathepsin activity   

Previous studies have shown that lysosomal acidic proteases systematically cleave Ii 

(111, 119, 224).  For example, cathepsin B and D are required for processing Ii as well as 

exogenous Ag for MHC class II presentation (224).  Alterations in cathepsin expression 

or protease activity could possibly explain the decreased MHC class II presentation of 

GAD upon GA and RA treatment.  To further explore the role of HSP90 in the MHC 

class II presentation pathway, the effect of pharmacological inhibition of HSP90 on 

cathepsin expression was investigated.  PriessGAD cells were treated with RA (2 µM), 

GA (0.18 µM), or DMSO solvent as a control and analyzed for cathepsin S, L, B, and D 

mRNA expression by RT-PCR.  Neither RA nor GA altered cathepsin S, L, B, or D 

mRNA expression in PriessGAD cells (Fig. 31). 

 

Figure 31.  Pharmacological inhibition of HSP90 does not alter cathepsin 

expression.  PriessGAD cells were treated with either DMSO control, RA (2 

µM), or GA (0.18 µM) for 18 hours. Following treatment, mRNA was isolated 

from cells and reverse transcribed to cDNA.  From each sample, cDNA was 

subjected to PCR to amplify cathepsin S, cathepsin L, cathepsin B, cathepsin D, 

and GAPDH sequences.  PCR products were resolved on an agarose gel with 

SyberSafe stain.  Results are representative of at least 2 separate experiments.     
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In addition to RNA expression, cathepsin S, S/L, and B protease activity in GA, RA, or 

DMSO treated PriessGAD cells were measured by cathepsin activity assays.  The activity 

of cathepsin S was unaffected by GA or RA treatment (Fig. 32A).  Using a substrate that 

is cleaved by both cathepsin S/L, both GA and RA treatment increased the activity of 

cathepsin S/L together when compared to DMSO control treatment (Fig. 32B).  GA and 

RA treatment of cells also decreased cathepsin B activity in PriessGAD cells (Fig. 32C).  

Cathepsin S and L are known to cleave LIP to CLIP during Ii processing.  Thus, 

increased expression of either of these enzymes might lead to more efficient LIP 

conversion to CLIP, consistent with our results in Figure 29.     

 

 

 

Figure 32.  Pharmacological inhibition of HSP90 altered cathepsin activity in B cells.  

PriessGAD cells were treated with either DMSO control, GA (0.18 µM), or RA (2 

µM) for 18 hours.  These cells were lysed and detergent extracted whole cell 

lysates were analyzed for cathepsin S (A), S/L (B), or B (C) protease activity.  

Results are representative of at least 3 separate experiments.   
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Inhibition of HSP90α and HSP90β does not alter HLA-DM and HLA-DO function. 

HLA-DM functions at the terminal stages of MHC class II maturation by catalyzing the 

removal of CLIP and the subsequent loading of antigenic epitopes onto MHC class II 

molecules (226).  This activity is shown schematically in figure 6.  In the presence of 

HLA-DM, the loading of antigenic epitopes onto MHC class II molecules is selective, 

favoring peptides with high affinity for MHC class II dimers (227).  Previous studies in 

the lab indicated that HLA-DM regulates MHC class II presentation of both exogenous 

and endogenous GAD Ag (132).  HSP90α and HSP90β inhibition by either the 

pharmacological inhibitors RA and GA or isotype specific siRNA, could be affecting 

HLA-DM expression and activity.  To determine if HLA-DM expression is affected by 

HSP90 inhibition, PriessGAD cells were treated with RA, GA, or DMSO solvent as a 

control and analyzed for HLA-DM expression by flow cytometry.  Neither RA nor GA 

treatment altered HLA-DM protein expression in PriessGAD cells (Fig. 33A).  

Additionally, PriessGAD cells were also treated with HSP90α, HSP90β, and control 

siRNA and analyzed for HLA-DM protein expression by flow cytometry.  HLA-DM 

protein levels were not altered by HSP90α or HSP90β siRNA treatment (Fig. 33B).   

 

In B cells, HLA-DM function is regulated by HLA-DO (51-55).  This activity is shown 

schematically in figure 6.  Changes in HLA-DO levels due to altered HSP90α and 

HSP90β function could alter overall MHC class II presentation.  To determine if HLA-

DO protein expression is affected by HSP90 inhibition, PriessGAD cells were treated 

with RA, GA, or DMSO solvent as a control and analyzed for HLA-DO expression by 

flow cytometry.  Neither RA nor GA treatment altered HLA-DO protein expression in 

PriessGAD cells (Fig. 33B).  Additionally, PriessGAD cells were also treated with 

HSP90α, HSP90β, and control siRNA and analyzed for HLA-DO protein expression by 

flow cytometry.  HLA-DO protein expression was not altered by HSP90α or HSP90β 

siRNA treatment (Fig. 33D).  These results indicated that HLA-DM and HLA-DO 

expression is not altered by either pharmacological inhibition of HSP90 or HSP90α and 

HSP90β isotype specific siRNA.  Figure 28 indicated that total and surface CLIP 

expression was not affected by either pharmacological inhibitors, RA and GA, or HSP90 

specific siRNA.  These results indicate that neither HLA-DM nor HLA-DO function is 
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altered as the level of CLIP bound by surface MHC class II molecules on cells is 

intimately tied to HLA-DM and HLA-DO function in cells.  Therefore, these results 

indicate that HLA-DM and HLA-DO protein expression and function are not affected by 

HSP90α and HSP90β inhibition.   

 

Figure 33.  Inhibition of HSP90α and HSP90β does not alter total cellular HLA-DM 

or HLA-DO expression.  PriessGAD cells were treated with DMSO as a control, 

RA (2 µM), or GA (0.18 µM) for 18 hours (A and C). PriessGAD cells were 

treated with HSP90α, HSP90β, or control siRNA and incubated for 48 hours as 

previously described (B and D).  Following treatment, cells were fixed, 

permeabilized, and stained for total HLA-DM (A and B) or total HLA-DO (C and 

D) expression by flow cytometry.  (A and C) Black line indicates control cells, 

dark gray line indicates RA treated cells, light gray line indicates GA treated cells, 

and thin gray line indicates isotype control staining.  (B and D) Thick black line 

indicates siRNA control treated cells, thin black line indicates HSP90α siRNA 

treated cells, hashed black line indicates HSP90β siRNA treated cells, and light 

gray line indicates isotype control staining.  Results shown are representative of at 

least 2 separate experiments.  
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Inhibition of HSP90α and HSP90β does not induce ER stress 

As previously described, the ER chaperones grp94 and BiP are ER homologs of 

cytoplasmic HSP90 and HSP70 respectively.  Due to the similarity between grp94 and 

HSP90, GA can bind to both of these chaperones.  Using a variety of cell lines, studies 

indicate that GA treatment can induce an ER stress response represented by an 

upregulation of ER chaperones (228).  This upregulation was due to the unfolded protein 

response and not due to any affects on HSP90.  However, additional research suggests 

that HSP90 may also be linked to the cellular transcriptional response to ER stress (214).  

Previous studies indicated that MHC class II molecules can bind to select ER chaperones 

(217).  Thus, induction of ER stress could be one explanation for the observed decrease 

in MHC class II presentation of GAD upon HSP90 inhibition.   

 

To determine if HSP90 inhibition affects ER stress, the expression of grp94 and BiP was 

examined by Western immunoblotting whole cell lysates of PriessGAD cells treated with 

pharmacological inhibitors.  Neither GA nor RA induced grp94 or BiP expression in 

PriessGAD cells with reduced HSP90 activity compared to controls (Fig. 34A).  The 

average relative expression of grp94 and BiP as determined by densitometry of at least 3 

separate experiments confirmed there was no significant affect of HSP90 inhibition on 

ER stress in PriessGAD cells (Fig. 34B).  
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Figure 34.  Pharmacological inhibition of HSP90 does not induce ER stress.   

PriessGAD cells were treated with either DMSO control, GA, or RA.  (A) WCL 

from treated cells were analyzed by Western immunoblotting for expression of 

grp94 and BiP. Blot is representative of at least 3 separate experiments.  (B)  The 

average relative expression of grp94 and BiP expression +/- SEM as determined 

by densitometry of at least 3 separate experiments is displayed in the table.  

Student t tests determined no significant change in grp94 or Bip expression.   
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To further explore the effect of HSP90 inhibition on ER stress, grp94 and BiP expression 

was measured by Western immunoblotting in PriessGAD cells upon HSP90α and 

HSP90β siRNA treatment.  Neither HSP90α nor HSP90β siRNA treatment induced grp94 

or BiP expression in PriessGAD cells (Fig. 35A).  Densitometry of at least 3 separate 

experiments indicated that HSP90α and HSP90β inhibition by siRNA did not 

significantly alter the relative expression of grp94 or BiP (Fig.35B).  Taken together, 

these results indicate that HSP90 inhibition does not induce ER stress in PriessGAD.    
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Figure 35.  HSP90α and HSP90β inhibition by siRNA did not induce ER stress.   

