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Abhishek Anant Kulkarni 

12-LIPOXYGENASE PROMOTES MACROPHAGE INFILTRATION AND PANCREATIC 

ISLET DYSFUNCTION IN THE VERTEBRATE MODELS OF DIABETES 

PATHOGENESIS 

Diabetes is a morbid metabolic disorder that affects almost 500 million people 

worldwide. Although multiple factors contribute to diabetes pathogenesis, pancreatic islet 

inflammation and dysfunction are shared characteristics of its major forms. 12-

lipoxygenase (12-LOX), an enzyme involved in lipid metabolism, has been implicated in 

islet inflammation. 12-LOX generates reactive oxygen species (ROS) that activate 

inflammation and serve as major contributors to islet dysfunction. Importantly, since ROS 

are transient moieties, they are challenging to study in vivo. Hence, establishing better 

animal models of ROS-mediated stress is critical to facilitate the discovery and preclinical 

testing of novel diabetes therapeutics. Here, I have adapted a zebrafish model of conditional 

β-cell injury, which is regulated by the administration of the prodrug metronidazole 

(MTZ), to study responses to ROS in vivo. I demonstrate that with MTZ treatment, ROS 

are generated within β-cells and subsequently exhibit recruitment of macrophages into the 

islet and induction of β-cell death. I utilized this model to uncover roles for macrophages 

and 12-LOX during islet injury. Excessive macrophage infiltration exacerbates islet 

inflammation and dysfunction. Interestingly, on the depletion of macrophages in zebrafish, 

I observed that β-cells recovered normal function upon cessation of prodrug treatment. 

This suggests that infiltrating macrophages promote maladaptive inflammation and 

premature removal of damaged β-cells. Thus, limiting the macrophage infiltration may be 

a therapeutic approach to restoring β-cell function. Based on the established roles of 12-
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LOX in other contexts, I hypothesized that its inhibition would prevent the localized 

infiltration of proinflammatory macrophages. To test this, I used both zebrafish and mouse 

models and observed a significant reduction in macrophage migration upon loss of 12-

LOX activity. Furthermore, I found that expression of CXCR3, a crucial receptor 

regulating migration, was significantly reduced in 12-LOX loss-of-function macrophages. 

These data suggest a role for 12-LOX in macrophages, which is conserved across species. 

Collectively, my study reveals novel roles for 12-LOX in macrophage function and 

provides testable therapeutic targets for the resolution of inflammation-induced damage in 

the pancreatic islets. 

 

Maureen Harrington, Ph.D., Chair 
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Chapter One: Introduction 

1.1 Pancreatic islet structure and function: 

 Metabolism is a process of conversion of the complex metabolites obtained from the 

food, like carbohydrates, proteins, and fats, to simpler molecules like sugars, amino acids, 

and fatty acids, respectively (Beauvoit et al., 2018). Different organs are involved in this 

intense metabolic process that ultimately leads to energy production, which is necessary to 

run all the cellular processes. One such organ is the pancreas, which has a variety of crucial 

roles, including regulation of macronutrient digestion and hence, energy homeostasis by 

releasing various digestive enzymes and pancreatic hormones. The pancreas is located 

behind the stomach within the left upper abdominal cavity and has three parts: the head, 

body, and tail. Anatomically, the pancreas can be divided into two compartments: exocrine 

and endocrine (Röder et al., 2016).  

 The exocrine compartment encompasses about 95-98% of the total pancreatic mass. 

It is composed of cells that have a primary role in facilitating the digestion of food. The 

two major cell types of the exocrine pancreas are the acinar cells and the ductal cells. The 

acinar cells produce pancreatic fluid that contains a variety of enzymes, including trypsin 

and chymotrypsin, for the breakdown of proteins, amylase for carbohydrates, and lipase 

for fats. This pancreatic fluid gets ultimately released via the pancreatic ductal system into 

the duodenum of the small intestine where the digestion of the food occurs. The ductal cells 

produce a bicarbonate-rich secretion that helps in maintaining the pH of the duodenum 

(Motta et al., 1997; Pandiri, 2014). The endocrine compartment accounts only for about 2-

5% of the total pancreatic mass. The primary function of this compartment is regulating 

glucose homeostasis. The endocrine cells are clustered together to form small island-like 
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structures within the pancreas called the islets of Langerhans. These highly vascularized 

islets contain five different cell types that release specific hormones (Figure 1). The more 

abundant cell types are the α-cells and b-cells. In humans, the α-cells constitute about 15-

20% of total islet cells and produce the hormone called glucagon, while the b-cells 

constitute about 65-80% of total islet cells and produce the hormone called insulin. These 

b-cells also co-secrete amylin with insulin. The less abundant cell types of the islets include 

the γ- cells and δ-cells. Both these cell types constitute about 3-10% of total islet cells and 

produce the hormones pancreatic polypeptides and somatostatin, respectively. Finally, the 

least abundant islet cell type is the ɛ-cells that constitute approximately 1% of the total islet 

cells and produce the hormone ghrelin. Each of these hormones has a different function 

(Figure 1). Glucagon functions in upregulating blood glucose levels while insulin 

downregulates blood glucose levels. Furthermore, glucagon inhibits the secretion of 

insulin. Somatostatin inhibits the secretion of insulin as well as glucagon. Pancreatic 

polypeptide inhibits exocrine pancreatic secretions while ghrelin stimulates appetite and 

promotes fat storage. In summary, these hormones help in maintaining blood glucose levels 

in response to nutrient stimulus (Batterham et al., 2003; Brereton et al., 2015; Da Silva 

Xavier, 2018; Göke, 2008; Hauge-Evans et al., 2009; Hellman and Grapengiesser, 2014; 

Katsuura et al., 2002; Steiner et al., 2010; Wierup et al., 2002).  

 Inadequate synthesis or secretion of pancreatic hormones can lead to various 

metabolic syndromes. The focus of this thesis is, in part, the function of the b-cells, the 

cell-type that releases insulin to reduce blood glucose levels. Dysfunction or death of b-

cells leads to a metabolic disorder called as diabetes that is characterized by chronic 

hyperglycemia (Kharroubi and Darwish, 2015).  
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Figure 1: Pancreatic islet structure and function 
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1.2 Overview of Diabetes: 

Diabetes is a global epidemic affecting over 500 million people worldwide and is 

expected to increase by 50% by 2030 (Zheng et al., 2018b). Most of these individuals suffer 

one of the two major forms of diabetes; type 1 diabetes (T1D) or type 2 diabetes (T2D). 

T1D accounts for ~10% of diabetes cases and has characteristic autoimmune destruction 

of the insulin-secreting b-cells of the pancreas. The most prevalent form of diabetes is T2D, 

accounting for ~90% of diabetes cases. Although genetic predisposition determines 

individual susceptibility to T2D to a certain extent, an unhealthy diet and a sedentary 

lifestyle are important factors that contribute to this epidemic. More uncommon types of 

diabetes and insulin resistance include single-gene disorders like MODY (Mature Onset 

Diabetes of the Young), gestational diabetes, and drug-induced diabetes, causing severe 

defects in insulin action and b-cell function (American Diabetes Association, 2010). 

The World Health Organization criteria for the diagnosis of diabetes mellitus 

include the typical symptoms like polydipsia, polyphagia, and polyuria along with either 

random plasma glucose > 11.1 mmol/l or fasting plasma glucose > 7.0 mmol/l. 

Alternatively, other diagnostic criteria are HbA1C level > 6.5% or two-hour plasma 

glucose > 11.1 mmol/l after a 75 g glucose load (Pippitt et al., 2016). The rise in blood 

glucose levels occurs either due to insufficient insulin production or insulin resistance due 

to the dysfunction or death of b-cells. Understanding the underlying mechanisms and the 

factors involved in this dysfunction of the b-cells is crucial for designing innovative 

diagnostic tools and as well as identifying novel therapeutic targets for diabetes.  
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1.3 Glucose and insulin homeostasis: 

 Glucose is an essential substrate for energy production that is essential for all 

cellular processes. There are three sources through which the glucose enters the circulation. 

Firstly, upon food consumption, the carbohydrates are broken down, and through intestinal 

absorption, the glucose subsequently enters the bloodstream. Secondly, through hepatic 

activation, the stored glycogen is broken down to release glucose through the process called 

glycogenolysis. Finally, in conditions like fasting, through gluconeogenesis, glucose can 

be made from lactate and amino acids to meet the energy demands (Aronoff et al., 2004). 

Alterations in blood glucose levels can have severe consequences. The condition when the 

blood glucose levels are low or high as compared to the standard level is known as 

hypoglycemia or hyperglycemia, respectively. To avoid hypoglycemia or hyperglycemia, 

the body has innate mechanisms to maintain the blood glucose levels within a physiological 

range between 4 and 7 mmol/L by regulation of different hormones in response to 

nutritional, hormonal and neural stimuli (Giugliano et al., 2008; Leclercq-Meyer et al., 

1979; Quesada et al., 2008; Weickert, 2012; Yeung et al., 2010). In diabetes, glucose 

homeostasis is disrupted due to an imbalance in these hormones. 

As discussed earlier, the two critical hormones that are produced for maintaining 

glucose homeostasis are glucagon and insulin. The α-cells of the pancreas produce and 

secrete glucagon that has a critical role in promoting blood glucose levels. Glucagon is a 

29-amino-acid peptide cleaved from proglucagon. Major processes like glycogenolysis and 

gluconeogenesis are partly under the control of glucagon. Glucagon promotes 

glycogenolysis during the first 8–12 hours of fasting, while for more extended periods of 
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fasting, it promotes gluconeogenesis. These processes restore blood glucose levels by the 

release of glucose from the liver (Janah et al., 2019).  

On the other hand, when glucose levels rise in the blood, insulin is secreted by the 

b-cells of the pancreatic islets of Langerhans to restore the normal levels of glucose. 

Banting and Macleod received a Nobel prize in 1923 for the discovery of insulin, which 

changed the course of diabetes therapeutics (Quianzon and Cheikh, 2012). The insulin 

biosynthesis begins with the preproinsulin gene on chromosome 11 in humans that 

encodes the 110-amino acid precursor, preproinsulin. Preproinsulin contains a hydrophobic 

N-terminal signal peptide that interacts with cytosolic signal recognition particles (SRPs) 

(Egea et al., 2005). These SRPs facilitate translocation of preproinsulin from the rough 

endoplasmic reticulum (ER) to the lumen via a peptide conducting channel (Chan et al., 

1976; Lomedico et al., 1977). The N-terminal signal peptide is cleaved in this channel to 

form a product called proinsulin, which undergoes folding and transports from the ER to 

the Golgi apparatus, where it enters secretary vesicles. Here, proinsulin is further cleaved 

to generate mature insulin and C-peptide (Munro and Pelham, 1987). The mature insulin 

is stored in the secretory granules, ready to be secreted in response to b-cell stimulus (Nishi 

et al., 1990). The secreted insulin is a 51 amino acid protein with a molecular weight of 5.8 

kDa (Figure 2).   
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23 

 Insulin biosynthesis in the β-cells is primarily controlled by glucose metabolism, 

which is a critical physiological event that stimulates insulin gene transcription and mRNA 

translation (Poitout et al., 2006). In rodent pancreatic b-cells, GLUT2 is the major glucose 

transporter, whereas GLUT1 is a pre-dominant transporter in human b-cells. These glucose 

transporters are localized to the plasma membrane and act as major glucose sensors (De 

Vos et al., 1995). GLUT2 is a low-affinity glucose transporter that enables a high rate of 

glucose influx into β-cells. Glucose enters β-cells through GLUT2 transporters and is 

phosphorylated by glucokinase, which effectively traps it in the cell and prevents its 

movement back across the plasma membrane (Suckale and Solimena, 2008). This 

phosphorylation is the rate-limiting step in β-cell glycolysis. Glucose is then subsequently 

converted to pyruvate through glycolysis. Due to the relatively lower expression of the 

enzyme pyruvate dehydrogenase, β-cells do not convert pyruvate to lactate (Iynedjian, 

1993). Hence, all the glucose entering the β-cells gets converted to pyruvate, which is 

further oxidized through the Krebs cycle to produce ATP in the mitochondria 

(Matschinsky, 1996). This glucose metabolism leads to an increase of ATP:ADP ratio, 

which promotes closure of the ATP-sensitive potassium (KATP) channels. Usually, at sub-

stimulatory concentrations of glucose, these channels are open, allowing a free flow of K+. 

At high glucose concentrations, once the KATP   channel closes due to reduced efflux of K+ 

ions, there is an increase in the membrane potential. This, in turn, leads to depolarization 

of the membrane resulting in opening up of the voltage-gated Ca2+ channels (Keahey et al., 

1989; Ohta et al., 1993; Straub et al., 2004). This opening of the Ca2+ channels triggers an 

influx of Ca2+ that induces the fusion of insulin-containing secretory granules to the plasma 

membrane ultimately leading to the exocytosis of insulin granules (MacDonald and 
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Wheeler, 2003; Miki et al., 1999; Tarasov et al., 2004). Once enough insulin is produced 

and released to meet physiological demands, these Ca2+ channels close, which leads to 

repolarization of the membrane due to reduced cytoplasmic Ca2+ levels. This membrane 

repolarization results in the opening up of the KATP  channel that brings the cell back to the 

normal unstimulated physiological state (Fridlyand et al., 2013; Jacobson and Philipson, 

2007). 

Although glucose is the primary stimulant for insulin secretion, other nutritional 

factors and hormones also contribute to insulin secretion. The upregulation of amino acid 

levels due to high protein intake promotes insulin secretion (Carr et al., 2008; Karamanlis 

et al., 2007; Nuttall et al., 1985). Interestingly, there are differences observed in the levels 

of insulin secretion when there is the administration of individual amino acids as opposed 

to the synergistic effect of a mix of amino acids (Straub et al., 2004). Amino acids have 

also been shown to have roles in glycolysis, Krebs cycle, and glucose sensitivity in the b-

cells (Gannon and Nuttall, 2010; Prentki et al., 2013). Free fatty acid metabolism has also 

been implicated in enhanced insulin secretion (Boland et al., 2017; Carr et al., 2008; Chen 

et al., 1994; Nuttall et al., 1985; Prentki and Madiraju, 2012; Stein et al., 1997). In the case 

of insulin resistance, adipose tissue responds with continuous lipolysis leading to increased 

plasma levels of free fatty acids (Kashyap et al., 2004). Finally, hormones like 

catecholamines and somatostatin inhibit insulin secretion (Bellin (2), 2016). 

Once insulin gets secreted, it enters the bloodstream through the pervasive islet 

vasculature and travels until it reaches the cell and binds to its receptors on the cell surface. 

This binding, in turn, leads to the activation of various signaling cascades (Section 1.4) 

(Vargas and Carrillo Sepulveda, 2019). One of the primary effects of activating these 
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cascades is the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. 

GLUT4 is a major transporter through which glucose is taken up by the cells. Once GLUT4 

gets transported to the membrane, it leads to a massive influx of glucose in the cells, thus 

reducing blood glucose levels (Furtado et al., 2002; Leto and Saltiel, 2012; Olson, 2012).  

Insulin regulates glucose homeostasis at a variety of sites (Figure 3). The majority 

of insulin-mediated glucose disposal takes place in skeletal muscles (Bellin (2), 2016). By 

activation of glycogen synthase, insulin also promotes glucose storage in the form of 

glycogen in the muscles and liver (Honka et al., 2018). In the liver, insulin also prevents 

glucose output by inhibiting gluconeogenic enzymes and glycogen metabolizing enzymes. 

Insulin also promotes glucose storage in the form of fat in adipose tissues and in liver by 

increasing lipid synthesis. On the other hand, insulin also prevents lipolysis of the 

triglycerides in the adipose tissues (Buczkowska and Jarosz-Chobot, 2001; Dimitriadis et 

al., 2011; Girard, 2006). Hence, impaired insulin function is associated with hyperglycemia 

and dyslipidemia.  
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Figure 3: Glucose-stimulated insulin secretion and effects on different cell types 
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1.4 The insulin signaling cascade: 

The insulin receptor is a heterotetrameric protein that belongs to the receptor 

tyrosine kinases (RTKs) family. It is composed of two extracellular α-subunits and two 

transmembrane b-subunits. The α-subunits inhibit the protein tyrosine kinase activity 

intrinsic to the b-subunits. Insulin binds to the α-subunits and induces a conformation 

change, that activates the intrinsic b-subunit kinase activity, resulting in 

autophosphorylation on intracellular tyrosine residues and allowing it to bind to ATP (Fu 

et al., 2013; Lee and Pilch, 1994; Scapin et al., 2018). It further catalyzes the 

phosphorylation of proteins known as insulin receptor substrates (IRS) (Ebina et al., 1985). 

IRS phosphorylation triggers the activation of multiple major pathways like 

phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) 

pathways. PI3K mediates most of the metabolic effects of insulin, whereas MAPK has a 

significant role in growth and differentiation. 

IRS proteins have N-terminal pleckstrin-homology (PH) and phosphotyrosine-

binding (PTB) domains and several tyrosine phosphorylation sites that enable binding of 

effector molecules. IRS1 and IRS2 are two proteins that are widely distributed and play 

discrete yet shared roles in glucose homeostasis (Burks and White, 2001; Lavin et al., 2016; 

White, 2002). The depletion of IRS1 in mice leads to growth retardation and insulin 

resistance, while IRS2 depletion leads to reduced b-cell mass (Araki et al., 1994; Kubota 

et al., 2000; Tamemoto et al., 1994). Double knockout of both IRS1 and IRS2 is lethal at 

an early embryonic stage. (Withers et al., 1999) 

 PI3K is an enzyme that consists of a regulatory subunit (p85) and a catalytic subunit 

(p110) (Wymann and Pirola, 1998). The regulatory subunit has an SH2 domain that 
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interacts with specific phosphotyrosine motifs on IRS proteins. This interaction enables the 

recruitment of PI3K to the plasma membrane and release of the catalytic subunit, which 

converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-

triphosphate (PIP3). PIP3 then binds to proteins with PH domains allowing their activation 

at the plasma membrane (Metz and Houghton, 2011; Whelan et al., 2010). A critical target 

of the PIP3 is the cyclic adenosine monophosphate (cAMP) dependent protein kinase, 

including PI-dependent kinase 1(PDK1) and protein kinase B (PKB or also known as AKT) 

(Hemmings and Restuccia, 2012). PDK-1 gets activated upon binding to membrane-bound 

PIP3, allowing it to phosphorylate its targets at serine or threonine residues. Insulin-

induced AKT activation requires its phosphorylation at the Thr-308 and Ser-473. PDK-1 

phosphorylates AKT at Thr-308 inducing the start of its activation sequence while Ser 473 

gets phosphorylated by mammalian target of rapamycin complex 2 (mTORC2) (Asano et 

al., 2007; Molinaro et al., 2019; Shepherd et al., 1998). The complete activation of AKT 

activates many downstream targets that ultimately exert insulin-mediated effects. AKT 

phosphorylates mTORC1 that regulates various metabolic pathways, growth, and protein 

synthesis (Dan et al., 2014; Heras-Sandoval et al., 2014). AKT also phosphorylates and 

deactivates glycogen synthase kinase 3 (GSK3), thereby preventing inhibition of glycogen 

synthase which promotes glycogen synthesis (Cross et al., 1995). Finally, AKT 

phosphorylates and inhibits the Rab-GTPase-activating protein, which promotes 

cytoskeletal re-organization required for GLUT4 translocation to the plasma membrane 

essential for glucose uptake into the cells (González-Sánchez and Serrano-Ríos, 2007; 

Petersen and Shulman, 2018; Wang et al., 1999). 
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 The MAPK pathway is the other major downstream signaling pathway activated by 

insulin signaling. First, the adaptor protein growth factor receptor-bound protein 2 (Grb2) 

binds to the Src homology-2-domain-containing (SHC) and IRS, and forms a complex with 

the SOS (son of sevenless) protein, a guanyl nucleotide exchange factor (Skolnik et al., 

1993). This interaction, in turn, activates the cascade of serine/threonine kinases 

Raf/MEK/ERK1/2. Activated ERK1/2 translocates to the nucleus and phosphorylates an 

array of transcription factors and various MAPKs to regulate many vital processes, 

including cell proliferation and differentiation (Avruch, 2007; Williamson et al., 2003). 

Subsequently, all these pathways act synergistically to maintain glucose homeostasis. In 

conclusion, insulin regulates many crucial pathways, and thus impairment in insulin 

secretion or alteration in the signaling cascade due to b-cell dysfunction or death can have 

severe consequences. 
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1.5 Islet b-cell dysfunction and its consequences:  

The defining characteristic of diabetes is chronic hyperglycemia due to b-cell 

insufficiency and/or dysfunction. Hyperglycemia can have devastating consequences due 

to its associated complications affecting different organs. Most diabetes-related deaths are 

indirectly due to these diabetes-associated pathologies. Microvascular and macrovascular 

complications are commonly associated with hyperglycemia (Chowdhury et al., 2014; 

Papatheodorou et al., 2018). Macrovascular complications include cardiovascular diseases, 

while microvascular complications include neuropathy, retinopathy, and nephropathy 

(Chawla et al., 2016). Individuals with diabetes have a higher risk of suffering 

cardiovascular complications, including atherosclerosis, heart attack, and stroke (Resnick 

and Howard, 2002). High circulating glucose levels can damage the nerves that control the 

heart by generation of advanced glycation end-products (ASE). The AGE promote a state 

of chronic inflammation, which ultimately leads to the cardiovascular complications 

mentioned above (Zhang, 2014). Similarly, if peripheral nerves are damaged, it is termed 

as neuropathy. Diabetic neuropathy can be sensory, focal, or autonomic and can 

subsequently lead to numbness or severe pain in the affected region (Bansal et al., 2006). 

Hyperglycemia can also damage blood capillaries, which can lead to several microvascular 

complications. High glucose concentrations can promote the nonenzymatic formation of 

advanced glycosylated end products (AGEs), which are believed to cause damage to the 

nerves and blood vessels (Forbes and Cooper, 2013; Singh et al., 2014; Vlassara and 

Uribarri, 2014). The kidneys contain millions of capillaries that filter the blood. When these 

capillaries are injured by high glucose, it can lead to diabetic nephropathy. Diabetic 

nephropathy can damage the filtering system, and patients can need kidney transplants 
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(Lim, 2014; Nazar, 2014; Sulaiman, 2019). In diabetes, the blood capillaries of the eyes 

can also be severely affected, which can lead to retinopathy. Retinopathy can lead to 

glaucoma, which often necessitates cataract operation. In severe cases, diabetic retinopathy 

results in blindness (Duh et al.; Nentwich and Ulbig, 2015; Wang and Lo, 2018). These 

major complications are the reasons for morbidity associated with diabetes. 

 According to the International Diabetes Federation, diabetes currently accounts for 

approximately 5 million deaths annually worldwide (IDF Diabetes Atlas Group, 2015). 

Due to genetic pre-dispositions and unhealthy lifestyles, this epidemic is spreading rapidly 

and has already affected the majority of the world population. In 2017, more than 500 

million individuals were reported to have diabetes globally, and this prevalence is expected 

to increase by 50% in the next 20 years (Kharroubi and Darwish, 2015). In the United 

States (U.S.) itself, over 30 million people have diabetes. More staggeringly, around 100 

million individuals are in the pre-diabetic state and are at high risk of developing diabetes 

in the U.S. Diabetes has an economic impact, costing 327 billion dollars annually to the 

U.S. healthcare system. More importantly, diabetes being a chronic disorder, it leads to 

several co-morbidities. Annually, diabetes accounts for over 250,000 deaths in the U.S. 

(American Diabetes Association, 2018; Rowley et al., 2017).  
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1.6  Type 1 diabetes pathophysiology: 

  Diabetes is classified into two major types; type 1 diabetes (T1D) and type 2 

diabetes (T2D). T1D is typically characterized by autoimmune destruction of the 

pancreatic b-cells, which ultimately leads to insulin deficiency, hyperglycemia, and a 

tendency toward ketoacidosis (Kahanovitz et al., 2017; Todd, 2010). T1D accounts for 5-

10% of the diabetes cases globally (Maahs et al., 2010).  T1D can be detected at any age, 

but in a majority of the cases, it is usually diagnosed in children and adolescents, and hence, 

it was earlier referred to as juvenile diabetes (Gale, 2005). T1D  pathogenesis is closely 

associated with several elements, including genetic, environmental, and immunologic 

factors (Paschou et al., 2017).  

  Genetic factors: Contrary to the notion that T1D is hereditary, usually it is found to 

occur in individuals with no family history of T1D. However, the risk of developing the 

disease dramatically increases in the relatives of people with T1D, e.g., as high as 50% in 

the monozygotic twins (Beyan et al., 2012; Concannon et al., 2009; Redondo et al., 1999). 

More than 50 candidate genes that are associated with the risk of developing T1D have 

been identified (Barrett et al., 2009; Cooper et al., 2008; Størling and Pociot, 2017). The 

location of the majority of these genes is within the major histocompatibility complex 

(MHC) region, also known as HLA (human leukocyte antigen) located on chromosome 6. 

MHC is a cluster of genes that code for cell surface proteins essential for antigen 

recognition by the adaptive immune system. MHC molecules bind to the antigens and 

display them to the T-lymphocytes. There are two classes of HLA gene loci; Class I is 

associated with antigens that are recognized by cytotoxic T-lymphocytes (CD8+ T-cells) 

while Class II is associated with antigens recognized by helper T-lymphocytes (CD4+ T-
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cells) (de Almeida and Holoshitz, 2011; Trowsdale, 2011; Wieczorek et al., 2017). 

Unsurprisingly, mutations in these HLA gene loci can alter the ability of the immune 

system to recognize the appropriate antigens. In TID, more than 90% of the cases have 

either HLA-DR3, DQB1*0201 or HLA-DR4 DQB1*0302 haplotypes suggesting the 

importance of these regions in increasing the susceptibility of the individuals to develop 

this autoimmune disease (Baschal et al., 2007; Khalil et al., 1990; Paschou et al., 2014; 

Pugliese et al., 1995; Rowe et al., 1994).  

  Apart from HLA, polymorphisms in the insulin gene on chromosome 11 have been 

shown to increase the genetic pre-disposition for TID (Aly et al., 2006).  The variable 

number of tandem repeats (VNTRs) in the promoter region of the insulin gene have been 

associated with the risk of developing T1D (Barratt et al., 2004; Mein et al., 1998). 

Moreover, shorter VNTRs in the insulin promoter are associated with susceptibility while 

the longer forms are associated with protection against T1D (Bennett et al., 1995; Pugliese 

et al., 1997; Vafiadis et al., 1997). Finally, CTLA-4 is another dominant non-HLA gene 

associated with the risk of developing T1D. Activated T-cells express CTLA-4 that has a 

critical role in transmitting an inhibitory signal to other T-cells, thus attenuating 

maladaptive inflammation (Anjos and Polychronakos, 2004; Scalapino and Daikh, 2008). 

However, in T1D, due to polymorphisms in CTLA-4, there is excessive stimulation and 

proliferation of T-cells that eventually leads to an imbalance of the immune response and 

attack on the b-cells (Chistiakov et al., 2001; Kavvoura and Ioannidis, 2005; Padma-Malini 

et al., 2018; Qu et al., 2009). 

  Environmental factors: Apart from genetics, multiple environmental factors are 

also known to play a critical role in the pathogenesis and susceptibility to T1D. The major 
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environmental factors are viruses and nutrition (Paschou et al., 2017). Several studies 

report that the incidence of T1D increases when children suffer from congenital rubella 

syndrome in which there is exposure to rubella viruses during fetal development (Devendra 

et al., 2004; Forrest et al., 1971; Menser et al., 1978). Other prime viral candidates for T1D 

are the enteroviruses, a genus of the viruses which infect their host via the intestine 

(Bergamin and Dib, 2015; Filippi and von Herrath, 2008). Enterovirus infection in pregnant 

mothers leads to elevated antibodies directed against the virus, and their children later often 

go on to develop T1D (Hyöty et al., 1995). Interestingly, it has been observed that the onset 

of diabetes-associated autoantibodies coincides with enterovirus infection in many affected 

children and their siblings (Hober and Sauter, 2010; Lönnrot et al., 2000). The 

Coxsackievirus B virus is the most common strain of enterovirus found in patients with 

T1D. Several studies have demonstrated that blood samples of T1D patients contain RNA 

of the Coxsackievirus B virus, which stimulates a strong immune response (Andréoletti et 

al., 1998; de Beeck and Eizirik, 2016; Clements et al., 1995). When the Coxsackievirus B 

virus infects the pancreatic islets, it leads to inflammation-mediated by natural killer (NK) 

cells (Dotta et al., 2007). Coxsackievirus B has also been shown to exert its effects by 

molecular mimicry that induces immune responses against autoantigens that resemble the 

viral antigens (Richardson and Morgan, 2018). The P2C protein of the Coxsackievirus B 

virus has significant amino acid sequence similarity to the b-cell protein glutamic acid 

decarboxylase (GAD65), and it has been shown that T-cells can react to both the proteins 

and trigger an immune attack (Honeyman et al., 1998; Schloot et al., 2001). Poliovirus has 

been shown to infect b-cells via the αvβ3 integrins on the cell surface (Ylipaasto et al., 

2004). In response to this infection, there is an immune attack on the b-cells.  
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  The other critical environmental factor associated with T1D pathogenesis is 

nutrition, which encompasses both diet and gut microbiota (Rewers and Ludvigsson, 

2016). Children consuming cow-milk are at high risk of islet autoimmunity (Verge et al., 

1994; Virtanen et al., 1994, 2000). As shown by one study, there was a relatively higher 

cellular and humoral response to cow’s milk as compared to the breast-milk (Gottlieb, 

2000). This risk of autoimmunity is attributed to the specific region of albumin protein 

found in the milk called ABBOS, which resembles p69 protein found on the surface of b-

cells (Karlsson and Ludvigsson, 2000). Other dietary factors that promote risk of T1D 

include introduction of cereals in an infant’s diet, deficiency of Vitamin D or inadequate 

intake of omega-3 fatty acids by pregnant mothers (Frederiksen et al., 2013; Norris et al., 

2003, 2007; Raab et al., 2014; Sørensen et al., 2012a, 2012b; Virtanen et al., 2010). Finally, 

many studies have identified the gut microbiota as factors crucial for T1D development 

and progression. Unsurprisingly, the gut flora of T1D patients differs significantly from 

that found in healthy individuals (Han et al., 2018; Zheng et al., 2018a). The abundance of 

Lactobacillus, Bifidobacterium, and Prevotella is found to be lower in children suffering 

from T1D as compared to healthy children. On the other hand, the levels of Clostridium, 

Bacteroides, and Veillonella were higher in children suffering from T1D as compared to 

healthy children. Interestingly, other than abundance, diversity of the gut microbiota is also 

related to the development of T1D (Murri et al., 2013). A study showed that the 

microbiome of healthy children was more diverse when compared to children with T1D 

(Giongo et al., 2011). The gut microbiota is known to play substantial roles in glucose and 

lipid metabolism (Gérard and Vidal, 2019; van Olden et al., 2015). Moreover, they can 

modulate immune response as well as lead to systemic inflammation, further increasing the 
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disease risk (Brown et al., 2011; Wen et al., 2008). Although there are several association 

studies of the gut microbiota and T1D development, whether the microbiota is a cause or 

the effect of the disease, is still highly debated. 

  Immunological factors: The genetic and environmental factors discussed above, 

contribute to the destruction of b-cells that is mediated by the immunological factors. 

Indeed, the immune system faces a continuous barrage of antigenic challenges, and as such, 

it has a crucial duty to restrict its responses to non-self-antigens. The process by which the 

immune system is desensitized to self is referred to as immunological tolerance. The 

disruption of this process will likely make the immune system self-reactive, leading to 

autoimmunity (Luo et al., 2016; Romagnani, 2006). In T1D, the immune system, consisting 

of macrophages, dendritic cells, T-cells, and B-cells, mounts a concerted attack upon the 

pancreatic b-cells (Szablewski, 2014). First, the local macrophages and dendritic cells 

surveil the pancreas and then activate autoreactive T-cells in the pancreatic lymph nodes. 

These T-cells then promote b-cell destruction by two mechanisms, one direct and the other 

indirect. In the direct process, the cytotoxic T-cells release perforins and granzymes upon 

antigen recognition, which kill the targeted cell. In the indirect process, the activated T-

cells release several pro-inflammatory cytokines that include IL-1 (interleukin-1), TNF-α 

(tumor necrosis factor-α) and INF-γ (interferon-γ) (Fatima et al., 2016; Graham et al., 

2012; Grunnet and Mandrup-Poulsen, 2011; Thomas et al., 2010, 2013; Trivedi et al., 

2016). Each of these factors trigger apoptosis in the targeted b-cells; however, there is 

evidence of necrosis and necroptosis as well (Templin et al., 2018; Tomita, 2017, 2006; 

Wilcox et al., 2016). A distinct population of T-cells, called regulatory T-cells (Tregs), is 

critical for limiting and attenuating the inflammatory effects of cytotoxic T-cells (Corthay, 
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2009). Predictably, the magnitude and the functional capacity of this T-cell population is 

severely affected in T1D (Hull et al., 2017; Tan et al., 2014). B-cells are responsible for 

the generation of antibodies, and in T1D, they generate “autoantibodies” directed against 

several b-cell proteins. The principal autoantibodies that are detected in approximately 60-

70% T1D cases include those that are directed against the glutamic acid decarboxylase 65 

kilodalton protein (GAD65), tyrosine phosphatase-related islet antigen 2 (IA-2), insulin 

(IAA) and zinc transporter (ZnT8) (Cheng et al., 2018; Yu et al., 2017). All these genetic, 

environmental, and immunological factors ultimately contribute to an almost permanent 

loss of b-cell mass (Figure 4). However, the events leading to the initiation and progression 

of the disease take place over a long time, and hence, there may be a long latency period 

between autoantibody detection and when T1D symptoms appear (Atkinson, 2012).  