PriessGAD cells were treated with HSP90α siRNA, HSP90β siRNA, or control 

siRNA as previously described. (A)  WCL from treated cells were analyzed by 

Western immunoblotting for expression of grp94 and BiP. Blot is representative 

of at least 3 separate experiments.  (B)  The average relative expression of grp94 

and BiP expression +/- SEM as determined by densitometry from at least 3 

separate experiments is displayed in the table.  Student t tests determined no 

significant change in grp94 or BiP expression.   
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Pharmacological inhibition of HSP90 does not induce HSP90 secretion 

While HSP90 is located primarily in the cytoplasm of cells, a study in B cells found that 

heat stress induced enrichment of HSPs in exosomes, including HSP90 (229).  HSP70, 

which can associate with HSP90, was found to be secreted by tumor cells through a 

pathway involving lysosomal endosomes (197).  Notably, another intracellular 

chaperone, HSC70 is found both in the cytoplasm and endosomes/lysosomes with studies 

suggesting it translocates into the endosomal network in an ATP-dependent process 

(166).  Whether HSP90 uses a similar pathway to access the endosomal network is 

unknown.  Several studies have suggested peptide-HSP90 complexes released by tumors 

can promote MHC class I presentation (137, 140, 144, 223).  Notably, islet cell stress 

including exposure to cytokines such as IL-1β is known to induce HSP90 expression 

prior to cell death (184).  The presence of extracellular HSP90 could explain the 

requirement for functional HSP90 for MHC class II presentation of exogenous GAD Ag.    

 

To determine if extracellular HSP90 is present in B cell cultures, conditioned B cell 

media, fresh media, and individual media components were examined for the presence of 

HSP90.  PriessGAD, Priess, Frev, and FrevSMA cells were cultured for 48 hours.  After 

48 hours, the conditioned media was collected and fractionated on a 10% SDS-PAGE gel 

along with fresh B cell media, IMDM media, serum, H-SFM media, and WCL from 

PriessGAD cells as a control.  Western immunoblotting did not detect any secreted 

HSP90 from conditioned B cells (Fig. 36A).  Exogenous HSP90 was also not detected in 

fresh B cell media or its components as indicated by Western immunoblotting (Fig. 36A).  

These results indicate that HSP90 is not likely secreted from B cells at measurable levels 

upon cell culture.   

 

While HSP90 is not secreted by B cells during steady state conditions, treatment of cells 

with pharmacological inhibitors of HSP90 could possibly induce HSP90 secretion.  To 

determine if HSP90 is secreted upon stress conditions in B cells, PriessGAD cells were 

treated with either GA (0.18 µM), RA (2 µM), or DMSO solvent as a control.  

Conditioned media from these cell treatments was concentrated and examined for the 

presence of HSP90 by Western immunoblotting.  Neither GA nor RA induced HSP90 
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secretion in PriessGAD (Fig. 36B).  While HSP90 was not secreted by B cells, we cannot 

rule out that these drugs promoted delivery or retention of HSP90 in endosomes and 

lysosomes of these cells where it may intersect endogenous GAD.  

 

 

 

Figure 36.  Pharmacological inhibition of HSP90 does not induce HSP90 secretion 

by B cells.  (A) Conditioned media from Priess (P), PriessGAD (PG), Frev (F), 

and FrevSMA (FS) cells; fresh IMDM cell media plus serum; fresh cell media 

components IMDM or serum; and an the H-SFM cell media was concentrated 

from 13 ml into approximately 50 µl.  Concentrated samples were ran on 10% 

SDS PAGE gel along with PriessGAD WCL as a positive control. Blots were 

probed for HSP90.  (B) PriessGAD cells were treated with either DMSO control, 

GA, or RA for 18 hours.  After treatment, 75 µl of media was fractionated on 10% 

SDS PAGE gels along with PriessGAD WCL as a positive control.  Results are 

representative of at least 2 separate experiments. 
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As an alternate approach, whether exogenous HSP90 could enhance exogenous GAD 

presentation was tested.  Purified, recombinant human GAD Ag was pre-complexed with 

purified HSP90 at a 1:1 molar ratio prior to the addition to Priess cells.  MHC class II 

presentation of GAD Ag using HSP90/GAD pre-complexes was compared to 

presentation of GAD in the absence of exogenous HSP90.   Pre-complexing purified 

HSP90 with exogenous GAD in vitro prior to addition to Priess cells slightly enhanced 

GAD presentation (Fig. 37).  Notably this effect was only seen using low levels of 

HSP90 and GAD Ag (Fig. 37A).  At higher concentrations, the presence of HSP90 did 

not enhance GAD Ag presentation (Fig. 37B).   

 

Figure 37.  Low concentrations of exogenous HSP90 enhance MHC class II 

presentation of exogenous GAD Ag.  Purified HSP90 and purified GAD Ag (3:1 

molar ratio), purified GAD Ag in PBS, or HSP90 in PBS were incubated for 24 

hours in order to permit protein complex formation.  (A)  Priess cells were treated 

with low concentrations of HSP90/GAD (0.00192µM/ 0.00064 µM), GAD Ag 

(0.00064 µM), or HSP90 (0.00192 µM) for 16 hours.  (B) Priess cells were 

treated with high concentrations of HSP90/GAD Ag (0.0192 µM/0.0064 µM), 

GAD Ag (0.0064 µM), or HSP90 (0.0192 µM) for 16 hours.  MHC class II 

presentation of exogenous GAD was measured by T cell assay.  Control assays 

were carried out as in figure 8. Results are displayed as proliferation above 

background. Results are representative of at least 3 separate experiments.   
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Chapter 3.  Implication of HSP70 as a possible chaperone for SMA in B cells 

Studying the role of HSP90 in MHC class II presentation revealed the potential 

requirement for another HSP, HSP70, in the presentation of some cytoplasmic Ags.  The 

human B-LCL Frev expresses both the HLA-DR4 and HLA-DR1 MHC class II alleles.  

Unlike Priess cells, Frev cells lack the secretory Ig kappa light chain. Thus, Frev cells 

were transfected with a plasmid encoding the cDNA for SMA, a mutant cytoplasmic 

form of the Ig light chain κ4.  FrevSMA cells express endogenous, cytoplasmic SMA Ag 

which can be processed and presented by MHC class II molecules.  SMA was isolated 

from a patient with amyloidosis (207, 230).  Amyloidosis is a group of diseases 

characterized by the assembly of protein fibrils that are deposited extracellulary in 

various organs and tissues.  Almost immediately following SMA protein synthesis, this 

amyloid protein misfolds and is translocated out of the ER to the cytosol.  Once in the 

cytosol, SMA is ubiquitinated and is either degraded by cytoplasmic proteases or 

aggregates in inclusion bodies.  The molecular events that govern SMA escape from the 

cell’s quality control system and which lead to protein fibril formation are unknown.  

However, HSP70 has been shown to promote the proteasomal degradation of SMA and 

potentially regulate fibril accumulation (207).  Two SMA peptide epitopes are formed 

upon SMA proteasome processing and translocated by CMA into endosomes for 

complexing with MHC class II molecules.  These two SMA epitopes are termed SMA188-

203 and SMA145-159  in FrevSMA cells.  Similar kappa I and kappa II epitopes are 

presented by Frev cells incubated with wild type IgG or Ig kappa Ags.  Thus like GAD, 

endogenous and exogenous forms of Ig kappa yield identical peptides for MHC class II 

presentation despite differences in their intracellular location and initial processing.  

Studies here examined the role of HSP90 and HSP70 in MHC class II presentation of 

SMA Ag.   

 

Studies have detected extracellular HSP70:peptide complexes in MHC class II –enriched 

compartments after receptor-mediated endocytosis (208).  HSP70 has been shown to 

interact with MHC class II molecules (209).  Studies also suggest HSP70 mediated 

enhancement of MHC class II restricted peptide presentation (209, 231).  And relevant to 
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autoimmunity, HSP70 has been shown to promote myelin autoantigen presentation by 

MHC class II molecules (139).    

 

Pharmacological inhibition of HSP90 enhances MHC class II presentation of SMA 

To determine the effect of HSP90 inhibition on MHC class II presentation of endogenous 

SMA, FrevSMA cells were treated with increasing concentrations of GA and RA for 18 

hours.  MHC class II presentation of SMA was enhanced in a dose-dependant manner 

with both GA and RA (Fig. 38).  These results are in contrast to endogenous GAD 

presentation by MHC class II molecules, which was decreased by GA and RA treatment 

(Fig. 9).   

 

Figure 38.  Pharmacological inhibition of HSP90 increases MHC class II 

presentation of endogenous SMA.  FrevSMA cells were treated with DMSO as 

a negative control or increasing concentrations of GA (A) or RA (B) for 18 hours. 

MHC class II presentation of endogenous SMA was analyzed by T cell assays. 

Control assays were carried out as in Figure 8.  Here, the negative control 

indicates HT2 cell proliferation without IL-2 addition. Results are representative 

of at least 3 separate experiments.  
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The effect of pharmacological inhibition of HSP90 on MHC class II presentation of 

epitopes from exogenous whole IgG Ag was also analyzed.  Frev cell lines  were treated 

with GA (0.18 µM), RA (2 µM), or DMSO solvent as a control for 18 hours with varying 

concentrations of exogenous whole IgG Ag added after 2 hours of drug treatment.  MHC 

class II presentation of kappa I or kappa II epitopes from exogenous whole IgG Ag was 

detected using T cell assays.  Both GA and RA increased MHC class II presentation of 

the subdominant kappa I epitope from exogenous whole IgG Ag (Fig. 39 A and B).  

MHC class II presentation of the dominant kappa II epitope from exogenous whole IgG 

Ag was also increased by both GA and RA treatment (Fig.39 C and D).   
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Figure 39.  Pharmacological inhibition of HSP90 increases MHC class II 

presentation of exogenous IgG kappa Ag.  Frev cells were treated with DMSO 

as a control, GA (0.18 µM) (A and C), or RA (2 µM) (B and D) for 18 hours.  

After 2 hours of treatment, whole IgG kappa Ag was added to B cells at 10, 20, or 

30 µM concentrations.  After 18 hours,  B cell MHC class II presentation of kappa 

I (A and B) and kappa II (C and D) epitopes from exogenous IgG kappa Ag was 

measured by T cell assays.  Control assays were carried out as in Figure 8.  