  While the ongoing immune attack destroys b-cells, those that still survive can 

compensate for the loss by increasing their function and keep the glucose levels in check, 

upto a point. However, once the b-cell mass falls below a critical threshold, which is an 

estimated loss of 85% b-cell mass (Klinke, 2008), symptomatic hyperglycemia (i.e., blood 

glucose levels > 200mg/dL) is detected. Apart from the classic symptoms of diabetes, T1D 

patients also show the presence of autoantibodies and ketoacidosis (Kahanovitz et al., 

2017).  
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Figure 4: Pathophysiology of type 1 diabetes 
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  The current management of T1D is the exogenous administration of insulin, dietary 

control, and strict monitoring of glycemic levels (Atkinson et al., 2014; Otto-Buczkowska 

and Jainta, 2017). Although this insulin administration is effective in managing the 

symptoms, it is not a permanent cure. There is a dire need to diagnose diabetes in advance 

and also to identify novel therapeutic strategies that could effectively and permanently cure 

this dreadful disease. Detecting biomarkers like autoantibodies and other associated 

proteins that indicate the early stages of the condition could significantly improve the 

diagnosis and provide a window for the treatment before the autoimmune attack is in full 

force. Moreover, the role of the immune system is undoubtedly critical in T1D 

pathogenesis and could serve as a potential site of intervention. Indeed, some current 

approaches towards the treatment are designed to suppress the immune system; while this 

has shown promise, it has not been particularly successful. However, if rather than global 

suppression, the immune system could be precisely modulated to prevent it from reaching 

or attacking the b-cells, this approach could be a more effective component of a cure for 

T1D. 
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1.7  Type 2 diabetes pathophysiology: 

  T2D is the predominant form of diabetes mellitus, accounting for 90-95% of cases 

of diagnosed diabetes. As with T1D, it is a metabolic disorder characterized by chronic 

hyperglycemia, lack of insulin production, and eventual pancreatic b-cell failure (Taylor, 

2013). However, in contrast to T1D, T2D is also characterized by insulin resistance. In 

addition, although the immune cells contribute to the disease progression, T2D is not 

characterized by an autoimmune attack. Globally, more than 400 million are estimated to 

have T2D, and this number is expected to increase steeply in the next few years (Harding 

et al., 2019; Zheng et al., 2018b). T2D has several fatal comorbidities associated with it 

making it the seventh leading cause of death in the U.S. (Stokes and Preston, 2017).  The 

cardiovascular complication is the most frequent comorbidity observed in T2D patients 

(Einarson et al., 2018). The prevalence of this disease varies drastically but usually directly 

correlated with the economic status of the nation affecting a majority of low to middle-

income countries (Hu, 2011). 

  The key factors that contribute to the pathophysiology of T2D are genetic 

predisposition and lifestyle (Figure 5). Genetics has been shown to play a crucial role in 

susceptibility to the development of T2D. Genetic analyses in family members and twin 

studies of T2D patients shows 70% variability associated with genetic factors (Lyssenko 

and Laakso, 2013). Moreover, the disease development risk is shown to be almost three-

fold if a sibling suffers from T2D (Medici et al., 1999). The genetic architecture of T2D 

differs significantly from T1D. Whereas in T1D, only a few genetic loci have a significant 

effect on disease susceptibility, in T2D there are more than 100 genes that have shown to 

have polymorphisms (Flannick and Florez, 2016; Fuchsberger et al., 2016). Overall, these 
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genetic loci can be categorized into four types: genes previously associated with T2D by 

gene-wide association studies (GWAS), genes associated with vascular T2D 

complications, genes associated with metabolic diseases, and genes associated with 

telomere stability and aging (Montesanto et al., 2018). The genes most significantly 

associated with the development of T2D include TCF7L2, PPARG, FTO, KCNJ11, 

NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX. These genes encode 

for proteins involved in numerous pathways including regulation of glucose homeostasis, 

insulin signaling, calcium regulation and transcription (McCarthy, 2010; Olokoba et al., 

2012). Interestingly, predisposition to diabetes is increased in those suffering from certain 

other genetic disorders, including metabolic syndrome, Cushing’s syndrome, Klinefelter's 

syndrome, Turner's syndrome, and Down’s syndrome (Olokoba et al., 2012; Robinson and 

Kessling, 1992).  

  Another leading risk factor for developing T2D is lifestyle. More than 55% of 

individuals with T2D are obese in the U.S. (Centers for Disease Control and Prevention 

(CDC), 2004; Tobias and Manson, 2016). Diet is a critical component of the lifestyle;  

consumption of high-calorie dietary components that promote obesity, including meat, 

non-fermented dairy products, sugar-sweetened beverages, and refined grains, 

significantly increase the risk of development and progression of T2D (Aune et al., 2013; 

Barnard et al., 2014; Brouwer-Brolsma et al., 2018; Della Pepa et al., 2018; Forouhi, 2015; 

Kalergis et al., 2013; Liu et al., 2017; Malik et al., 2010; Mari-Sanchis et al., 2016; Papier 

et al., 2017). 
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Figure 5: Pathophysiology of type 2 diabetes 
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  Obesity is defined as abnormal or excessive fat accumulation in adipose tissue that 

leads to impairment of health (Ofei, 2005). This excessive fat can be distributed 

abdominally, centrally or peripherally around the body, and each distribution has several 

health implications. The degree of adiposity in an individual can be classified based on the 

calculated body mass index (BMI). According to the World Health Organization (WHO) 

standards, a BMI of 18.5–24.9 kg/m2 is an ideal weight, and 25–29.9 kg/m2 overweight or 

pre-obese. Individuals with a BMI higher than 30 kg/m2 are considered obese and are at 

the highest risk of developing T2D (Scherer and Hill, 2016, 2000).  

  Several studies have demonstrated that obesity induces insulin resistance, which is 

a reduced response of target cells to insulin leading to abnormalities in glucose uptake, 

metabolism, or storage (Wilcox, 2005). Specifically, adipocytes and skeletal muscle cells 

are the most profoundly affected, where there is decreased insulin-stimulated glucose 

transport and metabolism, whereas hepatocytes have impaired suppression of glucose 

production (Reaven, 1995; Picarel-Blanchot et al., 1996). These effects can be attributed 

to impaired insulin signaling as well as downregulation of the GLUT4 transporter that 

actively responds to insulin (Olson, 2012). Typically, insulin binding to its receptors on the 

cell surface induces receptor phosphorylation and tyrosine kinase activities, which further 

phosphorylate the downstream insulin receptor substrates (IRS) that ultimately exert the 

effects of insulin. However, in obesity, all these processes are severely downregulated, 

which drives increased insulin demand to compensate. Additionally, there are tissue-

specific abnormalities associated with obesity. These include reduced IRS-1 protein 

expression in adipose tissues and downregulated PI3K activity associated with both IRS 

proteins in skeletal muscles; these effectively lower the activity of circulating insulin 
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(Fernandez-Twinn et al., 2014; Kim et al., 1999; Rondinone et al., 1997; Standaert et al., 

2002). Studies in mice demonstrate that obesity is associated with suppression of the 

forkhead transcription factor 1 (Foxo1) (Zhang et al., 2016). Foxo1 promotes the 

expression of several key enzymes of the gluconeogenesis pathway (Schmoll et al., 2000; 

Yeagley et al., 2001). In hepatocytes, insulin signaling phosphorylates Foxo1, limiting its 

levels in the cytoplasm (Gross et al., 2009). However, studies in these obese mice also 

show that there is an upregulation of Foxo1 that is insensitive to insulin regulation, which 

promotes gluconeogenesis in the liver (Qu et al., 2006; Titchenell et al., 2016). 

  Adipose tissue itself is one of the critical factors that mediates the effects of obesity. 

The primary role of adipocytes is to store fat; however, in a setting of obesity, the capacity 

of adipocytes to store these lipids is reduced severely, leading to ectopic fat accumulation 

and lipotoxicity in the liver and muscle. This lipotoxicity is also considered to be a 

significant factor contributing to insulin resistance (Lotta et al., 2017; Yazıcı and Sezer, 

2017). There are several mechanisms through which adipocytes and lipotoxicity may cause 

insulin resistance and result in b-cell damage. First, obesity-mediated lipotoxicity is 

associated with the upregulation of c-Jun amino-terminal kinase (JNK) pathway activity, 

which leads to decreased insulin activity (Lee et al., 2003; Prada et al., 2005). Furthermore, 

the obesity-mediated insulin resistance drives an increased insulin demand that exacerbates 

endoplasmic reticulum (ER) stress in the b-cells (Boden, 2009; Cnop et al., 2012). 

Lipotoxicity is also associated with mitochondrial dysfunction that leads to oxidative stress 

by excessive production of reactive oxygen species (ROS), which are extremely deleterious 

to b-cells (Schrauwen and Hesselink, 2004; Schrauwen et al., 2010). Both, oxidative stress 

and ER stress, are known to promote pancreatic inflammation (Hasnain et al., 2016). In 
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addition to their primary role in fat storage, adipocytes also release signaling factors called 

adipokines that have several roles. These include regulating hormonal and lymphocyte 

homeostasis, blood pressure, lipid and glucose metabolism, and inflammation (Rabe et al., 

2008). However, in obesity, there is a dysregulated release of these adipokines that 

contributes to the development and progression of T2D. Some of the critical adipokines 

are adiponectin, leptin, TNF-α, and IL-6. Adiponectin, the most abundantly secreted 

adipokine, binds to its receptors AdipoR1 and AdipoR2, which subsequently activate 

pathways like AMPK and PPAR-α; which in turn promotes increased insulin sensitivity. 

Unsurprisingly, the expression of both adiponectin and its receptors are downregulated in 

obesity, thus further promoting insulin resistance (Hotta et al., 2001; Rasmussen et al., 

2006; Yamauchi and Kadowaki, 2013; Yang et al., 2002). Next, leptin is a hormone that 

has a vital role in regulating food intake and energy homeostasis (Park and Ahima, 2015; 

Triantafyllou et al., 2016). Leptin binds to receptors in the hypothalamus and signals via 

Janus kinase (JAK)-signal transducers and activators of transcription (STAT) and 

IRS/phosphoinositide-3 kinase (PI3K) signaling pathways. This represses orexigenic 

pathways and induces anorexigenic pathways, overall, leading to decreased food intake 

and increased energy expenditure (Prodi and Obici, 2006). In skeletal muscles and liver, 

leptin activates PI3K and AMPK pathways that regulate glucose metabolism and insulin 

sensitivity (Kahn et al., 2005; Minokoshi et al., 2002). Furthermore, leptin signaling 

protects β-cells from lipid accumulation in a state of overnutrition, which preserves β-cell 

function (Morioka et al., 2007). Predictably, T2D patients show reduced leptin levels 

(Bandaru and Shankar, 2011; Wauters et al., 2003). TNF-α and IL-6 are pro-inflammatory 

adipokines that are involved in adipose inflammation (Makki et al., 2013; Shi et al., 2014). 
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Once they are released systemically, they exert their effects on many cell types, including 

immune cells and the pancreatic cells. In the immune cells, they promote pro-inflammatory 

cellular phenotypes, which in turn promote systemic inflammation (Goyal et al., 2012; 

Hossain et al., 2010; Liu et al., 2007; Mirza et al., 2012). With similarity to T1D 

pathogenesis, as these pro-inflammatory immune cells infiltrate the pancreatic islets, they 

inflict severe damage upon b-cells (Shu et al., 2012; Xia et al., 2017; Zhou et al., 2018). 

Within the pancreatic b-cells, TNF-α and IL-6 signal through nuclear factor kappa beta 

(NF-kB) and JAK-STAT pathways, respectively, to promote oxidative stress and further 

attract pro-inflammatory immune cells (Chen et al., 2015; Turner et al., 2014). The 

pancreatic inflammation ultimately leads to hyperglycemia secondary to β-cell dysfunction 

and apoptotic death (Collier et al., 2011; Donath et al., 2009).  

  The diagnosis of diabetes is based on criteria formalized by the American Diabetes 

Association (ADA) and the World Health Organization (WHO). An individual is 

diagnosed as having diabetes if they present with one of the following conditions: (1) a 

fasting plasma glucose reading on two separate occasions of 126 mg/dL (7.0 mmol/L) or 

greater; (2) a plasma glucose of 200 mg/dL (11.1 mmol/L) or greater in a 2-hour oral 

glucose tolerance test; or (3) HbA1c level greater than 6.5% associated with symptoms like 

polyuria, polydipsia, polyphagia and weight loss (Cox and Edelman, 2009). Fasting blood 

glucose levels ranging between 100-126 mg/dL or HbA1c levels between 6-6.5% are 

considered to be indicative of a pre-diabetic state (Committee*, 2009; Cox and Edelman, 

2009). Since the diagnostic criteria for both T1D and T2D are quite similar, other factors—

like obesity and age—and other tests like the presence of specific autoantibodies, are used 

to help distinguish between the types of diabetes. 
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  Since lifestyle is a strong factor driving T2D, the management of this disease 

primarily focusses on changes in lifestyle, such as diet, physical activity supplemented with 

drugs that help restore normal glycemic levels (Nyenwe et al., 2011). Several studies show 

that shifting to a healthy diet like a high-fiber-low-calorie diet leads to improvement in 

glucose levels (Kaline et al., 2007; Miranda and Horwitz, 1978; Wolfram and Ismail-Beigi, 

2011). Importantly, any form of physical activity has been shown to prevent hyperglycemia 

(Colberg et al., 2010; Hamasaki, 2016; Yanai et al., 2018). In addition to these physical 

and dietary changes, avoiding unhealthy habits like smoking and drinking alcohol is 

essential (Shi et al., 2013). Along with a healthy lifestyle, individuals with T2D are 

prescribed medications based on the underlying pathology. These medications can be 

categorized into four major types based on their mode of action: i) improving insulin 

sensitivity (e.g., Metformin, Rosiglitazone), ii) stimulating pancreatic insulin release (e.g., 

Repaglinide, Nateglinide, Glipizide), iii) blocking carbohydrate breakdown in the stomach 

(e.g., Acarbose, Miglitol), and iv) inhibiting glucose reabsorption by the kidneys (e.g., 

Canagliflozin, Dapagliflozin) (Lorenzati et al., 2010). Additional medications or surgeries 

may be prescribed in advanced stages of T2D, depending on comorbidities and 

complications that may be present. In summary, most current treatments are focused on 

reducing the symptoms associated with diabetes. Hence, the development of novel drugs 

and therapeutic approaches will be necessary to deliver a permanent cure. It will require 

extensive research and a functional understanding of the different mechanisms that 

contribute to T2D pathology. Determining specific yet efficacious targets are the key to 

developing efficient therapeutics that will truly cure T2D. 
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1.8  The role of cellular stresses in b-cell dysfunction:  

  Diabetes results from dysfunction or death of pancreatic b-cells. Several studies 

attribute this to factors that promote cellular stress within the β-cells. The two major forms 

of cellular stress associated with b-cell damage are ER stress and oxidative stress. ER stress 

refers to an imbalance between the demand for protein folding and the capacity of the ER 

for protein folding (Schröder and Kaufman, 2005). In response to triggering by glucose 

sensation, the b-cells respond with a proportional synthesis of insulin. After translation, 

preproinsulin peptide enters the ER, where it is folded and cleaved, forming proinsulin (Liu 

et al., 2014a). β-cells are specialized secretory cells that have a well-developed ER and 

several mechanisms in place to handle the enormous biosynthetic load (Papa, 2012). 

However, in diabetes, the systemic insulin demand exceeds pancreatic capacity due to 

insulin resistance or diminished functional β-cell mass; this generates ER stress in the b-

cells. Proinsulin is highly susceptible to misfolding due to high demand (Sun et al., 2015). 

Most of the misfolded proinsulin is not recognized by the insulin processing machinery, 

which leads to the aberrant accumulation and release of proinsulin from the stressed β-

cells, which is seen in diabetes (Hasnain et al., 2016). To mitigate the ER stress, cells 

activate the unfolded protein response (UPR). Disruption in ER homeostasis triggers three 

conserved UPR pathways that: i) slow global protein synthesis; ii) increased synthesis of 

chaperones that aid protein folding; and iii) activate ER-associated degradation (ERAD) to 

degrade irreparably misfolded proteins (Pandey et al., 2019). Three major UPR mediate 

this response: PERK (PKR-like Endoplasmic Reticulum Kinase), IRE1α (Inositol 

Requiring Enzyme1α), and ATF6 (Activating Transcription Factor 6). Under normal 

conditions, these UPR sensors are associated with a chaperone BiP (Binding 
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immunoglobulin Protein), which renders them inactive. As ER stress builds, a 

conformational change in BiP results in its dissociation from the UPR proteins. The first 

sensor, PERK, phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), and 

this, in turn, globally inhibits the translation of proteins. When the ER stress is chronic, 

PERK promotes translation of ATF4 (Activating Transcription Factor 4), which activates 

genes like C/EBP-homologous protein (CHOP) that promote apoptosis. The second sensor, 

IRE1α, is a protein with and endoribonuclease domain that splices the mRNA transcript 

for X-box-binding protein 1 (XBP1). This spliced form of XBP1 acts like a transcription 

factor for genes encoding chaperones and other proteins related to the ER-associated 

degradation (ERAD) pathway. IRE1α also catalyzes the degradation of membrane-

associated mRNAs that encode secretory proteins through a process termed as RIDD 

(regulated IRE1 dependent decay). RIDD induces intrinsic apoptosis by activation of the 

c-Jun N-terminal kinase (JNK) pathway. The third sensor, ATF6, has an autocatalytic site 

that is cleaved by site 1/2 proteases (S1P and S2P) upon translocation to the Golgi. The 

cleaved form of ATF6 acts as a transcription factor for genes encoding chaperones, ERAD 

proteins, and XBP1. All three of these UPR proteins maintain ER homeostasis; however, 

under conditions of chronic ER stress, they induce apoptosis (Almanza et al., 2019; Cnop 

et al., 2012; Lin et al., 2008; Sano and Reed, 2013; Sundar Rajan et al., 2007).  

  Various studies have explored the role of ER stress in diabetes. Murine studies have 

shown the crucial roles of ER stress and UPR genes in diabetes. In mice, depletion of any 

of the UPR proteins (PERK, IRE-1 α, and ATF6) individually is enough to induce diabetes 

(Tsuchiya et al., 2018; Usui et al., 2012; Zhang et al., 2002). In T2D cases, there is a 

substantial increase in the size of ER as compared to non-diabetic controls. When islets 
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from diabetic donors were cultured in the presence of 11mM glucose, BiP and XBP1 

expression are significantly increased. In contrast, islets isolated from non-diabetic donors 

did not show this response (Marchetti et al., 2007). This result suggests that healthy islets 

handle the glucose-mediated stress, while the ERAD pathway was activated in T2D islets 

due to the dysfunction of the b-cells. Furthermore, the immunostaining of pancreas tissue 

sections isolated from donors with T2D shows increased levels of both CHOP and BiP 

(Laybutt et al., 2007). It has also been observed that CHOP expression is increased in the 

b-cells of obese individuals (Huang et al., 2007). Strikingly, T1D studies report the same 

trends; islets isolated from individuals with T1D showed increased levels of both CHOP 

and BIP proteins (Marhfour et al., 2012). Together, these studies demonstrate that ER stress 

has an active role in the pathogenesis of T1D and T2D. However, β-cell dysfunction and 

death are not exclusively attributed to ER stress and suggested to be in conjunction with 

other cellular stresses, including oxidative stress and inflammatory responses. 

  Oxidative stress is an imbalance between the generation of damaging free radical 

molecules and the cellular antioxidant responses that mitigate these agents (Betteridge, 

2000). Free radicals are short-lived reactive chemical units containing one or more 

unpaired electrons. These radicals are highly unstable and reactive, and they induce 

damage by oxidation of cellular molecules. The free radicals that lead to oxidative stress 

are reactive oxygen species (ROS) and reactive nitrogen species (RNS) (Asmat et al., 2016; 

Bansal and Bilaspuri, 2010; Dröge, 2002). The ROS include peroxide (H2O2), superoxide 

(•O−
2), singlet oxygen (O2), and hydroxyl radical (•OH) (Lau et al., 2008). The RNS are 

generated when nitric oxide (•NO) reacts with the ROS. The RNS majorly include 

peroxynitrite (ONOO−), nitrogen dioxide (•NO2), and dinitrogen trioxide (N2O3) (Guzik et 
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al., 2002; O’Donnell et al., 1999; Pacher et al., 2007). Excessive generation of ROS and 

RNS leads to deleterious cellular oxidative stress. These highly reactive radicals are 

produced by both endogenous and exogenous mechanisms (Pham-Huy et al., 2008). 

Several endogenous factors produce ROS and RNS. The generation of adenosine 

triphosphate (ATP), the cellular currency of energy, occurs in mitochondria via a process 

called oxidative phosphorylation. This process involves the movement of electrons along 

an electron transport chain, which releases ROS as by-products (Finkel and Holbrook, 

2000; Starkov, 2008). Peroxisomes are another major ROS source. The peroxisomal 

enzymes contained therein, such as acyl-CoA oxidases, urate oxidase, and xanthine 

oxidase, catalyze the breakdown of fatty acids. H2O2 is a by-product of these reactions, and 

it quickly diffuses through the cell membrane and can cause widespread molecular damage 

(De Duve and Baudhuin, 1966; del Río and López-Huertas, 2016; Schrader and Fahimi, 

2006). Additionally, the activities of certain ER-resident enzymes, including cytochrome 

P450 and B5 enzymes and diamine oxidase, can generate ROS. Other endogenous 

producers of free radicals include enzymes like NADPH oxidase, nitric oxide synthases 

and lipoxygenases, FMNH2, FADH2, cytochrome P450, and riboflavin (Cheeseman and 

Slater, 1993; Halliwell and Gutteridge, 2015). The exogenous factors that lead to the 

generation of the free radicals include radiations, chemicals, carcinogens, smoking, alcohol 

consumption, pollution, and drugs (Dröge, 2002; Pham-Huy et al., 2008). Importantly, 

ROS are not only generated as an unintended by-product. For instance, certain immune 

cells, including macrophages, dendritic cells, and neutrophils generate ROS to use as a tool 

to eliminate pathogens (Bogdan et al., 2000; Matsue et al., 2003). 
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  Oxidative stress exerts adverse effects on a range of cellular targets and machinery, 

including nucleic acids, proteins, and lipids (Bokov et al., 2004). DNA is susceptible to 

oxidation that can result in single-stranded breaks along with the formation of 8-

hydroxyguanosine, which is a relatively stable oxidation product used as a measure of 

oxidative DNA damage within the whole body (Williams et al., 1998; Wu et al., 2004). 

The DNA damage is associated with cellular senescence, apoptosis, and the development 

of cancers. Lipid oxidation by enzymes like lipoxygenases and cyclooxygenases can alter 

the structural integrity and fluidity of the cellular membranes, which can be damaging due 

to increased cellular permeability. Moreover, lipid oxidation generates radicals that can 

further damage DNA and proteins (Barrera, 2012; Kwiecien et al., 2014; Landar et al., 

2006). Protein oxidation can lead to altered structure and function that can have severe 

consequences for the cells including alteration of enzyme activity, loss of protein function, 

protein aggregation, and increased immunogenicity (Berlett and Stadtman, 1997; Celi and 

Gabai, 2015; Wall et al., 2012). Thus, oxidative stressors can have multiple molecular 

targets that directly inflict widespread damage to cells. However, ROS are also associated 

with the activation of several signaling pathways. Increased ROS can activate mammalian 

target of rapamycin complex1 (mTORC1), a protein complex downstream of AKT 

signaling that promotes apoptosis (Krakauer, 2015). In addition, ROS can activate MAPK, 

ERK, and JNK pathways, which can promote cellular senescence and trigger apoptosis in 

b-cells (Son et al., 2011). ROS also has shown to influence the pentose phosphate pathway, 

diverting this metabolic pathway from glycolysis into lipid oxidation, which can elevate 

insulin resistance (Dong et al., 2016). Importantly, ROS can trigger inflammation through 
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NF-kB, thereby promoting the production of pro-inflammatory cytokines TNF-α and IL-6 

(Chelombitko, 2018; Mittal et al., 2014).  

  Cells have multiple mechanisms to counter these oxidative stresses. For regulating 

this ‘reducing and oxidizing’ (redox) homeostasis, the cells employ an antioxidant system 

comprised of enzymes like catalase, superoxide dismutase (SOD), glutathione peroxidase, 

and glutathione-S-transferase (Birben et al., 2012). These convert the toxic ROS to non-

toxic metabolites, thus protecting the cells. Catalase is a tetrameric enzyme that reduces 

H2O2 to water and associated with the peroxisome (Glorieux and Calderon, 2017). SODs 

are major superoxide scavengers that are located on the mitochondrial and extracellular 

matrix (Fukai and Ushio-Fukai, 2011). Glutathione peroxidases catalyze the conversion of 

H2O2 to water and are located in the cytoplasm and mitochondria (Lubos et al., 2011). 

Lastly, the glutathione-S-transferases inactivate secondary metabolites, such as unsaturated 

aldehydes, epoxides, and hydroperoxides (Hayes et al., 2005).  

  Additionally, cells also employ multiple non-enzymatic antioxidants like Vitamin 

C, Vitamin E, and b-carotene. Vitamin C scavenges free radicals, thus providing an 

intracellular and extracellular aqueous-phase antioxidant environment (Padayatty et al., 

2003). Vitamin E donates an electron to peroxyl radical, which is produced during lipid 

peroxidation, thus converting toxic radicals to water molecules (Niki, 2015). β-carotene 

can react with a variety of reactive species, including peroxyl, hydroxyl, and superoxide 

radicals to reduce them to non-toxic metabolites (El-Agamey et al., 2004).  

  There is much evidence implicating oxidative stress in the pathogenesis of both 

major forms of diabetes. In the hyperglycemic environment of diabetes, many factors 

contribute to the increased free radical formation, such as enhanced protein glycation, 
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glucose oxidation, and lipid peroxidation (Maritim et al., 2003). As introduced above, these 

free radicals damage cellular machinery; and in the b-cell thereby diminish insulin release. 

Moreover, due to their exceptionally high biosynthetic load and unusually low expression 

of antioxidant enzymes, the b-cells are particularly susceptible to oxidative damage 

(Lenzen, 2008). Predictably, individuals with T2D have higher oxidative stress as tested 

by serum total antioxidant status (TAS) and total oxidant status (TOS) (Kurban et al., 2011; 

Monnier et al., 2006). Hyperglycemia has been shown to lead to increased intracellular 

levels of advanced glycation end products that are associated with ROS generation (Di 

Naso et al., 2011; Wolf and Ziyadeh, 2007). Studies have also shown that hyperinsulinemia 

also promotes the generation of free radicals by an NADPH-dependent mechanism 

(Ceolotto et al., 2004). Furthermore, in pre-diabetic individuals, there is an increased level 

of 8-hydroxyguanosine, which indicates the oxidative damage to DNA preceding the 

clinical development of T2D (Styskal et al., 2012). Along with the upregulation of 

oxidative stress markers, there is also a reduction in the levels of antioxidants in T2D 

patients. Vitamin C and glutathione levels were significantly downregulated in T2D 

patients (Chou and Tseng, 2017; Pouvreau et al., 2018).  

  Oxidative stress is involved in the pathogenesis of T1D as well. Murine studies 

show that oxidative stress is higher in islets and vascular tissues of the T1D mouse model 

(the non-obese diabetic mice) as compared to littermate controls. Moreover, infiltrating 

immune cells demonstrate aberrant cytokine production that ultimately amplifies the 

oxidative stress in the b-cells in T1D (Haskins et al., 2003). Even in humans with T1D, 

markers of oxidative stress like lipid peroxides are upregulated, while levels of antioxidants 

like superoxide dismutase and glutathione peroxidase are reduced (Francescato et al., 2014; 
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McGrowder et al., 2013). All these studies suggest that like ER stress, oxidative stress is a 

critical factor involved in both the major forms of diabetes (Figure 6). Importantly, 

oxidative stress and ER stress are intertwined, and each can activate the other and 

contribute to diabetic development and progression (Cao and Kaufman, 2014; Hasnain et 

al., 2016). These stress factors are capable of damaging the b-cells themselves; however, 

studies show that they primarily mediate their effects by activating inflammation that 

amplifies the damage to the cells, as detailed in section 1.9 (Hasnain, 2018; Maamoun et 

al., 2019; Zhang, 2010). 
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Figure 6: Cellular stress in the b-cells 
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1.9   Shared roles of inflammation in the pathogenesis of T1D and T2D: 

  Inflammation is a critical response of the body to various disruptive stimuli, 

including invasion of pathogens, dysfunctional cells, and injured tissues. It involves 

immune cells that ultimately clear the pathogens, remove the damaged cells, and start the 

repair of the injured tissues, as well as molecular mediators that amplify and resolve the 

response (Chen et al., 2017). Inflammation was initially considered to be only a part of the 

response to infectious diseases; but, later on, it has been associated with responses against 

non-infectious diseases as well (Hunter, 2012). When inflammation is limited and 

appropriate, it prevents disorders; however, maladaptive inflammation is often a trigger for 

the development and progression of the disease, including diabetes (Aroor et al., 2013).  

  The role of inflammation in T1D is well established. T1D is considered an 

autoimmune disorder in which the islets are inflamed by significant numbers of infiltrating 

immune cells, a condition known as insulitis (Tsalamandris et al., 2019). The development 

of T1D is dependent on T-cells, a class of immune cells that recognize non-self and regulate 

local and systemic responses. In the murine model of T1D, there is a failure of the central 

as well as peripheral tolerance, which results in the development of autoreactive T-cells 

that target antigens associated with the b-cell (Anderson and Bluestone, 2005). Moreover, 

studies show that by the adoptive transfer of T-cells from diabetic mice, there is an 

inflammatory response, which ultimately leads to peri-insulitis that is followed by the 

development of diabetes (Berry and Waldner, 2013; De Leenheer and Wong, 2016). 

Similar observations were obtained from the studies derived from the pancreas sections of 

T1D human samples. Severe defects in the regulatory Tregs accompanied by the 

participation of CD4+ and CD8+ T-cells in the attack of several b-cell autoantigens 
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contribute to the pathogenesis of T1D (Richardson et al., 2014). (Arif et al., 2014; Willcox 

et al., 2009).  

  Macrophages are another critical phagocytic immune cell type that promotes 

inflammation via the release of pro-inflammatory cytokines, and which can induce ROS in 

the b-cells (Tan et al., 2016). Additionally, dendritic cells, mast cells, and natural killer 

(NK) cells are also inflammatory immune cells detected in the immune infiltrate that 

contribute to the onset of autoimmunity (Lehuen et al., 2010). The major pro-inflammatory 

cytokines released by these immune cells include TNF-a, IL-1b, and IFN-g. The receptors 

for these cytokines are found on b-cells and together these signaling pathways promote the 

induction of inducible nitric oxide synthase (iNOS) and ROS generation by the production 

of nitric oxide (Feuerer et al., 2009; Grunnet and Mandrup-Poulsen, 2011; Xiao et al., 

2014a). Interestingly, the pro-inflammatory cytokines signaling can also trigger the NF-kB 

pathway, which feeds back to further promote the production of pro-inflammatory 

cytokines within b-cells. The autocrine signaling on the b-cells by these released cytokines 

can explain the exacerbated inflammation in T1D. The data supporting the mechanisms 

described above suggest that inflammatory responses are critical for the development and 

progression of T1D. In human studies, it has been well established that more than 90% of 

individuals with T1D exhibit the presence of specific autoantibodies that act as a trigger 

for autoimmune destruction of b-cells (Bingley, 2010). Moreover, in addition to 

autoantibodies, there are other inflammatory markers as well, which synergistically 

contribute to an inflammatory environment that promotes b-cell injury. First, genetic 

studies from subjects with T1D show an upregulated expression of inflammatory markers, 

including IFIH1 and TLR7/TLR8, which are associated with immune responses to viral 
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infections (Barrett et al., 2009; Virgin and Todd, 2011). Next, subjects with T1D showed 

significantly higher expression of the inflammatory proteins IL-1α, IL-12p40, CCL2, 

CCL3, CCL4, TNF-a and IL-1b as compared to healthy individuals (Chen et al., 2014; 

Gordin et al., 2008; Hussain et al., 1998). Finally, a proteomics analysis of serum collected 

from individuals with T1D shows a protein signature that indicates the elevation of 

complement activation and inflammatory responses (Dogan et al., 2006; Zhang et al., 

2013).  

  These and other studies indicate that inflammatory mechanisms are strongly 

associated with T1D pathogenesis. Confoundingly, anti-cytokine therapeutic approaches 

have not yet been successful in human trials. While anti-TNF-a showed some degree of b-

cell protection, neither anti-IL-1b nor anti-IL-1R showed significant protection 

(Mastrandrea et al., 2009; Moran et al., 2013). Because inflammation plays a critical role 

in T1D pathogenesis, one explanation for this is that ideal targets have not been identified. 

Thus, for more effective T1D treatments, and for a lasting cure, novel targets of 

inflammation must be uncovered in order to counter the auto-immune attack of the b-cells. 

  T2D is characterized by insulin insufficiency and insulin resistance. Among the 

factors contributing to this disorder are oxidative stress, ER stress, glucotoxicity, 

lipotoxicity and amyloid deposition in the pancreas (Harding and Ron, 2002; Hull et al., 

2004; Prentki and Nolan, 2006; Robertson et al., 2004; Weir and Bonner-Weir, 2004). 

Interestingly, each of these factors is associated with induction or exacerbation of 

inflammation (Donath et al., 2003, 2008; Ehses et al., 2009; Hotamisligil and Erbay, 2008; 

Masters et al., 2010). There is significant evidence that the immune system is not only 

critical in T1D, but also has a substantial role in T2D pathogenesis. As a result, T2D is 
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increasingly being viewed as an inflammatory condition, and immune system dysfunction 

is a focus of research in T2D pathogenesis. Interestingly, pancreatic sections from T2D 

patients show fibrosis, which is a marker of chronic inflammation. An in-depth cytokine 

profiling shows that there is a significant upregulation of pro-inflammatory cytokines, 

including TNF-a, IL-1b, IL-12, IL-6, IL-8, and IFN-g in the T2D patients (Randeria et al., 

2019; Spranger et al., 2003). Moreover, studies with mammalian models of T2D (high fat 

diet-fed mice, db/db mice, GK rat) as well as pancreatic sections of human T2D cases 

demonstrated that there is a presence of insulitis in the pancreatic islets, which is dominated 

by macrophages (Böni-Schnetzler et al., 2008; Donath et al., 2009; Ehses et al., 2007). 