Results are representative of at least 3 separate experiments.  
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GA and RA treated Frev cells were also pulsed with exogenous kappa I and kappa II 

peptides and MHC class II presentation of each of these peptides was detected using T 

cell assays.  When low concentrations of exogenous kappa I peptide was added, both RA 

and GA increased MHC class II presentation of kappa I epitope (Fig. 40 A and B).  When 

higher concentrations of peptide were added, neither RA nor GA affected kappa I epitope 

presentation (Fig. 40 A and B).  MHC class II presentation of kappa II peptide was also 

increased upon RA and GA treatment at low peptide concentrations (Fig 40 C and D).  

Again, when higher concentrations of peptide were added, GA and RA did not alter 

peptide presentation (Fig. 40 C and D).   
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Figure 40.  Pharmacological inhibition of HSP90 increased MHC class II 

presentation of exogenous IgG kappa epitopes.  Frev cells were treated with 

GA (0.18 µM) (A and C), RA (2 µM) (B and D), or DMSO as a control for 18 

hours.  After 2 hours of treatment, synthethic kappa I and kappa II peptide was 

added to cells at 1, 5, and 10 µM concentrations.  After 18 hours, MHC class II 

presentation of kappa I (A and B) and kappa II (C and D) epitopes from 

exogenous kappa peptides was measured by T cell assays.  Results are 

representative of at least 3 separate experiments.  
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Pharmacological inhibition of HSP90 induces a heat shock stress response 

Previous results with PriessGAD cells indicated that both GA and RA induce a heat 

shock stress response.  Both GA and RA induced the expression of HSP70 and HSP40 in 

PriessGAD cells (Fig. 13).  FrevSMA cells were examined for a heat shock stress 

response upon GA and RA treatment.  Similar to the results with PriessGAD cells, both 

GA and RA induced a heat shock stress response in FrevSMA cells (Fig. 41A).  Both RA 

and GA treatment induced HSP70 and HSP40 expression.  Densitometry revealed that 

HSP70 expression was enhanced by 700% to 1100% (Fig. 41B).  Induction of heat shock 

induced HSP70 and HSP40 expression in B cells (Fig. 41).   

 

 

 

Figure 41.  Pharmacological inhibition of HSP90 induces a stress response in 

FrevSMA B cells. FrevSMA cells were treated with either RA (2 µM), GA (0.18 

µM), or DMSO as a control for 18 hours.  (A) Whole cell lysates from treated 

cells were fractionated on 10% SDS-PAGE gels and Western immunoblotted for 

HSP90, HSC70, HSP70, HSP40, and actin protein expression.  (B) Densitometry 

of the representative experiment.  Results are representative of at least 3 separate 

experiments.   
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To determine if heat shock could mimic the heat shock stress response in FrevSMA cells 

upon GA or RA treatment.  FrevSMA cells were subjected to heat shock and measured 

for HSP70 and HSP40 expression by Western immunoblotting.  Upon heat shock at 40°C 

and 42°C, both HSP70 and HSP40 expression was induced in FrevSMA cells (Fig. 42).  

Thus, heat shock can mimic the heat shock stress response upon RA and GA treatment in 

both PriessGAD and FrevSMA cells.   
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Figure 42.  Heat stress induces HSP expression in FrevSMA cells.  FrevSMA cells 

were incubated for 20 minutes at 37, 40, or 42°C followed by a 24 hour 

incubation at 37°C.  (A) Whole cell lysates from these cells were fractionated on 

10% SDS-PAGE gels and Western immunoblotted for HSP90, HSC70, HSP70, 

HSP40, and actin protein expression. The results are representative of at least 3 

separate experiments.  (B) The table depicts the average relative expression of 

HSP/HSC +/- SEM as determined by densitometry of at least 3 separate 

experiments.  * Statistically significant as determined by student t tests.   
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Subjecting PriessGAD cells to heat shock did not alter MHC class II presentation of 

endogenous GAD, endogenous kappa, exogenous HSA Ag, and exogenous HSA peptide 

(Fig. 15).  To determine if MHC class II presentation of endogenous SMA is altered by 

heat shock, FrevSMA cells were incubated at 37 or 42°C for 20 minutes followed by a 24 

hour incubation at 37°C.  Following heat shock, FrevSMA cells were measured for MHC 

class II presentation of endogenous SMA by T cell assays.  In contrast to endogenous 

GAD presentation, heat shock enhanced MHC class II presentation of endogenous SMA 

(Fig. 43).   

 

Figure 43.  Heat stress enhances MHC class II presentation of endogenous SMA.  

FrevSMA cells were incubated for 20 min at 37 or 42°C followed by a 24 hr 

incubation at 37°C.  After incubation, MHC class II presentation of endogenous 

SMA epitope was measured by T cell assay.  Results are representative of at least 

3 separate experiments.  

 

Pharmacological inhibition of HSP90 does not alter MHC class II expression 

As previously stated, HSP90 overexpression in macrophages was found to enhance MHC 

class II dimer stability while GA and RA treatments decreased dimer stability (142).  

Both HSP90 overexpression and inhibition were reported not to alter surface and total 

MHC class II protein expression in these murine cells (142).  However, Western 

immunoblotting of PriessGAD cells treated with either GA or RA found that MHC class 

II monomer expression and dimer stability was not affected by pharmacological 
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inhibition of HSP90 (Fig. 16).  Flow cytometric analysis of GA or RA treated PriessGAD 

cells confirmed the lack of affect on both surface and total MHC class II levels (Fig. 17).  

To evaluate whether GA or RA inhibition of HSP90 altered MHC class II expression 

levels in FrevSMA cells, FrevSMA cells were treated with either GA (0.18 µM), RA (2 

µM), or DMSO as a control and Western immunoblotted for MHC class II dimer 

expression.  Neither GA nor RA significantly altered the steady state levels of MHC class 

II dimers (Fig. 44).  These results indicate that the increase in MHC class II SMA Ag 

presentation observed with GA or RA treatment is not due to alterations in MHC class II 

dimer expression or stability in B cells.   

 

 

Figure 44.  Pharmacological inhibition of HSP90 does not alter MHC class II 

expression in FrevSMA B cells.  FrevSMA cells were treated with either RA (2 

µM), GA (0.18 µM), or DMSO as a control for 18 hours.  (A) Whole cell lysates 

from treated cells were fractionated on 10% SDS-PAGE gels and Western 

immunoblotted for MHC II dimers and GAPDH protein expression. Blot is 

representative of at least 3 separate experiments.  (B) The table depicts the 

average relative expression of MHC II dimers +/- SEM as determined by 

densitometry of at least 3 separate experiments. Statistical analysis using the 

student t tests determined no significant difference in the expression of MHC 

class II dimers.   
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Pharmacalogical inhibition of HSP90 induces ER stress in FrevSMA 

As previously described, the ER chaperones grp94 ad BiP are ER homologs of 

cytoplasmic HSP90 and HSP70 respectively.  Due to the similarity between grp94 and 

HSP90, GA can bind to both of these chaperones.  Previous studies indicate that GA 

treatment can induce an ER stress response represented by an upregulation of ER 

chaperones in certain cell lines (228).  Neither GA nor RA treatment induced an ER 

stress response in PriessGAD cells (Fig. 34).  However, it was unknown whether ER 

stress is induced in FrevSMA cells upon GA and RA treatment.  An induction of ER 

stress could be one explanation for the observed decrease in MHC class II presentation of 

GAD upon HSP90 inhibition.   

 

To determine if HSP90 inhibition affects ER stress in FrevSMA cells, the expression of 

grp94 and BiP was examined by Western immunoblotting whole cell lysates of FrevSMA 

cells treated with pharmacological inhibitors.  Both GA and RA significantly induced 

grp94 and BiP expression in FrevSMA cells with reduced HSP90 activity compared to 

controls (Fig. 45A).  However, RA treatment enhanced the expression of both grp94 and 

BiP slightly more than GA. The average relative expression of grp94 and BiP as 

determined by densitometry of at least 3 separate experiments confirmed these results 

(Fig. 45B).  These results indicate that in contrast to PriessGAD cells, HSP90 inhibition 

by GA and RA may induce ER stress in FrevSMA cells.   
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Figure 45.  Pharmacological inhibition of HSP90 induces ER stress in FrevSMA 

cells.  FrevSMA cells were treated with either GA (0.18 µM) or RA (2 µM), or 

DMSO control.  A.  Whole cell lysates from treated cells were analyzed by 

Western immunoblotting for expression of grp94 and BiP.  Blot is representative 

of at least 3 separate experiments.  B.  The average relative expression of grp94 

and gp78 expression +/- SEM as determined by densitometry of at least 2 separate 

experiments is displayed in the table.  *Statistically significant as determined by 

student t tests.  
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Pharmacological inhibition of HSP90 does not induce HSP70 secretion 

Studies in tumor cells found that HSP70 was secreted by tumor cells through a pathway 

involving lysosomal endosomes (197).  Our prior study had failed to detect secreted 

HSP90 following RA and GA treatment.  Secretion of HSP70 could potentially explain 

the enhanced MHC class II presentation of kappa I and kappa II peptides from exogenous 

Ig Ag upon GA and RA treatment.  Western immunoblotting of concentrated conditioned 

media from Priess, PriessGAD, Frev, and FrevSMA cells failed to detect any HSP90 or 

HSP70 protein (Fig. 36A and 46A).  HSP70 was also not detected in fresh media or 

media components (Fig. 46A).  Neither GA nor RA treatment induced HSP70 secretion 

by PriessGAD cells (Fig. 36B).  Likewise, HSP70 was not detected in the conditioned 

media of PriessGAD cells upon RA and GA treatment (Fig. 46B).  As a control, blots 

were stained with Ponceau S to confirm the presence of protein (Fig. 46C).  These results 

suggest that GA and RA do not induce HSP70 secretion in B cells.   
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Figure 46.  Pharmacological inhibition of HSP90 does not induce HSP70 secretion 

by B cells.  (A)  Conditioned media from Priess (P), PriessGAD (PG), Frev (F), 

and FrevSMA (FS);  fresh IMDM cell media plus serum; fresh IMDM media or 

serum components; and H-SFM media was concentrated from 13 ml into 50 µl.  