Even before the onset of the clinical symptoms of T2D,  the serum levels of IL-1b and IL-

1R are higher in obese and pre-diabetic individuals (Carstensen et al., 2010; Meier et al., 

2002). As discussed above, obesity is a major risk factor associated with T2D pathogenesis. 

The pro-inflammatory adipokines (TNF-a, IL-1b, and IL-6) that are released from adipose 

tissues in the setting of obesity contribute to a state of inflammation that ultimately 

exacerbates the pathogenesis of T2D. These adipokines activate the innate immune system 

and contribute to insulin resistance (Freitas Lima et al., 2015). Other factors contributing 

to inflammation in T2D include circulating free fatty acids, lipid acting enzymes like 

lipoxygenases and cyclooxygenases, and lipid mediators like eicosanoids, prostaglandins, 

and hepoxilins (Khan et al., 2014; Titos and Clària, 2013). Most of the well-known factors 

that contribute to inflammation mediate their effects via activation of two signaling 

pathways; IkB kinase-β (IKKβ) and c-Jun N-terminal kinase (JNK). The first of these, 

IKKb, activates NF-kB, which is a transcription factor that induces the expression of the 

pro-inflammatory cytokines in the liver, adipose tissue, and muscles, which promotes 
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insulin resistance (Arkan et al., 2005; Cai et al., 2005). NF-kB is also activated in the islet 

b-cells in response to excessive glucose and pro-inflammatory cytokines (Maedler et al., 

2002). Importantly, the depletion of NF-kB has been shown to have protective effects on 

the b-cells (Eldor et al., 2006). The other major pathway that gets activated is JNK, a kinase 

that, in turn, activates transcription factors such as ELK1 (ETS Like-1 protein), ATF2 

(activating transcription factor 2), and c-Jun. JNK activation has different effects 

depending on the cell type. In adipose tissues and muscles, JNK directly phosphorylates 

IRS-1 and IRS-2. This results in reduced PI3K-AKT signaling in response to insulin and 

increased insulin resistance. In macrophages, JNK activation promotes a pro-inflammatory 

phenotype. In the liver, JNK stimulates ketogenesis and reduces fatty acid oxidation that 

leads to fatty liver and insulin resistance (Donath and Shoelson, 2011; Solinas and 

Becattini, 2016). These cytokines also activate circulating immune cells and affect the 

vasculature of the cardiac muscles, skeletal muscles, retina, and kidney; this further 

contributes to other diabetes-associated complications (King, 2008). Another source of the 

pro-inflammatory cytokine is the human islet amyloid polypeptide (hIAPP). hIAPP 

promotes the secretion of IL-1β from the islet infiltrating macrophages via activation of 

inflammasomes (Eguchi and Nagai, 2017). Inflammasomes are cytosolic multiprotein 

oligomers which are responsible for the activation of inflammatory responses (Broz and 

Dixit, 2016; Mariathasan et al., 2004). The secreted IL-1β exerts its effects on β-cells via 

the activation of NF-kB pathway to induce apoptosis (Westwell-Roper et al., 2013, 2014). 

On the other hand, inflammasome activation within the β-cells itself promotes apoptosis 

via activation of caspase-1 (Montane and Novials, 2016; Wali et al., 2013). In summary, 
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multiple factors promote inflammation and contribute to T2D pathogenesis via common 

downstream pathways (Figure 7).  

  Subjects with T2D show improved glycemic control and insulin sensitivity upon 

blocking NF-kB signaling using the non-steroidal anti-inflammatory drug, salsalate; 

however, these studies were performed over a limited duration, and hence the long-term 

effects of NF-kB inhibition are unclear. Although promising, the chronic inhibition of this 

critical transcription factor may be complicated as it will drive more widespread immune 

suppression, rendering susceptibility to other infections and diseases. (Fleischman et al., 

2008; Goldfine et al., 2013). Other approaches have focused on inhibiting the signaling of 

pro-inflammatory cytokines like TNF-a and IL-1b. Whereas TNF-a receptor antagonists 

failed to improve blood glucose, IL-1b receptor antagonists showed a temporary 

improvement in T2D patients, which faded after 39 weeks of trial (Dominguez et al., 2005; 

Larsen et al., 2009; Paquot et al., 2000). These studies suggest that targeting inflammation 

can indeed improve the symptoms of T2D, though more effective strategies are needed. 

  In conclusion, inflammation seems to be the common factor in the pathogenesis of 

both the major forms of diabetes. To date, therapeutic approaches focused around 

inhibiting the pro-inflammatory cytokines have not been hugely successful; however, 

targeting inflammation definitely shows immense potential for treating diabetes. One of 

the strategies could be identifying novel targets of inflammation that could modulate the 

inflammatory environment or control the recruitment of immune cells that mediate the 

dysfunction or damage to the b-cells. 
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Figure 7: Activation of inflammatory signaling pathways in β-cells 
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1.10  Macrophage function in islet inflammation: 

  Macrophages are immune cells that are derived from myeloid progenitor cells. 

They have a critical role in innate immune responses, including pathogen recognition and 

elimination, detection of damaged or dead cells and their elimination, and regulating tissue 

repair (Gordon and Martinez-Pomares, 2017). Macrophages are highly plastic cells that 

can differentiate into different subtypes dependent on microenvironmental stimuli in a 

process called polarization. Classically, undifferentiated macrophages (M0 phenotype) get 

activated, or polarized, to pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes. 

This nomenclature is analogous to the two subtypes of T-helper (Th) cells (Th1 and Th2) 

that have similar properties and activation states (Mantovani et al., 2004). M2 macrophages 

have been further subcategorized into M2a, M2b, M2c, and M2d types based on differences 

in their mode of activation and their ultimate function (Yao et al., 2019). However, it is 

important to understand macrophages often co-express markers of both polarization states 

at varying levels, and this is dependent on the stimuli. In other words, macrophage 

polarization could best be considered to be a spectrum of activation states/phenotypes, 

rather than three discrete states (Murray, 2017; Xue et al., 2014). However, a major factor 

that differentiates macrophages at opposite ends of the M1/M2 is their metabolism of 

arginine; while M1 macrophages metabolize arginine via NOS2 to produce nitric oxide, 

the M2 macrophages metabolize arginine via ARG1 to produce polyamines that are 

necessary for collagen synthesis and cellular proliferation (Mantovani et al., 2013). For 

clarity in this thesis, I have used the simpler, more classical differentiation of these 

macrophage phenotypes, i.e., M1 and M2 (Figure 8).  



65 

  Specifically, M1 macrophages are activated by pro-inflammatory stimuli like IFN-

g and TNF-a or bacterial lipopolysaccharide (LPS) and are involved in Th1 responses. 

Upon their stimulation, M1 macrophages express typical markers like TLR-2 (Toll-like 

receptor-2), TLR-4, CD80 (Cluster of differentiation 80), CD86, iNOS, and MHC-II. They 

release cytokines and chemokines like TNF-α, IL-1α, IL-1β, IL-6, IL-12, CXCL9 (CXC 

chemokine ligand 9), and CXCL10 that usually leads to pro-inflammatory environment 

which attracts and activates more unpolarized (M0) macrophages promoting inflammation. 

The key proteins and pathways that contribute to M1 polarization include NF-kB, STAT1 

(Signal Transducer and Activator of Transcription 1), STAT5, IRF3 (Interferon Regulatory 

Factor 3) and IRF5 signaling. The major roles of M1 macrophages include promoting 

inflammation, tissue injury, and killing the microbes and tumor cells (Martinez and 

Gordon, 2014; Porta et al., 2015; Wang et al., 2014b).  

  On the other hand, M2 macrophages are activated by anti-inflammatory stimuli like 

IL-4 and IL-13 and are involved in Th2 responses. M2 macrophages express markers like 

Arg-1 (Arginase 1), CD206, CD163, CD209, FIZZ1 (Resistin-like molecule alpha or found 

in inflammatory zone protein 1), and CHI3L1/2 (Chitinase-3-like protein-1 or Ym1/2). 

These macrophage release cytokines and chemokines like IL-10, TGF-β (Tumor growth 

factor-b), CCL1 [Chemokine (C-C motif) ligands 1], CCL17, CCL18, CCL22, and CCL24 

which promote an anti-inflammatory environment, attract more M0 macrophages, and 

promote their polarization toward the M2 phenotype. STAT6, IRF4, PPARδ (peroxisome 

proliferator-activated receptor delta), and PPARγ are the key proteins and pathways that 

promote M2 polarization. The critical roles that M2 are involved in include anti-
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inflammatory responses, infection prevention, phagocytosis, and assistance in tissue 

remodeling and repair (Mantovani et al., 2004, 2013; Mulder et al., 2014; Murray, 2017).  

  However, an imbalance in these activation states of macrophages has been 

associated with several diseases, including not only diabetes, but also atherosclerosis, 

tumor, asthma, sepsis, rheumatoid arthritis, and obesity (Atri et al., 2018; Liu et al., 2014b; 

Parisi et al., 2018). Germane to diabetes pathogenesis, macrophages have been implicated 

in b-cell development as well as their dysfunction and death. Studies have demonstrated 

that during early murine pancreatic development, macrophages are recruited to the 

branching ductal epithelial tissue. Specifically, they are localized to sites where the Islets 

of Langerhans bud from the ducts (Geutskens et al., 2005). Early macrophages are critical 

for normal islet development, as their loss in CSF1 (colony-stimulating factor 1) knockout 

mice results in a severe deficiency in β-cell mass in the developing and adult pancreas 

(Banaei-Bouchareb et al., 2004). Moreover, these mutants show abnormal islet 

morphogenesis after birth and impaired proliferation of islet cells. Furthermore, the 

injection of exogenous CSF-1 rescues this phenotype, restoring the b-cell mass in accord 

with increasing macrophages (Geutskens et al., 2005). These studies show a critical role of 

macrophages in the initial development of b-cells as well as maintenance of the 

morphology and the b-cell mass.  

  However, macrophages can also be deleterious to b-cells, contributing to the 

pathogenesis of diabetes. As discussed earlier, T1D is characterized by inflammation and 

is associated b-cell destruction. Macrophages are crucial immune cells that locally to 

regulate inflammation depending on their different polarization states (Davis Frank M. and 

Gallagher Katherine A., 2019). Importantly, macrophages are among the first innate 
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immune cells to infiltrate damaged or infected tissues, where they further activate adaptive 

immune cells. Thus macrophages represent a critical link between the innate and adaptive 

immune systems (Underhill et al., 1999). As such, macrophages are positioned to be major 

factors in the pathogenesis of T1D. In the murine T1D NOD model, macrophages, together 

with T-cells, are among the first cells to infiltrate the islets. These macrophages present b-

cell autoantigens via MHC-II (Herold et al., 2013; O’Reilly et al., 1991). Interestingly, 

clodronate-mediated depletion of macrophages is associated with reduced insulitis and 

inflammation in NOD mice and protection from the development of diabetes. (Calderon et 

al., 2006; Jun et al., 1999). Recent studies report that islet resident macrophages initiate the 

cascade of events that ultimately damage the b-cells. In accordance, a study showed that 

genetic depletion of islet resident macrophages by CSF-1R knockout protects the NOD 

mice from diabetes development (Carrero et al., 2017). Concordantly, while CD8+ T-cells 

are the predominant cell type found in islet infiltrates in T1D patients, the macrophages 

make up a significant cellular fraction, as compared to other cell types; suggesting that T-

cells and macrophages are key players in the death of pancreatic b-cells (Willcox et al., 

2009).  

  As discussed above, macrophages release pro-inflammatory cytokines that increase 

oxidative stress and apoptosis in the b-cells via the activation of NF-kB and STAT 

pathways. Furthermore, monocytes and macrophages from T1D patients also promote the 

proliferation of Th17 cells, a set of pro-inflammatory T-helper cells, by release of IL-1b 

and IL-6, thereby promoting the pro-inflammatory and pro-apoptotic responses 

(Emamaullee et al., 2009; Shao et al., 2012). The neutralization of IL-17, a major effector 

cytokine release by Th17, protected NOD mice from the development of diabetes 
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(Emamaullee et al., 2009). Together these studies have demonstrated that macrophages are 

key players that contribute to diabetes pathogenesis not only by themselves but also by 

activating cytotoxic cells of the adaptive immune system, exacerbating inflammation, and 

generating a milieu that is conducive for maximal b-cell damage. 

  The role of the immune system has been studied less extensively in T2D than in 

T1D. However, recent work demonstrates that immune cells have critical roles in the 

development and progression of T2D as well (Grossmann et al., 2015; Shu et al., 2012; 

Zhou et al., 2018). Specifically, macrophages infiltrate the islets in large numbers and 

promote inflammation, both in T2D models and in human subjects with T2D and pre-

diabetes (Ehses et al., 2007; Niu et al., 2016; Walker et al., 2018). In the former, for 

example, high-fat diet (HFD)-fed mice develop obesity-induced T2D. Moreover, the state 

of increased free fatty acids promoted the release of chemokines from b-cells that could 

attract M1 macrophages, driving their accumulation in the islets in large numbers. 

Furthermore, depletion of M1 macrophages protected these mice from lipotoxicity 

mediated b-cell dysfunction (Eguchi et al., 2012). Similarly, HFD is also associated with 

increased levels of the receptors TLR2 and TLR4 in humans and mammalian models. Both 

TLRs are associated with M1 macrophages that stimulate the release of IL-1b and IL-6, 

cytokines that foster b-cell dysfunction (Nackiewicz et al., 2014). Macrophages are also 

critical components of the inflammation in adipose tissue that results from obesity. These 

ultimately contribute to the release of pro-inflammatory adipokines that cause b-cell insult 

(Appari et al., 2018; Lumeng et al., 2007a). The role of macrophages in adipose is certain 

to be complex, as studies have established that acute macrophage accumulation in the 
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adipose tissues promotes insulin sensitivity, but chronic adipose inflammation leads to 

insulin resistance (Lumeng et al., 2007b; Wernstedt Asterholm et al., 2014). 

  M1 polarized macrophages exert deleterious effects due to their pro-inflammatory 

contributions in disease pathogenesis. However, macrophages are highly dynamic cells that 

also have an anti-inflammatory M2 state, which can promote tissue remodeling and repair 

(Arnold et al., 2007; Duffield et al., 2005; Lee et al., 2011; Lucas et al., 2010). M2 

macrophages may release growth factors including vascular endothelial growth factor 

(VEGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and 

transforming growth factor-beta (TGF-β) that promote tissue regeneration and repair 

(Mantovani et al., 2013; Stefater et al., 2011). The role of M2 macrophages has also been 

studied specifically in pancreatic tissue repair. In the human pancreas, the infiltration of 

M2 macrophages has been associated with increased b-cell proliferation (In’t Veld et al., 

2010). Furthermore, in murine models, macrophages promote islet angiogenesis and 

protect against islet loss in certain models of chronic inflammation and exocrine pancreas 

degeneration. The depletion of macrophages in a model of pancreatitis leads to diabetes 

due to loss of endocrine cells, thus, emphasizing the critical role of these cells in the 

maintenance of the endocrine pancreas during the chronic inflammatory state (Tessem et 

al., 2008). Macrophages recruited to the site of β-cell injury release different growth factors 

(VEFG, PDGF, EGF, and TGF-b) that promote β-cell proliferation as well as β-cell 

regeneration (Brissova et al., 2014; Riley et al., 2015; Van Gassen et al., 2015). 

Additionally, TGF-b release by M2 macrophages promotes b-cell proliferation by 

activation of SMAD7, which increases the levels of cell-cycle activators CyclinD1 and 

CyclinD2 (Xiao et al., 2014b).  
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  In conclusion, the interactions between macrophages and b-cells are quite dynamic. 

Dependent on the M1 or M2 activation state of the macrophages; it can either be deleterious 

or beneficial. These differences in the functionality of the macrophages certainly makes 

them interesting targets for the treatment of both the major forms of diabetes. The global 

depletion of macrophages likely would not be a feasible approach, as it can lead to severe 

immunosuppression and to the risk of secondary infections. However, two major 

alternative strategies for targeting the macrophages could include : i) identifying targets 

that could skew the polarization of the macrophages towards M2 phenotype to promote 

their anti-inflammatory and protective effects on b-cells, and ii) identifying targets that 

could prevent macrophage infiltration in the islets and thus could prevent the vicious self-

reinforcing cycle of pancreatic islet inflammation altogether. 
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Figure 8: Macrophage polarization 
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1.11  The role of 12-lipoxygenase in inflammation: 

  Lipoxygenases (LOXs) are a set of enzymes that catalyze the oxygenation of 

cellular polyunsaturated fatty acids (PUFAs) to form metabolites that function in autocrine, 

paracrine, or endocrine pathways (Imig and Hye Khan, 2015; Piomelli, 1993). These are 

non-heme containing enzymes that begin the stereospecific insertion of molecular oxygen 

to a cis,cis-1,4-pentadiene moiety of the PUFA through a free radical mechanism. For 

complete activation of these LOX enzymes, the iron in the LOX active site is oxidized 

from the inactive ferrous (Fe2+) state to the active ferric (Fe3+) state. Consequently, LOX 

activity is regulated by the cellular hydroperoxides, the heterolytic cleavage of which 

provides the necessary electron acceptor to reduce the active-site iron (Haeggström and 

Funk, 2011). Following the acquisition of a substrate, the LOX extracts allylic hydrogen, 

forming a carbon-centered radical and reducing the active-site iron back to the ferrous state. 

This radical then reacts with molecular oxygen, forming a peroxy-radical that oxidizes the 

iron, forming a peroxy-anion. Finally, the peroxy-anion is protonated, creating fatty acid 

hydroperoxide (Glickman and Klinman, 1996). However, these intermediate products are 

unstable and toxic to the cells. Hence, cellular machinery utilizes glutathione peroxidases 

to form stable products that mediate the effects of PUFA metabolism (Brütsch et al., 2015; 

Czapski et al., 2016).  

  The LOX enzymes are involved in the metabolism of multiple PUFA substrates, 

including arachidonic acid (AA), dihomo-γ-linoleic acid (DLA), α-linolenic acid (ALA) 

docosahexaenoic acid (DHA), and eicosatetraenoic acid (EPA) (Figure 9) (Ikei et al., 

2012). The nomenclature of LOXs is based on the location at which they insert the oxygen 

on their substrate. Thus, 12-LOX catalyzes the oxygenation of the 12th carbon of its 
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substrate (Ding et al., 2003; Yamamoto, 1992). 12-LOX has been known to exert the 

majority of its known effects via arachidonic acid metabolism. 12-lipoxygenase (12-LOX) 

converts arachidonic acid to 12-hydroperoxy-eicosatetraenoate (12-HPETE), which 

subsequently gets reduced to a more stable 12-hydroxy-eicosatetraenoate (12-HETE) by 

glutathione peroxidase (Davies and Guo, 2014; Dobrian et al., 2011; Haeggström and 

Funk, 2011). 

  In mice, there are seven functional LOX genes (Alox5, Alox12, Alox12b, Alox15, 

Alox15b, Aloxe3, Aloxe12), three or four functional genes in zebrafish (alox5a, alox5b, 

alox12, and a possible alox15 orthologue) and six functional genes in humans (ALOX5, 

ALOX12, ALOX12B, ALOX15, ALOX15B, and ALOXE3). The genomic distribution of the 

LOX genes is varied across species. In mice, Alox5 is located on chromosome 6, while all 

others are found on chromosome 11 (Yamamoto, 1992). Similarly, in humans, ALOX5 is 

located on chromosome 10, while the rest of the LOX genes are clustered in chromosome 

17 (Krieg et al., 2001). In zebrafish, alox12 is located on chromosome 7, alox5a on 

chromosome 13, while alox5b on chromosome 15. These genes encode for different 

lipoxygenases; however, in this study, I have focused on the genes that encode for 12-

lipoxygenase, as both 12-LOX and 12-HETE have been implicated in the pathogenesis of 

different diseases, including diabetes, by promoting oxidative stress and inflammation. 

However, 12-LOX also acts on other substrates, like linoleic acid and docosahexaenoic 

acid, to generate other eicosanoids that are involved in regulating inflammation 

(Ackermann et al., 2017).  
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Figure 9: Substrates and products of 12-LOX 
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  12-HETE, the product of 12-LOX resulting from arachidonic acid metabolism, is a 

lipid molecule that can easily transit through cell membranes and induce its effects. 

Intracellularly, 12-HETE generation promotes oxidative stress while extracellularly via 

interaction with the orphan G protein-coupled receptor 31 (GPR31). 12-HETE can impact 

a variety of signaling pathways (Guo et al., 2011; Porro et al., 2014). To study the effects 

of 12-LOX and 12-HETE, it is important to understand the differences in the regulation of 

12-LOX and the production of 12-HETE amongst different species in order to appropriate 

animal models for elucidating disease mechanisms. The mouse enzyme, encoded by the 

gene Alox15, is typically referred to as “12/15-lipoxygenase” because it produces a ~6:1 

ratio of 12-HETE:15-HETE from arachidonic acid. Interestingly, while the orthologous 

mouse gene Alox12 encodes 12-lipoxygenase, the levels of 12-HETE produced by 12-

lipoxygenase is lower than that produced by 12/15-lipoxygenase (Conteh et al., 2019). 

Hence, the focus of this thesis project was only the Alox15 encoding lipoxygenase enzyme. 

Based on their tissue distribution and products generated, the mouse 12/15-lipoxygenase 

enzyme encoded by Alox15, and zebrafish 12-lipoxygenase enzyme encoded by alox12 are 

the functional homologs of the human 12-lipoxygenase enzyme that is encoded by ALOX12 

(Haas et al., 2011; Jisaka et al., 2000). Henceforth, I will be referring all these enzyme 

homologs as 12-LOX. 

  12-LOX activity and 12-HETE levels have been linked to the pathogenesis of both 

of the major forms of diabetes. In the T1D mouse model (NOD mice), genetic knockout of 

Alox15 shows protective effects against the development of diabetes. The NOD mice 

normally show peak levels of 12-LOX expression during the insulitis stage; however, in 

the absence of 12-LOX, knockouts showed reduced insulitis and maintenance of b-cell 
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mass (Green-Mitchell et al., 2013). Furthermore, knockout of Alox15 in mice on a C57BL/6 

background also protects them from hyperglycemia and b-cell loss following a 

diabetogenic multiple low dose streptozotocin (MLD-STZ) treatment (Bleich et al., 1999). 

Interestingly, protection from diabetes post-MLD-STZ was also seen in mice with a 

pancreas-specific knockout of Alox15 (Tersey et al., 2014). These data suggest that the 

effects of 12-LOX in T1D diabetes pathogenesis are, at least, partly intrinsic to islets. 

Mechanistically, it appears to be an inflammation-mediated effect of 12-LOX that 

contributes to the b-cell insult. Concordant studies with human islets, murine islets, and 

the rodent b-cell lines each demonstrate that treatment with pro-inflammatory cytokines 

increases levels of 12-LOX and 12-HETE (Chen et al., 2005; Ma et al., 2010). Moreover, 

islet dysfunction is likely to be mediated at least in part by the actions of 12-HETE, as 

human islets treated with 12-HETE show reduced glucose-stimulated insulin secretion at 

lower concentrations (1nM) and induction n of cell death at higher concentrations (100nM) 

(Ma et al., 2010).  

  The role of 12-LOX has also been studied in the context of T2D and obesity. For 

example, when Alox15 null mice are fed high-fat diet (45% or 60% kcal from saturated 

fat), they do not show impaired glucose or insulin tolerance whereas wild-type (WT) mice 

did. Moreover, the levels of circulating pro-inflammatory cytokines were lower in the 

Alox15 mutant mice. Also, the pancreatic islets of these Alox15 mutant mice did not exhibit 

hyperplasia, as is seen in WT mice fed with a high-fat diet. Finally, the Alox15 null mice 

showed a reduced macrophage-mediated inflammation of adipose tissues (Nunemaker et 

al., 2008; Sears et al., 2009). Another study has demonstrated that 12-LOX levels are 

elevated under conditions of hyperglycemia (Natarajan et al., 1993).  
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  Mechanistically, 12-HETE exerts its detrimental effects by the activation of 

NADPH oxidase-1 (NOX-1), which promotes oxidative stress in studies of both mouse and 

human islets (Weaver et al., 2012). This oxidative stress response to 12-HETE was further 

corroborated by studies in pancreas-specific Alox15 knockout mice that were fed a high-

fat diet. These mice showed elevated levels of the antioxidant enzymes, superoxide 

dismutase, and glutathione peroxidase, which are crucial for ameliorating oxidative stress 

(Tersey et al., 2014). Altogether, these studies establish the crucial roles that 12-LOX plays 

in the pathogenesis of both the major forms of diabetes. These studies have also propelled 

the field towards the development of small-molecule inhibitors against 12-LOX as a 

therapeutic approach. Out of several inhibitors, ML351 and ML355 have been shown to be 

potent and selective lipoxygenase inhibitors. More specifically, ML355 shows specificity 

for human 12-LOX, whereas ML351 shows higher specificity for murine 12-LOX (Adili 

et al., 2017; Luci et al., 2010; Rai et al., 2010). Recently, our lab demonstrated the utility 

of these inhibitors for T1D pathogenesis studies. In NOD mice, the administration of 

ML351 during the prediabetic phase prevented glycemic deterioration, reduced β-cell 

oxidative stress, and increased the fraction of anti-inflammatory immune cells in insulitis 

(Hernandez-Perez et al., 2017). Importantly, the treatment of human islets with pro-

inflammatory cytokines, together with ML355, showed suppression of ROS generation as 

compared to vehicle-treated islets. These studies suggest that, indeed, these enzymes can 

be targeted specifically and efficaciously with these inhibitors. 

  The exact molecular mechanisms by which 12-LOX promotes b-cell dysfunction 

and death remain unclear. However, based on the positive association of stress and 

inflammation markers in the presence of 12-LOX or 12-HETE, some mechanisms working 



78 

with the β-cells themselves are possible. On the other hand, some studies have reported 

that these same markers could be detected at higher levels due to the presence of immune 

cells, including macrophages, which are well known to mediate these effects. Both 12-

LOX and macrophages are factors that promote inflammation. Hence, I hypothesized that 

12-LOX is a crucial factor in the pathogenesis of diabetes, whose effects are not specific 

only to b-cells but also in macrophages where it is highly expressed (Wuest et al., 2012). 

Thus, in addition to regulating b-cell function and eliciting oxidative responses, 12-LOX 

is likely influencing macrophage activity to promote pancreatic islet inflammation in 

parallel.  
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1.12  Model systems for studying diabetes: 

  Diabetes is a systemic disorder characterized by hyperglycemia that occurs due to 

pancreatic insulin deficiency and insulin resistance. Many studies have been conducted on 

cultured cell lines derived from b-cells, like Ins1 (rat insulinoma cells) or Min6 (mouse 

insulinoma cells); these cells share properties with b-cells, including a high insulin content 

and responsiveness to glucose (Asfari et al., 1992; Miyazaki et al., 1990). Although these 

cell lines have provided valuable insights into b-cell function, confoundingly, they are 

immortalized, highly proliferative, and cultured out of context; as such, the cell lines have 

many physiological properties that differ from endogenous β-cells. This is further reflected 

in differences of gene and protein expression relative to endogenous b-cells (Skelin et al., 

2010). Similarly, countless studies have been performed with in vitro cultured islets 

isolated from mouse, rat, or human donors. Cultured islet studies have several advantages 

over cell culture studies. Firstly, these circumvent the intrinsic differences observed due to 

the transformation of cells. Secondly, primary tissues are better models to test some 

pharmacological properties of chemicals and drugs, as it can reflect the direct effects of the 

respective treatments (Goldbard, 2006). Finally, since b-cells in the islets remain closely 

associated with other islet cell types, and thus maintain any potentially important 

physiological paracrine interactions that collectively influence glucose metabolism (Göke, 

2008). Specifically, using human islets is likely to provide a better picture of the responses 

of human b-cells to various stimuli and treatments that will be directly relevant from a 

clinical perspective. However, using cultured islets still has important limitations. First, 

and most importantly, the major disadvantage of in vitro studies with islets is the absence 

of complex physiological setting in which islets function. Islets are highly vascularized and 
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respond to different microenvironmental factors like growth factors, hormones, and 

cytokines (Aamodt and Powers, 2017). Moreover, there is also a crosstalk of the islets cells 

with other cell types, including endothelial cells and immune cells, which is a critical 

component of islet health and responses (Shirakawa et al., 2017). Furthermore, in diabetes 

pathogenesis, there are other complex influencing factors. For example, as described 

above, there are environmental factors that can increase the risk of T1D, and obesity-

induced adipokine release which influences the development of T2D. It is extremely 

challenging to mimic all these complex factors that contribute to disease development in 

an in vitro setting, thus making in vivo studies critical for studying diabetes holistically.  

  Animal models have long played a critical role in the study of diabetes, for 

exploration and characterization of pathogenesis as well as identification of novel 

therapeutic targets. Various animal models have been developed for both T1D and T2D 

that induce hyperglycemia by mimicking human pathology. The major characteristics of 

T1D include autoimmune destruction of b-cells that contribute to hyperglycemia. In animal 

models, this hyperglycemia is commonly achieved by either the ablation of b-cells or by 

breeding animals that spontaneously develop diabetes. For ablation studies, diabetes is 

usually induced around 5–7 days prior to the start of the experiment to ensure stable 

hyperglycemia. In the ablation models of T1D, most b-cells are destroyed, resulting in 

lower insulin production that ultimately leads to leading to hyperglycemia. Two major 

chemical compounds that are commonly used to induce diabetes are streptozotocin (STZ) 

and alloxan. STZ and alloxan have a chemical structure analogous to glucose and thus are 

able to be transported into the b-cell specifically by the GLUT2 transporter. This confers a 

high degree of b-cell-specific uptake of these compounds (Damasceno et al., 2014; 
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Szkudelski, 2001). Once STZ enters the b-cell, it is transported to the nucleus where it 

causes DNA alkylation. The generation of free radicals due to STZ can cause DNA damage 

and apoptosis of b-cells. STZ is administered as a single high dose (100-200 mg/kg) or 

multiple low doses (20-55 mg/kg) depending on the study interests (Dekel et al., 2009; 

Wang and Gleichmann, 1998). Similarly, alloxan uptake by the b-cells causes the 

generation of free radicals that mediate the diabetic effects. Alloxan is reduced to dialuric 

acid and then re-oxidized back to alloxan, creating a redox cycle that generates highly 

reactive hydroxyl radicals that cause fragmentation of DNA. Alloxan is administered in 

mice at a dose concentration of 50-200 mg/kg. Although there is a destruction of b-cells 

by chemical methods, it is not mediated by the immune cells, as seen in humans with T1D. 

  The two widely utilized mammalian models of spontaneous diabetes development 

include non-obese diabetic (NOD) mice and Biobreeding (BB) rats. Firstly, NOD mice 

have polymorphisms in several genes that have also been observed in human T1D patients, 

like MHC-II and CTLA-4 (Hanafusa et al., 1994; Serreze and Leiter, 1994). NOD mice 

develop insulitis around 4-5 weeks of age. In this pre-diabetic stage, cytotoxic CD8+ T-

cells, CD4+ T-cells, and macrophages are the predominant immune cell types that 

constitute the infiltrate, with lower proportions of  B-cells and NK cells (Anderson and 

Bluestone, 2005; Yoon and Jun, 2001). Although these infiltrated immune cells wreak 

havoc on b-cells at this stage, hyperglycemia is not seen until most b-cell have lost function 

at around 10-14 weeks. NOD mice are not only useful for testing drugs or chemical 

treatments, but also, they can be genetically modified; by performing genetic knockouts or 

knockins. The possibility of the generation of ‘humanized’ mice, provide a sophisticated 

system for modeling human T1D pathology in a physiological context (King et al., 2008; 
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Niens et al., 2011; Yang and Santamaria, 2003). Secondly, BB rats are another extensively 

used mammalian model of T1D. These rats have mutations in the MHC-II RT1u haplotype 

and the Gimap5 gene. Although these two genetic loci are not directly similar to the human 

loci, their physiological effects of the mutations reproduce aspects of the human T1D 

pathology (Colle et al., 1981; Yale et al., 1985). BB rats develop diabetes at the age of 8-

16 weeks with a characteristic development of insulitis; however, there is a major 

difference in the composition of the infiltrate, as compared to NOD mice. Due to mutation 

in the Gimap5 gene, there is severe T-cell lymphopenia, and the immune infiltrate in these 

rats is dominated by macrophages, B-cells, and NK cells (Mordes et al., 2004). BB rats 

have been extremely valuable in elucidating more about the genetics of T1D (Wallis et al., 

2009). 

  T2D animals have characteristic insulin resistance and relative insulin deficiency 

due to b-cell insufficiency. Many animal models are based on obesity, as that is a major 

factor contributing to T2D. Three major T2D models are high-fat diet (HFD) fed mice, 

leptin-deficient (ob/ob) mice, and leptin receptor-deficient (db/db) mice (Rees and 

Alcolado, 2005). First, in the HFD model, the normal chow diet (26% protein, 63% 

carbohydrate, and 11% fat) is exchanged for a diet where the fraction of calories from fat 

is increased substantially (40-60% from saturated fat). As a result of this, HFD-fed mice 

develop obesity, hyperinsulinemia, and impaired glucose homeostasis. The weight gain is 

often associated with hyperglycemia, insulin resistance, and impaired glucose tolerance 

due to the dysfunction of b-cells (Winzell and Ahrén, 2004). HFD models may be used in 

the context of transgenic or genetic knockout backgrounds. These can often show a normal 

phenotype under unchallenged conditions; however, in the presence of the HFD, when the 
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b-cells are forced to function at a higher level, the role of the gene or protein might become 

evident. The other two commonly used animal models of obesity-induced T2D, target the 

leptin signaling system. Leptin is a hormone that primarily induces satiety, hence lack of 

leptin signaling promotes polyphagia, which is a hallmark of diabetes; and this ultimately 

leads to obesity (Wang et al., 2014a). The two models based in leptin signaling are leptin-

deficient (ob/ob) mice and leptin receptor-deficient (db/db) mice. The ob/ob mice have a 

mutated leptin protein that leads to the pathology (Zhang et al., 1994). These mice show 

increased weight, which accompanies hyperinsulinemia within two weeks of age. By four 

weeks of age, ob/ob mice develop hyperglycemia and hyperlipidemia that stays above 

limits for the rest of their lives (Lindström, 2007). Alternately, the db/db mice are 

characterized by a mutation in the leptin receptor (Chen et al., 1996). As with ob/ob mice, 

the db/db mice develop obesity and hyperinsulinemia at 2-4 weeks of age, while after 4-8 

weeks, they show hyperglycemia. In contrast, db/db mice develop ketosis after a few 

months and have a relatively shorter lifespan as compared to ob/ob mice (Srinivasan and 

Ramarao, 2007).  