Concentrated samples were fractionated on 10% SDS PAGE gels along with 

PriessGAD WCL as a positive control. Blots were probed for HSP70.  (B and C)  

PriessGAD cells were treated with either DMSO control, GA, or RA for 18 hours.  

After treatment, 75 µl of conditioned media was fractionated on 10% SDS PAGE 

gels along with PriessGAD WCL as a positive control.  In panel B, blot was 

probed for HSP70 and GAPDH.  In panel C, blot was stained with Ponceau S for 

total protein for a control.  The results are representative of at least 3 separate 

experiments.   
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Pharmacological inhibition of HSP90 alters leupeptin-induced LIP accumulation 

In PriessGAD cells, treatment with GA decreased leupeptin induced LIP accumulation 

(Fig. 29).  GA treated FrevSMA cells were also examined for leupeptin induced LIP 

accumulation.  As shown with PriessGAD cells, treatment of FrevSMA cells with GA 

decreased leupeptin induced LIP accumulation (Fig. 47).  These results are similar to 

those seen with the B cell line PriessGAD.     

 

 

Figure 47.  Pharmacological inhibition of HSP90 alters leupeptin induced LIP 

accumulation.  FrevSMA cells were treated with either DMSO control, GA (0.18 

µM), DMSO control and leupeptin (50 µM), or GA (0.18 µM) and leupeptin (50 

µM) for 18 hours.  (A) WCL of treated cells were ran on 12% SDS-PAGE gel and 

Western immunoblotted for mature Ii, LIP, and Actin.  (B)  Densitometry of the 

representative experiment.  Results are representative of at 2 separate 

experiments.   
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Chapter 4.  Type B insulin resistance developing during interferon α therapy  

Interferon α is an inflammatory cytokine belonging to the type I interferon family.  The 

cellular stress of viral infection induces interferon α production by leukocytes.  Interferon 

α  has been shown to play key roles in defending the host immune system during a viral 

infection by binding to cell surface receptors on host cells and making conferring 

resistance to viral infection (232).  Due to its potent anti-viral effects, interferon α has 

been used either alone or in conjunction with additional anti-viral medications for the 

treatment of chronic hepatitis infection (233).  While interferon α treatment is effective in 

treating chronic hepatitis C infection, this study indicates that type B insulin resistance 

can occur due to interferon α therapy.   

 

Introduction 

Type B insulin resistance is a rare syndrome caused by the production of autoantibodies 

to the insulin receptor.  These autoantibodies were initially described in patients 

diagnosed with both diabetes and extreme insulin resistance (234).  However, current 

studies have shown that anti-insulin receptor antibodies can cause abnormalities of 

glucose homeostasis ranging from profound insulin resistance to life-threatening 

hypoglycemia (235).  Most patients with insulin receptor autoantibodies have an 

underlying connective tissue disorder such as systemic lupus erythematosis.  Research 

has described autoimmune hypoglycemia with insulin receptor autoantibodies as a 

paraneoplastic syndrome in Hodgkin’s lymphoma and multiple myeloma (236, 237).  

Autoimmune hypoglycemia has been reported as arising after heterologous bone marrow 

transplantation (238).  The National Institutes of Health evaluated the demographics of a 

series of 24 patients with type B insulin resistance or autoimmune hypoglycemia and 

determined that 83% were women and 88% were African Americans (235).  Studies 

confirm that most patients with type B insulin resistance develop acanthosis nigricans, 

and women of reproductive age usually have ovarian hyperandrogenism (235, 239).      

 

Case report 

The patient in this study was a 55 year old African American male diagnosed with 

hepatitis C, genotype 1b.  A biopsy of his liver revealed chronic hepatitis with minimal 
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activity and mild fibrosis.  The patient began treatment with pegylated interferon -1a 

and ribavirin. At the beginning of treatment, his hepatitis C viral RNA titer was 3950 

KIU/mL.  He had no personal history of diabetes mellitus, and his fasting plasma glucose 

before interferon treatment was 112 mg/dL.  Two months after starting therapy, he 

developed anemia, which was managed with erythropoietin  and a reduction of his 

ribavirin.  After 6 months of treatment, his weight had fallen 16 kg and viral RNA was 

not detectable.  Two months later, he presented with symptoms of polyuria, polydipsia, 

weakness, blurred vision, and fatigue.  Over the preceding month, his weight had fallen 

another 11 kg, and his weakness was so profound that he was unable to tie his shoes.  At 

this time, he was admitted to the hospital for treatment.  Upon admission, laboratory 

testing was performed on his serum and urine.  His serum glucose was 405 mg/dl, CO2 

was 24 mmol/L, and anion gap was 10 mmol/L.  Urine ketones were 1+, and his serum 

hemoglobin A1c was 9.3%.  His serum creatinine fell to 0.8 mg/dl with aggressive 

hydration.  His serum bilirubin, AST, ALT, alkaline phosphatase, amylase, and lipase 

levels were normal.  Interferon and ribavirin treatment was discontinued.  Subcutaneous 

insulin was started and increased over three days to a daily dose of 180 units; however, 

his blood glucose levels still ranged from 300 to over 600 mg/dL.  An insulin infusion 

was started and titrated over two days to 52 units per hour, but his serum glucose levels 

were still 230-300 mg/dL.   

 

At this point, the patient was transferred to our institution.  A physical examination of the 

patient revealed a thin, African American male with a weight of 68 kg, and a height of 

170 cm.  He was in no acute distress with a blood pressure was 114/72 mm Hg.  His 

sclerae were anicteric.  While his abdomen was soft and nondistended, his right upper 

quadrant was mildly tender.  He had a palpable liver edge 4 cm below the costal margin.  

The patient did not have acanthosis nigricans, spider angiomas, palmar erythema, or 

splenomegaly.  His insulin infusion was increased to 125 units/hour, but his blood 

glucose levels still ranged from 170 to 430 mg/dL.  Lower values were present after 

fasting overnight while higher readings were detected through the day.  This patient was 

now suspected of developing type B insulin resistance.  After a week on intravenous 

insulin treatment, he was transitioned to U500 regular insulin at a dosage of 300 units 
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QID (4 times a day).  His blood glucose levels then ranged from 110 to 300 mg/dL.  

During his third week in the hospital, he developed bilateral facial weakness on the right 

right side, right-sided facial numbness, and weakness of the right lateral rectus.  An MRI 

of his brain was normal.   His cerebrospinal fluid was examined and revealed no white 

blood cells, nonreactive VDRL, negative viral and bacterial cultures, angiotensin 

converting enzyme activity 3 units (reference range < 10), glucose 114 mg/dL (reference 

interval 40 - 70), and protein 70 mg/dL (reference interval 15 - 45).  Prednisone, 40 mg 

daily for 5 days, and acyclovir was used to treat his polycranial neuropathy, and partial 

improvement of the neuropathy was noted one week later.  During his prednisone 

treatment, he was switched back to an insulin infusion with frequent glucose monitoring 

because of concern that his insulin requirements might decline dramatically.  However, 

his blood glucose levels and insulin requirement only increased.  After 4 weeks, his 

glucose levels ranged from 70 to 260 mg/dL, and he was discharged home on U500 

insulin at a dosage of 400 units QID.   

 

To confirm that the patient developed type B insulin resistance, his serum was assayed 

for the presence of anti-insulin antibodies using recombinant human insulin receptor in an 

immunoprecipitation assay (235).  Detergent-solubilized membranes of CHO/IR cells 

expressing human insulin receptor (IR) were the source of insulin receptor used in these 

assays (240).  Patient sera and pooled healthy donor sera used as a control were added to 

solubilized CHO/IR membranes, and any resulting IR-antibody complexes precipitated.  

The precipitated human antibodies (pellets) and the remaining soluble cell extracts 

(supernatants) were probed by Western blotting with commercially obtained antibodies to 

insulin receptor -subunit (Fig. 48).  Parallel immunoprecipitations of detergent 

solubilized membranes from parent CHO cells, which do not express insulin receptor, 

were performed as controls in all cases.  An intense band corresponding to insulin 

receptor α-subunit was present in antibody precipitates formed with patient serum and 

solubilized CHO/IR membranes (Fig. 48A).  The insulin receptor -subunit was not 

detected in precipitates with control CHO membranes or precipitates with pooled human 

serum from healthy donors.  The insulin receptor α -subunit was detected by Western 

immunoblotting of the IP supernatants from CHO/IR membrane incubation with pooled 
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human sera and to a lesser extent with patient serum (Fig. 48B).  Neither the insulin 

receptor α -subunit nor insulin receptor β-subunit was detected in CHO membrane 

controls.  These results confirmed that the patient did develop auto-antibodies to insulin 

receptor, thus confirming his diagnosis of type B insulin resistance.   