  There are rodent models of non-obese T2D as well, of which GK rats are the most 

widely used animal models. Goto–Kakizaki (GK) rats were generated by selective 

repetitive breeding of rats that exhibited the most reduced glucose tolerance (Goto et al., 

1976). These animals are lean models of T2D, which is seen in ~20% of T2D human cases 

as well (George et al., 2015). They have impaired glucose tolerance and defective insulin 

secretion in response to glucose due to abnormal b-cell mass and function (Ostenson and 

Efendic, 2007; Portha et al., 2001). GK rats have been utilized as an invaluable tool for 
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studying b-cell dysfunction as well as diabetic complications (Dolz et al., 2011; King, 

2012; Movassat et al., 2007; Okada et al., 2010). 

  Although these rodent models have proved to be excellent animal models for 

diabetes research, they have several important limitations that need to be considered. 

Currently, the majority of b-cell and islet studies in rodents depend on pancreas sections 

or isolated islets to analyze the cellular aspects of their pathology, often retrospectively. 

However, factors like free radicals and ROS are extremely transient and difficult to 

measure in an ex vivo setting. Moreover, there are particular physiological features, like 

immune infiltration and responses of b-cells to different stimuli that cannot be easily 

determined by staining the pancreatic sections. Advances in microscopic methods, like 

intravital imaging, have made it possible to visualize the islet and address some cellular 

physiology questions in vivo, thus circumventing some of these limitations (Reissaus et al., 

2019). However, these present other challenges, including the difficulties of surgery to 

place imaging windows, the lower survival rate of the mice over a longer period, 

dependency on biosensors to mark the b-cells and the proteins of interest, and the overall 

expense of the experiment. Nevertheless, it represents a productive method to study islet 

physiology and responses in vivo in a mammalian model. There are other limitations of the 

existing rodent models as well. Due to the metabolic complexity of diabetes, the power of 

experiments is often lower, and thus, the experiments are repeated several times for 

accuracy and detection of a meaningful difference. Hence, there is a constant need for mice, 

which is hindered due to fecundity and maturation time. Wildtype mice generally produce 

litters of 1-10 pups and can only bear approximately 4-6 litters in their lifetime. Moreover, 

it takes about 2-3 months to have a new batch of pups, which require genotyping if they 
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are transgenic. In the case of transgenic mice, the homozygosity of alleles is often 

preferred, which further reduces the number of usable mice per litter. Furthermore, the 

development of transgenic mice is extremely challenging as injections of the RNA or DNA 

for transgenesis require extraction of mouse embryos by sacrificing the mouse as in vivo 

manipulation of these embryos is almost impossible. Next, to keep the embryos alive after 

fertilizing or injecting them, they need to be transplanted into another female mouse. All 

this processing takes a long time to develop a transgenic mouse, and several generations of 

breeding are necessary to establish a stable transgenic colony. Finally, the development or 

purchase of the transgenic mice, along with their maintenance, is expensive.  

  An interesting alternative to the rodent models for in vivo studies of diabetes 

pathogenesis is the zebrafish. Zebrafish (Danio rerio) share 70% genetic similarity with 

the human genome, and in regard to metabolic disorders, they share 84% similarity to 

humans (Barbazuk et al., 2000; Bradford et al., 2017; Howe et al., 2013). Zebrafish serve 

as an attractive animal model system that offers several advantages over other mammalian 

models. Critically, zebrafish have a high degree of genetic, anatomical, and physiological 

similarities to humans. Zebrafish have the same key organs that are important for regulation 

of energy homeostasis and metabolism as in mammals, including digestive organs, adipose 

tissues, and skeletal muscle. Thus, key processes like including regulation of appetite, 

insulin regulation, and lipid storage are well conserved. This characteristic makes them a 

suitable animal model for studying a metabolic disorder like diabetes (Zang et al., 2018). 

In addition, zebrafish are very fecund, capable of producing many hundreds of embryos 

per breeding; this provides enough genetically matched and chronologically synchronized 

samples to perform experiments with substantial power quickly. Moreover, they have a 
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short egg-to-egg generation time, along with being easier and less expensive to maintain 

in large numbers. One of the major advantages is the ease of genetic manipulation that is 

required to produce transgenic lines with fluorescent protein tags. Injecting RNA or DNA, 

including plasmids or morpholinos, at the one-cell stage for generating transgenic lines or 

inducing genetic knockdown of a protein, is easier than with other vertebrate model 

systems (Chen and Ekker, 2004). Moreover, screening chemicals or drugs is immensely 

easier. Since the zebrafish have a quick developmental time, they reach the larval stage 

where most organ systems are present and functional by 3 days post-fertilization (3 dpf) 

(Kimmel et al., 1995; MacRae and Peterson, 2015). Finally, a significant advantage of 

zebrafish that trumps other ones is their high degree of optical transparency, which allows 

for in vivo visualization / live imaging of the organ system of interest (Bradford et al., 2017; 

Burke, 2016; Kalueff et al., 2014; Saleem and Kannan, 2018).  

  Zebrafish are relevant tools for diabetes research as the morphogenesis and cellular 

architecture of the pancreas has similarities with that of the other mammalian models 

(Kinkel and Prince, 2009; Tehrani and Lin, 2011). The exocrine pancreas is comprised of 

ductal cells and acinar cells, while the endocrine compartment has a-cells, b-cells, δ-cells, 

and ε-cells, with all cells performing conserved functions and releasing designated 

hormones (Argenton et al., 1999; Biemar et al., 2001). More importantly, other organs 

involved in metabolism and diabetes, including liver, adipose tissues, brain, and skeletal 

muscles, have conserved mechanisms with respect to development and function (Maddison 

and Chen, 2017). With all these conserved factors, different genetic manipulations and 

experimental conditions have been made to study T1D and T2D. For T1D, chemical and 

genetic approaches have been utilized. On administration of b-cell toxins like STZ and 
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alloxan in adult or larval zebrafish, there is a rapid loss of b-cells, induction of 

hyperglycemia, and reduced insulin secretion. Interestingly, persistent administration of 

STZ also leads to diabetes-associated complications including retinopathy, nephropathy, 

and impaired fin regeneration (Castañeda et al., 2017; Intine et al., 2013; Moss et al., 2009; 

Nam et al., 2015; Olsen et al., 2010). In terms of genetic models, the most commonly 

utilized and efficient method of inducing b-cell damage in the Metronidazole-

Nitroreductase system (MTZ-NTR). In this hybrid chemical-genetic system, the zebrafish 

b-cells express NTR, and when these transgenic fish are treated with MTZ, The MTZ-NTR 

reaction induces b-cell-specific damage (Curado et al., 2007; Pisharath et al., 2007). This 

MTZ-NTR mediated ablation leads to complete b-cell depletion after 12-24 hours of MTZ 

treatment that results in severe hyperglycemia. Interestingly, after 48-72 hours of MTZ 

removal, the b-cell mass is functionally restored by regeneration (Ye et al., 2015). This 

property of restoration of b-cell mass in the zebrafish larvae adds to another advantage of 

the zebrafish model, where b-cell regeneration can be effectively studied. T2D studies have 

also been carried using zebrafish models. As discussed earlier, T2D is characterized by 

insulin resistance and insulin deficiency that ultimately promotes hyperglycemia. 

Submerging young or adult zebrafish chronically in 2% glucose solution for 2-4 weeks 

results in hyperglycemia and insulin resistance (Alvarez et al., 2010; Capiotti et al., 2014; 

Gleeson et al., 2007). Obesity is another hallmark of T2D. Adult zebrafish, when fed with 

high-calorie diet or overfeeding, become obese. These high-calorie diet options included 

60 mg Artemia, or 20% corn oil, or 20% vegetable oil, or egg yolk powder (59% fat) fed 

over extended periods and they resulted into hypertriglyceridemia, hepatosteatosis, 

hyperglycemia and increase visceral fats (Landgraf et al., 2017; Meguro et al., 2015; Oka 
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et al., 2010; Vargas and Vásquez, 2017; Zang et al., 2017). Interestingly, in the overfeeding 

induced diabetes study, treatment with commonly used anti-diabetic drugs (metformin and 

glimepiride), there was a reduction in glycemic levels (Yoon et al., 2011). These data 

suggest that the zebrafish can be efficient tools used for modeling human T2DM, and also 

screening for novel anti-diabetic drugs. However, since they cannot mimic the complex 

physiology of the mammalian system, supplementary studies in the other rodent models 

are essential to increase the robustness of the findings. 

  Summarily, various cell culture methods and animal models have been developed 

to study diabetes. Every model has its respective advantages and disadvantages; however, 

if a mechanism is determined to be conserved across species, it would suggest that it is 

probably the same in humans as well.  
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1.13  Summary: 

  In summary, although a variety of factors contribute to its development and 

progression, inflammation of the pancreatic islets is an aspect that is shared between T1D 

and T2D pathogenesis. Studies in animal models, as well as human pancreatic sections and 

islets, reveal that maladaptive islet inflammation is pervasive in diabetes. Hence, 

uncovering mechanisms that can be manipulated to modulate inflammation could prove to 

be an efficient therapeutic strategy to treat this dreadful disease. Two critical mediators of 

inflammation in the context of diabetes include macrophages and 12-LOX. Macrophages 

are immune cells known to regulate inflammation by the release of pro- and anti-

inflammatory signaling molecules. On the other hand, 12-LOX is an enzyme that catalyzes 

the production of the pro-inflammatory molecule 12-HETE. Both macrophages and 12-

LOX have been shown to promote oxidative stress and apoptosis in b-cells via 

inflammatory mechanisms. Moreover, individual depletion of macrophages or 12-LOX has 

been shown to have protective effects against diabetes. However, whether 12-LOX plays 

a role within the macrophage, in the context of diabetes, is an open question. Hence, the 

objective of this thesis project is to understand how 12-LOX regulates macrophage-

mediated inflammation in the pathogenesis of diabetes. For this study, I have utilized the 

strengths of mouse models and of transgenic zebrafish to studying these prospective roles 

of 12-LOX and macrophages in b-cell homeostasis. These studies provide novel 

mechanistic insights as well as therapeutic targets for the resolution of inflammation-

induced damage in the β-cell. My long-term goal is to unravel novel targets for effectively 

treating both major forms of diabetes, which could potentially be extrapolated more 

generally to all inflammation-associated pathologies.  
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Chapter Two: Materials and Methods 

2.1.  Zebrafish studies: 

2.1.1.  Zebrafish maintenance and embryo collection: 

All zebrafish experiments were approved by the Indiana University School of 

Medicine IACUC. Wild-type, Tg(ins:NTR) (ZDB-ALT-130930-5), Tg(mpeg1:eGFP) 

(ZDB-ALT-120117-1), Tg(ins:NTR) ; Tg(mpeg1:eGFP) and Tg(ins:Kaede); Tg(ins:NTR) 

zebrafish were maintained at 28.5°C in a recirculating aquaculture system enclosed in a 

cabinet and subjected to a 14-/10-hour light/dark cycle in accordance with institutional 

policies under IACUC oversight. Heterozygous outcrossed embryos bearing the transgenic 

allele were collected at spawning and maintained in a 28.5°C incubator in fish water-filled 

petri dishes. At 3 days-post fertilization (larval stage), the transgenic zebrafish larvae were 

genotyped by epifluorescence at 80 hpf using a Leica M205FA dissecting microscope. 

2.1.2.  Chemical treatments: 

1-Phenyl-2-thiourea (PTU; Acros #207250250) supplementation at 0.003% was 

used to prevent pigmentation in all embryos after gastrulation stages. 7.5 mM 

Metronidazole (MTZ) (Sigma #095K093) was prepared in fish water (0.1% instant ocean 

salt, 0.0075% calcium sulfate) that was supplemented with PTU. Control treatments for 

MTZ used fish water alone. The larvae were treated with 12-LOX inhibitor (ML355) or 

the vehicle (DMSO) for 2 hours as a part of pre-treatment followed by 6 hours for the 

assays used to study the role of 12-LOX in different injury models.  

2.1.3.  Tailfin injury assay: 

20 Tg(mpeg1:eGFP) larvae were collected from each pre-treatment (ML355 or 

DMSO) and washed with fish water supplemented with PTU. The larvae were then treated 
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with 0.01% tricaine (Sigma #A-5040) in fish water-PTU to restrict their movements in a 

10 cm petri dish temporarily. With a sharp scalpel, the distal end of the tail fin was 

amputated. After amputation, the larvae were transferred back to their respective treatments 

in 12-well plates. After the treatments, the larvae were fixed and stained (section 2.1.8). 

The GFP-labelled macrophages that migrated to the injured tail were quantified under the 

confocal microscope (Zeiss LSM700).  

2.1.4.  b-cell injury assay: 

20 Tg(ins:NTR) larvae from each pre-treatment (ML355 or DMSO) were washed 

with fish water-PTU and then treated with 7.5mM MTZ for 6 hours. After the treatment, 

the larvae were washed with fish water and then fixed and stained (section 2.1.8). The GFP-

labelled macrophages that migrated to the islets in response to the b-cell injury were 

quantified under the confocal microscope (Zeiss LSM700). 

2.1.5.  b-cell regeneration assay: 

10 Tg (ins:Kaede) ; Tg(ins:NTR) larvae were used in triplicate. These expressed a 

photo-convertible Kaede protein that, when exposed to UV light, the bright green 

fluorescing Kaede protein gets converted to a red fluorescent protein. For these studies, 

larvae were exposed to UV light for 3 minutes. After photo-conversion, the larvae were 

subjected to 24 hours of MTZ treatment, followed by 24 or 48 hours of recovery in regular 

fish water-PTU. After treatment, the larvae were washed with fish water and then fixed 

and stained (section 2.1.8). The number of pre-existing b-cells (characterized by both green 

and red fluorescence) and the neogenic b-cells (characterized by only green fluorescence) 

were quantified using a confocal microscope (Zeiss LSM700). 
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2.1.6.  ROS measurement: 

For the detection of b-cell ROS, primarily peroxides, I used CellROX green reagent 

(Invitrogen #C10444). 10 larvae were transferred to 1.5 ml microcentrifuge tubes, washed 

with fish water, then incubated in the dark for 1 hour at 28.5°C with 10 μM CellROX green 

diluted in fish water. Similarly, for detection of superoxide in pancreatic β-cells, 10 

heterozygous Tg(ins:NTR) larvae were treated with 7.5 mM MTZ for 3 hours then placed 

in 5 μM dihydroethidium (Thermo Fisher #D1168) + 0.02% DMSO for 30 minutes in dark 

conditions. After the treatment with ROS detecting reagents, the larvae were then treated 

with 0.01% tricaine (Sigma #A-5040), mounted on glass-bottom petri dishes (Mattek 

#P35G-0-10-C) in 0.5% low melt agarose (Sigma #A9414), and imaged with a Zeiss 

LSM700 confocal microscope. 

2.1.7.  Macrophage depletion: 

30 Tg(ins:NTR) ; Tg(mpeg1:eGFP) zebrafish larvae were treated with 0.01% 

tricaine. They were then mounted in 2.5% methylcellulose (EMS #18560) and injected 

trans-pericardially with 7-10 nL clodronate (SKU# CLD-8901). 24 hours after clodronate 

injection, the larvae were subjected to either the tailfin injury assay or the β-cell injury 

assay. After these treatments, the larvae were fixed and stained (section 2.1.8). The GFP-

labelled macrophages that migrated to the injured sites were quantified using a confocal 

microscope (Zeiss LSM700).  

2.1.8.  Immunofluorescence and image collection 

At the conclusion of each experiment, larvae were washed in fish water and then 

fixed with 3% formaldehyde in a PEM buffer (0.21 M PIPES, 1 mM MgSO4, 2 mM EGTA 

at pH 7) at 4°C overnight. Fixed larvae were washed with PBS and deyolked, and then 
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antibody staining was performed as previously described (Ye et al., 2015). The following 

concentrations of primary antibodies were used: 1:200 guinea pig anti-insulin (Invitrogen 

#180067), 1:200 chicken anti-GFP (Aves Labs #GFP-1020). Primary antibodies were 

detected with 1:500 dilutions of complementary Alexa-conjugated secondary antibodies 

(Jackson ImmunoResearch). DNA was stained with TO-PRO3 (Thermo Fisher #T3605) 

diluted 1:500. After staining, larvae were mounted on charged glass slides in 

VECTASHIELD (Vector Labs H-1000), and confocal imaging was performed with a Zeiss 

LSM700 microscope. 

2.1.9.  Total glucose assay: 

10 larvae from each condition were collected in triplicates, washed with fish water 

after the treatments, and stored in 500 μL glucose assay buffer (Biovision) at -80°C. The 

larvae in the glucose assay buffer were then homogenized with a tissue homogenizer. The 

tubes were centrifuged at 5000 r.p.m. for 5 minutes at room temperature and the 

supernatant was used in duplicate for the glucose assay performed in the 96-well plate. 50 

μL of substrate-enzyme mix was added to the 50uL of the supernatant. The plate was stored 

at room temperature for 30 minutes in dark. The result of reaction was read in a spectraMax 

iD5 multi-mode microplate reader (Molecular Devices) at 405 nm to measure the glucose 

levels.  

2.1.10. Gene expression analysis by quantitative PCR: 

Quantitative PCR (qPCR) was performed to quantify the mRNA expression of 

different zebrafish genes. 60 larvae per condition (20 larvae in triplicates) were collected 

for RNA extraction using the RNeasy® Plus Micro Kit (Qiagen). The larvae were lysed in 

350 μL of RLT buffer containing 10 μL of β-mercaptoethanol. The lysate was transferred 
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to the RNeasy MinElute spin column, which was centrifuged at full speed for 15 seconds. 

The flow-through was discarded, and the column was washed with 700 μL RW1 buffer 

followed by a wash using 500 μL of RPE buffer. Finally, 500 μL of 80% ethanol was added 

to the spin column and centrifuged at full speed for 2 minutes. For removing residual 

ethanol, the column was transferred to a fresh collection tube and spun at full speed for 2 

minutes. RNA was collected in 14 μL of RNase-free water, and the concentration was 

measured using a Nanodrop (Thermo Scientific). 500 ng RNA was used for cDNA 

synthesis using the High-Capacity cDNA Reverse Transcription Kit (Thermofisher). The 

synthesized cDNA was diluted to a total volume of 120 μL. To quantify the gene expression 

using qPCR, 10 μL of the cDNA was used and the reaction was performed using the 

SsoFast™ EvaGreen® Supermix kit (Biorad). Each cDNA sample was run in triplicate in 

the Quantstudio 3 thermocycler (Applied Biosystems). The primers for β-actin and 

cxcr3.2, were purchased from Integrated DNA Technologies (Table 1). The average Ct 

value of the three replicates was calculated and normalized to b-actin.  

Primer Name Sequence (5’-3’) 

b-actin Forward CGAGCAGGAGATGGGAACC 

b-actin Reverse CAACGGAAACGCTCATTGC 

CXCR3.2 Forward TGGTGGACATGCACTTTCGT 

CXCR3.2 Reverse GTCAGTCATCCGCAGAGCAT 

 

Table 1: List of primers for qPCR (zebrafish) 
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2.2.  Mouse studies: 

2.2.1.  Mouse maintenance: 

All mouse experiments were approved by the Indiana University School of 

Medicine IACUC. The mice were maintained in pathogen-free conditions under a standard 

12-hour light-dark cycle and provided unlimited access to water and standard rodent chow. 

Alox15-/- (12-LOX KO) mice were purchased from Jackson Laboratories and bred in the 

Indiana University School of Medicine animal facilities. For the experimental controls, I 

utilized wild-type (WT) littermates. The mice used in this study were 8- to 12-week old. 

2.2.2.  Peritoneal macrophage isolation, culture and treatment: 

WT and 12-LOX KO mice were euthanized and immediately subjected to 

peritoneal macrophage isolation as described (Ray and Dittel, 2010). For isolation, ice-cold 

RPMI was injected into the peritoneal cavity. The mice were gently massaged near the 

peritoneum to dislodge any attached cells. The 25 g needle attached to a 5 mL syringe was 

inserted and the injected RPMI was pulled back to collect the peritoneal macrophages. 

These cells were centrifuged at 450 g for 5 minutes at 4°C. The supernatant was discarded, 

and the cell pellet was treated with 1mL RBC lysis using lysis buffer (eBioscienceTM #00-

4333-57) for 1 minute to remove red blood cells. Immediately after 1 minute, 5mL of RPMI 

was added. The suspension was centrifuged at 450 g, for 5 minutes at 4°C, and the 

supernatant was discarded. The pellet was resuspended in 1 mL complete RPMI medium. 

Cells were counted using a hemocytometer and checked for viability using Trypan Blue. 

The peritoneal macrophages were then used for the polarization and migration assays. 
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2.2.3  Islet isolation, culture and treatment:  

Mouse islets were isolated from both male and female WT mice by the IU Diabetes 

Center Islet and Physiology Core. Briefly, mice were sacrificed by cervical dislocation, 

and pancreata were inflated with 2.0 ml of collagenase. Pancreata were then incubated at 

37°C for 15 minutes, followed by dissociation in Hank’s Balanced Salt Solution (HBSS) 

and Bovine Serum Albumin (BSA). Islets were handpicked and allowed to recover 

overnight in complete medium (8 mM glucose RPMI) at 37°C before experimentation. The 

islets were then washed with RPMI and treated with either a pro-inflammatory cytokines 

(PIC) supplemented media (50 ng/mL TNF-α, 25 ng/mL IL-1β, 100 ng/mL IFN-γ) or 

media control for 24 hours. The supernatant was then used for the chemotaxis assay. 

2.2.4.  Polarization Assay: 

Macrophages were seeded in 12-well plates for RNA studies (1x106 cells/condition) 

or 96-well plates for flow cytometry (3x105 cells/condition) in triplicates. They were then 

treated with PIC cocktail (TNF-α -50 ng/mL, IL-1β- 25 ng/mL, IFN-γ-100 ng/mL) or 

10ng/mL IL4 or media control for 16 hours at 37°C. After 16 hours, the supernatant was 

collected and stored at -80°C for ELISA. The wells were washed with 1X PBS. The plate 

was centrifuged at 450 g, 5 min at 4°C. The supernatant was discarded, and then the wells 

washed again with 2% FBS. The cells were stained with F4/80 antibody (1:200) 

(Biolegend) at room temperature (RT) in the dark for 30 minutes, for staining the 

macrophage-specific surface antigen. The cells were washed with perm/wash (BD 

Pharmigen) The macrophages were then fixed and permeabilized using BD 

Cytofix/CytopermTM (BD Pharmigen), for the intracellular markers of polarization, 

including iNOS (1:100) (Biolegend) and CD206 (1:100) (Biolegend). The cells were then 
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washed with perm/wash, followed by PBS. The cells were collected in the collection tubes 

and subjected to flow cytometry to quantitatively determine the expression of different 

proteins (AttuneTM NxT Flow Cytometer).  

2.2.5  In vitro chemotaxis assay: 

A 96-well chemotaxis system (ChemoTx, 8 μm filter pore size; Neuro Probe) was 

loaded with triplicates of conditioned media from WT islets. Peritoneal macrophage 

suspension (0.5 × 105 cells) was placed on top of the filter above each well, and the chamber 

was incubated for 4 hours at 37°C. After incubation, non-migrated cells were washed while 

the filter side containing migrated cells was fixed with 4% paraformaldehyde 

(Thermofisher) and stained with Coomassie Blue (Thermofisher) to visualize the 

macrophages. The filter was mounted on the slides, and the number of migrated 

macrophages was quantified under LSM700 confocal microscope. 

2.2.6.  CXCR3 expression analysis by flow cytometry: 

For polarization, the peritoneal macrophages from WT and 12-LOX KO mice were 

seeded in 12-well plates for RNA studies (1x106 cells/condition) or 96-well plates for flow 

cytometry (3x105 cells/condition) in triplicates. They were then treated with a PIC-

supplemented media of or media-only control for 16 hours. After 16 hours, the supernatant 

was collected and stored at -80°C for ELISA. The wells were washed with 1X PBS. The 

plate was centrifuged at 450 g, 5 minutes at 4°C. The supernatant was discarded, and then 

the wells washed again with 2% FBS. The cells were stained with F4/80 (1:200) 

(Biolegend) and CXCR3 antibody (1:100) (Biologend) at room temperature (RT) in the 

dark for 30 minutes, for staining the macrophage-specific surface antigen. The cells were 
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then washed with PBS and collected in the collection tubes and subjected to flow cytometry 

to quantitatively determine the expression of CXCR3 (AttuneTM NxT Flow Cytometer).  

2.2.7  ELISA: 

The supernatant from the stimulated peritoneal macrophages was collected. 

Cytokine levels were measured by performing ELISA according to the manufacturer’s 

instructions (eBiosciences). The result of reaction was read in a spectraMax iD5 multi-

mode microplate reader (Molecular Devices) 

2.2.8.  Gene expression analysis by quantitative PCR: 

qPCR was performed to quantify the mRNA expression of different macrophage 

genes. 3x105 peritoneal macrophages (1x105 cells in triplicates) were cultured in different 

conditions for 16 hours at 37°C. These cultured cells were used for RNA extraction using 

the RNeasy® Plus Mini Kit (Qiagen). The cells were lysed in 350 μL of RLT buffer 

containing 10 μL of β-mercaptoethanol. The lysate was transferred to the RNeasy MinElute 

spin column, which was centrifuged at full speed (13000 g) for 15 seconds. The flow-

through was discarded, and the column was washed with 700 μL RW1 buffer followed by 

a wash using 500 μL of RPE buffer. Finally, 500 μL of 80% ethanol was added to the spin 

column and centrifuged at full speed for 2 minutes. For removing residual ethanol, the 

column was transferred to a fresh collection tube and spun at full speed for 2 minutes. RNA 

was collected in 14 μL of RNase-free water, and the concentration was measured using a 

nanodrop (Thermo Scientific). 500 ng RNA was used for cDNA synthesis using the High-

Capacity cDNA Reverse Transcription Kit (Thermofisher) The synthesized cDNA was 

diluted to a total volume of 120 μL. To quantify the gene expression using qPCR, 10 μL 

of the cDNA was used, and the reaction was performed using the SsoFast™ EvaGreen® 
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Supermix kit (Biorad). Each cDNA sample was run in triplicate in the Quantstudio 3 

thermocycler (Applied Biosystems). The primers for β-actin, cxcr3, il6, il12, il10 and tgf-

b were purchased from Integrated DNA Technologies (Table 2). The average Ct value of 

the three replicates was calculated and normalized to b-actin  

 

Primer Name Sequence (5’-3’) 

b-actin Forward GGCACCACACCTTCTACAATG 

b-actin Reverse GGGGTGTTGAAGGTCTCAAAC 

CXCR3 Forward GCTGCTGTCCAGTGGGTTTT 

CXCR3 Reverse AGTTGATGTTGAACAAGGCGC 

IL-6 Forward TACCACTTCACAAGTCGGAGGC 

IL-6 Reverse CTGCAAGTGCATCATCGTTGTTC 

IL-12 Forward AAGCTCTGCATCCTGCTTCAC 

IL-12 Reverse GATAGCCCATCACCCTGTTGA 

IL-10 Forward CGGGAAGACAATAACTGCACCC 

IL-10 Reverse CGGTTAGCAGTATGTTGTCCAGC 

TGF-b Forward TTAGGAAGGACCTGGGTTGG 

TGF-b Reverse AGGGCAAGGACCTTGCTGTA 

 

Table 2: List of primers for qPCR (mice) 
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2.3.  Statistical Analysis: 

The data are presented as mean ± standard error of the mean (SEM). The data 

analyses were performed using the GraphPad Prism 8 software package. Significant 

differences between the mean values were determined using Student’s t-test, where two 

means were compared, and one-way analysis of variance (ANOVA) followed by post hoc 

Holm-Sidak test when more than two means were compared. The differences were 

considered statistically significant at p<0.05.  
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Chapter Three: An in vivo zebrafish model for interrogating oxidative stress and 

inflammation mediated pancreatic β-cell injury, response, and prevention 

3.1  Introduction: 

The generation of reactive oxygen species (ROS), including peroxides, 

superoxides, and oxygen radicals, results in oxidative stress. This oxidative stress results 

in cellular dysfunction and triggers regulated cell death under extreme circumstances 

(Kaneto et al., 2010). Cells of metabolically active tissues are predisposed to high levels of 

ROS production, and thus, metabolic diseases such as type 2 diabetes mellitus (T2D) are 

often associated with excessive ROS generation and the resulting oxidative stress (Yadav 

et al., 2016). T2D is characterized by chronic hyperglycemia resulting from the dysfunction 

of insulin-secreting pancreatic β-cells in the setting of overnutrition and obesity (Ogihara 

and Mirmira, 2010). This dysfunction may be driven in part by the generation of excessive 

ROS, which likely results from the low endogenous levels of antioxidant enzymes in b-

cells (Ha et al., 2008). ROS diminishes the expression of insulin in b-cells, impairs 

glucose-stimulated insulin secretion, and promotes b-cell apoptosis (Hou et al., 2008; 

Robertson and Harmon, 2007). The availability of a vertebrate model to study factors that 

regulate ROS dynamics in the islet in situ would accelerate the discovery and testing of 

novel therapeutics for a variety of metabolic diseases, including T2D. The zebrafish, Danio 

rerio, is a robust model to interrogate the pathogenesis of metabolic disease and the 

efficacy of experimental therapeutics (Curado et al., 2007; MacRae and Peterson, 2015). 

The oxygen-insensitive NAD(P)H nitroreductase (NTR, NfsB) enzyme, cloned 

from E. coli, has been harnessed to drive tissue-specific cell ablation in various transgenic 

zebrafish models. When NTR-expressing transgenic zebrafish lines, such as Tg(ins:NTR), 
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are treated with the antibiotic metronidazole (MTZ), this prodrug gets metabolized into 

cytotoxins that are retained by NTR-expressing β-cells, rapidly inducing their death 

(Barros et al., 2008).While the precise mechanisms of MTZ-induced cell toxicity have not 

been characterized in NTR-expressing transgenic lines, existing research provides some 

insight: nitroreduction of MTZ may produce cytotoxic nitroradical metabolites, which can 

crosslink DNA (Felmer and Clark, 2004; Knox et al., 1988; Mathias et al., 2014). In this 

study, I used transgenic NTR+ zebrafish to demonstrate their suitability for modeling ROS 

generation, cellular responses to ROS, and pharmaceutical interventions in the β-cell in 

vivo. 
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3.2.  Results: 

3.2.1.  MTZ induces β-Cell ROS generation in an NTR- and dose-dependent manner: 

The nitroreductase-metronidazole (NTR-MTZ) system has been widely 

implemented as a tool to efficiently ablate cells in a tissue-specific and temporally 

controllable manner (White and Mumm, 2013). However, the molecular mechanisms 

driving its induction of regulated cell death are not fully understood. To determine if ROS 

are generated in MTZ-treated NTR-expressing cells, I used Tg(ins:NTR) transgenic 

zebrafish that express insulin promoter-driven NTR in the pancreatic β-cells. I immersed 

the heterozygous transgenic larvae in a solution of MTZ for 0, 1, 3, 6, 12, or 24 hours, then 

stained with CellROX green to indicate ROS (Figure 10A). Incubation start times were 

staggered such that all larvae were at 106 hours post-fertilization (hpf) at analysis. 

Treatments were started with 7.5 mM MTZ, a dose that is known to be effective in ablating 

β-cells after 24-hour exposure (Ye et al., 2016). After 1 hour of treatment, ROS staining 

was observed specifically in β-cell nuclei, whereas adjacent islet cells were not stained 

(Figure 10B). With longer treatments, ROS levels increased by almost 4-fold relative to 

untreated controls, reaching peak intensity with 6 hours of treatment, followed by a 

decrease in intensity with 12 or 24 hours of treatment (Figure 10C). I attribute this 

diminished staining to the attrition of β-cells via regulated cell death mechanisms and their 

clearance by phagocytes (Figure 10D), as well as the neogenesis of β-cells that have not 

yet generated detectable ROS.  

To further confirm that the CellROX green staining that I observed was truly 

representative of MTZ-induced cellular ROS and not artefactual (i.e., due to an interaction 

of CellROX green with the reduced nitroradical form of metronidazole), I next incubated 
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MTZ-treated transgenic larvae in 5 μM dihydroethidium (DHE). Upon oxidation of DHE 

to 2OH-ethidium by superoxides, this cell-permeant dye is excited at 405 nm and emits 

bright red fluorescence at 570 nm (Nazarewicz et al., 2013). In 106 hpf Tg(ins:NTR) larvae 

that were not treated with MTZ, I detected no specific pancreatic fluorescence in any 

sample (Figure 10E; n = 13). In contrast, transgenic larvae treated with 7.5 mM MTZ for 

3 hours, a strong fluorescence in β-cells was observed in every case (Figure 10E; n = 14). 

These data indicate that superoxides are generated in transgenic β-cells in response to 

MTZ. 
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Figure 10: Time-dependent metronidazole induction of β-cell-specific ROS. (A) 

Schematic of MTZ treatments and imaging. Zebrafish (NTR+) larvae were treated with 

MTZ or vehicle for 0, 1, 3, 6, 12, or 24 hours with a “staggered start” such that all 

treatments were completed simultaneously; larvae were then incubated with CellROX 

green stain at 105 hpf and fixed at 106 hpf. (B) Representative immunofluorescence images 

of zebrafish pancreatic islets stained with insulin antibody and CellROX green after 

7.5 mM MTZ treatments. Magnified insets (bounded by dashed boxes) highlight the dose-

dependent increase in CellROX green signal in β-cells. (C) Quantification of CellROX 

green intensity in β-cells showing a significant increase in ROS generation after 1, 3, 6, 

and 12 hours of MTZ treatment as compared to vehicle-treated controls (n = 12). (D) MTZ 

treatment caused a significant decrease in β-cell area after 12 or 24 hours of treatment as 

compared to untreated controls. (E) Representative immunofluorescence images of 

zebrafish pancreatic islets treated for 3 hours with 0 or 7.5 mM MTZ and stained with 5 μM 

DHE. Dotted lines demarcate the boundaries of the pancreas. Graphed data are presented 

as mean ± SEM (∗p < 0.05). Statistical significance was determined by one-way ANOVA 

followed by post hoc Holm-Sidak test. Scale bar indicates 10 μm.  

E. 
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Next, I hypothesized that the level of ROS generated in the NTR+ β-cells would be 

directly dependent on the concentration of MTZ present. To investigate if there is a dose-

dependent relationship, I treated larvae with both low (2.5 mM) and high (7.5 mM) 

concentrations of MTZ using the same experimental paradigm indicated in Figure 10A. As 

expected, there was no ROS generation in the untreated control β-cells (Figure 11A). After 

1 hour of treatment, the 2.5 mM dose did not show significant ROS generation, but 7.5 mM 

MTZ induced a > 4-fold increase in ROS levels as compared to untreated controls (Figures 

11B-C). After 6 hours of treatment, 2.5 mM treatment did not result in significant ROS 

generation, while the 7.5 mM dose caused a nearly 6-fold rise in ROS levels relative to 

untreated controls. Consistent with previous observations, the measured ROS levels were 

no different from baseline with the 24-hour treatment of either the 2.5 mM or 7.5 mM 

MTZ. Despite the lower levels of ROS observed with 2.5 mM treatment, there was a 

dramatic reduction in the number of β-cells at the 24-hour time point (Figure 11D). Thus, 

even though induced ROS levels are lower with the 2.5 mM dose, this dose is sufficient to 

induce cell death over 24 hours. 
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Figure 11: Metronidazole induces ROS generation in a dose-dependent manner. (A) 

Representative image of vehicle-treated zebrafish islets (n = 12) at 106 hpf. (B & C) 

Representative image of islets of zebrafish (NTR+) larvae (n = 12 per condition) treated 

with 2.5 mM and 7.5 mM MTZ at different time points. (D) Quantification of CellROX 

intensity shows a significant increase after 1 or 6 hours of treatment in the β-cells of 

7.5 mM MTZ-treated larvae, as compared to untreated controls. Data are presented as 

mean ± SEM (∗p < 0.05). Statistical significance was determined by one-way ANOVA 

followed by post hoc Holm-Sidak test. Scale bar indicates 10 μm. 

  

D. 
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3.2.2. MTZ-induced ROS generation leads to macrophage recruitment and β-Cell 

apoptosis: 

Many studies have correlated the production of ROS with the induction of apoptotic 

cell death (Circu and Aw, 2010; Nazarewicz et al., 2013; Simon et al., 2000). Therefore, 

to determine whether the generation of ROS correlates with the induction of β-cell 

apoptosis in this system, I analyzed cleaved caspase 3 (Casp3∗) in islet β-cells after 

following the same MTZ treatment paradigm shown in Figure 10A. Casp3∗ is the active 

form of caspase 3 and an indicator of the activated apoptotic pathway. I did not detect 

significant Casp3∗ staining in the untreated controls or with after 1-hour MTZ treatment 

(Figures 12A–C). However, after a 6-hour treatment, Casp3∗ was significantly increased 

with 7.5 mM MTZ, but not 2.5 mM relative to untreated controls, following a pattern 

similar to ROS generation (Figure 12B). As before, with 24 hours of treatment, almost all 

β-cells were ablated by both concentrations of MTZ (Figures 12B-D). 

Evidence exists that shows ROS-injured β-cells release factors that attract immune 

cells (Gregory and Devitt, 2004). To test whether immune cells are attracted to MTZ-

induced β-cell ROS generation, I utilized Tg(mpeg1:eGFP)+ zebrafish, in which 

macrophages fluoresce green. The first apparent macrophage located near a β-cell was seen 

after a 3-hour treatment, and peak infiltration at 6 hours post-MTZ treatment. Interestingly, 

this is the same time-point when the measurement of ROS staining is at its highest levels. 

Additionally, engulfment of β-cells by macrophages is distinct with a 12-hour MTZ 

treatment, a time point that is coincident with the observed drop in the β-cell area (Figure 

13). 
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Figure 12: Metronidazole induces apoptosis signaling in β-cells. (A) Representative image 

of vehicle-treated zebrafish islets (n = 12) after fixing at 106 hpf. (B & C) Representative 

image of islets of zebrafish (NTR+) larvae (n = 12 per condition) treated with 2.5 mM or 

7.5 mM MTZ at different time points and immune-stained for insulin and cleaved caspase 

3 (Casp3∗). (D) Quantification of Casp3∗ intensity shows a significant increase after 6 

hours of treatment in the β-cells of 7.5 mM MTZ-treated larvae compared to vehicle. Data 

are presented as mean ± SEM (∗p < 0.05). Statistical significance was determined by one-

way ANOVA followed by post hoc Holm-Sidak test. Scale bar indicates 10 μm. 

 

D. 



116 

 
 
 
 
 
 

 
 

 
 

Figure 13: Macrophages infiltrate the islets in response to damage in the β-cells. 

Representative immunofluorescence images of zebrafish (mpeg+) islets (N = 6/condition) 

treated with 7.5 mM MTZ showing macrophage invasion into islets (green arrows) and 

their engulfment of β-cells (yellow arrows). Scale bar indicates 10 μm. 
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3.2.3.  Antioxidants protect β-cells from MTZ-induced ROS generation: 

Based on the data, I hypothesized that the generation of ROS in β-cells could be 

mitigated in this zebrafish model by the addition of small molecule antioxidants to the fish 

water. To test this hypothesis, I used the common antioxidant N-acetyl-L-cysteine (NAC). 

Zebrafish larvae were treated with an intermediate dose of 5 mM MTZ. This dose was 

chosen because it is strong enough to induce a rapid ROS response but would not 

overwhelm other treatments. I supplemented the MTZ treatments with 100 μM NAC and 

then measured the ROS intensity at multiple time points (Figures 14A-B). After either a 1- 

or 6-hour treatment of MTZ, NAC significantly reduced the levels of ROS staining in β-

cells. Consistent with all other treatments, there was no significant difference with a 24-

hour treatment, which again could be attributed to the ablation of nearly all β-cells in the 

presence of MTZ treatment alone (Figure 14B). Together, I conclude that MTZ drives the 

production of ROS in β-cells in the presence of NTR. Additionally, a known antioxidant 

was effective at mitigating this effect, suggesting that uncovering novel compounds can be 

efficient through screening approaches in this zebrafish system. 
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Figure 14: Antioxidant treatment protects from metronidazole-induced ROS generation in 

β-cells. Zebrafish larvae (n = 12 per condition) were treated with 5 mM metronidazole ± N-

acetyl-L-cysteine (NAC) for 1, 6, or 24 hours followed by an assessment of ROS using 

CellROX green stain. (A) Representative images of islets of 106 hpf zebrafish (NTR+) 

larvae treated with 5 mM MTZ ± NAC at different time points. (B) Quantification of 

CellROX green intensity shows NAC-mediated protection from MTZ-induced ROS in β-

cells after 1 or 6 hours of treatment. Data are presented as mean ± SEM (∗p < 0.05). 

Statistical significance was determined by Student's t-test. Scale bar indicates 10 μm.  
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3.3.  Discussion: 

NTR (NfsB) is a type 1 oxygen-insensitive nitroreductase that catalyzes the full 

reduction of nitroaromatic compounds under anaerobic conditions (Whiteway et al., 1998). 

In anaerobes, MTZ serves as a prodrug that is metabolized by NTR to generate cytotoxic 

derivatives capable of blocking DNA synthesis and inducing DNA damage (Sisson et al., 

2000). In this study, I found that MTZ also induces ROS generation in the presence of 

NTR. This ROS generation is consistent with the hypothesis that under aerobic conditions, 

as when expressed in mammalian cells, NTR might generate superoxide and derivative 

reactive oxygen species, potentially through a type 2-like “futile reduction cycle” (de 

Oliveira et al., 2010) (Figure 15). 

As a β-cell ablation system, the relevance of MTZ-NTR to type 1 diabetes is 

evident. However, chronic ROS production and associated β-cell dysfunction are also 

critical to the pathology of type 2 diabetes even before the diminution of β-cell mass. 

Intriguingly, because the generation of ROS by NTR in this model is dependent on the dose 

of MTZ treatment, this provides a compelling opportunity to manipulate ROS under varied 

contexts. For instance, many other disease conditions like type 2 diabetes, atherosclerosis, 

diabetic neuropathy, and cancer arise as a result of chronic ROS generation in specific 

tissues (Lambeth, 2007). To model such cases, lower concentrations of MTZ  could be 

used for generating persistent ROS conditions and studying the effects. Future studies will 

determine whether lower levels of ROS can be induced by MTZ treatments that are 

sufficient to impair β-cell function, but not to induce cell death.  
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Figure 15: Proposed mechanism of MTZ-NTR-mediated cell ablation. In the aerobic 

setting of NTR-expressing eukaryotic cells, I propose that MTZ is reduced to a nitroradical 

anion by electron transfer from NADH, in a type 2-like mechanism. This radical may be 

cytotoxic and directly induces DNA damage and apoptosis. Alternately, this radical may 

regenerate back to metronidazole by electron transfer to O2, concurrently forming 

superoxide anion and ROS derivatives. This, in turn, drives increased cellular-oxidative 

stress and triggering of regulated cell death. 
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In conclusion, zebrafish proves to be an outstanding model organism for studying 

ROS generation and ROS-related pathologies. Importantly, the physiological events that 

follow excessive ROS generation including infiltration of macrophages in response to 

injury as well as induction of apoptosis is conserved in zebrafish. This makes it a relevant 

in vivo model for visualization of oxidative stress and inflammation-mediated pathologies. 

Furthermore, the MTZ-NTR system seems to work exceptionally well for cell-specific 

ablation. However, with the added possibility of precisely modulating the ROS generation 

using MTZ dosing and antioxidants like NAC, this makes zebrafish a particularly flexible 

model. I exploited these strengths of this zebrafish model for our future studies. 
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Chapter Four: Depletion of macrophages restores the β-cell function after 

elimination of cellular stress 

4.1  Introduction: 

 Macrophages are critical innate immune cells that regulate the initiation, 

progression, and resolution of inflammation (Liu et al., 2014b). Infiltration of macrophages 

in large numbers is associated with maladaptive inflammation that contributes to multiple 

disease pathologies (Atri et al., 2018). In diabetes, there is an infiltration of macrophages 

into the islet during the different phases of pathogenesis (Niu et al., 2016; Walker et al., 

2018). Macrophages are major sources of pro-inflammatory cytokines that activate the 

signaling for programmed cell death in the b-cells. Moreover, macrophages are the primary 

phagocytes that engulf the damaged b-cells (Ward et al., 2018). In this study, I 

hypothesized that, under conditions of maladaptive inflammation, macrophages 

prematurely phagocytose partially damaged b-cells, contributing to the rapid loss of b-cell 

mass. To test this, I depleted the macrophages in Tg(ins:NTR) zebrafish larvae using 

clodronate liposome injections and measured β-cell function and death. Clodronate is an 

ATP-analogue that induces cell death. When phagocytes engulf liposomes containing 

clodronate, they are rapidly ablated (Moreno, 2018). As macrophages are the primary 

phagocytes in larval zebrafish, they become depleted explicitly due to the clodronate 

action. After macrophage depletion, I injured the b-cells using the MTZ-NTR system and 

assessed the functionality of the islets in the absence of phagocytes. 
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4.2.  Results: 

4.2.1.  Clodronate injection depletes macrophages in the zebrafish larvae for at least 

three days: 

  To determine the effectiveness of clodronate liposomes in ablating macrophages in 

zebrafish, I trans-pericardially injected Tg(mpeg1:eGFP) zebrafish larvae with clodronate 

(5mg/mL) at age 3 days post-fertilization. I then performed a tail-injury assay at 24, 48, 

and 72-hour time points. In this assay, there is macrophage accumulation at the injured site. 

As shown in Figure 16A, 10 macrophages were visualized within 10 μm of the cut fin in 

control samples at 6 hours post-injury. However, in clodronate treated zebrafish, no 

macrophages were seen near the injured tailfin 24 hours after injections. This effect of 

clodronate persisted over 72 hours (Figure 16B). 
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Figure 16: Clodronate treatment depletes macrophages from 24 to 72 hours after injection. 

(A) Representative image of a cut tailfin of a control zebrafish larva, which was not injected 

with clodronate. (B) Representative images of cut tailfins of clodronate-injected zebrafish 

larvae at 24 hours (left), 48 hours (middle), and 72 hours (right) after the injections, 

respectively. Scale bar indicates 100 μm.  
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4.2.2.  b-cell mass is maintained after MTZ treatment in the absence of macrophages: 

  To assess the effects of macrophage depletion on b-cell mass under conditions of 

oxidative stress injury, I used larvae bearing the ins:NTR transgene that generates ROS in 

β-cells when treated with MTZ. I quantified the β-cell mass in the Tg(ins:NTR) larvae after 

24-hour clodronate treatment followed by 24-hour MTZ treatment. In control samples that 

were not treated with clodronate, I observed near-complete ablation of β-cells suggesting 

that there was phagocytosis of β-cells by the macrophages (Figure 17A-left). By contrast, 

I found that the integrity of the islet was preserved in the clodronate-treated larvae (17A-

right). Upon quantification of the b-cell mass before and after the MTZ treatment, I 

observed that 24 hours of clodronate treatment does not affect the b-cell mass (Figure 18B 

- 0 hr MTZ). More importantly, after 24 hours of MTZ treatment, the number of b-cells in 

the clodronate-injected samples were comparable to the controls (18 vs. 16.3, P=NS) 

(Figure 17B- 24 hr MTZ). These data emphasize that depletion of macrophages protects b-

cell mass during ROS-mediated injury (Figure 18). 
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Figure 17: Macrophage depletion protects β-cell mass from ablation. (A) Representative 

images of islets zebrafish larva, which was not injected with clodronate (left) and which 

was injected with clodronate for 24 hours (right) after 24 hours of MTZ treatment. (B) 

Quantification of the b-cell mass in control and the clodronate injected larvae at 0 and 24 

hours of MTZ treatment. Data are presented as mean ± SEM (∗p < 0.05). Scale bar indicates 

10 μm. 
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 4.2.3. b-cell neogenesis is downregulated in clodronate-injected, MTZ-treated larvae: 

  I next asked whether the apparent preservation of b-cell mass was due to 

neogenesis. For this, I utilized the ins:Kaede transgene, which permits the temporal 

labeling of β-cells with green or red fluorescence. Kaede is a photoconvertible fluorescent 

protein, which emits green light in its native conformation; however, when exposed to UV 

light, it is converted to a conformation that emits red light. If a living cell continues to 

express the Kaede transgene, it will emit a yellow light (combination of red and green 

light). In contrast, any regenerated cell that begins expressing Kaede that has not been 

exposed to UV treatment will emit only green light. By exploiting this property of Kaede, 

it is possible to distinguish newly formed, green neogenic b-cells from pre-existing yellow 

b-cells (Figure 18A). In this study, I treated the clodronate injected and non-injected 

Tg(ins:NTR);Tg(ins:Kaede) larvae with MTZ for 24 hours, and then transferred them to 

regular fish water to eliminate the cellular stress and allow the b-cells to regenerate. 

Upon quantification of the number of regenerated b-cells, the control larvae showed 

significant neogenesis of β-cells as compared to clodronate-injected larvae (3.5 vs. 1.8, 

P<0.05) (Figure 18B -24 hours regeneration). After 48 hours of recovery after MTZ 

removal, the difference in the neogenesis was even more significant in the clodronate-

injected as compared to the non-injected control larvae (Figure 18B – 48 hours 

regeneration). Whereas the clodronate non-injected larvae at 48 hour of recovery showed 

more than 3-fold increase in the green neogenic β-cells relative to larvae with 24 hours of 

recovery (11.67 vs. 3.5, P<0.05), the clodronate injected larvae showed no significant 

difference in the number of neogenic b-cells (2.7 vs. 1.8, P=NS) (Figure 18B). These data 

indicate that very little b-cell neogenesis occurred in the clodronate-treated larvae.  
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Figure 18: b-cell neogenesis is downregulated in clodronate-injected, MTZ-treated 

zebrafish. (A) Representative image of the islet from Tg(ins:kaede) zebrafish larvae. The 

b-cells express photoconvertible GFP (green). UV treatment converts GFP to RPF (red), 

making the photoconverted b-cells express both GFP and RFP (yellow). However, the 

regenerated b-cells express only the GFP as they are not photoconverted (green-first from 

the right) (B) Quantification of the regenerated b-cells mass in the controls and the 

clodronate-injected larvae after 24 hours and 48 hours of recovery in regular fish water. 

Data are presented as mean ± SEM (∗p < 0.05).  
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4.2.4.  The surviving b-cell mass recovers function after ROS-injury in the absence of 

macrophages: 

  The data above suggest that the b-cell mass observed in the larvae at the conclusion 

of MTZ and clodronate treatments is comprised almost entirely of pre-existing b-cells. 

Thus, I was compelled to determine if these pre-existing b-cells were functional with 

regard to glucose regulation, or if they were dead or otherwise defunct cells that had not 

been cleared due to lack of macrophages. To address this issue, I performed free glucose 

assays on pooled whole-zebrafish lysates at different stages of MTZ treatment and 

recovery.  

  I found that control samples that were not treated with MTZ showed constant free 

glucose levels over the course of the 4-day experiment (4 dpf-7 dpf) irrespective of the 

clodronate treatment (Figure 19 – purple and green line). However, in the 5 dpf zebrafish 

that were treated with MTZ for 24 hours, I found a steep increase in free glucose levels 

(Figure 19 – dark blue and red line). Next, at 6 dpf, after 24 hours of recovery after removal 

from the MTZ treatment, free glucose levels were still elevated (Figure 19 – dark blue and 

red line). However, at 7 dpf—48 hours following their removal from MTZ, the free glucose 

levels decreased substantially and trending towards returning to the levels similar to those 

seen in the control samples (Figure 19 – dark blue and red line vs. green and purple lines). 

Importantly, when the larvae were treated with MTZ after macrophage depletion via 

injection of clodronate, the free glucose levels were significantly lower than the MTZ-only 

group, although the overall trend of free glucose levels was still elevated, similar to control 

MTZ treatments (Figure 19 – At 6 dpf – dark blue vs. red line). 
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Figure 19: The surviving b-cell mass recovers glucoregulatory function after ROS-injury 

in the absence of macrophages. The graph represents free glucose measurements from 

whole-zebrafish lysates that were collected at different stages of MTZ treatment and 

recovery conditions as follows: MTZ-untreated and clodronate non-injected (purple), 

MTZ-untreated and clodronate-injected (green), MTZ-treated and clodronate non-injected 

(dark blue) and MTZ-treated and clodronate-injected (red). Clodronate treatment was done 

from 3 dpf-4 dpf (pink region), the MTZ treatments were done from 4 dpf-5 dpf (blue 

region), and the recovery phase in the fish water was done from 5 dpf-7 dpf (yellow region). 

Data are presented as mean ± SEM (∗p < 0.05).  
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4.3.  Discussion:  

  Macrophages have been implicated in the pathogenesis of both T1D and T2D. 

Evidence from several studies has indicated that macrophage depletion protects mouse 

models from the development of diabetes (Carrero et al., 2017; Jun et al., 1999). However, 

there are no studies that address the mechanisms by which the macrophages promote 

hyperglycemia in response to β-cell injury. In my study, I have used a zebrafish system to 

explore the immunological events that occur immediately after oxidative stress-mediated 

b-cell injury, and also during islet recovery, both in the presence and in the absence of 

macrophages.  

  Firstly, I identified the ideal conditions for ensuring the complete ablation of 

macrophages using clodronate injections i.e., 7-10 nL per embryo of 5 mg/mL clodronate 

for 24 hours. Importantly, I used this tailfin injury assay for the initial characterization of 

macrophage behavior since it is challenging to visualize deeply located macrophages that 

could remain hidden. Because macrophages are very sensitive to tissue injuries, 

macrophages that were not eliminated during the clodronate-induced phagocytosis would 

have been visible at the tail injury site. However, no macrophages were observed at the 

injury site, suggesting that I had achieved complete ablation, which persisted over 72 hours 

after the clodronate-injections. Since my experimental conditions did not exceed over 72 

hours after the treatment, the persistence of the macrophage depletion by clodronate 

beyond 3 days of the treatment, still remains unexplored.  

  The role of macrophages in b-cell injury is widely studied in the context of T1D 

pathogenesis. The macrophages are one of the primary responders to b-cell stress as well 

as major sources of pro-inflammatory cytokines that ultimately cause b-cell destruction. I 
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wanted to determine the fate of these stressed b-cells in the absence of macrophages. Upon 

clodronate-mediated depletion of macrophages and after inducing stress by MTZ 

treatment, I observed near-complete protection of the b-cell mass. This data highlights one 

of the important yet unexplored aspects of macrophage function i.e., phagocytosis of 

damaged and dead cells. In the context of diabetes, macrophages are often studied for their 

roles as mediators of inflammation. However, their role in b-cell phagocytosis is not well 

studied. It is a crucial aspect, especially since the capacity of the b-cells to regenerate or 

replicate is extremely low (Kulkarni et al., 2012; Rankin and Kushner, 2009; Teta et al., 

2005). Hence, the clearance of these cells leads to a state that is beyond repair. On the other 

hand, depletion of the macrophages protects this b-cell mass, suggesting that macrophages 

are active participants in the ablation of these insulin-producing cells of the islet in this 

model.  

  However, there are at least two possible explanations for the persistence of the islet 

b-cell mass. First, b-cells might persist because no macrophages are present to engulf the 

injured and dead b-cells. Second, the b-cells might rapidly regenerate because 

macrophages in the pancreas actively regulate b-cell neogenesis and replication 

(Nackiewicz et al., 2019; Xiao et al., 2014b), and that their depletion effectively de-

represses new b-cell formation. Thus, to distinguish between these two possibilities, I used 

Tg (ins:Kaede); Tg(ins:NTR), which is a powerful tool to distinguishing the newly formed 

‘neogenic’ b-cells from the pre-existing b-cells. In this experiment. I observed that, right 

from 24 hours of recovery from MTZ treatment, there were significantly higher neogenic 

b-cells in the controls as compared to the clodronate-injected larvae. This difference 

extended even further by 48 hours of recovery, especially since there was no difference in 
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the number of neogenic b-cells in the clodronate-injected samples from 24 to 48 hours of 

recovery. These data suggest that macrophages are critical factors for b-cell regeneration.  

  Finally, it was essential to determine whether the persisting b-cells were still 

functional, whether they were non-functional and temporarily dormant, but viable, or 

whether they were dead b-cells that were not cleared due to the absence of primary 

phagocytes. For this, I performed a colorimetric free glucose assay on pools of whole 

zebrafish larvae. This assay is based on a glucose oxidase enzyme-based method in which 

liberated glucose in the zebrafish lysates is specifically oxidized. This generates an 

intermediate product that reacts with a dye. The intensity of the resulting color is 

proportional to free glucose concentration and can be used as a surrogate measure of blood 

glucose in zebrafish larvae. With 24 hours of MTZ treatment, I observed a sharp increase 

in the free glucose levels that were measured in both the clodronate-injected and the non-

injected larvae, as compared to the non-ablated controls. However, the free glucose levels 

in larvae treated with MTZ and clodronate was significantly lower than in those subjected 

to MTZ alone. The hyperglycemia seen in both cases could be attributed to a severe 

disruption of b-cell functions. In the clodronate non-injected, b-cell-ablated larvae, there 

are essentially no b-cells remaining to release insulin. On the other hand, in the clodronate-

injected larvae, although there are b-cells, they are likely to be severely damaged. 

Importantly, the differences in the glucose levels suggest that, although injured, there was 

still some insulin-related function in the persisting b-cells. Importantly, after the larvae 

were removed from MTZ and transferred to fresh fish water, the exogenous source of b-

cell oxidative stress was eliminated. In the clodronate-injected larvae, the injured but 

surviving b-cells, recovered from the ROS-mediated damage. The required recovery time 
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could explain a higher spike in the glucose levels at 24 hours in the recovery phase. 

However, it was still significantly lower than the clodronate non-injected larvae, in which 

there was a complete loss of b-cell mass with only about four b-cells evident at 24 hours 

of recovery. However, at 48 hours of recovery, there was a significant decrease in the 

glycemic levels, almost matching levels measured in the control larvae. This clodronate 

injected group suggests that 48 hours after the elimination of the stress inducer, the b-cells 

can recover their function. On the other hand, the non-injected group suggests that 12-14 

functional b-cells can maintain normal glycemic levels as long as they are no more 

subjected to stress during the larval stage of the zebrafish. 

  In conclusion, my data show a significant new role for macrophages in b-cell 

homeostasis. Canonically, macrophages are known to infiltrate in large numbers and also 

release pro-inflammatory cytokines leading to maladaptive inflammation in the pancreas 

during diabetes pathogenesis. In this study, I show another aspect of macrophage function 

that might further exacerbate hyperglycemia. Here, I see that macrophages prematurely 

phagocytose injured b-cells that may still have the capacity to recover their function—if 

there was an abatement of the stress. Probably, that is the reason for the protection of the 

NOD mice model from the development of diabetes upon depletion of macrophages. 

However, depletion of macrophages would have drawbacks as a treatment strategy –it 

could weaken the immune system. Hence, I believe that if there is a more targeted 

prevention of macrophage infiltration in the pancreatic islets, this would be a better strategy 

to protect the b-cells from damage.  
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Chapter Five: 12-lipoxygenase regulates macrophage infiltration during islet 

inflammation 

5.1  Introduction: 

Lipoxygenases (LOX) are enzymes that catalyze the di-oxygenation of poly-

unsaturated fatty acids. Specifically, 12-lipoxygenase (12-LOX) catalyzes the conversion 

of arachidonic acid to the eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE) (Ikei et 

al., 2012). Both 12-LOX and 12-HETE are implicated in pancreatic islet inflammation 

(Dobrian et al., 2019; Ma et al., 2010; Tersey et al., 2014). 12-LOX expression is 

upregulated in islets isolated from patients with either pre-diabetes or T2D (Tersey et al., 

2015). Additionally, the treatment of human islets with pro-inflammatory cytokines 

significantly upregulates the gene expression of 12-LOX (Ma et al., 2010). With regard to 

enzyme function and pancreatic expression, mouse enzyme 12-LOX encoded by Alox15, 

and zebrafish enzyme 12-LOX encoded by alox12, are homologous to human 12-LOX 

encoded by the gene ALOX12 (Dobrian et al., 2011; Haas et al., 2011; Kuhn et al., 2015). 

As seen in human islet studies, mutant mice lacking 12-LOX are protected from 

deterioration of islet dysfunction in the settings of either pro-inflammatory cytokine 

exposure, high-fat diet, or on the NOD background (Green-Mitchell et al., 2013). These 

data suggest a strong correlation between 12-LOX, the regulation of inflammation, and the 

pathogenesis of diabetes. However, studies that focus on the roles played by 12-LOX in 

immune cell-mediated inflammation in the context of diabetes are limited. 

As discussed in previous chapters, the infiltration of macrophages into the pancreas 

promotes an inflammatory state due to the release of pro-inflammatory cytokines. This 

inflammatory environment causes damage to the b-cells of the pancreatic islets and 
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consequently promotes β-cell apoptosis (Kanter et al., 2012; Kraakman et al., 2014). This 

inflammation-mediated damage leads to a reduction in insulin secretion, which in turn 

promotes the progression of diabetes. Furthermore, the stress signals emitted from 

damaged β-cells further enhances macrophage infiltration and their associated 

phagocytosis activity. Since the regenerative capacity of β-cells is low, this phagocytic 

activity effectively leads to a permanent loss of β-cell mass, thus exacerbates diabetes 

pathophysiology. In this respect, several studies have suggested that depletion of 

macrophages, either islet-resident macrophages or a global deletion, can significantly slow 

or prevent the development of diabetes (Carrero et al., 2017; Jun et al., 1999). Practically, 

the impairment of macrophage infiltration into the islets would prevent the exacerbation of 

inflammation. Thus, by uncovering and manipulating the mechanisms that control 

macrophage migration, it will be possible to devise novel therapeutic strategies that would 

protect β-cell mass and thus halt or reverse diabetes progression.  

  12-LOX is expressed in macrophages at levels significantly higher than in other 

tissues (Wuest et al., 2012). Furthermore, in other contexts, there is evidence that 12-LOX 

promotes inflammation and cellular migration, and this could potentially extrapolate to 

macrophage migration and infiltration in the islets (Klampfl et al., 2012; Nie et al., 2000). 

However, there is no direct evidence of a role for 12-LOX in macrophage polarization or 

migration. In my studies, I investigated the roles of 12-LOX in macrophages using the 

strengths of both mouse and novel transgenic zebrafish models. I tested the hypothesis that 

12-LOX promotes macrophage polarization to a pro-inflammatory (M1) phenotype, as 

well as migration, which together promotes damaging inflammation in the islets.  
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5.2.  Results: 

5.2.1.  12-LOX does not directly affect the polarization of the macrophages: 

Macrophages become polarized towards either a pro-inflammatory (M1) or an anti-

inflammatory (M2) phenotype based on the stimuli received from their environment (Liu 

et al., 2014b). As discussed above, 12-LOX has been associated with the induction and 

amplification of inflammation. Hence, I hypothesized that the depletion of 12-LOX would 

prevent polarization of the macrophages to the M1 phenotype, would promote M2 

polarization, or both. Upon treatment with a pro-inflammatory cytokine cocktail, there was 

an upregulation in inducible nitric oxide synthase (iNOS) expression (Figure 20A). 

However, no significant difference in expression between WT and 12-LOX KO peritoneal 

macrophages was observed. I next tested whether loss of 12-LOX affected the levels of a 

major cytokine released by the M1 polarized macrophage, IL-6. Again, I observed no 

significant difference in the production of IL-6 between WT and 12-LOX KO (Figure 

20B). Finally, I checked the gene expression levels of IL-6 and IL-12, two cytokines 

characteristically expressed in M1-polarized macrophages, to investigate polarization 

status at the transcriptional level. Consistent with my earlier observations, there was no 

difference detected in these markers of polarization (Figure 20C). 

Next, I assessed whether loss of 12-LOX affected the M2 polarization of 

macrophages. Treatment with IL-4 promoted the expression of the mannose receptor 

(CD206) in the macrophages; however, both WT and 12-LOX KO macrophages expressed 

it similarly (Figure 20D). IL-4 treatment also promoted the release of the anti-inflammatory 

cytokine, IL-10. Although there was no significant difference in IL-10 production, there 

was a trend towards increased IL-10 release in 12-LOX KO macrophages (P=0.053), 
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suggesting that the depletion of 12-LOX might promote anti-inflammatory responses by 

the macrophages (Figure 20E). Finally, I measured the gene expression levels of two key 

markers of M2 polarization: IL-10 and TGF-b. Here again, I observed no significant 

difference in the transcript levels of the markers of M2 polarization (Figure 20F). 

 

  



142 

A. 

 
 

B. 

  



143 

 

C. 

 

 

  



144 

D. 

 
E.  

  



145 

F. 

 
 

 
  



146 

Figure 20: 12-LOX does not directly affect the polarization of the macrophages. (A) Flow 

cytometry analysis of iNOS expression in WT and 12-LOX KO peritoneal macrophages. 

(B) ELISA for quantification of IL-6 production by the peritoneal macrophages. (C) qPCR 

for measuring gene expression of IL-6 (upper) and IL-12 (lower). (D) Flow cytometry 

analysis of CD206 expression in WT and 12-LOX KO peritoneal macrophages. (E) ELISA 

for quantification of IL-10 production by the peritoneal macrophages. (F) qPCR for 

measuring gene expression of IL-10 (upper) and TGF-b (lower) Data are presented as 

mean ±SEM. 
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5.2.2.  12-LOX inhibition impairs migration of macrophages to the site of tailfin injury: 

Zebrafish have been extensively utilized for studying inflammation because their 

optical transparency facilitates the visualization of immune cell infiltration in vivo and 

because they are amenable to genetic manipulation. To study the roles of 12-LOX in 

macrophage migration, I performed a tailfin injury assay, which is a well-established 

mechanical tissue injury model. In this assay, macrophages rapidly infiltrate to the injury 

site as part of an inflammatory response (Figure 21A). To reveal the functions of 12-LOX 

in the process of macrophage migration, I knocked-down 12-LOX protein levels by 

injecting a translation-blocking antisense morpholino at the one-cell embryonic stage. At 

3 dpf (days post-fertilization), I performed the tailfin injury assay and quantified the 

number of macrophages that had migrated to the site of injury. I measured a significant 

reduction in the number of macrophages in the injured tailfins of morpholino-injected 

larvae as compared to the non-injected controls (Figures 21B-C). To further confirm this 

result using a second approach that may be therapeutically relevant, I performed an 

analogous experiment using the well-characterized small molecule ML355 (Luci et al., 

2010) to inhibit 12-LOX activity. For this experiment, I pre-treated the larvae for 2 hours 

with either DMSO vehicle control or with 10 μM ML355, then performed the tailfin injury. 