 

 

 

 

Figure 48.  Anti-insulin Abs were detected in original patient serum.  Solubilized 

CHO/IR and CHO cell membrane lysates were incubated overnight at 4°C with 

50 µl of either patient sera or control pooled human sera prior to a 1 hour 

incubation with protein-G sepharose. Precipitated antibody complexes (pellets) 

(A) and residual soluble proteins (IP supernatants) (B) were analyzed by western 

blotting with a commercial anti-insulin receptor α Ab. Results representative of at 

least 3 separate experiments.   
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During his hospitalization, his sera was assayed for the presence of additional islet cell 

antibodies and glutamic acid decarboxylase antibodies.  Both tests were negative. His C-

peptide level was 2.1 ng/mL, and his insulin antibodies levels were 4.2 units/mL 

(reference range < 5.0).  His serum was also analyzed for anti-nuclear antibodies and 

screened for antibodies to extractable nuclear antigens (SM, RNP, Ro/SS-A, La/SS-B, 

Scl-70, and Jo-1), single stranded DNA, and double stranded DNA.  All results were 

negative.  His erythrocyte sedimentation rate was 32 mm/hr (reference range < 20), and 

his serum protein electrophoresis was normal.  His TSH level was 1.45 µIU/mL with 

normal free T4 and free T3 levels.  Several early morning measurements of his cortisol 

and ACTH levels did not suggest any pituitary-adrenal abnormality.  A fasting lipid panel 

two weeks after admission showed a cholesterol level of 206 mg/dL, triglyceride level of 

68 mg/dL, HDL level of 58 mg/dL, and LDL level of 135 mg/dL.  These additional tests 

further supported a diagnosis of type B insulin resistance.   

 

During the first three months after his discharge from the hospital, he reported glucoses 

fluctuating between 60 and 300 mg/dL.  His insulin injection was reduced to 50 units 

QID.  Four months after his discharge, the patient experienced two episodes of severe 

hypoglycemia, one of which required medical treatment in an emergency room.  His 

insulin injection was reduced to 30 units/day.  Six months after discharge, he had 

returned to his pre-interferon weight of 96 kg and was only taking 15 units of insulin/day.  

Nine months after discharge, he reported blood glucose levels ranging between 90 and 

190 mg/dL.  His hemoglobin A1c level was 5.7%.  Two years after discharge, his insulin 

treatment was discontinued.  His hemoglobin A1c level was 5.9%, and his blood glucose 

levels ranged from 90-160 mg/dL.  Over a one year period, his cranial neuropathies had 

resolved.  Eighteen months after discharge, his hepatitis C viral RNA titer had returned to 

pretreatment levels.  It was suspected that the patient’s severe insulin resistance had 

spontaneously resolved.   

 

To confirm a spontaneous recovery, the patient’s serum post-treatment was assayed for 

the presence of anti-insulin receptor antibodies.  Pre-treated patient sera, post-treated 

patient sera, and pooled healthy donor sera were added to solubilized CHO/IR 
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membranes, and any resulting IR-antibody complexes precipitated.  The precipitated 

human antibodies (pellets) and the remaining soluble cell extracts (supernatants) were 

probed by Western blotting with commercially obtained antibodies to insulin receptor -

subunit and insulin receptor β-subunit (Fig. 49 A and B).  Parallel immunoprecipitations 

of detergent solubilized membranes from parent CHO cells, which do not express insulin 

receptor, were performed as controls in all cases.  An intense band corresponding to 

insulin receptor α -subunit and insulin receptor β-subunit was present in antibody 

precipitates formed with pre-treatment patient serum and solubilized CHO/IR membranes 

(Fig. 49A).  Neither insulin receptor α -subunit nor insulin receptor β-subunit was 

detected in precipitates with control CHO membranes or precipitates with post-treatment 

patient sera and pooled human serum from healthy donors.  Western immunoblotting of 

the IP supernatants from CHO/IR membrane incubation with pre-treatment patient sera, 

post-treatment patient sera, and pooled human sera detected both insulin receptor -

subunit and insulin receptor β-subunit (Fig. 49B).  Neither the insulin receptor -subunit 

nor insulin receptor β-subunit was detected in CHO membrane controls. These results 

failed to detect anti-insulin antibodies in the post-treated sera of the patient, suggesting 

that the patient no longer produced autoantibodies to the insulin receptor.  Thus, these 

results confirm a spontaneous recovery of severe insulin resistance in this patient.   
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Figure 49.  Anti-insulin Abs were detected in original patient serum, but not post-

recovery serum.  Solubilized CHO/IR and CHO cell membrane lysates were 

incubated overnight at 4°C with 50 µl of either pre-recovery patient sera (Pre-Pt.)  

post-recovery (Post-Pt.) patient sera, or control pooled human sera (Neg) prior to 

a 1 hour incubation with protein-G sepharose. Precipitated antibody complexes 

(pellets) (A) and residual soluble proteins (IP supernatants) (B) were analyzed by 

western blotting with anti-insulin receptor α and anti-insulin receptor β Ab.  

Solubilized CHO/IR and CHO cell membranes were run as a positive control.  

Results are representative of at least 3 separate experiments.   
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Discussion 

As previously mentioned, interferon α has been used either alone or in conjunction with 

additional anti-viral medications for the treatment of chronic hepatitis infection and some 

malignancies (233).  However, interferon α treatment is associated with a variety of 

autoimmune complications, among which, thyroid autoimmunity is most common (241).  

In several recent studies of hepatitis C patients treated with interferon , the average 

incidence of hyper- or hypothyroidism was found to be 6% (242).  While some of those 

patients have destructive thyroiditis without evidence of thyroid autoimmunity, the 

majority of patients have autoimmune thyroid dysfunction (242, 243).  Approximately 

50% of patients with interferon-induced autoimmune hypothyroidism and a smaller 

percentage of those with hyperthyroidism remit after discontinuation of interferon α 

treatment (242).  Numerous other autoimmune conditions have been reported with 

interferon  therapy; they include TID, systemic lupus erythematosis, myasthenia gravis, 

celiac disease, autoimmune hepatitis, psoriasis, vitiligo, hemolytic anemia, 

thrombocytopenia, and sarcoidosis (241, 244, 245).  Interferon α -induced autoimmune 

disease tends to occur in individuals that have a higher baseline risk.  Patients are much 

more likely to develop overt disease while taking interferon α if they are genetically 

predisposed to thyroid or islet autoimmunity, or with thyroid or islet cell autoantibodies 

at commencement of therapy (242, 245). 

 

The majority of patients that develop diabetes while receiving interferon α therapy have 

TID with autoantibodies to islet cell antigens (245).  Studies have shown that chronic 

hepatitis C infection also causes insulin resistance.  Patients with hepatitis C have a 

higher prevalence of type 2 diabetes and impaired fasting glucose (246). Moreover, 

hepatitis C patients who experience a sustained virologic response to interferon therapy 

have a lower incidence of glucose abnormalities than those who do not respond (247). 

However, hepatitis C does not cause insulin resistance of the magnitude seen in this case; 

the development of type B insulin resistance during interferon therapy is distinctly 

unusual.   There is a case study from Japan of a man who developed diabetes with insulin 

receptor autoantibodies during interferon-α treatment for hepatitis C (248).  Islet 

autoantibodies were not detected in his serum.  His clinical course was characterized by 
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frequent hypoglycemia during treatment with relatively low doses of insulin.  A few 

months after discontinuation of interferon therapy, insulin receptor antibodies could no 

longer be detected, but his diabetes did not resolve.  Thus, the contribution of these 

autoantibodies to his diabetes is not clear.  A brief report from India describes the case of 

a woman with type 2 diabetes developing marked hyperglycemia during interferon 

treatment for chronic hepatitis C (249).  Even with insulin doses as high as 700 units/day, 

the hyperglycemia did not respond to treatment.  After discontinuation of interferon 

therapy, the extreme insulin resistance remitted.  Although, measurements of insulin 

receptor and other autoantibodies were not reported in her case, hyperglycemia refractory 

to such high insulin doses is consistent with type B insulin resistance.   

 

Insulin receptor autoantibodies have been shown to cause both hyperglycemia and 

hypoglycemia.  This variability in clinical presentation is due to the ability of insulin 

receptor antibodies to act as either agonists or antagonists of the insulin receptor (235, 

250).  Insulin receptor antagonism can manifest as severe hyperglycemia refractory to 

massive doses of insulin.  Stimulation of the insulin receptor causes hypoglycemia, which 

can be life-threatening (235).  In some cases, patients with hyperglycemia due to type B 

insulin resistance can develop severe hypoglycemia later in the course of their illness 

(235).  However, there are also reports of patients with systemic autoimmune disease 

producing insulin receptor autoantibodies and reporting no obvious abnormality of 

glucose metabolism (251).  It is unknown whether these simply represent antibodies that 

bind insulin receptors without altering insulin signaling, or whether these patients are at 

risk of developing autoimmune hyperglycemia or hypoglycemia in the future. 

 

In the United States, type B insulin resistance and autoimmune hypoglycemia are much 

more common in African Americans and women (235).  Most reported cases have 

occurred in patients with other autoimmune diseases such as systemic lupus 

erythematosis (250, 252).  In the case study presented here, the patient’s polycranial 

neuropathy may have had an autoimmune basis.  Cranial neuoropathies can occur in 

patients with systemic autoimmunity; there are some case reports of Bell’s palsy arising 

during interferon and ribavirin therapy (253-255).  There is also an increased incidence of 
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cranial neuropathies in diabetes (256).  It is unknown whether this patient’s polycranial 

neuropathy was caused by autoimmunity, diabetes, or another etiology.  While acanthosis 

nigricans is present in most patients with type B insulin resistance, it was not detected in 

this patient.  Steroids and other immunosuppressive therapies such as azathioprine, 

cyclophosphamide, cyclosporine, mycophenolate, and rituximab, sometimes in 

combination with plasmapheresis have all been used as treatment for the underlying 

autoimmunity in type B insulin resistance (235, 250, 257-259).  Type B insulin resistance 

has a high spontaneous remission rate.  Therefore, it is difficult to conclusively attribute 

improvements in these reports to the immunosuppressive therapy (235).  Because of 

concern that his response to the interferon might be compromised and because his insulin 

resistance appeared to be improving on its own, there was initial reluctance to use 

immunosuppressive therapy or plasmapheresis in our patient.  When he did eventually 

receive steroids for cranial polyneuropathy, his glycemic control only worsened.  In some 

cases, patients with type B insulin resistance develop autoimmune hypoglycemia later in 

the course of their illness.  In this study, the patient had two episodes of severe 

hypoglycemia, which reflect resolution of his insulin resistance, and they did not recur 

after a sharp reduction of his insulin dose.  In this case, the severe insulin resistance 

remitted spontaneously over a 6 month period after interferon was discontinued. 