The larvae were then returned to their respective drug/control treatments for an additional 

6 hours. Similar to what I observed with the morpholino knockdowns, ML355 treatment 

prevented macrophage migration towards injured sites (Figures 21D-E). 
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Figure 21: Inhibition of 12-LOX prevented the migration of macrophages to the tailfin 

injury site. (A) 4 dpf Tg(mpeg:eGFP) zebrafish larvae were subjected to tailfin injury for 

6 hours. The GFP-labeled macrophages (green) accumulated at the injured site (B) 

Representative images of tailfins of zebrafish larvae with 4 ng alox12 morpholino injected 

samples (right) or un-injected controls (left) (C) Quantification of the number of 

macrophages at the tailfin injury site shows a reduction with the knockdown of alox12. (D) 

Representative images of zebrafish tailfins in larvae treated with 10 μM ML355 (right) or 

DMSO vehicle control (left) (E) Quantification of the macrophage number at the tailfin 

injury site shows reduced inflammation after 6 hours of ML355 treatment. Data are 

presented as mean ± SEM (∗p < 0.05). Scale bar indicates 100 μm. 
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5.2.3.  12-LOX is required for migration of macrophages into the islet after b-cell 

injury: 

Having uncovered a role for 12-LOX in macrophage migration in a mechanical 

injury context, I next investigated roles for 12-LOX during macrophage infiltration into 

pancreatic islets using a diabetes-relevant model system. In Chapter 3, I showed that 

macrophages associate with β-cells experiencing oxidative stress. Here, I have used the 

same chemical-genetic approach to drive oxidative damage in the β-cells (Figure 

22A).  12-LOX was knocked down with morpholino or its activity was inhibited with 10 

μM ML355 treatment. After oxidative β-cell injury, I measured a significant reduction in 

the number of macrophages that migrated to the injured islets in the alox12 morpholino-

injected larvae as compared to the non-injected controls (Figures 22B-C). These data 

suggest that 12-LOX has a role in macrophage migration. Similarly, when 12-LOX was 

inhibited with ML355, I observed similar effects wherein macrophage infiltration in the 

islets was reduced relative to DMSO-treated controls (Figures 22D-E) 
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Figure 22: Inhibition of 12-LOX prevented migration of macrophages in the islet after b-

cell injury. (A) 4dpf Tg(mpeg:eGFP),Tg( ins:NTR) zebrafish larvae were treated with 7.5 

mM Metronidazole for 6 hours followed by sample processing and antibody staining. In 

response to b-cell injury, the macrophages infiltrate the islets and ultimately phagocytose 

the damaged b-cells. (B) Representative images of islets of zebrafish (NTR+) larvae treated 

with 7.5 mM MTZ with 4ng alox12 morpholino injected samples (right), or un-injected 

controls (left) (C) Quantification of the number of macrophages at the injured islets shows 

protection from macrophage-mediated inflammation in β-cells by knockdown of alox12. 

(D) Representative images of islets of zebrafish (NTR+) larvae treated with 7.5 mM MTZ 

with 10 μM ML355 (right) or DMSO vehicle control (left). (E) Quantification of the 

number of macrophages at the injured islets shows protection from macrophage-mediated 

inflammation in β-cells after 6 hours of ML355 treatment. Data are presented as 

mean ± SEM (∗p < 0.05). Scale bar indicates 40 μm.  
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5.2.4.  Depletion of 12-LOX prevents macrophage chemotaxis in vitro: 

Previous studies in my lab have demonstrated that loss of 12-LOX protects mice 

from developing diabetes in the NOD model (Hernandez-Perez et al., 2017). Based on this, 

I hypothesized that 12-LOX loss-of-function would prevent macrophage migration into the 

islets, and thus prevent any resulting inflammation-mediated damage to the β cells. To 

determine whether the role 12-LOX during macrophage migration into the zebrafish islets 

is conserved in mammals, I used the same 12-LOX knockout mouse model. I isolated 

peritoneal macrophages and pancreatic islets from wild-type (WT) and Alox15 mutant 

mice. I then treated the islets with a pro-inflammatory cytokine cocktail for 24 hours and 

collected the conditioned media; this was utilized for the transwell macrophage migration 

assay. For this assay, I added WT or Alox15 mutant macrophages to the upper chamber and 

measured their migration to the lower chamber in response to conditioned media from islets 

(Figure 23A). Consistent with the results from the zebrafish studies, I found a substantial 

reduction in the migration of the 12-LOX KO peritoneal macrophages as compared to the 

WT macrophages (Figure 23B).  
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Figure 23: Depletion of 12-LOX prevents macrophage chemotaxis in vitro. (A) Transwell 

migration assay schematic- Conditioned islet media was loaded in the bottom chamber, 

and peritoneal macrophages isolated from WT or 12-LOX KO mice were loaded in the top 

chamber. The migrated macrophages were quantified after four hours. (B) Macrophage 

chemotaxis was impaired by the depletion of 12-LOX. Data are presented as mean ± SEM 

(∗p < 0.05). 
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5.2.5.  CXCR3 expression is downstream of 12-LOX in macrophages: 

12-LOX has been implicated in regulating cellular migration in several different 

contexts. In some cancers, 12-LOX depletion substantially reduces the metastatic ability 

of cancer cells (Nie et al., 2003; Schneider and Pozzi, 2011; Zhong et al., 2018). Moreover, 

the depletion of 12-LOX prevents neutrophil migration by downregulating the chemokine 

receptor CXCR2 (Rossaint et al., 2012). Based on these studies, I measured the mRNA and 

protein expression levels of the cell surface receptor CXCR3 in peritoneal macrophages 

that were isolated from WT and 12-LOX KO mice. CXCR3 has been shown to have a 

critical role in the migration of macrophages. In 12-LOX KO macrophages, I observed 

significantly lower CXCR3 surface expression as compared to WT macrophages (Figure 

24A). Moreover, gene expression of CXCR3 was significantly lower in 12-LOX KO 

macrophages compared to WT macrophages (Figure 24B). Finally, to determine whether 

12-LOX depletion affects the CXCR3 receptor expression in the zebrafish as well. For this, 

I performed tailfin injury assay, on the alox12 morpholino-injected and control (un-

injected) larvae. I then bisected individual larvae and collected the bottom half of the larvae 

for analysis. In this portion of the larvae, the zebrafish CXCR3 orthologue CXCR3.2 is 

restricted to the macrophages. I pooled 25 larvae per condition and then extracted RNA 

and checked the expression of cxcr3.2. I observed a reduction in the levels of cxcr3.2 in 

alox12 morpholino-treated larvae. Consistent with the findings in mice studies, I found a 

significant reduction in the mRNA levels of cxcr3.2 in the alox12 morpholino-treated 

larvae compared to control larvae (Figure 24C). 
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Figure 24: CXCR3 levels are downregulated in 12-LOX loss-of-function macrophages. 

(A) Flow cytometry analysis of CXCR3 expression in WT and 12-LOX KO macrophages. 

(B) qPCR for measuring gene expression of CXCR3. (C) 3dpf zebrafish larvae treated with 

alox12 morpholino were subjected to tailfin injury and used for RNA extraction. The graph 

represents the gene expression of cxcr3.2. An individual point on the graph represents a 

clutch of 25 larvae pooled together.   
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5.3  Discussion: 

  Based on the specific PUFA substrate, LOX enzymes facilitate the production of 

metabolites called eicosanoids, which can be either pro-inflammatory or anti-inflammatory 

(Smith and Murphy, 2016). 12-lipoxygenase is implicated in oxidative stress and 

inflammation-mediated tissue damage. One of the major substrates of 12-LOX is 

arachidonic acid that leads to production to leukotrienes and 12-HETE. Both 12-LOX and 

its products have been associated with pancreatic inflammation. In this study, I sought to 

identify the roles of 12-LOX during macrophage-mediated inflammation, as this aspect has 

not been explored yet.  

  Two major factors define macrophage-mediated inflammation: polarization and 

directed migration. Macrophage polarization to a pro-inflammatory phenotype and 

infiltration in excessive numbers that lead to a pro-inflammatory milieu causes tissue 

damage and is associated with several pathologies like atherosclerosis, sepsis, 

osteoporosis, and diabetes. I attempted to elucidate the role of 12-LOX in these two major 

processes involved in macrophage-mediated inflammation. First, I checked the effect of 

depletion of 12-LOX, on the polarization of peritoneal macrophages in a mouse model. I 

used peritoneal macrophages as it has been shown that 12-LOX is only expressed in 

peritoneal macrophages at significant levels, while in other macrophage types—like bone 

marrow or tissue-resident macrophages—it is not detected (Sun and Funk, 1996). The 

polarization of macrophages can be tested by measuring the transcript or protein levels of 

the markers that contribute to or resolve inflammation. I observed that there was no 

difference in the expression of these markers between WT and 12-LOX KO peritoneal 

macrophages. These data suggest that 12-LOX might not have a direct role in the 
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polarization of macrophages. However, it remains possible that it could have synergistic 

effects together with other physiological mediators. They might also be indicative of 

polarization state rather than a cause of polarization of the macrophages. Furthermore, 

macrophage polarization studies such as this are typically performed in vitro. However, 

12-LOX-mediated effect on the polarization might be an in vivo event, which requires more 

contextual information.  

  Maladaptive inflammation leads to excessive macrophage infiltration that, in turn, 

exacerbates the initial injury. Hence next, I investigated the actions of 12-LOX during 

macrophage migration. 12-LOX has been implicated in cellular migration in various other 

contexts. It has been widely studied in cancer metastasis, where it promotes the spread of 

colorectal cancer and pancreatic cancer cells (Nie et al., 2003; Schneider and Pozzi, 2011; 

Zhong et al., 2018). 12-LOX has also been associated with germ cell migration (Bromfield 

et al., 2017). In the context of immune cells, 12-LOX has been shown to promote neutrophil 

migration in an acute lung injury model (Rossaint et al., 2012). Based on this rationale, I 

used two in vivo zebrafish assays to test the hypothesis that 12-LOX also has a role in 

immune cell migration. In both injury models, tailfin injury and b-cell injury, I observed a 

significant reduction in the number of macrophages infiltrating into the injury sites when 

12-LOX was inhibited with either morpholino injections or ML355 treatment. These data 

strongly suggest a migratory role of 12-LOX in macrophages. However, one caveat of this 

study is that I have globally inhibited 12-LOX, and the effect is not macrophage-specific. 

To focus specifically on the role in macrophage, I used peritoneal macrophages that were 

isolated from wild-type and 12-LOX knockout mice. I performed transwell migration 

assays, where these macrophages migrated in the context of media that was conditioned by 
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islet culture. Again, I found that peritoneal macrophages isolated from 12-LOX knockout 

mice show significantly less migration. These data establish a role for 12-LOX in 

macrophage migration, which is conserved between mice and zebrafish; this suggests that 

12-LOX is part of a fundamental mechanism governing macrophage behavior, and as such, 

it is likely to be conserved in human macrophages as well. 

  The final question addressed in this study is the mechanism by which 12-LOX 

mediates its effects on macrophage migration. Both 12-LOX and 12-HETE have been 

shown to exert its effect on cell migration by direct inhibition of cell surface receptors. In 

12-LOX knockout neutrophils, there is a significant reduction in CXCR2 expression levels. 

Similarly, I observed a significantly lower cell surface expression of CXCR3 levels in the 

macrophages isolated from 12-LOX knockout mice. Accordingly, I found a significantly 

lower expression of CXCR3.2, the zebrafish macrophage-specific isoform of CXCR3, in 

larvae injected with alox12 morpholino. This strengthens the argument that even the 

mechanism of 12-LOX-mediated effects on macrophage migration is fundamental and 

conserved across species.  

In conclusion, in this study, I have determined a role for 12-LOX in macrophage 

function as well as its mechanism. 12-LOX inhibition prevented macrophage infiltration 

into the islets, which could be exploited for diabetes therapeutics. As it is, various studies 

are focusing on preventing macrophage infiltration as a therapeutic measure for the 

treatment of these diseases. Macrophage-mediated inflammation has been thought to play 

a critical factor in diabetes pathogenesis. As discussed above, the current approaches to 

curb macrophages involve either depleting them or preventing the infiltration by targeting 

chemokine receptors. However, depleting macrophages causes weakening of the immune 
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system while targeting the receptors also inhibits other immune cell types as well that 

express the receptor, thus, having a similar effect on the immune system. Therefore, 

inhibition of 12-LOX could be a better strategy to prevent macrophage infiltration, and 

thus would suppress macrophage-mediated induction of inflammation and premature 

phagocytosis of injured, but reparable b-cells. 
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Chapter Six: Conclusion and future directions 

6.1  Conclusion: 

This thesis project provides insights and interventions into the inflammatory events 

that ultimately promote b-cell destruction resulting in diabetes. This work is based on the 

two key elements that regulate inflammation and contribute to b-cell damage; the 

macrophage and 12-lipoxygenase (12-LOX). Independent studies in our lab and others 

have shown that macrophages and 12-LOX can contribute to inflammatory damage to b-

cells. More importantly, the depletion of either 12-LOX or macrophages protects rodent 

models from the development of diabetes. In my study, I established a link between these 

two potent mediators of diabetes pathogenesis. In this final chapter, I will be concluding 

with the major findings from the three studies, followed by potential future directions. 

In the first study, I established a zebrafish model, Tg(ins:NTR), to effectively 

visualize ROS-mediated damage to the b-cells. In this model, I observed that the MTZ-

NTR interaction induces ROS, which is followed by induction of apoptosis and 

macrophage infiltration, ultimately ablating the b-cells. Using this model, in the second 

study, I elucidated the role of macrophages in the conditions of b-cell stress by depleting 

these innate immune cells with clodronate injections in the Tg(ins:NTR) larvae. The 

depletion of macrophages protected the b-cell mass after MTZ treatment. Interestingly, 

these surviving b-cells regained their function upon the elimination of cellular stress. This 

study revealed a novel aspect of diabetes pathogenesis that an excessive infiltration of 

macrophages triggers premature phagocytosis of b-cells, leading to hyperglycemia. In the 

final study, I determined the role of 12-LOX in macrophage function in the context of islet 

inflammation. Although 12-LOX does not directly affect macrophage polarization, it 
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certainly promotes macrophage migration by upregulation of CXCR3 expression. 

Importantly, this role of 12-LOX in macrophage migration is conserved in zebrafish and 

mice.  

Together, my studies illuminate a strong link between macrophage functions and 

diabetes pathogenesis that hinge on the activity of 12-LOX. Overall, based on the sum of 

data obtained from these studies, it can be inferred that excessive macrophage infiltration 

in the pancreatic islets in response to stressed b-cells exacerbates inflammation and 

promotes b-cell dysfunction and phagocytosis. Due to phagocytosis of b-cells, even if they 

are only partially damaged, there is a rapid loss of b-cell mass leading to hyperglycemia. 

Since the ability of the b-cells to regenerate is extremely low, this loss of b-cell mass is 

almost permanent. If there is macrophage depletion, the surviving b-cells can restore their 

function once cellular stress has been resolved. Since macrophage depletion is not a 

practical therapeutic approach, future research can instead focus on preventing or delaying 

their infiltration in the islets and thereby provide time for b-cells to recover. Based on the 

results from the last study, I found inhibition of 12-LOX to be effective at preventing 

macrophage infiltration. Importantly, I achieved inhibition of macrophage migration by 

using a pharmacologically relevant small molecule inhibitor of 12-LOX. One of the major 

advantages of specifically targeting 12-LOX is that this not only impairs macrophage 

infiltration, but also promotes a global reduction in oxidative stress and inflammation. This 

should create a physiological context that is conducive to the rapid recovery of the b-cells. 

In conclusion, my studies reveal exciting new roles for 12-LOX in macrophage function 

and provide potential therapeutic targets that can prevent inflammation-induced damage to 

the pancreatic islets. 
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6.2.  Future Directions: 

The data presented in this thesis study introduce a novel paradigm for determining 

the role of inflammation in diabetes pathogenesis and provide an interesting outlook on 

future interventions for diabetes. Still, much remains to be unraveled in terms of 

understanding the cellular and molecular mechanisms involved in the 12-LOX-diabetes 

pathogenesis axis. In the sections below, I have outlined a few future experimental 

directions that will further improve the understanding of this important axis, and which 

will surely inform the translation of these mechanisms from preclinical studies to human 

therapeutics. 

 

6.2.1.  Role of macrophages in b-cell neogenesis and function: 

I established that the depletion of macrophages is beneficial for the survival and the 

recovery of function in ROS-injured b-cells. However, with regard to neogenesis, I did not 

observe any β cell regeneration in my studies where macrophages were depleted. It remains 

unclear, however, whether the lack of neogenesis was due to the maintenance of b-cell 

mass—rendering it unnecessary—or whether it was due to the absence of macrophages, 

which themselves might provide factors that promote regeneration. The depletion of 

macrophages before the beginning of the recovery phase can shed light on the role of these 

immune cells in promoting the neogenesis of the b-cells. 

It is also essential to study these mechanisms in adult zebrafish, since, at the larval 

stages, the b-cells regenerative capacity is higher as compared to the adults (Matsuda, 

2018). As such, the role of the macrophages could change with age as the complexity of 

their interactions is higher when the adaptive immune system gets involved. The next step 
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would be to translate these studies in rodent models as they are better disease models to 

match the physiological complexity of humans. The depletion of macrophages at different 

stages of development in the models of diabetes would highlight the role macrophages play 

in initiation as well as the resolution of diabetes. The two most important questions in these 

studies will be: i) Do the macrophages initiate the development of diabetes, or are they 

merely the factors that exacerbate the pathology? ii) Do the macrophages participate in b-

cell neogenesis at the adult stage?  

 

6.2.2.  Role of 12-LOX in vivo obesity zebrafish model of diabetes: 

I have looked at the effect of 12-LOX in vivo by utilizing the MTZ-NTR zebrafish 

model. Although this model efficiently induces hyperglycemia, it does not relate to obesity-

induced diabetes, which is the characteristic of the most common form of diabetes (T2D). 

The alox12 morpholino-treated fish can be placed on a high-fat diet and low-fat diet by 

immersing them in the egg yolk and egg white solution, respectively. The glycemic levels, 

as well as b-cell mass, can be tracked. It would be an efficient diabetes model for the in 

vivo visualization of the pathological effects on different organs apart from the pancreas, 

like liver and kidney, that get affected in conditions of hyperglycemia. Importantly, the 

effect of 12-LOX can be explored by easily performing 12-LOX knockdown or knockout. 

It is also easier to achieve b-cell- or macrophage-specific expression of 12-LOX in 

zebrafish as compared to the complex rodent models. 
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6.2.3.  12-LOX overexpression models for studying diabetes pathogenesis: 

Most existing studies of 12-LOX in diabetes have focused on global or cell-specific 

loss-of-function, through depletion of the enzyme genetically or depletion of activity by 

small-molecule inhibitors. However, since excessive 12-HETE and 12-LOX expression are 

associated with diabetes, it will be informative to study whether 12-LOX overexpression 

can drive or exacerbate diabetes pathology. There are no studies that have examined the 

direct effects of global or cell-specific upregulation of 12-LOX in the wide array of diabetes 

models. It would be exciting to study the effect of macrophage-specific and b-cell-specific 

12-LOX upregulation. In macrophage-specific upregulation, it would be interesting to see 

if it polarizes them to a pro-inflammatory phenotype and increases their migratory abilities. 

Similarly, in b-cell-specific upregulation, it would be curious to see if they promote 

oxidative stress and inflammation to trigger apoptosis. 

 

6.2.4.  Exploring 12-LOX-12-HETE-gpr31 axis in diabetes pathogenesis: 

In diabetes pathogenesis, 12-LOX has been shown to exert its effect via its 

eicosanoid product 12-HETE. There is not much available information on the direct role 

of 12-HETE or its putative receptor gpr31, in the initiation and progression of the diabetes. 

My lab has developed different tools like gpr31 knockout as well as 12-LOX knockout 

zebrafish and mouse models to explore the role of this axis in diabetes pathogenesis. It will 

be interesting to explore how these factors individually regulate the b-cell activity and 

contribute to its dysfunction. 

  



171 

References 
 
Aamodt, K.I., and Powers, A.C. (2017). Signals in the pancreatic islet microenvironment 
influence β cell proliferation. Diabetes Obes Metab 19, 124–136. 

Ackermann, J.A., Hofheinz, K., Zaiss, M.M., and Krönke, G. (2017). The double-edged 
role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta 
Mol Cell Biol Lipids 1862, 371–381. 

Adili, R., Tourdot, B.E., Mast, K., Yeung, J., Freedman, J.C., Green, A., Luci, D.K., 
Jadhav, A., Simeonov, A., Maloney, D.J., et al. (2017). First Selective 12-LOX Inhibitor, 
ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects 
on Hemostasis. Arterioscler. Thromb. Vasc. Biol. 37, 1828–1839. 

Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., 
McCarthy, N., Montibeller, L., More, S., et al. (2019). Endoplasmic reticulum stress 
signalling - from basic mechanisms to clinical applications. FEBS J. 286, 241–278. 

de Almeida, D.E., and Holoshitz, J. (2011). MHC molecules in health and disease. Self 
Nonself 2, 43–48. 

Alvarez, Y., Chen, K., Reynolds, A.L., Waghorne, N., O’Connor, J.J., and Kennedy, B.N. 
(2010). Predominant cone photoreceptor dysfunction in a hyperglycaemic model of non-
proliferative diabetic retinopathy. Dis Model Mech 3, 236–245. 

Aly, T.A., Ide, A., Jahromi, M.M., Barker, J.M., Fernando, M.S., Babu, S.R., Yu, L., Miao, 
D., Erlich, H.A., Fain, P.R., et al. (2006). Extreme genetic risk for type 1A diabetes. Proc. 
Natl. Acad. Sci. U.S.A. 103, 14074–14079. 

American Diabetes Association (2018). Economic Costs of Diabetes in the U.S. in 2017. 
Diabetes Care 41, 917–928. 

Anderson, M.S., and Bluestone, J.A. (2005). The NOD mouse: a model of immune 
dysregulation. Annu. Rev. Immunol. 23, 447–485. 

Andréoletti, L., Hober, D., Hober-Vandenberghe, C., Fajardy, I., Belaich, S., Lambert, V., 
Vantyghem, M.C., Lefebvre, J., and Wattre, P. (1998). Coxsackie B virus infection and 
beta cell autoantibodies in newly diagnosed IDDM adult patients. Clin Diagn Virol 9, 125–
133. 

Anjos, S., and Polychronakos, C. (2004). Mechanisms of genetic susceptibility to type I 
diabetes: beyond HLA. Mol. Genet. Metab. 81, 187–195. 

Appari, M., Channon, K.M., and McNeill, E. (2018). Metabolic Regulation of Adipose 
Tissue Macrophage Function in Obesity and Diabetes. Antioxid Redox Signal 29, 297–
312. 



172 

Araki, E., Lipes, M.A., Patti, M.E., Brüning, J.C., Haag, B., Johnson, R.S., and Kahn, C.R. 
(1994). Alternative pathway of insulin signalling in mice with targeted disruption of the 
IRS-1 gene. Nature 372, 186–190. 

Argenton, F., Zecchin, E., and Bortolussi, M. (1999). Early appearance of pancreatic 
hormone-expressing cells in the zebrafish embryo. Mech. Dev. 87, 217–221. 

Arif, S., Leete, P., Nguyen, V., Marks, K., Nor, N.M., Estorninho, M., Kronenberg-
Versteeg, D., Bingley, P.J., Todd, J.A., Guy, C., et al. (2014). Blood and islet phenotypes 
indicate immunological heterogeneity in type 1 diabetes. Diabetes 63, 3835–3845. 

Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.-W., Long, J.M., Wynshaw-
Boris, A., Poli, G., Olefsky, J., and Karin, M. (2005). IKK-beta links inflammation to 
obesity-induced insulin resistance. Nat. Med. 11, 191–198. 

Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., Gherardi, 
R.K., and Chazaud, B. (2007). Inflammatory monocytes recruited after skeletal muscle 
injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 
1057–1069. 

Aronoff, S.L., Berkowitz, K., Shreiner, B., and Want, L. (2004). Glucose Metabolism and 
Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum 17, 183–190. 

Aroor, A.R., McKarns, S., DeMarco, V.G., Guanghong, J., and Sowers, J.R. (2013). 
Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. 
Metabolism 62. 

Asano, T., Fujishiro, M., Kushiyama, A., Nakatsu, Y., Yoneda, M., Kamata, H., and 
Sakoda, H. (2007). Role of phosphatidylinositol 3-kinase activation on insulin action and 
its alteration in diabetic conditions. Biol. Pharm. Bull. 30, 1610–1616. 

Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P.A., and Wollheim, C.B. (1992). 
Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. 
Endocrinology 130, 167–178. 

Asmat, U., Abad, K., and Ismail, K. (2016). Diabetes mellitus and oxidative stress—A 
concise review. Saudi Pharm J 24, 547–553. 

Atkinson, M.A. (2012). The Pathogenesis and Natural History of Type 1 Diabetes. Cold 
Spring Harb Perspect Med 2. 

Atkinson, M.A., Eisenbarth, G.S., and Michels, A.W. (2014). Type 1 diabetes. Lancet 383, 
69–82. 

Atri, C., Guerfali, F.Z., and Laouini, D. (2018). Role of Human Macrophage Polarization 
in Inflammation during Infectious Diseases. International Journal of Molecular Sciences 
19. 



173 

Aune, D., Norat, T., Romundstad, P., and Vatten, L.J. (2013). Whole grain and refined 
grain consumption and the risk of type 2 diabetes: a systematic review and dose-response 
meta-analysis of cohort studies. Eur. J. Epidemiol. 28, 845–858. 

Avruch, J. (2007). MAP kinase pathways: the first twenty years. Biochim. Biophys. Acta 
1773, 1150–1160. 

Banaei-Bouchareb, L., Gouon-Evans, V., Samara-Boustani, D., Castellotti, M.C., 
Czernichow, P., Pollard, J.W., and Polak, M. (2004). Insulin cell mass is altered in 
Csf1op/Csf1op macrophage-deficient mice. Journal of Leukocyte Biology 76, 359–367. 

Bandaru, P., and Shankar, A. (2011). Association Between Plasma Leptin Levels and 
Diabetes Mellitus. Metab Syndr Relat Disord 9, 19–23. 

Bansal, A.K., and Bilaspuri, G.S. (2010). Impacts of Oxidative Stress and Antioxidants on 
Semen Functions. Vet Med Int 2011. 

Bansal, V., Kalita, J., and Misra, U.K. (2006). Diabetic neuropathy. Postgrad Med J 82, 
95–100. 

Barbazuk, W.B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J.A., 
McPherson, J.D., and Johnson, S.L. (2000). The Syntenic Relationship of the Zebrafish 
and Human Genomes. Genome Res 10, 1351–1358. 

Barnard, N., Levin, S., and Trapp, C. (2014). Meat Consumption as a Risk Factor for Type 
2 Diabetes. Nutrients 6, 897–910. 

Barratt, B.J., Payne, F., Lowe, C.E., Hermann, R., Healy, B.C., Harold, D., Concannon, P., 
Gharani, N., McCarthy, M.I., Olavesen, M.G., et al. (2004). Remapping the insulin 
gene/IDDM2 locus in type 1 diabetes. Diabetes 53, 1884–1889. 

Barrera, G. (2012). Oxidative Stress and Lipid Peroxidation Products in Cancer 
Progression and Therapy. ISRN Oncol 2012. 

Barrett, J.C., Clayton, D.G., Concannon, P., Akolkar, B., Cooper, J.D., Erlich, H.A., Julier, 
C., Morahan, G., Nerup, J., Nierras, C., et al. (2009). Genome-wide association study and 
meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707. 

Barros, T.P., Alderton, W.K., Reynolds, H.M., Roach, A.G., and Berghmans, S. (2008). 
Zebrafish: an emerging technology for in vivo pharmacological assessment to identify 
potential safety liabilities in early drug discovery. Br. J. Pharmacol. 154, 1400–1413. 

Baschal, E.E., Aly, T.A., Babu, S.R., Fernando, M.S., Yu, L., Miao, D., Barriga, K.J., 
Norris, J.M., Noble, J.A., Erlich, H.A., et al. (2007). HLA-DPB1*0402 protects against 
type 1A diabetes autoimmunity in the highest risk DR3-DQB1*0201/DR4-DQB1*0302 
DAISY population. Diabetes 56, 2405–2409. 



174 

Batterham, R.L., Le Roux, C.W., Cohen, M.A., Park, A.J., Ellis, S.M., Patterson, M., Frost, 
G.S., Ghatei, M.A., and Bloom, S.R. (2003). Pancreatic polypeptide reduces appetite and 
food intake in humans. J. Clin. Endocrinol. Metab. 88, 3989–3992. 

Beauvoit, B., Belouah, I., Bertin, N., Cakpo, C.B., Colombié, S., Dai, Z., Gautier, H., 
Génard, M., Moing, A., Roch, L., et al. (2018). Putting primary metabolism into 
perspective to obtain better fruits. Ann Bot 122, 1–21. 

de Beeck, A.O., and Eizirik, D.L. (2016). Viral infections in type 1 diabetes mellitus — 
why the β cells? Nat Rev Endocrinol 12, 263–273. 

Bellin (2), E.M. (1) and M.D. (2016). Secretion of Insulin in Response to Diet and 
Hormones. Pancreapedia: The Exocrine Pancreas Knowledge Base. 

Bennett, S.T., Lucassen, A.M., Gough, S.C., Powell, E.E., Undlien, D.E., Pritchard, L.E., 
Merriman, M.E., Kawaguchi, Y., Dronsfield, M.J., and Pociot, F. (1995). Susceptibility to 
human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin 
gene minisatellite locus. Nat. Genet. 9, 284–292. 

Bergamin, C.S., and Dib, S.A. (2015). Enterovirus and type 1 diabetes: What is the matter? 
World J Diabetes 6, 828–839. 

Berlett, B.S., and Stadtman, E.R. (1997). Protein Oxidation in Aging, Disease, and 
Oxidative Stress. J. Biol. Chem. 272, 20313–20316. 

Berry, G., and Waldner, H. (2013). Accelerated type 1 diabetes induction in mice by 
adoptive transfer of diabetogenic CD4+ T cells. J Vis Exp e50389. 

Betteridge, D.J. (2000). What is oxidative stress? Metab. Clin. Exp. 49, 3–8. 

Beyan, H., Riese, H., Hawa, M.I., Beretta, G., Davidson, H.W., Hutton, J.C., Burger, H., 
Schlosser, M., Snieder, H., Boehm, B.O., et al. (2012). Glycotoxin and autoantibodies are 
additive environmentally determined predictors of type 1 diabetes: a twin and population 
study. Diabetes 61, 1192–1198. 

Biemar, F., Argenton, F., Schmidtke, R., Epperlein, S., Peers, B., and Driever, W. (2001). 
Pancreas development in zebrafish: early dispersed appearance of endocrine hormone 
expressing cells and their convergence to form the definitive islet. Dev. Biol. 230, 189–
203. 

Bingley, P.J. (2010). Clinical applications of diabetes antibody testing. J. Clin. Endocrinol. 
Metab. 95, 25–33. 

Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalayci, O. (2012). Oxidative 
Stress and Antioxidant Defense. World Allergy Organ J 5, 9–19. 



175 

Bleich, D., Chen, S., Zipser, B., Sun, D., Funk, C.D., and Nadler, J.L. (1999). Resistance 
to type 1 diabetes induction in 12-lipoxygenase knockout mice. J. Clin. Invest. 103, 1431–
1436. 

Boden, G. (2009). Endoplasmic Reticulum Stress: Another Link Between Obesity and 
Insulin Resistance/Inflammation? Diabetes 58, 518–519. 

Bogdan, C., Röllinghoff, M., and Diefenbach, A. (2000). Reactive oxygen and reactive 
nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12, 64–76. 

Bokov, A., Chaudhuri, A., and Richardson, A. (2004). The role of oxidative damage and 
stress in aging. Mech. Ageing Dev. 125, 811–826. 

Boland, B.B., Rhodes, C.J., and Grimsby, J.S. (2017). The dynamic plasticity of insulin 
production in β-cells. Molecular Metabolism 6, 958. 

Böni-Schnetzler, M., Ehses, J.A., Faulenbach, M., and Donath, M.Y. (2008). Insulitis in 
type 2 diabetes. Diabetes, Obesity and Metabolism 10, 201–204. 

Bradford, Y.M., Toro, S., Ramachandran, S., Ruzicka, L., Howe, D.G., Eagle, A., Kalita, 
P., Martin, R., Taylor Moxon, S.A., Schaper, K., et al. (2017). Zebrafish Models of Human 
Disease: Gaining Insight into Human Disease at ZFIN. ILAR J 58, 4–16. 

Brereton, M.F., Vergari, E., Zhang, Q., and Clark, A. (2015). Alpha-, Delta- and PP-cells. 
J Histochem Cytochem 63, 575–591. 

Brissova, M., Aamodt, K., Brahmachary, P., Prasad, N., Hong, J.-Y., Dai, C., Mellati, M., 
Shostak, A., Poffenberger, G., Aramandla, R., et al. (2014). Islet microenvironment, 
modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration. 
Cell Metab. 19, 498–511. 

Bromfield, E.G., Mihalas, B.P., Dun, M.D., Aitken, R.J., McLaughlin, E.A., Walters, 
J.L.H., and Nixon, B. (2017). Inhibition of arachidonate 15-lipoxygenase prevents 4-
hydroxynonenal-induced protein damage in male germ cells. Biol Reprod 96, 598–609. 

Brouwer-Brolsma, E.M., Sluik, D., Singh-Povel, C.M., and Feskens, E.J.M. (2018). Dairy 
product consumption is associated with pre-diabetes and newly diagnosed type 2 diabetes 
in the Lifelines Cohort Study. Br. J. Nutr. 119, 442–455. 

Brown, C.T., Davis-Richardson, A.G., Giongo, A., Gano, K.A., Crabb, D.B., Mukherjee, 
N., Casella, G., Drew, J.C., Ilonen, J., Knip, M., et al. (2011). Gut microbiome 
metagenomics analysis suggests a functional model for the development of autoimmunity 
for type 1 diabetes. PLoS ONE 6, e25792. 

Broz, P., and Dixit, V.M. (2016). Inflammasomes: mechanism of assembly, regulation and 
signalling. Nat. Rev. Immunol. 16, 407–420. 



176 

Brütsch, S.H., Wang, C.C., Li, L., Stender, H., Neziroglu, N., Richter, C., Kuhn, H., and 
Borchert, A. (2015). Expression of inactive glutathione peroxidase 4 leads to embryonic 
lethality, and inactivation of the Alox15 gene does not rescue such knockins mice. 
Antioxid. Redox Signal. 22, 281–293. 

Buczkowska, E.O., and Jarosz-Chobot, P. (2001). [Insulin effect on metabolism in skeletal 
muscles and the role of muscles in regulation of glucose homeostasis]. Prz. Lek. 58, 782–
787. 

Burke, E. (2016). Why Use Zebrafish to Study Human Diseases? 

Burks, D.J., and White, M.F. (2001). IRS proteins and beta-cell function. Diabetes 50 Suppl 
1, S140-145. 

Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., and Shoelson, S.E. 
(2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-beta 
and NF-kappaB. Nat. Med. 11, 183–190. 

Calderon, B., Suri, A., and Unanue, E.R. (2006). In CD4+ T-cell-induced diabetes, 
macrophages are the final effector cells that mediate islet beta-cell killing: studies from an 
acute model. Am. J. Pathol. 169, 2137–2147. 

Cao, S.S., and Kaufman, R.J. (2014). Endoplasmic Reticulum Stress and Oxidative Stress 
in Cell Fate Decision and Human Disease. Antioxid Redox Signal 21, 396–413. 

Capiotti, K.M., Antonioli, R., Kist, L.W., Bogo, M.R., Bonan, C.D., and Da Silva, R.S. 
(2014). Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. 
Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 171, 58–65. 

Carr, R.D., Larsen, M.O., Winzell, M.S., Jelic, K., Lindgren, O., Deacon, C.F., and Ahrén, 
B. (2008). Incretin and islet hormonal responses to fat and protein ingestion in healthy men. 
Am. J. Physiol. Endocrinol. Metab. 295, E779-784. 

Carrero, J.A., McCarthy, D.P., Ferris, S.T., Wan, X., Hu, H., Zinselmeyer, B.H., Vomund, 
A.N., and Unanue, E.R. (2017). Resident macrophages of pancreatic islets have a seminal 
role in the initiation of autoimmune diabetes of NOD mice. PNAS 114, E10418–E10427. 

Carstensen, M., Herder, C., Kivimäki, M., Jokela, M., Roden, M., Shipley, M.J., Witte, 
D.R., Brunner, E.J., and Tabák, A.G. (2010). Accelerated increase in serum interleukin-1 
receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II 
prospective cohort study. Diabetes 59, 1222–1227. 

Castañeda, R., Rodriguez, I., Nam, Y.H., Hong, B.N., and Kang, T.H. (2017). Trigonelline 
promotes auditory function through nerve growth factor signaling on diabetic animal 
models. Phytomedicine 36, 128–136. 

Celi, P., and Gabai, G. (2015). Oxidant/Antioxidant Balance in Animal Nutrition and 
Health: The Role of Protein Oxidation. Front Vet Sci 2, 48. 



177 

Centers for Disease Control and Prevention (CDC) (2004). Prevalence of overweight and 
obesity among adults with diagnosed diabetes--United States, 1988-1994 and 1999-2002. 
MMWR Morb. Mortal. Wkly. Rep. 53, 1066–1068. 

Ceolotto, G., Bevilacqua, M., Papparella, I., Baritono, E., Franco, L., Corvaja, C., Mazzoni, 
M., Semplicini, A., and Avogaro, A. (2004). Insulin generates free radicals by an 
NAD(P)H, phosphatidylinositol 3’-kinase-dependent mechanism in human skin fibroblasts 
ex vivo. Diabetes 53, 1344–1351. 

Chan, S.J., Keim, P., and Steiner, D.F. (1976). Cell-free synthesis of rat preproinsulins: 
characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. 
U.S.A. 73, 1964–1968. 

Chawla, A., Chawla, R., and Jaggi, S. (2016). Microvasular and macrovascular 
complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab 20, 
546–551. 

Cheeseman, K.H., and Slater, T.F. (1993). An introduction to free radical biochemistry. 
Br. Med. Bull. 49, 481–493. 

Chelombitko, M.A. (2018). Role of Reactive Oxygen Species in Inflammation: A 
Minireview. Moscow Univ. Biol.Sci. Bull. 73, 199–202. 

Chen, E., and Ekker, S.C. (2004). Zebrafish as a genomics research model. Curr Pharm 
Biotechnol 5, 409–413. 

Chen, H., Charlat, O., Tartaglia, L.A., Woolf, E.A., Weng, X., Ellis, S.J., Lakey, N.D., 
Culpepper, J., Moore, K.J., Breitbart, R.E., et al. (1996). Evidence that the diabetes gene 
encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db 
mice. Cell 84, 491–495. 

Chen, L., Chen, R., Wang, H., and Liang, F. (2015). Mechanisms Linking Inflammation to 
Insulin Resistance. Int J Endocrinol 2015. 

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., and Zhao, L. 
(2017). Inflammatory responses and inflammation-associated diseases in organs. 
Oncotarget 9, 7204–7218. 

Chen, M., Yang, Z.D., Smith, K.M., Carter, J.D., and Nadler, J.L. (2005). Activation of 
12-lipoxygenase in proinflammatory cytokine-mediated beta cell toxicity. Diabetologia 48, 
486–495. 

Chen, S., Ogawa, A., Ohneda, M., Unger, R.H., Foster, D.W., and McGarry, J.D. (1994). 
More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a 
key event in pancreatic beta-cell signaling. Diabetes 43, 878–883. 



178 

Chen, Y.-G., Cabrera, S.M., Jia, S., Kaldunski, M.L., Kramer, J., Cheong, S., Geoffrey, R., 
Roethle, M.F., Woodliff, J.E., Greenbaum, C.J., et al. (2014). Molecular signatures 
differentiate immune states in type 1 diabetic families. Diabetes 63, 3960–3973. 

Cheng, B.-W., Lo, F.-S., Wang, A.-M., Hung, C.-M., Huang, C.-Y., Ting, W.-H., Yang, 
M.-O., Lin, C.-H., Chen, C.-C., Lin, C.-L., et al. (2018). Autoantibodies against islet cell 
antigens in children with type 1 diabetes mellitus. Oncotarget 9, 16275–16283. 

Chistiakov, D.A., Savost’anov, K.V., and Nosikov, V.V. (2001). CTLA4 gene 
polymorphisms are associated with, and linked to, insulin-dependent diabetes mellitus in a 
Russian population. BMC Genet. 2, 6. 

Chou, S.-T., and Tseng, S.-T. (2017). Oxidative stress markers in type 2 diabetes patients 
with diabetic nephropathy. Clin. Exp. Nephrol. 21, 283–292. 

Chowdhury, T.A., Shaho, S., and Moolla, A. (2014). Complications of diabetes: progress, 
but significant challenges ahead. Ann Transl Med 2. 

Circu, M.L., and Aw, T.Y. (2010). Reactive oxygen species, cellular redox systems, and 
apoptosis. Free Radic. Biol. Med. 48, 749–762. 

Clements, G.B., Galbraith, D.N., and Taylor, K.W. (1995). Coxsackie B virus infection 
and onset of childhood diabetes. Lancet 346, 221–223. 

Cnop, M., Foufelle, F., and Velloso, L.A. (2012). Endoplasmic reticulum stress, obesity 
and diabetes. Trends Mol Med 18, 59–68. 

Colberg, S.R., Sigal, R.J., Fernhall, B., Regensteiner, J.G., Blissmer, B.J., Rubin, R.R., 
Chasan-Taber, L., Albright, A.L., and Braun, B. (2010). Exercise and Type 2 Diabetes. 
Diabetes Care 33, e147–e167. 

Colle, E., Guttmann, R.D., and Seemayer, T. (1981). Spontaneous diabetes mellitus 
syndrome in the rat. I. Association with the major histocompatibility complex. Journal of 
Experimental Medicine 154, 1237–1242. 

Collier, J.J., Burke, S.J., Eisenhauer, M.E., Lu, D., Sapp, R.C., Frydman, C.J., and 
Campagna, S.R. (2011). Pancreatic β-Cell Death in Response to Pro-Inflammatory 
Cytokines Is Distinct from Genuine Apoptosis. PLOS ONE 6, e22485. 

Committee*, T.I.E. (2009). International Expert Committee Report on the Role of the A1C 
Assay in the Diagnosis of Diabetes. Diabetes Care 32, 1327–1334. 

Concannon, P., Rich, S.S., and Nepom, G.T. (2009). Genetics of type 1A diabetes. N. Engl. 
J. Med. 360, 1646–1654. 

Conteh, A.M., Reissaus, C.A., Hernandez-Perez, M., Nakshatri, S., Anderson, R.M., 
Mirmira, R.G., Tersey, S.A., and Linnemann, A.K. (2019). Platelet-type 12-lipoxygenase 



179 

deletion provokes a compensatory 12/15-lipoxygenase increase that exacerbates oxidative 
stress in islet β-cells. J. Biol. Chem. jbc.RA118.007102. 

Cooper, J.D., Smyth, D.J., Smiles, A.M., Plagnol, V., Walker, N.M., Allen, J.E., Downes, 
K., Barrett, J.C., Healy, B.C., Mychaleckyj, J.C., et al. (2008). Meta-analysis of genome-
wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 40, 
1399–1401. 

Corthay, A. (2009). How do Regulatory T Cells Work? Scand J Immunol 70, 326–336. 

Cox, M.E., and Edelman, D. (2009). Tests for Screening and Diagnosis of Type 2 Diabetes. 
Clinical Diabetes 27, 132–138. 

Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). 
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 
378, 785–789. 

Curado, S., Anderson, R.M., Jungblut, B., Mumm, J., Schroeter, E., and Stainier, D.Y.R. 
(2007). Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. 
Dev. Dyn. 236, 1025–1035. 

Czapski, G.A., Czubowicz, K., Strosznajder, J.B., and Strosznajder, R.P. (2016). The 
Lipoxygenases: Their Regulation and Implication in Alzheimer’s Disease. Neurochem Res 
41, 243–257. 

Da Silva Xavier, G. (2018). The Cells of the Islets of Langerhans. J Clin Med 7. 

Damasceno, D.C., Netto, A.O., Iessi, I.L., Gallego, F.Q., Corvino, S.B., Dallaqua, B., 
Sinzato, Y.K., Bueno, A., Calderon, I.M.P., and Rudge, M.V.C. (2014). Streptozotocin-
Induced Diabetes Models: Pathophysiological Mechanisms and Fetal Outcomes. Biomed 
Res Int 2014. 

Dan, H.C., Ebbs, A., Pasparakis, M., Van Dyke, T., Basseres, D.S., and Baldwin, A.S. 
(2014). AKT-dependent activation of mTORC1 complex involves phosphorylation of 
mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem. 289, 
25227–25240. 

Davies, S.S., and Guo, L. (2014). Lipid peroxidation generates biologically active 
phospholipids including oxidatively N-modified phospholipids. Chem. Phys. Lipids 181, 
1–33. 

Davis Frank M., and Gallagher Katherine A. (2019). Epigenetic Mechanisms in 
Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular 
Disease. Arteriosclerosis, Thrombosis, and Vascular Biology 39, 623–634. 

De Duve, C., and Baudhuin, P. (1966). Peroxisomes (microbodies and related particles). 
Physiol. Rev. 46, 323–357. 



180 

De Leenheer, E., and Wong, F.S. (2016). Adoptive Transfer of Autoimmune Diabetes 
Using Immunodeficient Nonobese Diabetic (NOD) Mice. Methods Mol. Biol. 1433, 135–
140. 

De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D., and 
Schuit, F. (1995). Human and rat beta cells differ in glucose transporter but not in 
glucokinase gene expression. J Clin Invest 96, 2489–2495. 

Dekel, Y., Glucksam, Y., Elron-Gross, I., and Margalit, R. (2009). Insights into modeling 
streptozotocin-induced diabetes in ICR mice. Lab Anim (NY) 38, 55–60. 

Della Pepa, G., Vetrani, C., Vitale, M., and Riccardi, G. (2018). Wholegrain Intake and 
Risk of Type 2 Diabetes: Evidence from Epidemiological and Intervention Studies. 
Nutrients 10. 

Devendra, D., Liu, E., and Eisenbarth, G.S. (2004). Type 1 diabetes: recent developments. 
BMJ 328, 750–754. 

Di Naso, F.C., Simões Dias, A., Porawski, M., and Marroni, N.A.P. (2011). Exogenous 
superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-
induced diabetes. Exp Diabetes Res 2011, 754132. 

Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., and Raptis, S.A. (2011). Insulin 
effects in muscle and adipose tissue. Diabetes Res. Clin. Pract. 93 Suppl 1, S52-59. 

Ding, X.-Z., Hennig, R., and Adrian, T.E. (2003). Lipoxygenase and cyclooxygenase 
metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Mol. 
Cancer 2, 10. 

Dobrian, A.D., Lieb, D.C., Cole, B.K., Taylor-Fishwick, D.A., Chakrabarti, S.K., and 
Nadler, J.L. (2011). Functional and pathological roles of the 12- and 15-lipoxygenases. 
Prog. Lipid Res. 50, 115–131. 

Dobrian, A.D., Morris, M.A., Taylor-Fishwick, D.A., Holman, T.R., Imai, Y., Mirmira, 
R.G., and Nadler, J.L. (2019). Role of the 12-lipoxygenase pathway in diabetes 
pathogenesis and complications. Pharmacol. Ther. 195, 100–110. 

Dogan, Y., Akarsu, S., Ustundag, B., Yilmaz, E., and Gurgoze, M.K. (2006). Serum IL-
1beta, IL-2, and IL-6 in insulin-dependent diabetic children. Mediators Inflamm. 2006, 
59206. 

Dolz, M., Movassat, J., Bailbé, D., Le Stunff, H., Giroix, M.-H., Fradet, M., Kergoat, M., 
and Portha, B. (2011). cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: 
a defect counteracted by GLP-1. Am. J. Physiol. Endocrinol. Metab. 301, E797-806. 

Dominguez, H., Storgaard, H., Rask-Madsen, C., Steffen Hermann, T., Ihlemann, N., 
Baunbjerg Nielsen, D., Spohr, C., Kober, L., Vaag, A., and Torp-Pedersen, C. (2005). 



181 

Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in 
obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525. 

Donath, M.Y., and Shoelson, S.E. (2011). Type 2 diabetes as an inflammatory disease. Nat. 
Rev. Immunol. 11, 98–107. 

Donath, M.Y., Størling, J., Maedler, K., and Mandrup-Poulsen, T. (2003). Inflammatory 
mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. 
81, 455–470. 

Donath, M.Y., Schumann, D.M., Faulenbach, M., Ellingsgaard, H., Perren, A., and Ehses, 
J.A. (2008). Islet inflammation in type 2 diabetes: from metabolic stress to therapy. 
Diabetes Care 31 Suppl 2, S161-164. 

Donath, M.Y., Böni-Schnetzler, M., Ellingsgaard, H., and Ehses, J.A. (2009). Islet 
Inflammation Impairs the Pancreatic β-Cell in Type 2 Diabetes. Physiology 24, 325–331. 

Dong, K., Ni, H., Wu, M., Tang, Z., Halim, M., and Shi, D. (2016). ROS-mediated glucose 
metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem. Biophys. Res. 
Commun. 476, 204–211. 

Dotta, F., Censini, S., van Halteren, A.G.S., Marselli, L., Masini, M., Dionisi, S., Mosca, 
F., Boggi, U., Muda, A.O., Del Prato, S., et al. (2007). Coxsackie B4 virus infection of beta 
cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl. 
Acad. Sci. U.S.A. 104, 5115–5120. 

Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 
82, 47–95. 

Duffield, J.S., Forbes, S.J., Constandinou, C.M., Clay, S., Partolina, M., Vuthoori, S., Wu, 
S., Lang, R., and Iredale, J.P. (2005). Selective depletion of macrophages reveals distinct, 
opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65. 

Duh, E.J., Sun, J.K., and Stitt, A.W. Diabetic retinopathy: current understanding, 
mechanisms, and treatment strategies. JCI Insight 2. 

Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J.H., Masiarz, F., 
Kan, Y.W., and Goldfine, I.D. (1985). The human insulin receptor cDNA: the structural 
basis for hormone-activated transmembrane signalling. Cell 40, 747–758. 

Egea, P.F., Stroud, R.M., and Walter, P. (2005). Targeting proteins to membranes: structure 
of the signal recognition particle. Curr. Opin. Struct. Biol. 15, 213–220. 

Eguchi, K., and Nagai, R. (2017). Islet inflammation in type 2 diabetes and physiology. J. 
Clin. Invest. 127, 14–23. 



182 

Eguchi, K., Manabe, I., Oishi-Tanaka, Y., Ohsugi, M., Kono, N., Ogata, F., Yagi, N., Ohto, 
U., Kimoto, M., Miyake, K., et al. (2012). Saturated fatty acid and TLR signaling link β 
cell dysfunction and islet inflammation. Cell Metab. 15, 518–533. 

Ehses, J.A., Perren, A., Eppler, E., Ribaux, P., Pospisilik, J.A., Maor-Cahn, R., Gueripel, 
X., Ellingsgaard, H., Schneider, M.K.J., Biollaz, G., et al. (2007). Increased number of 
islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370. 

Ehses, J.A., Ellingsgaard, H., Böni-Schnetzler, M., and Donath, M.Y. (2009). Pancreatic 
islet inflammation in type 2 diabetes: from alpha and beta cell compensation to 
dysfunction. Arch. Physiol. Biochem. 115, 240–247. 

Einarson, T.R., Acs, A., Ludwig, C., and Panton, U.H. (2018). Prevalence of 
cardiovascular disease in type 2 diabetes: a systematic literature review of scientific 
evidence from across the world in 2007–2017. Cardiovasc Diabetol 17. 

El-Agamey, A., Lowe, G.M., McGarvey, D.J., Mortensen, A., Phillip, D.M., Truscott, 
T.G., and Young, A.J. (2004). Carotenoid radical chemistry and antioxidant/pro-oxidant 
properties. Arch. Biochem. Biophys. 430, 37–48. 

Eldor, R., Yeffet, A., Baum, K., Doviner, V., Amar, D., Ben-Neriah, Y., Christofori, G., 
Peled, A., Carel, J.C., Boitard, C., et al. (2006). Conditional and specific NF-kappaB 
blockade protects pancreatic beta cells from diabetogenic agents. Proc. Natl. Acad. Sci. 
U.S.A. 103, 5072–5077. 

Emamaullee, J.A., Davis, J., Merani, S., Toso, C., Elliott, J.F., Thiesen, A., and Shapiro, 
A.M.J. (2009). Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. 
Diabetes 58, 1302–1311. 

Fatima, N., Faisal, S.M., Zubair, S., Ajmal, M., Siddiqui, S.S., Moin, S., and Owais, M. 
(2016). Role of Pro-Inflammatory Cytokines and Biochemical Markers in the Pathogenesis 
of Type 1 Diabetes: Correlation with Age and Glycemic Condition in Diabetic Human 
Subjects. PLoS One 11. 

Felmer, R.N., and Clark, J.A. (2004). The gene suicide system Ntr/CB1954 causes ablation 
of differentiated 3T3L1 adipocytes by apoptosis. Biol. Res. 37, 449–460. 

Fernandez-Twinn, D.S., Alfaradhi, M.Z., Martin-Gronert, M.S., Duque-Guimaraes, D.E., 
Piekarz, A., Ferland-McCollough, D., Bushell, M., and Ozanne, S.E. (2014). 
Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-
autonomously through post-transcriptional mechanisms. Mol Metab 3, 325–333. 

Feuerer, M., Shen, Y., Littman, D.R., Benoist, C., and Mathis, D. (2009). How punctual 
ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. 
Immunity 31, 654–664. 

Filippi, C.M., and von Herrath, M.G. (2008). Viral Trigger for Type 1 Diabetes. Diabetes 
57, 2863–2871. 



183 

Finkel, T., and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. 
Nature 408, 239–247. 

Flannick, J., and Florez, J.C. (2016). Type 2 diabetes: genetic data sharing to advance 
complex disease research. Nat. Rev. Genet. 17, 535–549. 

Fleischman, A., Shoelson, S.E., Bernier, R., and Goldfine, A.B. (2008). Salsalate improves 
glycemia and inflammatory parameters in obese young adults. Diabetes Care 31, 289–294. 

Forbes, J.M., and Cooper, M.E. (2013). Mechanisms of diabetic complications. Physiol. 
Rev. 93, 137–188. 

Forouhi, N.G. (2015). Association between consumption of dairy products and incident 
type 2 diabetes—insights from the European Prospective Investigation into Cancer study. 
Nutr Rev 73, 15–22. 

Forrest, J.M., Menser, M.A., and Burgess, J.A. (1971). High frequency of diabetes mellitus 
in young adults with congenital rubella. Lancet 2, 332–334. 

Francescato, M.P., Stel, G., Geat, M., and Cauci, S. (2014). Oxidative Stress in Patients 
with Type 1 Diabetes Mellitus: Is It Affected by a Single Bout of Prolonged Exercise? 
PLoS One 9. 

Frederiksen, B., Kroehl, M., Lamb, M.M., Seifert, J., Barriga, K., Eisenbarth, G.S., Rewers, 
M., and Norris, J.M. (2013). Infant exposures and development of type 1 diabetes mellitus: 
The Diabetes Autoimmunity Study in the Young (DAISY). JAMA Pediatr 167, 808–815. 

Freitas Lima, L.C., Braga, V. de A., do Socorro de França Silva, M., Cruz, J. de C., Sousa 
Santos, S.H., de Oliveira Monteiro, M.M., and Balarini, C. de M. (2015). Adipokines, 
diabetes and atherosclerosis: an inflammatory association. Front Physiol 6. 

Fridlyand, L.E., Jacobson, D.A., and Philipson, L.H. (2013). Ion channels and regulation 
of insulin secretion in human β-cells. Islets 5, 1–15. 

Fu, Z., Gilbert, E.R., and Liu, D. (2013). Regulation of Insulin Synthesis and Secretion and 
Pancreatic Beta-Cell Dysfunction in Diabetes. Curr Diabetes Rev 9, 25–53. 

Fuchsberger, C., Flannick, J., Teslovich, T.M., Mahajan, A., Agarwala, V., Gaulton, K.J., 
Ma, C., Fontanillas, P., Moutsianas, L., McCarthy, D.J., et al. (2016). The genetic 
architecture of type 2 diabetes. Nature 536, 41–47. 

Fukai, T., and Ushio-Fukai, M. (2011). Superoxide Dismutases: Role in Redox Signaling, 
Vascular Function, and Diseases. Antioxid Redox Signal 15, 1583–1606. 

Furtado, L.M., Somwar, R., Sweeney, G., Niu, W., and Klip, A. (2002). Activation of the 
glucose transporter GLUT4 by insulin. Biochem. Cell Biol. 80, 569–578. 



184 

Gale, E. a. M. (2005). Type 1 diabetes in the young: the harvest of sorrow goes on. 
Diabetologia 48, 1435–1438. 

Gannon, M.C., and Nuttall, F.Q. (2010). Amino acid ingestion and glucose metabolism--a 
review. IUBMB Life 62, 660–668. 

George, A.M., Jacob, A.G., and Fogelfeld, L. (2015). Lean diabetes mellitus: An emerging 
entity in the era of obesity. World J Diabetes 6, 613–620. 

Gérard, C., and Vidal, H. (2019). Impact of Gut Microbiota on Host Glycemic Control. 
Front Endocrinol (Lausanne) 10. 

Geutskens, S.B., Otonkoski, T., Pulkkinen, M.-A., Drexhage, H.A., and Leenen, P.J.M. 
(2005). Macrophages in the murine pancreas and their involvement in fetal endocrine 
development in vitro. Journal of Leukocyte Biology 78, 845–852. 

Giongo, A., Gano, K.A., Crabb, D.B., Mukherjee, N., Novelo, L.L., Casella, G., Drew, 
J.C., Ilonen, J., Knip, M., Hyöty, H., et al. (2011). Toward defining the autoimmune 
microbiome for type 1 diabetes. ISME J 5, 82–91. 

Girard, J. (2006). Insulin’s effect on the liver: “Direct or indirect?” continues to be the 
question. J Clin Invest 116, 302–304. 

Giugliano, D., Ceriello, A., and Esposito, K. (2008). Glucose metabolism and 
hyperglycemia. Am. J. Clin. Nutr. 87, 217S-222S. 

Gleeson, M., Connaughton, V., and Arneson, L.S. (2007). Induction of hyperglycaemia in 
zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol 44, 
157–163. 

Glickman, M.H., and Klinman, J.P. (1996). Lipoxygenase reaction mechanism: 
demonstration that hydrogen abstraction from substrate precedes dioxygen binding during 
catalytic turnover. Biochemistry 35, 12882–12892. 

Glorieux, C., and Calderon, P.B. (2017). Catalase, a remarkable enzyme: targeting the 
oldest antioxidant enzyme to find a new cancer treatment approach. Biological Chemistry 
398, 1095–1108. 

Göke, B. (2008). Islet cell function: alpha and beta cells--partners towards 
normoglycaemia. Int J Clin Pract Suppl 2–7. 

Goldbard, S. (2006). Bringing primary cells to mainstream drug development and drug 
testing. Curr Opin Drug Discov Devel 9, 110–116. 

Goldfine, A.B., Fonseca, V., Jablonski, K.A., Chen, Y.-D.I., Tipton, L., Staten, M.A., and 
Shoelson, S.E. (2013). Salicylate (Salsalate) in Patients With Type 2 Diabetes. Ann Intern 
Med 159, 1–12. 



185 

González-Sánchez, J.L., and Serrano-Ríos, M. (2007). Molecular basis of insulin action. 
Drug News Perspect. 20, 527–531. 

Gordin, D., Forsblom, C., Rönnback, M., Parkkonen, M., Wadén, J., Hietala, K., and 
Groop, P.-H. (2008). Acute hyperglycaemia induces an inflammatory response in young 
patients with type 1 diabetes. Ann. Med. 40, 627–633. 

Gordon, S., and Martinez-Pomares, L. (2017). Physiological roles of macrophages. 
Pflugers Arch 469, 365–374. 

Goto, Y., Kakizaki, M., and Masaki, N. (1976). Production of spontaneous diabetic rats by 
repetition of selective breeding. Tohoku J. Exp. Med. 119, 85–90. 

Gottlieb, S. (2000). Early exposure to cows’ milk raises risk of diabetes in high risk 
children. BMJ 321, 1040. 

Goyal, R., Faizy, A.F., Siddiqui, S.S., and Singhai, M. (2012). Evaluation of TNF-α and 
IL-6 levels in obese and non-obese diabetics: Pre- and postinsulin effects. North American 
Journal of Medical Sciences 4, 180. 

Graham, K.L., Sutherland, R.M., Mannering, S.I., Zhao, Y., Chee, J., Krishnamurthy, B., 
Thomas, H.E., Lew, A.M., and Kay, T.W.H. (2012). Pathogenic Mechanisms in Type 1 
Diabetes: The Islet is Both Target and Driver of Disease. Rev Diabet Stud 9, 148–168. 

Green-Mitchell, S.M., Tersey, S.A., Cole, B.K., Ma, K., Kuhn, N.S., Cunningham, T.D., 
Maybee, N.A., Chakrabarti, S.K., McDuffie, M., Taylor-Fishwick, D.A., et al. (2013). 
Deletion of 12/15-Lipoxygenase Alters Macrophage and Islet Function in NOD-
Alox15null Mice, Leading to Protection against Type 1 Diabetes Development. PLoS One 
8. 

Gregory, C.D., and Devitt, A. (2004). The macrophage and the apoptotic cell: an innate 
immune interaction viewed simplistically? Immunology 113, 1–14. 

Gross, D.N., Wan, M., and Birnbaum, M.J. (2009). The role of FOXO in the regulation of 
metabolism. Curr. Diab. Rep. 9, 208–214. 

Grossmann, V., Schmitt, V.H., Zeller, T., Panova-Noeva, M., Schulz, A., Laubert-Reh, D., 
Juenger, C., Schnabel, R.B., Abt, T.G.J., Laskowski, R., et al. (2015). Profile of the 
Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. 
Diabetes Care 38, 1356–1364. 

Grunnet, L.G., and Mandrup-Poulsen, T. (2011). Cytokines and Type 1 Diabetes: A 
Numbers Game. Diabetes 60, 697–699. 

Guo, Y., Zhang, W., Giroux, C., Cai, Y., Ekambaram, P., Dilly, A.-K., Hsu, A., Zhou, S., 
Maddipati, K.R., Liu, J., et al. (2011). Identification of the orphan G protein-coupled 
receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J. Biol. Chem. 286, 
33832–33840. 



186 

Guzik, T.J., West, N.E.J., Pillai, R., Taggart, D.P., and Channon, K.M. (2002). Nitric oxide 
modulates superoxide release and peroxynitrite formation in human blood vessels. 
Hypertension 39, 1088–1094. 

Ha, H., Hwang, I.-A., Park, J.H., and Lee, H.B. (2008). Role of reactive oxygen species in 
the pathogenesis of diabetic nephropathy. Diabetes Research and Clinical Practice 82, S42–
S45. 

Haas, U., Raschperger, E., Hamberg, M., Samuelsson, B., Tryggvason, K., and 
Haeggström, J.Z. (2011). Targeted knockdown of a structurally atypical zebrafish 12S-
lipoxygenase leads to severe impairment of embryonic development. Proc. Natl. Acad. Sci. 
U.S.A. 108, 20479–20484. 

Haeggström, J.Z., and Funk, C.D. (2011). Lipoxygenase and leukotriene pathways: 
biochemistry, biology, and roles in disease. Chem. Rev. 111, 5866–5898. 

Halliwell, B., and Gutteridge, J.M.C. (2015). Free Radicals in Biology and Medicine 
(Oxford University Press). 

Hamasaki, H. (2016). Daily physical activity and type 2 diabetes: A review. World J 
Diabetes 7, 243–251. 

Han, H., Li, Y., Fang, J., Liu, G., Yin, J., Li, T., and Yin, Y. (2018). Gut Microbiota and 
Type 1 Diabetes. Int J Mol Sci 19. 

Hanafusa, T., Miyagawa, J., Nakajima, H., Tomita, K., Kuwajima, M., Matsuzawa, Y., and 
Tarui, S. (1994). The NOD mouse. Diabetes Res. Clin. Pract. 24 Suppl, S307-311. 

Harding, H.P., and Ron, D. (2002). Endoplasmic reticulum stress and the development of 
diabetes: a review. Diabetes 51 Suppl 3, S455-461. 

Harding, J.L., Pavkov, M.E., Magliano, D.J., Shaw, J.E., and Gregg, E.W. (2019). Global 
trends in diabetes complications: a review of current evidence. Diabetologia 62, 3–16. 

Haskins, K., Bradley, B., Powers, K., Fadok, V., Flores, S., Ling, X., Pugazhenthi, S., 
Reusch, J., and Kench, J. (2003). Oxidative stress in type 1 diabetes. Ann. N. Y. Acad. Sci. 
1005, 43–54. 

Hasnain, S.Z. (2018). Endoplasmic reticulum and oxidative stress in immunopathology: 
understanding the crosstalk between cellular stress and inflammation. Clinical & 
Translational Immunology 7, e1035. 

Hasnain, S.Z., Prins, J.B., and McGuckin, M.A. (2016). Oxidative and endoplasmic 
reticulum stress in β-cell dysfunction in diabetes. Journal of Molecular Endocrinology 56, 
R33–R54. 

Hauge-Evans, A.C., King, A.J., Carmignac, D., Richardson, C.C., Robinson, I.C.A.F., 
Low, M.J., Christie, M.R., Persaud, S.J., and Jones, P.M. (2009). Somatostatin secreted by 



187 

islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 
403–411. 

Hayes, J.D., Flanagan, J.U., and Jowsey, I.R. (2005). Glutathione transferases. Annu. Rev. 
Pharmacol. Toxicol. 45, 51–88. 

Hellman, B., and Grapengiesser, E. (2014). Glucose-induced inhibition of insulin 
secretion. Acta Physiol (Oxf) 210, 479–488. 

Hemmings, B.A., and Restuccia, D.F. (2012). PI3K-PKB/AKT Pathway. Cold Spring Harb 
Perspect Biol 4. 

Heras-Sandoval, D., Pérez-Rojas, J.M., Hernández-Damián, J., and Pedraza-Chaverri, J. 
(2014). The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the 
clearance of protein aggregates in neurodegeneration. Cell. Signal. 26, 2694–2701. 

Hernandez-Perez, M., Chopra, G., Fine, J., Conteh, A.M., Anderson, R.M., Linnemann, 
A.K., Benjamin, C., Nelson, J.B., Benninger, K.S., Nadler, J.L., et al. (2017). Inhibition of 
12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration 
in Mouse Models of Type 1 Diabetes. Diabetes 66, 2875–2887. 

Herold, K.C., Vignali, D.A.A., Cooke, A., and Bluestone, J.A. (2013). Type 1 diabetes: 
translating mechanistic observations into effective clinical outcomes. Nat. Rev. Immunol. 
13, 243–256. 

Hober, D., and Sauter, P. (2010). Pathogenesis of type 1 diabetes mellitus: interplay 
between enterovirus and host. Nat Rev Endocrinol 6, 279–289. 

Honeyman, M.C., Stone, N.L., and Harrison, L.C. (1998). T-Cell Epitopes in Type 1 
Diabetes Autoantigen Tyrosine Phosphatase IA-2: Potential for Mimicry with Rotavirus 
and Other Environmental Agents. Mol Med 4, 231–239. 

Honka, M.-J., Latva-Rasku, A., Bucci, M., Virtanen, K.A., Hannukainen, J.C., Kalliokoski, 
K.K., and Nuutila, P. (2018). Insulin-stimulated glucose uptake in skeletal muscle, adipose 
tissue and liver: a positron emission tomography study. Eur J Endocrinol 178, 523–531. 

Hossain, M., Faruque, M.O., Kabir, G., Hassan, N., Sikdar, D., Nahar, Q., and Ali, L. 
(2010). Association of serum TNF-α and IL-6 with insulin secretion and insulin resistance 
in IFG and IGT subjects in a Bangladeshi population. International Journal of Diabetes 
Mellitus 2, 165–168. 

Hotamisligil, G.S., and Erbay, E. (2008). Nutrient sensing and inflammation in metabolic 
diseases. Nat. Rev. Immunol. 8, 923–934. 

Hotta, K., Funahashi, T., Bodkin, N.L., Ortmeyer, H.K., Arita, Y., Hansen, B.C., and 
Matsuzawa, Y. (2001). Circulating  concentrations of the adipocyte protein adiponectin are 
decreased in parallel with reduced insulin sensitivity  during the progression to type 2 
diabetes in rhesus monkeys. Diabetes 50, 1126–1133. 



188 

Hou, N., Torii, S., Saito, N., Hosaka, M., and Takeuchi, T. (2008). Reactive oxygen 
species-mediated pancreatic beta-cell death is regulated by interactions between stress-
activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein 
kinase phosphatases. Endocrinology 149, 1654–1665. 

Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, 
J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference 
genome sequence and its relationship to the human genome. Nature 496, 498–503. 

Hu, F.B. (2011). Globalization of Diabetes. Diabetes Care 34, 1249–1257. 