 

Conclusion 

This case demonstrates that insulin receptor autoantibodies and type B insulin resistance 

can occur as a complication of interferon α therapy.  In patients receiving interferon α 

therapy who develop new hyperglycemia or hypoglycemia with no evidence for 

autoimmunity to islet antigens, the possibility of insulin receptor autoantibodies should 

be considered. 
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DISCUSSION AND FUTURE CHALLENGES 

MHC class II molecules function to present antigenic peptides to CD4+ T cells.  

Typically, MHC class II molecules present peptides derived from exogenous sources via 

the classical presentation pathway.  In this pathway, exogenous Ags or membrane Ags 

found at the cell surface are delivered into the endosomal network and processed into 

peptide fragments by endosomal/lysosomal enzymes prior to loading onto MHC class II 

molecules.  However, some endogenous cytoplasmic and nuclear Ags including tumor, 

viral, or self proteins have also been found to be sources for peptides presented by MHC 

II molecules.  Such alternative pathways of MHC class II presentation are not well 

defined or understood.  Studies suggest that specific heat shock protein family members 

may play a role in Ag processing and the subsequent presentation of antigenic peptides 

by MHC class II molecules.  The studies presented here implicate HSP90 as well as 

HSP70 as regulators of MHC class II presentation for select endogenous and exogenous 

Ags.   

 

Biological functions of HSP90 and its selective role in Ag presentation 

HSP90 has been shown to play a key role in chaperoning client proteins in a variety of 

cellular processes including cell proliferation, differentiation, and apoptosis (174).  

Manipulation of HSP90 activity has been used to modulate intracellular protein folding in 

the cytoplasm and to induce the proteolysis of misfolded or mutant proteins in a variety 

of disease conditions including malignancies and neurological disorders such as 

Alzheimer’s disease, Parkinson’s disease, autoimmune encephalomyelitis, and 

polyglutamine diseases (179-182).  HSP90 inhibitors have also been tested in human 

clinical trials to promote tumor regression (181).  Recent studies have also implicated 

HSP90 as a potential regulator of both MHC class I and II Ag processing and 

presentation (142, 143).  Studies of the MHC class I pathway suggest HSP90 may guide 

Ag processing or select epitopes for presentation (141).  Yet, whether HSP90 broadly 

controls MHC class II function or modulates instead the display of select antigenic 

epitopes has not been dissected.   
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Here, inhibition of HSP90 in B cells by either pharmacological agents such as GA and 

RA or siRNA specifically decreased MHC class II presentation of both exogenous and 

endogenous GAD (Figs. 8, 10A, and 10B).  However, MHC class II presentation of 

several other endogenous and exogenous Ags was unaffected by HSP90 inhibition (Figs. 

9, 10C, 10D, 11).  Furthermore, disruption of HSP90 function or expression failed to alter 

exogenous peptide presentation by these human APCs.  Thus, HSP90 inhibition appears 

to selectively affect MHC class II presentation in an Ag specific manner.  HSPs have 

been shown to preferentially recognize certain Ags based on their sequence or structure.  

For example, HSC70 preferentially recognizes peptides containing a KFERQ like motif, 

while HSP70 preferentially binds hydrophobic residues within Ags (140, 153, 154).   

 

Studies show that HSP90 exhibits some substrate specificity, although clear motifs 

recognized by this HSP have yet to be defined (170, 174, 178).  HSP90 may also 

recognize target proteins based on conformation or folding.  The autoantigen GAD is 

well known for its hydrophobic nature and association with lipid membranes via its N-

terminus (10, 12).  Whether these properties contribute to HSP90 association with GAD 

remains unclear.  However, this study found that HSP90 interacts with both full length 

GAD Ag as well as an N-terminal truncated form of GAD Ag (Fig. 17 and data not 

shown).  Moreover, HSP90 inhibition decreased MHC class II presentation of both 

exogenous full length GAD and N-terminal truncated GAD (Figs. 10A, 10B, and data not 

shown).  Studies to examine in vivo T cell responses to GAD Ag in the presence and 

absence of HSP90 activity could prove useful in revealing if this HSP not only alters the 

efficiency but also the specificity of GAD presentation and thus the repertoire of peptides 

displayed on APCs.  Epitope profile studies could prove useful in determining if selective 

inhibition of HSP90 alters GAD processing in a manner that changes the GAD epitope 

repertoire.  Moreover, site directed mutagenesis of the GAD protein could determine 

which sites within the GAD Ag facilitate HSP90 association and chaperone function.   
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Association of HSP90 with proteins and links to cell stress 

The physical association of HSP90 and the autoantigen GAD in cells co-expressing these 

molecules was demonstrated (Fig. 17A).  HSP90 has been shown in some cases to work 

in concert with additional HSPs as part of a multi-protein chaperone complex; therefore, 

HSP90 and GAD association in vivo may involve other HSPs.  However, incubating 

purified HSP90 with purified GAD Ag resulted in the two proteins co-

immunoprecipitating (Fig. 17B).  Previous studies found HSP90 inhibition to alter MHC 

class II presentation.  Incubation of HSP90 with OVA Ag resulted in the two proteins co-

immunoprecipitating (Fig. 17B). Incubation of HSP90 with Ig kappa light chain failed to 

show any association between these two proteins.  Taken together with the specific effect 

of HSP90 inhibition of MHC class II expression of GAD and OVA Ag, these results 

suggest that HSP90 may selectively binds to Ags.  While these results indicate that 

HSP90 and GAD Ag can bind directly, it does not rule out the association of GAD-

HSP90 complexes with other intracellular HSPs.  Potentially, complex formation 

between HSP90 and GAD may influence GAD proteolytic processing by APCs.  The 

current study suggests the latter, demonstrating that HSP90 modulates MHC class II 

presentation of select Ags such as the diabetes autoantigen GAD but not other Ags or 

peptides.  Further studies are needed to dissect the role of individual HSP90 isoforms in 

complexing with additional HSPs and the role of such complexes in regulating Ag 

presentation.     

 

Prolonged exposure of cells to HSP90 inhibitors has been shown to induce a stress 

response in some cells as manifested by increased cellular protein expression of HSP70, 

HSP90, HSC70, and HSP40 (179, 220, 221).   In this study, GA/RA treatment of 

PriessGAD cells resulted in increased expression of HSP70, HSP90, HSC70, and HSP40 

suggesting that GA/RA treatment does induce a stress response in B cells (Fig. 12).  

Studies suggest that cell stress such as heat shock can also promote changes in Ag 

processing and MHC class II presentation of some exogenous and endogenous Ags by B 

cells (222).  Yet, heat shocking PriessGAD cells failed to affect MHC class II 

presentation of endogenous GAD Ag, exogenous HSA Ag, or HSA peptide (Fig. 14).  

These results indicate that while cellular RA and GA treatment induces a stress response 
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and upregulated overall HSP/HSC expression in B cells, such cellular stress alone does 

not contribute to the observed decrease in MHC class II presentation of GAD Ag 

associated with pharmacological inhibition of HSP90. This suggests that HSP90 has a 

distinct role in MHC class II presentation of GAD Ag.    

 

While the individual functions of HSP90 α and β isoforms have been dissected in terms 

of MHC class I presentation, this work marks a first step in addressing the role of these 

HSP90 isoforms in MHC class II presentation.  HSP90α alone was found to modulate Ag 

processing for MHC class I presentation (141).  Using HSP90 α and β specific siRNA to 

modulate HSP90 protein abundance revealed both isoforms were involved in MHC class 

II presentation of exogenous and endogenous GAD (Figs. 22, 24A, and 24B).  These two 

isoforms may have distinct rather than redundant roles in the Ag processing and 

presentation pathway.  As previously mentioned, HSP90 purifies as a dimer, and in vivo, 

dimerization is required for HSP90 function (260).  Recent studies indicate that HSP90α 

and HSP90β primarily dimerize as homodimers, but heterdimerization does occur (174).  

While studies here indicate that both HSP90α and HSP90β are highly expressed in B 

cells, it remains unknown what form of dimers are primarily found in these cells.  The 

composition of HSP90 dimers in APCs may also influence Ag processing for MHC class 

II presentation.   

 

Potential steps where HSP90 regulates the MHC class II pathway of Ag presentation 

It is interesting that inhibition of HSP90 affects both endogenous and exogenous 

presentation of GAD Ag.  Analysis of MHC class II presentation of short synthetic GAD 

peptides failed to reveal a role for HSP90 in the cell surface loading of MHC class II 

molecules or B-T cell interactions.  Thus, HSP90 likely exerts its effect on intracellular 

GAD Ag processing or via unfolding GAD to facilitate MHC class II binding to antigenic 

epitopes.  The pathways of exogenous and endogenous MHC class II presentation for 

GAD Ag are distinct yet converge with shared processing in endosomal and lysosomal 

compartments (Figs. 2 and 3).  This leads to speculation as to exactly where HSP90 

modulates GAD processing and presentation.  Studies here examined whether HSP90 
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affects GAD Ag presentation at one of the shared steps found within the classical and 

alternate MHC class II presentation pathways.       

 

MHC class II expression and dimer formation 

One shared step is loading of MHC class II complexes with peptides within endosomal 

compartments.  This results in both SDS stable MHC class II dimers as well as unstable 

dimers.  In murine macrophages, HSP90 overexpression has been shown to enhance 

MHC class II dimer stability while GA and RA treatments decrease dimer stability (142).  

Both HSP90 overexpression and inhibition were reported not to alter surface and total 

MHC class II protein expression in these murine cells (142).  Yet, no change in MHC 

class II expression or dimer stability was seen with a reduction in HSP90 function in 

human B cell lines (Figs. 15, 16, 21, and 44).  While HSP70 was shown to interact with 

HLA-DR molecules, it is unknown whether HSP90 can directly interact with HLA-DR 

molecules (209).  Coimmunoprecipitation studies using extracts from human B cells will 

determine whether HSP90 interacts with MHC class II molecules.  In PriessGAD cells, 

HSP90 inhibition by either GA/RA or HSP90α or HSP90β siRNA did not alter MHC 

class II expression or dimerization (Figs. 15, 16, and 21).  Thus, the decrease in MHC 

class II GAD Ag presentation observed with GA or RA treatment is not due to alterations 

in MHC class II expression or dimer stability in B cells (Figs. 8, 10 A and B, 22, and 24 

A and B).  Moreover, GAD peptide presentation was unaffected by HSP90 inhibition 

again suggesting no change in MHC class II surface expression or ligand loading (Figs. 

10 C and D and 24 C and D).  While future studies such as co-immunoprecipitation 

experiments can determine if HSP90 associates with other components of the MHC class 

II pathway, the current study suggests that HSP90 is not modulating MHC class II 

presentation by altering MHC class II protein expression or display at the cell surface.   

 

Ii processing and HSP90  

The role of HSP90 in Ii processing was tested using small molecule inhibitors as well as 

HSP90 specific siRNA.  Inhibition of HSP90α and HSP90β expression by siRNA in 

PriessGAD cells did not affect Ii chain processing in B cells (Fig. 30).  However, 

leupeptin induced LIP accumulation was reduced by GA/RA treatment (Fig. 29).  With 
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both siRNA or pharmacological inhibition of HSP90, surface and total expression of 

CLIP and Ii were unchanged (Figs. 27 and 28).  The expression and function of HLA-

DM and HLA-DO were also found to be unaffected by HSP90α and HSP90β inhibition 

(Fig. 33).  While the mRNA expression for several cathepsins was unaffected by RA/GA 

treatment, cathepsin S, B, and L activity was altered (Figs. 31 and 32).  As previously 

stated, cathepsins S and L have been shown to be essential proteases catalyzing Ii 

processing and Ag presentation.  The enhanced activity of these proteases could reflect a 

change in endosomal and lysosomal pH or reflect the cellular stress induced by GA/RA 

treatment of the cells.  Still, the effect of GA/RA on cathepsin activity failed to fully 

explain the overall affect on MHC class II presentation of GAD Ag.  While the profile of 

Ii fragments found in cells treated with GA/RA was similar to control cells or cells 

treated with HSP90 siRNA, we did note less of the Ii LIP fragment with GA/RA 

treatment.  This could reflect a change in the kinetics of Ii processing, which could be 

further tested by radiolabeling studies in the future.  Notably cellular MHC class II 

dimers and a final Ii fragment CLIP was not altered by GA/RA.  Therefore, I propose that 

HSP90 functions at an earlier step in the MHC class II pathways, prior to the involvement 

of these conserved events in the MHC class II pathway.   

  

Potential roles for HSP90 inside and outside of cells 

While HSP90 is located primarily in the cytoplasm of cells, a study in B cells found that 

heat stress induced enrichment of HSPs including HSP90 in exosomes which are released 

from cells (229).  HSP70, which can associate in the cytoplasm with HSP90, is secreted 

by tumor cells through a pathway involving lysosomal endosomes (197).  Notably, 

another intracellular chaperone, HSC70, is found both in the cytoplasm and 

endosomes/lysosomes with studies suggesting it translocates into the endosomal network 

in an ATP-dependent process (166).  Whether HSP90 uses a similar pathway to access 

the endosomal network is unknown.  Several studies have suggested peptide-HSP90 

complexes released by tumors can promote MHC class I presentation (137, 144, 223).  

Islet cell stress including exposure to cytokines such as IL-1β is known to induce HSP90 

expression prior to cell death (184).  Western immunoblotting of concentrated 

conditioned media from PriessGAD cells failed to detect HSP90 released from these cells 
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(Fig. 36).  Yet, we cannot rule out the retention of HSP90 in endosomes and lysosomes of 

these cells where it may intersect exogenous Ags such as GAD.  Pre-complexing purified 

HSP90 with exogenous GAD in vitro prior to addition to Priess cells slightly enhanced 

GAD presentation (Fig. 37).  While this enhancement was modest, this could be due to 

the lack of additional co-factors needed for cellular uptake or functional folding of this 

purified HSP90.  Taken together, these studies suggest that HSP90 may not be accessing 

endo/lysosomes via extracellular secretion and re-entry, but rather by direct access into 

those vesicles from the cytoplasm (Fig. 51).  Further studies are needed to determine if 

and how HSP90 is translocated directly into endo/lysosomes and how the regulation of 

HSP90 compartmentalization might influence Ag presentation.  Also, whether HSP90 is 

found in the endosomes and lysosomes of all cells or only APCs has not been explored.   

 

In the cytoplasm, HSP90 may function to chaperone endogenous GAD Ag for processing 

by cytoplasmic proteases such as the proteasome or calpain (Fig. 52).  This is supported 

by the observation that HSP90 is associated with cytoplasmic GAD within cell extracts 

(Fig. 17).  GAD Ag has been shown to be ubiquitinated, and previous studies from our 

lab have determined that GAD Ag MHC class II presentation of endogenous GAD Ag is 

dependent upon the protease activity of the cytoplasmic proteasome and calpain (67).  

Moreover, HSP90 is linked to the proteasome via its cofactors such as HSP70.  

Radiolabeling and immunoprecipitation experiments could be used to determine whether 

HSP90 inhibition alters GAD processing in B cells.  Moreover, co-immunoprecipitation 

studies could also assess whether GAD-HSP90 association is affected by treatment of 

PriessGAD cells with specific proteasomal and calpain inhibitors.   

 

Based on our current studies, one also cannot rule out a role for HSP90 in the 

translocation of GAD peptides into lysosomes.  Previous studies indicate that HSC70 

plays a key role in cytoplasmic GAD peptide translocation and subsequent MHC class II 

presentation (85).  These studies and work by others indicate that HSC70 facilitates 

peptide transport into the lysosomes (85, 162).  Our lab has previously shown in B cells 

that altering HSC70 expression can regulate MHC class II presentation of several 

cytoplasmic autoantigens leading one to deduce that CMA can regulate immunity (85).  
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In B cells, HSP90 primarily functions as part of several cytoplasmic multi-chaperone 

complexes containing HSPs such as HSC70 (152, 167, 175, 176).  It is unknown whether 

HSP90 interacts directly with HSC70 to help chaperone antigenic peptide fragments to 

lysosomes or HSP90 releases peptides to HSC70.  Future studies will be needed to 

determine whether selective HSP90α and HSP90β inhibition affects the translocation and 

MHC class II presentation of GAD peptides in the cytoplasm of B cells.  As one 

approach, purified HSP90 could be complexed with GAD peptides prior to 

electroporation into the cell’s cytoplasm to determine if this complex enhances peptide 

translocation and presentation.  

 

The current study supports a role for HSP90 in regulating MHC class II presentation of 

both exogenous and endogenous GAD Ag by human B cells.  Both pharmacological and 

siRNA targeted disruption of HSP90 specifically inhibited GAD presentation by MHC 

class II molecules, yet failed to perturb MHC class II presentation of other Ags.  Both 

HSP90 α and β isoforms were found to be involved in GAD Ag presentation by MHC 

class II molecules.  While HSP90 appears to function at the step of Ag binding to 

promote processing and presentation, future research will be needed to explore the exact 

sites of HSP90 action.  A working model of how HSP90 may function as a chaperone in 

the MHC class II pathways of exogenous and endogenous presentation is depicted in 

Figures 50 and 51 respectively.  Direct translocation of HSP90 from the cytosol to 

endo/lysosomes may allow HSP90 to gain access to exogenous Ags with HSP90 

chaperoning these Ags for degradation by endo/lysosomal proteases (Fig. 50).   
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Figure 50.  A working model of HSP90 and MHC class II presentation of exogenous 

GAD Ag.  HSP90 may be translocating from the cytosol to endosomes and/or 

lysosomes.  In these vesicles, HSP90 may interact with internalized, exogenous 

GAD Ag and chaperone its degradation into antigenic peptide fragments.    
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Likewise, cytoplasmic HSP90 may chaperone cytoplasmic Ags to proteases such as the 

proteasome or calpain for degradation into antigenic peptides.  The resulting peptides 

might be further chaperoned by HSP90 or transit via HSC70 into the lysosomes for 

further trimming and loading onto MHC class II molecules (Fig. 51).    

 

 

 

Figure 51.  A working model of HSP90 and MHC class II presentation of 

endogenous GAD Ag. HSP90 may function as a chaperon to GAD Ag pre- and 

post-degradation by the proteasome or calpain.  HSP90 may bind native, 

endogenous GAD Ag and chaperone GAD Ag to the proteasome or calpain for 

degradation.  The binding of HSP90 to GAD Ag also protect this Ag from 

premature degradation by other proteases.  HSP90 may also bind to GAD peptide 

fragments generated by cytoplasmic proteases and target them to lysosomes via 

interacting with HSC70 and Lamp2.  Within the lysosomes, GAD peptide 

fragments may be further trimmed by lysosomal proteases prior to loading onto 

MHC class II molecules. This may also be mediated by intralysosomal HSPs such 

as HSP90.   
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Together, these observations reveal a novel function for HSP90 isoforms and suggest 

these HSPs may regulate the development of T cell responses to self and potentially 

foreign Ags.  This may prove crucial to understanding the initiation events and 

pathogenesis of autoimmunity.  Further understanding of the role of HSP90 isoforms in 

GAD Ag processing and presentation by MHC class II molecules may also prove useful 

in developing new therapeutics to prevent and treat autoimmune diseases such as TID. 
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HSP70 as a potential player in regulating MHC class II presentation of select 

antigens 

Studying the role of HSP90 in MHC class II presentation revealed a potential 

requirement for HSP70 in the presentation of select Ags.  HSP70 has been shown to 

perform a variety of chaperone functions including stabilizing newly synthesized or 

unfolding polypeptides in the cytoplasm, facilitating the translocation of nascent protein 

chains across membranes, mediating assembly or disassembly of multimeric protein 

complexes, and targeting proteins for degradation within lysosomes (187-189).  

Additional studies indicate that HSP70 may play a role in MHC class II presentation of 

exogenous Ags.  Studies have detected extracellular HSP70:peptide complexes in MHC 

class II  enriched compartments after receptor-mediated endocytosis (208).  In contrast to 

HSP90, HSP70 has been suggested to interact with MHC class II molecules (209).  

Studies also suggest HSP70 mediated enhancement of MHC class II restricted peptide 

presentation (209, 231).  And relevant to autoimmunity, HSP70 has been shown to 

promote myelin autoantigen presentation by MHC class II molecules (139).  The current 

study suggests that HSP70 not only affects the presentation of select exogenous Ags, but 

also select endogenous Ags.   

 

HSP70 has been well studied as a key player in amyloidosis, a group of diseases 

characterized by the assembly of protein fibrils that are deposited extracellulary in 

various organs and tissues.  Rarely are these fibrils deposited intracellularly, but a mutant 

Ig kappa light chain protein, SMA, does aggregate within the cytoplasm of cells.  Studies 

indicate that HSP70 interacts with SMA and plays an important role in its processing and 

aggregation.  Specifically, overexpression of HSP70 has been shown to decrease the 

aggregation and promote proteasomal degradation of SMA (207).  Therefore, it is 

suggested that HSP70 can regulate intracellular SMA fibril accumulation. Studies here 

show also that peptides from endogenous SMA can be presented by MHC class II 

molecules (Fig. 38).  In FrevSMA cells, GA/RA treatment induced a stress response with 

increased HSP40 and HSP70 protein expression (Fig. 41).  The expression of HSP70 was 

increased 7 to 10 fold in cells treated with GA/RA.  Heat shock of FrevSMA cells 

induced HSP expression comparable to GA/RA treatment (Fig. 42).  While heat shock 



 123 

alone did not affect MHC class II presentation of endogenous and exogenous GAD, heat 

shock treatment of FrevSMA cells enhanced MHC class II presentation of endogenous 

SMA (Figs. 15 and 43).  Since both GA/RA treatment and heat shock enhanced MHC 

class II presentation of SMA, inhibition of HSP90 cannot explain the observed enhanced 

presentation of SMA protein.  Yet common to both these treatments was the induction of 

HSP70 expression.  By contrast, HSP40 expression was only slightly enhanced compared 

to HSP70 expression.  These results together with the previous studies indicating HSP70 

as a chaperone for SMA, suggest that the enhanced MHC class II presentation of SMA is 

due to the enhanced HSP70 expression.  These results at present only indirectly link 

HSP70 to MHC class II presentation of SMA, thus further studies using HSP70 specific 

siRNA and HSP70 overexpressing plasmids are needed to confirm a role for HSP70 in 

cytoplasmic Ag presentation.   

 

Interestingly, GA/RA treatment induced ER stress as indicated by significantly enhanced 

grp94 and BiP protein expression in FrevSMA cells, but not PriessGAD cells (Figs. 34, 

35, and 45).  The induced ER stress may impact and promote SMA degradation and 

HSP70 chaperone activity.  SMA is transported into the ER and fails to exit to the Golgi, 

but rather is retained in the ER and translocated to the cytosol for proteasomal 

degradation (207, 261-264).   As previously described, both grp94 and BiP play roles in 

both protein folding in the ER and ERAD.  GA and RA can inhibit cytoplasmic HSP90 as 

well as grp94 in the ER. With misfolded SMA in the ER, ER stress may be induced 

coupled with grp94 loss of function.  Moreover, previous studies indicate that BiP can 

bind to SMA (207, 230).  Enhanced grp94 and BiP expression within the ER may result 

and enhance SMA translocation from the ER into the cytosol.  There cytosolic HSP70 

could further assist in chaperoning SMA to the proteasome for degradation.  Increased 

SMA degradation could lead to an increase in the SMA peptides that could be presented 

by MHC class II molecules.  Further studies using grp94 and BiP inhibitors could be 

carried out to examine the role of ER stress in SMA translocation, degradation, and MHC 

class II presentation.  Further studies using siRNA to block HSP70 expression would be 

important.      

 



 124 

Treatment of Frev cells with GA/RA not only enhanced MHC class II presentation of 

endogenous SMA, but also MHC class II display of peptides, kappa I and kappa II from 

exogenous Ig kappa light chain (Fig. 39).  While the presentation of synthetic exogenous 

HSA or GAD peptides was unaffected by GA/RA treatment, this treatment did enhance 

the MHC class II presentation of exogenous kappa I and kappa II peptides (Fig. 11 C and 

D, 12 C and D, and 40).  As previously stated, HSP70 has been extensively studied as a 

chaperone for exogenous Ags for both exogenous and endogenous presentation.  

Moreover, peptides were more efficiently presented by MHC class II molecules when 

precomplexed with HSP70 (209).  In response to stress, HSP70 is secreted from a variety 

of cell types via an undefined pathway (190-195).   Under normal conditions HSP70 is 

not secreted by FrevSMA cells, and GA/RA treatment did not induce HSP70 secretion 

(Fig. 46).  Thus, secreted HSP70 due to GA/RA treatment is likely not an explanation for 

enhanced MHC class II presentation of exogenous Ig kappa Ag and kappa I and kappa II 

peptides.  Additionally, this enhancement seems to be Ag and peptide specific as MHC 

class II presentation of GAD peptide, HSA Ag, and HSA peptide was not unaffected by 

GA/RA treatment.  Further studies are needed to examine the role of HSP70 in the 

enhancement of MHC class II presentation of select Ags.      

 

While this work implicates HSP70 as a potential modulator of MHC class II presentation 

of select endogenous and exogenous Ags, further research is needed to confirm these 

findings and determine specifically how HSP70 modulates these pathways.  However, 

working models of HSP70 chaperone function within the MHC class II pathway of 

endogenous and exogenous presentation are represented in Figures 52 and 53 

respectively.  In FrevSMA cells, endogenous HSP70 may chaperone SMA from the ER 

to the proteasome for proteasomal degradation.  HSP70 may also bind SMA peptide 

fragments and chaperone them to the HSC70/lamp2 complexes at the lysosomal surface 

for peptide translocation into lysosomes, intersecting the MHC class II pathway (Fig. 52).   
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Figure 52. A Working Model of HSP70 and MHC Class II Presentation of 

Endogenous SMA Ag.  Endogenous SMA is translocated from the ER to the 

cytosol via ER chaperone proteins grp94 and BiP.  In the cytosol, HSP70 may 

bind to cytosolic and chaperone it to the proteasome for degradation into antigenic 

peptide fragments.  HSP70 binding to SMA may also protect it from premature 

protein degradation.  Upon proteasomal degradation, SMA peptide fragments may 

also be recognized by HSP70 and targeted to the HSC70/Lamp2 complex for 

translocation into lysosome.  HSP70 may also be translocated directly from the 

cytosol into the lysosomes.  Here, HSP70 may mediate further trimming of SMA 

peptides and/or stabilize them prior to loading onto MHC class II molecules.   
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For MHC class II presentation of exogenous Ags, HSP70 may gain access to 

endo/lysosomes and facilitate Ag proteolysis into peptide fragments.  Additionally, 

HSP70 may facilitate peptide loading onto MHC class II molecules (Fig. 53). 

 

Figure 53.  A working model of HSP70 and MHC class II presentation of exogenous 

Ig kappa Ag.  HSP70 may be directly translocated from the cytosol to endosomes 

and/or lysosomes.  Within these vesicles, HSP70 may chaperone internalized, Ig 

kappa Ag and guide its degradation into antigenic peptide fragments. HSP70 may 

also assist in the peptide loading of MHC class II molecules. 

 

HSP70 has been shown to perform various intra- and extracellular functions.  While 

studies implicate HSP70 as a chaperone for MHC class I and class II presentation of 

exogenous Ags, this study suggests a novel role for HSP70 in MHC class II presentation 

of endogenous Ags.  Moreover, this work suggests that HSP70 functions as a chaperone 

for only select endogenous and exogenous Ags.  Research has linked HSP70 chaperone 

function to protein folding diseases such as amyloidosis and autoimmune diseases such as 

multiple sclerosis (139, 207).  Understanding the role of HSP70 in MHC class II 

presentation of select Ags may be crucial in understanding the pathogenesis of these 

diseases as well as developing therapeutics to effectively treat and prevent their onset.   
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