Huang, C., Lin, C., Haataja, L., Gurlo, T., Butler, A.E., Rizza, R.A., and Butler, P.C. 
(2007). High expression rates of human islet amyloid polypeptide induce endoplasmic 
reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but 
not type 1 diabetes. Diabetes 56, 2016–2027. 

Hull, C.M., Peakman, M., and Tree, T.I.M. (2017). Regulatory T cell dysfunction in type 
1 diabetes: what’s broken and how can we fix it? Diabetologia 60, 1839–1850. 

Hull, R.L., Westermark, G.T., Westermark, P., and Kahn, S.E. (2004). Islet amyloid: a 
critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–
3643. 

Hunter, P. (2012). The inflammation theory of disease. EMBO Rep 13, 968–970. 

Hussain, M.J., Maher, J., Warnock, T., Vats, A., Peakman, M., and Vergani, D. (1998). 
Cytokine overproduction in healthy first degree relatives of patients with IDDM. 
Diabetologia 41, 343–349. 

Hyöty, H., Hiltunen, M., Knip, M., Laakkonen, M., Vähäsalo, P., Karjalainen, J., Koskela, 
P., Roivainen, M., Leinikki, P., and Hovi, T. (1995). A prospective study of the role of 
coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Childhood 
Diabetes in Finland (DiMe) Study Group. Diabetes 44, 652–657. 

IDF Diabetes Atlas Group,  null (2015). Update of mortality attributable to diabetes for the 
IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res. Clin. Pract. 109, 461–465. 

Ikei, K.N., Yeung, J., Apopa, P.L., Ceja, J., Vesci, J., Holman, T.R., and Holinstat, M. 
(2012). Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase 
products in platelet activation. J. Lipid Res. 53, 2546–2559. 

Imig, J.D., and Hye Khan, Md.A. (2015). Cytochrome P450 and Lipoxygenase Metabolites 
on Renal Function. Compr Physiol 6, 423–441. 

In’t Veld, P., De Munck, N., Van Belle, K., Buelens, N., Ling, Z., Weets, I., Haentjens, P., 
Pipeleers-Marichal, M., Gorus, F., and Pipeleers, D. (2010). Beta-cell replication is 
increased in donor organs from young patients after prolonged life support. Diabetes 59, 
1702–1708. 



189 

Intine, R.V., Olsen, A.S., and Jr, M.P.S. (2013). A Zebrafish Model of Diabetes Mellitus 
and Metabolic Memory. JoVE (Journal of Visualized Experiments) e50232. 

Iynedjian, P.B. (1993). Mammalian glucokinase and its gene. Biochem J 293, 1–13. 

Jacobson, D.A., and Philipson, L.H. (2007). Action potentials and insulin secretion: new 
insights into the role of Kv channels. Diabetes Obes Metab 9, 89–98. 

Janah, L., Kjeldsen, S., Galsgaard, K.D., Winther-Sørensen, M., Stojanovska, E., Pedersen, 
J., Knop, F.K., Holst, J.J., and Wewer Albrechtsen, N.J. (2019). Glucagon Receptor 
Signaling and Glucagon Resistance. Int J Mol Sci 20. 

Jisaka, M., Kim, R.B., Boeglin, W.E., and Brash, A.R. (2000). Identification of amino acid 
determinants of the positional specificity of mouse 8S-lipoxygenase and human 15S-
lipoxygenase-2. J. Biol. Chem. 275, 1287–1293. 

Jun, H.S., Yoon, C.S., Zbytnuik, L., van Rooijen, N., and Yoon, J.W. (1999). The role of 
macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Exp. 
Med. 189, 347–358. 

Kahanovitz, L., Sluss, P.M., and Russell, S.J. (2017). Type 1 Diabetes – A Clinical 
Perspective. Point Care 16, 37–40. 

Kahn, B.B., Alquier, T., Carling, D., and Hardie, D.G. (2005). AMP-activated protein 
kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell 
Metab. 1, 15–25. 

Kalergis, M., Leung Yinko, S.S.L., and Nedelcu, R. (2013). Dairy Products and Prevention 
of Type 2 Diabetes: Implications for Research and Practice. Front Endocrinol (Lausanne) 
4. 

Kaline, K., Bornstein, S.R., Bergmann, A., Hauner, H., and Schwarz, P.E.H. (2007). The 
importance and effect of dietary fiber in diabetes prevention with particular consideration 
of whole grain products. Horm. Metab. Res. 39, 687–693. 

Kalueff, A.V., Stewart, A.M., and Gerlai, R. (2014). Zebrafish as an emerging model for 
studying complex brain disorders. Trends Pharmacol Sci 35, 63–75. 

Kaneto, H., Katakami, N., Matsuhisa, M., and Matsuoka, T. (2010). Role of reactive 
oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators 
Inflamm. 2010, 453892. 

Kanter, J.E., Kramer, F., Barnhart, S., Averill, M.M., Vivekanandan-Giri, A., Vickery, T., 
Li, L.O., Becker, L., Yuan, W., Chait, A., et al. (2012). Diabetes promotes an inflammatory 
macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc. Natl. 
Acad. Sci. U.S.A. 109, E715-724. 



190 

Karamanlis, A., Chaikomin, R., Doran, S., Bellon, M., Bartholomeusz, F.D., Wishart, J.M., 
Jones, K.L., Horowitz, M., and Rayner, C.K. (2007). Effects of protein on glycemic and 
incretin responses and gastric emptying after oral glucose in healthy subjects. Am. J. Clin. 
Nutr. 86, 1364–1368. 

Karlsson, M.G., and Ludvigsson, J. (2000). The ABBOS-peptide from bovine serum 
albumin causes an IFN-gamma and IL-4 mRNA response in lymphocytes from children 
with recent onset of type 1 diabetes. Diabetes Res. Clin. Pract. 47, 199–207. 

Kashyap, S.R., Belfort, R., Berria, R., Suraamornkul, S., Pratipranawatr, T., Finlayson, J., 
Barrentine, A., Bajaj, M., Mandarino, L., DeFronzo, R., et al. (2004). Discordant effects of 
a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects 
with or without a family history of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 
287, E537-546. 

Katsuura, G., Asakawa, A., and Inui, A. (2002). Roles of pancreatic polypeptide in 
regulation of food intake. Peptides 23, 323–329. 

Kavvoura, F.K., and Ioannidis, J.P.A. (2005). CTLA-4 gene polymorphisms and 
susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. Am. J. 
Epidemiol. 162, 3–16. 

Keahey, H.H., Rajan, A.S., Boyd, A.E., and Kunze, D.L. (1989). Characterization of 
voltage-dependent Ca2+ channels in beta-cell line. Diabetes 38, 188–193. 

Khalil, I., d’Auriol, L., Gobet, M., Morin, L., Lepage, V., Deschamps, I., Park, M.S., 
Degos, L., Galibert, F., and Hors, J. (1990). A combination of HLA-DQ beta Asp57-
negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes 
mellitus. J. Clin. Invest. 85, 1315–1319. 

Khan, S.A., Ali, A., Khan, S.A., Zahran, S.A., Damanhouri, G., Azhar, E., and Qadri, I. 
(2014). Unraveling the Complex Relationship Triad between Lipids, Obesity, and 
Inflammation. Mediators Inflamm 2014. 

Kharroubi, A.T., and Darwish, H.M. (2015). Diabetes mellitus: The epidemic of the 
century. World J Diabetes 6, 850–867. 

Kim, Y.B., Nikoulina, S.E., Ciaraldi, T.P., Henry, R.R., and Kahn, B.B. (1999). Normal 
insulin-dependent activation of AKT/protein kinase B, with diminished activation of 
phosphoinositide 3-kinase, in muscle in type 2 diabetes. J. Clin. Invest. 104, 733–741. 

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). 
Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. 

King, A.J. (2012). The use of animal models in diabetes research. Br J Pharmacol 166, 
877–894. 



191 

King, G.L. (2008). The role of inflammatory cytokines in diabetes and its complications. 
J. Periodontol. 79, 1527–1534. 

King, M., Pearson, T., Rossini, A.A., Shultz, L.D., and Greiner, D.L. (2008). Humanized 
mice for the study of type 1 diabetes and beta cell function. Ann. N. Y. Acad. Sci. 1150, 
46–53. 

Kinkel, M.D., and Prince, V.E. (2009). On the diabetic menu: Zebrafish as a model for 
pancreas development and function. Bioessays 31, 139–152. 

Klampfl, T., Bogner, E., Bednar, W., Mager, L., Massudom, D., Kalny, I., Heinzle, C., 
Berger, W., Stättner, S., Karner, J., et al. (2012). Up-regulation of 12(S)-lipoxygenase 
induces a migratory phenotype in colorectal cancer cells. Exp Cell Res 318, 768–778. 

Klinke, D.J. (2008). Extent of Beta Cell Destruction Is Important but Insufficient to Predict 
the Onset of Type 1 Diabetes Mellitus. PLoS One 3. 

Knox, R.J., Friedlos, F., Jarman, M., and Roberts, J.J. (1988). A new cytotoxic, DNA 
interstrand crosslinking agent, 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide, is 
formed from 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by a nitroreductase enzyme 
in Walker carcinoma cells. Biochem. Pharmacol. 37, 4661–4669. 

Kraakman, M.J., Murphy, A.J., Jandeleit-Dahm, K., and Kammoun, H.L. (2014). 
Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down Our 
Understanding of Macrophage Function? Front Immunol 5. 

Krakauer, T. (2015). Inflammasome, mTORC1 activation, and metabolic derangement 
contribute to the susceptibility of diabetics to infections. Med. Hypotheses 85, 997–1001. 

Krieg, P., Marks, F., and Fürstenberger, G. (2001). A gene cluster encoding human 
epidermis-type lipoxygenases at chromosome 17p13.1: cloning, physical mapping, and 
expression. Genomics 73, 323–330. 

Kubota, N., Tobe, K., Terauchi, Y., Eto, K., Yamauchi, T., Suzuki, R., Tsubamoto, Y., 
Komeda, K., Nakano, R., Miki, H., et al. (2000). Disruption of insulin receptor substrate 2 
causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-
cell hyperplasia. Diabetes 49, 1880–1889. 

Kuhn, H., Banthiya, S., and van Leyen, K. (2015). Mammalian lipoxygenases and their 
biological relevance. Biochim Biophys Acta 1851, 308–330. 

Kulkarni, R.N., Mizrachi, E.-B., Ocana, A.G., and Stewart, A.F. (2012). Human β-Cell 
Proliferation and Intracellular Signaling: Driving in the Dark Without a Road Map. 
Diabetes 61, 2205–2213. 

Kurban, S., Mehmetoglu, I., Yerlikaya, H.F., Gönen, S., and Erdem, S. (2011). Effect of 
chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress 
in type 2 diabetes mellitus. Endocr. Res. 36, 116–123. 



192 

Kwiecien, S., Jasnos, K., Magierowski, M., Sliwowski, Z., Pajdo, R., Brzozowski, B., 
Mach, T., Wojcik, D., and Brzozowski, T. (2014). Lipid peroxidation, reactive oxygen 
species and antioxidative factors in the pathogenesis of gastric mucosal lesions and 
mechanism of protection against oxidative stress - induced gastric injury. J. Physiol. 
Pharmacol. 65, 613–622. 

Lambeth, J.D. (2007). Nox Enzymes, ROS, and Chronic Disease: An Example of 
Antagonistic Pleiotropy. Free Radic Biol Med 43, 332–347. 

Landar, A., Zmijewski, J.W., Dickinson, D.A., Le Goffe, C., Johnson, M.S., Milne, G.L., 
Zanoni, G., Vidari, G., Morrow, J.D., and Darley-Usmar, V.M. (2006). Interaction of 
electrophilic lipid oxidation products with mitochondria in endothelial cells and formation 
of reactive oxygen species. Am. J. Physiol. Heart Circ. Physiol. 290, H1777-1787. 

Landgraf, K., Schuster, S., Meusel, A., Garten, A., Riemer, T., Schleinitz, D., Kiess, W., 
and Körner, A. (2017). Short-term overfeeding of zebrafish with normal or high-fat diet as 
a model for the development of metabolically healthy versus unhealthy obesity. BMC 
Physiol. 17, 4. 

Larsen, C.M., Faulenbach, M., Vaag, A., Ehses, J.A., Donath, M.Y., and Mandrup-
Poulsen, T. (2009). Sustained effects of interleukin-1 receptor antagonist treatment in type 
2 diabetes. Diabetes Care 32, 1663–1668. 

Lau, A.T.Y., Wang, Y., and Chiu, J.-F. (2008). Reactive oxygen species: current 
knowledge and applications in cancer research and therapeutic. J. Cell. Biochem. 104, 657–
667. 

Lavin, D.P., White, M.F., and Brazil, D.P. (2016). IRS proteins and diabetic complications. 
Diabetologia 59, 2280–2291. 

Laybutt, D.R., Preston, A.M., Akerfeldt, M.C., Kench, J.G., Busch, A.K., Biankin, A.V., 
and Biden, T.J. (2007). Endoplasmic reticulum stress contributes to beta cell apoptosis in 
type 2 diabetes. Diabetologia 50, 752–763. 

Leclercq-Meyer, V., Marchand, J., and Malaisse, W.J. (1979). Calcium dependency of 
glucagon release: its modulation by nutritional factors. Am. J. Physiol. 236, E98-104. 

Lee, J., and Pilch, P.F. (1994). The insulin receptor: structure, function, and signaling. Am. 
J. Physiol. 266, C319-334. 

Lee, S., Huen, S., Nishio, H., Nishio, S., Lee, H.K., Choi, B.-S., Ruhrberg, C., and Cantley, 
L.G. (2011). Distinct macrophage phenotypes contribute to kidney injury and repair. J. 
Am. Soc. Nephrol. 22, 317–326. 

Lee, Y.H., Giraud, J., Davis, R.J., and White, M.F. (2003). c-Jun N-terminal kinase (JNK) 
mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem. 278, 2896–
2902. 



193 

Lehuen, A., Diana, J., Zaccone, P., and Cooke, A. (2010). Immune cell crosstalk in type 1 
diabetes. Nat. Rev. Immunol. 10, 501–513. 

Lenzen, S. (2008). Oxidative stress: the vulnerable beta-cell. Biochem. Soc. Trans. 36, 
343–347. 

Leto, D., and Saltiel, A.R. (2012). Regulation of glucose transport by insulin: traffic control 
of GLUT4. Nat Rev Mol Cell Biol 13, 383–396. 

Lim, A.K. (2014). Diabetic nephropathy – complications and treatment. Int J Nephrol 
Renovasc Dis 7, 361–381. 

Lin, J.H., Walter, P., and Yen, T.S.B. (2008). Endoplasmic Reticulum Stress in Disease 
Pathogenesis. Annu Rev Pathol 3, 399–425. 

Lindström, P. (2007). The physiology of obese-hyperglycemic mice [ob/ob mice]. 
ScientificWorldJournal 7, 666–685. 

Liu, G., Zong, G., Hu, F.B., Willett, W.C., Eisenberg, D.M., and Sun, Q. (2017). Cooking 
Methods for Red Meats and Risk of Type 2 Diabetes: A Prospective Study of U.S. Women. 
Diabetes Care 40, 1041–1049. 

Liu, M., Wright, J., Guo, H., Xiong, Y., and Arvan, P. (2014a). Proinsulin entry and transit 
through the endoplasmic reticulum in pancreatic beta cells. Vitam. Horm. 95, 35–62. 

Liu, S., Tinker, L., Song, Y., Rifai, N., Bonds, D.E., Cook, N.R., Heiss, G., Howard, B.V., 
Hotamisligil, G.S., Hu, F.B., et al. (2007). A Prospective Study of Inflammatory Cytokines 
and Diabetes Mellitus in a Multiethnic Cohort of Postmenopausal Women. Arch Intern 
Med 167, 1676–1685. 

Liu, Y.-C., Zou, X.-B., Chai, Y.-F., and Yao, Y.-M. (2014b). Macrophage polarization in 
inflammatory diseases. Int. J. Biol. Sci. 10, 520–529. 

Lomedico, P.T., Chan, S.J., Steiner, D.F., and Saunders, G.F. (1977). Immunological and 
chemical characterization of bovine preproinsulin. J. Biol. Chem. 252, 7971–7978. 

Lönnrot, M., Korpela, K., Knip, M., Ilonen, J., Simell, O., Korhonen, S., Savola, K., 
Muona, P., Simell, T., Koskela, P., et al. (2000). Enterovirus infection as a risk factor for 
beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes 
Prediction and Prevention Study. Diabetes 49, 1314–1318. 

Lorenzati, B., Zucco, C., Miglietta, S., Lamberti, F., and Bruno, G. (2010). Oral 
Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. 
Pharmaceuticals (Basel) 3, 3005–3020. 

Lotta, L.A., Gulati, P., Day, F.R., Payne, F., Ongen, H., van de Bunt, M., Gaulton, K.J., 
Eicher, J.D., Sharp, S.J., Luan, J., et al. (2017). Integrative genomic analysis implicates 



194 

limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. 
Nat. Genet. 49, 17–26. 

Lubos, E., Loscalzo, J., and Handy, D.E. (2011). Glutathione Peroxidase-1 in Health and 
Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid Redox 
Signal 15, 1957–1997. 

Lucas, T., Waisman, A., Ranjan, R., Roes, J., Krieg, T., Müller, W., Roers, A., and Eming, 
S.A. (2010). Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 
184, 3964–3977. 

Luci, D., Jameson, J.B., Yasgar, A., Diaz, G., Joshi, N., Kantz, A., Markham, K., Perry, S., 
Kuhn, N., Yeung, J., et al. (2010). Discovery of ML355, a Potent and Selective Inhibitor 
of Human 12-Lipoxygenase. In Probe Reports from the NIH Molecular Libraries Program, 
(Bethesda (MD): National Center for Biotechnology Information (US)), p. 

Lumeng, C.N., DeYoung, S.M., Bodzin, J.L., and Saltiel, A.R. (2007a). Increased 
Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced 
Obesity. Diabetes 56, 16–23. 

Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007b). Obesity induces a phenotypic 
switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184. 

Luo, X., Miller, S.D., and Shea, L.D. (2016). Immune Tolerance for Autoimmune Disease 
and Cell Transplantation. Annu Rev Biomed Eng 18, 181–205. 

Lyssenko, V., and Laakso, M. (2013). Genetic Screening for the Risk of Type 2 Diabetes: 
Worthless or valuable? Diabetes Care 36, S120–S126. 

Ma, K., Nunemaker, C.S., Wu, R., Chakrabarti, S.K., Taylor-Fishwick, D.A., and Nadler, 
J.L. (2010). 12-Lipoxygenase Products Reduce Insulin Secretion and {beta}-Cell Viability 
in Human Islets. J. Clin. Endocrinol. Metab. 95, 887–893. 

Maahs, D.M., West, N.A., Lawrence, J.M., and Mayer-Davis, E.J. (2010). Chapter 1: 
Epidemiology of Type 1 Diabetes. Endocrinol Metab Clin North Am 39, 481–497. 

Maamoun, H., Benameur, T., Pintus, G., Munusamy, S., and Agouni, A. (2019). Crosstalk 
Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial 
Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the 
Protective Roles of Heme Oxygenase (HO)-1. Front. Physiol. 10. 

MacDonald, P.E., and Wheeler, M.B. (2003). Voltage-dependent K(+) channels in 
pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46, 
1046–1062. 

MacRae, C.A., and Peterson, R.T. (2015). Zebrafish as tools for drug discovery. Nat Rev 
Drug Discov 14, 721–731. 



195 

Maddison, L.A., and Chen, W. (2017). Modeling Pancreatic Endocrine Cell Adaptation 
and Diabetes in the Zebrafish. Front Endocrinol (Lausanne) 8. 

Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H.I., Spinas, G.A., Kaiser, 
N., Halban, P.A., and Donath, M.Y. (2002). Glucose-induced beta cell production of IL-
1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860. 

Makki, K., Froguel, P., and Wolowczuk, I. (2013). Adipose Tissue in Obesity-Related 
Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm 
2013. 

Malik, V.S., Popkin, B.M., Bray, G.A., Després, J.-P., and Hu, F.B. (2010). Sugar 
Sweetened Beverages, Obesity, Type 2 Diabetes and Cardiovascular Disease risk. 
Circulation 121, 1356–1364. 

Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The 
chemokine system in diverse forms of macrophage activation and polarization. Trends 
Immunol. 25, 677–686. 

Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., and Locati, M. (2013). Macrophage 
plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185. 

Marchetti, P., Bugliani, M., Lupi, R., Marselli, L., Masini, M., Boggi, U., Filipponi, F., 
Weir, G.C., Eizirik, D.L., and Cnop, M. (2007). The endoplasmic reticulum in pancreatic 
beta cells of type 2 diabetes patients. Diabetologia 50, 2486–2494. 

Marhfour, I., Lopez, X.M., Lefkaditis, D., Salmon, I., Allagnat, F., Richardson, S.J., 
Morgan, N.G., and Eizirik, D.L. (2012). Expression of endoplasmic reticulum stress 
markers in the islets of patients with type 1 diabetes. Diabetologia 55, 2417–2420. 

Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-
Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the 
inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218. 

Mari-Sanchis, A., Gea, A., Basterra-Gortari, F.J., Martinez-Gonzalez, M.A., Beunza, J.J., 
and Bes-Rastrollo, M. (2016). Meat Consumption and Risk of Developing Type 2 Diabetes 
in the SUN Project: A Highly Educated Middle-Class Population. PLoS One 11. 

Maritim, A.C., Sanders, R.A., and Watkins, J.B. (2003). Diabetes, oxidative stress, and 
antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24–38. 

Martinez, F.O., and Gordon, S. (2014). The M1 and M2 paradigm of macrophage 
activation: time for reassessment. F1000Prime Rep 6, 13. 

Masters, S.L., Dunne, A., Subramanian, S.L., Hull, R.L., Tannahill, G.M., Sharp, F.A., 
Becker, C., Franchi, L., Yoshihara, E., Chen, Z., et al. (2010). Activation of the NLRP3 
inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in 
type 2 diabetes. Nat. Immunol. 11, 897–904. 



196 

Mastrandrea, L., Yu, J., Behrens, T., Buchlis, J., Albini, C., Fourtner, S., and Quattrin, T. 
(2009). Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, 
placebo-controlled, double-blind study. Diabetes Care 32, 1244–1249. 

Mathias, J.R., Zhang, Z., Saxena, M.T., and Mumm, J.S. (2014). Enhanced cell-specific 
ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish 11, 
85–97. 

Matschinsky, F.M. (1996). Banting Lecture 1995. A lesson in metabolic regulation inspired 
by the glucokinase glucose sensor paradigm. Diabetes 45, 223–241. 

Matsuda, H. (2018). Zebrafish as a model for studying functional pancreatic β cells 
development and regeneration. Development, Growth & Differentiation 60, 393–399. 

Matsue, H., Edelbaum, D., Shalhevet, D., Mizumoto, N., Yang, C., Mummert, M.E., Oeda, 
J., Masayasu, H., and Takashima, A. (2003). Generation and Function of Reactive Oxygen 
Species in Dendritic Cells During Antigen Presentation. The Journal of Immunology 171, 
3010–3018. 

McCarthy, M.I. (2010). Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 
2339–2350. 

McGrowder, D.A., Anderson-Jackson, L., and Crawford, T.V. (2013). Biochemical 
Evaluation of Oxidative Stress in Type 1 Diabetes. Type 1 Diabetes. 

Medici, F., Hawa, M., Ianari, A., Pyke, D.A., and Leslie, R.D. (1999). Concordance rate 
for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 42, 
146–150. 

Meguro, S., Hasumura, T., and Hase, T. (2015). Body fat accumulation in zebrafish is 
induced by a diet rich in fat and reduced by supplementation with green tea extract. PLoS 
ONE 10, e0120142. 

Meier, C.A., Bobbioni, E., Gabay, C., Assimacopoulos-Jeannet, F., Golay, A., and Dayer, 
J.-M. (2002). IL-1 receptor antagonist serum levels are increased in human obesity: a 
possible link to the resistance to leptin? J. Clin. Endocrinol. Metab. 87, 1184–1188. 

Mein, C.A., Esposito, L., Dunn, M.G., Johnson, G.C., Timms, A.E., Goy, J.V., Smith, 
A.N., Sebag-Montefiore, L., Merriman, M.E., Wilson, A.J., et al. (1998). A search for type 
1 diabetes susceptibility genes in families from the United Kingdom. Nat. Genet. 19, 297–
300. 

Menser, M.A., Forrest, J.M., and Bransby, R.D. (1978). Rubella infection and diabetes 
mellitus. Lancet 1, 57–60. 

Metz, H.E., and Houghton, A.M. (2011). Insulin receptor substrate regulation of 
phosphoinositide 3-kinase. Clin. Cancer Res. 17, 206–211. 



197 

Miki, T., Nagashima, K., and Seino, S. (1999). The structure and function of the ATP-
sensitive K+ channel in insulin-secreting pancreatic beta-cells. J. Mol. Endocrinol. 22, 
113–123. 

Minokoshi, Y., Kim, Y.-B., Peroni, O.D., Fryer, L.G.D., Müller, C., Carling, D., and Kahn, 
B.B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein 
kinase. Nature 415, 339–343. 

Miranda, P.M., and Horwitz, D.L. (1978). High-fiber diets in the treatment of diabetes 
mellitus. Ann. Intern. Med. 88, 482–486. 

Mirza, S., Hossain, M., Mathews, C., Martinez, P., Pino, P., Gay, J.L., Rentfro, A., 
McCormick, J.B., and Fisher-Hoch, S.P. (2012). Type 2-Diabetes is Associated With 
Elevated Levels of TNF-alpha, IL-6 and Adiponectin and Low Levels of Leptin in a 
Population of Mexican American: A Cross-Sectional Study. Cytokine 57, 136–142. 

Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P., and Malik, A.B. (2014). Reactive oxygen 
species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. 

Miyazaki, J., Araki, K., Yamato, E., Ikegami, H., Asano, T., Shibasaki, Y., Oka, Y., and 
Yamamura, K. (1990). Establishment of a pancreatic beta cell line that retains glucose-
inducible insulin secretion: special reference to expression of glucose transporter isoforms. 
Endocrinology 127, 126–132. 

Molinaro, A., Becattini, B., Mazzoli, A., Bleve, A., Radici, L., Maxvall, I., Sopasakis, V.R., 
Molinaro, A., Bäckhed, F., and Solinas, G. (2019). Insulin-Driven PI3K-AKT Signaling in 
the Hepatocyte Is Mediated by Redundant PI3Kα and PI3Kβ Activities and Is Promoted 
by RAS. Cell Metab. 29, 1400-1409.e5. 

Monnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J.-P., and Colette, C. (2006). 
Activation of oxidative stress by acute glucose fluctuations compared with sustained 
chronic hyperglycemia in patients with type 2 diabetes. JAMA 295, 1681–1687. 

Montane, J., and Novials, A. (2016). The Role of Human IAPP in Stress and Inflammatory 
Processes in Type 2 Diabetes. Exploring New Findings on Amyloidosis. 

Montesanto, A., Bonfigli, A.R., Crocco, P., Garagnani, P., De Luca, M., Boemi, M., 
Marasco, E., Pirazzini, C., Giuliani, C., Franceschi, C., et al. (2018). Genes associated with 
Type 2 Diabetes and vascular complications. Aging (Albany NY) 10, 178–196. 

Moran, A., Bundy, B., Becker, D.J., DiMeglio, L.A., Gitelman, S.E., Goland, R., 
Greenbaum, C.J., Herold, K.C., Marks, J.B., Raskin, P., et al. (2013). Interleukin-1 
antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, 
placebo-controlled trials. Lancet 381, 1905–1915. 

Mordes, J.P., Bortell, R., Blankenhorn, E.P., Rossini, A.A., and Greiner, D.L. (2004). Rat 
models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J 45, 278–291. 



198 

Moreno, S.G. (2018). Depleting Macrophages In Vivo with Clodronate-Liposomes. 
Methods Mol. Biol. 1784, 259–262. 

Morioka, T., Asilmaz, E., Hu, J., Dishinger, J.F., Kurpad, A.J., Elias, C.F., Li, H., Elmquist, 
J.K., Kennedy, R.T., and Kulkarni, R.N. (2007). Disruption of leptin receptor expression 
in the pancreas directly affects beta cell growth and function in mice. J. Clin. Invest. 117, 
2860–2868. 

Moss, J.B., Koustubhan, P., Greenman, M., Parsons, M.J., Walter, I., and Moss, L.G. 
(2009). Regeneration of the pancreas in adult zebrafish. Diabetes 58, 1844–1851. 

Motta, P.M., Macchiarelli, G., Nottola, S.A., and Correr, S. (1997). Histology of the 
exocrine pancreas. Microsc. Res. Tech. 37, 384–398. 

Movassat, J., Calderari, S., Fernández, E., Martín, M.A., Escrivá, F., Plachot, C., 
Gangnerau, M.N., Serradas, P., Alvarez, C., and Portha, B. (2007). Type 2 diabetes - a 
matter of failing beta-cell neogenesis? Clues from the GK rat model. Diabetes Obes Metab 
9 Suppl 2, 187–195. 

Mulder, R., Banete, A., and Basta, S. (2014). Spleen-derived macrophages are readily 
polarized into classically activated (M1) or alternatively activated (M2) states. 
Immunobiology 219, 737–745. 

Munro, S., and Pelham, H.R. (1987). A C-terminal signal prevents secretion of luminal ER 
proteins. Cell 48, 899–907. 

Murray, P.J. (2017). Macrophage Polarization. Annu. Rev. Physiol. 79, 541–566. 

Murri, M., Leiva, I., Gomez-Zumaquero, J.M., Tinahones, F.J., Cardona, F., Soriguer, F., 
and Queipo-Ortuño, M.I. (2013). Gut microbiota in children with type 1 diabetes differs 
from that in healthy children: a case-control study. BMC Med 11, 46. 

Nackiewicz, D., Dan, M., He, W., Kim, R., Salmi, A., Rütti, S., Westwell-Roper, C., 
Cunningham, A., Speck, M., Schuster-Klein, C., et al. (2014). TLR2/6 and TLR4-activated 
macrophages contribute to islet inflammation and impair beta cell insulin gene expression 
via IL-1 and IL-6. Diabetologia 57, 1645–1654. 

Nackiewicz, D., Dan, M., Speck, M., Chow, S.Z., Chen, Y.C., Pospisilik, J.A., Verchere, 
C.B., and Ehses, J.A. (2019). Islet macrophages shift to a reparative state following 
pancreatic beta-cell death and are a major source of islet IGF-1. BioRxiv 480368. 

Nam, Y.H., Hong, B.N., Rodriguez, I., Ji, M.G., Kim, K., Kim, U.-J., and Kang, T.H. 
(2015). Synergistic Potentials of Coffee on Injured Pancreatic Islets and Insulin Action via 
KATP Channel Blocking in Zebrafish. J. Agric. Food Chem. 63, 5612–5621. 

Natarajan, R., Gu, J.L., Rossi, J., Gonzales, N., Lanting, L., Xu, L., and Nadler, J. (1993). 
Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in 
porcine aortic smooth muscle cells. Proc. Natl. Acad. Sci. U.S.A. 90, 4947–4951. 



199 

Nazar, C.M.J. (2014). Diabetic nephropathy; principles of diagnosis and treatment of 
diabetic kidney disease. J Nephropharmacol 3, 15–20. 

Nazarewicz, R.R., Bikineyeva, A., and Dikalov, S.I. (2013). Rapid and specific 
measurements of superoxide using fluorescence spectroscopy. J Biomol Screen 18, 498–
503. 

Nentwich, M.M., and Ulbig, M.W. (2015). Diabetic retinopathy - ocular complications of 
diabetes mellitus. World J Diabetes 6, 489–499. 

Nie, D., Tang, K., Diglio, C., and Honn, K.V. (2000). Eicosanoid regulation of 
angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood 95, 2304–2311. 

Nie, D., Nemeth, J., Qiao, Y., Zacharek, A., Li, L., Hanna, K., Tang, K., Hillman, G.G., 
Cher, M.L., Grignon, D.J., et al. (2003). Increased metastatic potential in human prostate 
carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clin Exp Metastasis 
20, 657–663. 

Niens, M., Grier, A.E., Marron, M., Kay, T.W.H., Greiner, D.L., and Serreze, D.V. (2011). 
Prevention of “Humanized” diabetogenic CD8 T-cell responses in HLA-transgenic NOD 
mice by a multipeptide coupled-cell approach. Diabetes 60, 1229–1236. 

Niki, E. (2015). Evidence for beneficial effects of vitamin E. Korean J Intern Med 30, 571–
579. 

Nishi, M., Sanke, T., Nagamatsu, S., Bell, G.I., and Steiner, D.F. (1990). Islet amyloid 
polypeptide. A new beta cell secretory product related to islet amyloid deposits. J. Biol. 
Chem. 265, 4173–4176. 

Niu, S., Bian, Z., Tremblay, A., Luo, Y., Kidder, K., Mansour, A., Zen, K., and Liu, Y. 
(2016). Broad infiltration of macrophages leads to a proinflammatory state in 
streptozotocin-induced hyperglycemic mice. J Immunol 197, 3293–3301. 

Norris, J.M., Barriga, K., Klingensmith, G., Hoffman, M., Eisenbarth, G.S., Erlich, H.A., 
and Rewers, M. (2003). Timing of initial cereal exposure in infancy and risk of islet 
autoimmunity. JAMA 290, 1713–1720. 

Norris, J.M., Yin, X., Lamb, M.M., Barriga, K., Seifert, J., Hoffman, M., Orton, H.D., 
Barón, A.E., Clare-Salzler, M., Chase, H.P., et al. (2007). Omega-3 polyunsaturated fatty 
acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA 
298, 1420–1428. 

Nunemaker, C.S., Chen, M., Pei, H., Kimble, S.D., Keller, S.R., Carter, J.D., Yang, Z., 
Smith, K.M., Wu, R., Bevard, M.H., et al. (2008). 12-Lipoxygenase-knockout mice are 
resistant to inflammatory effects of obesity induced by Western diet. Am. J. Physiol. 
Endocrinol. Metab. 295, E1065-1075. 



200 

Nuttall, F.Q., Gannon, M.C., Wald, J.L., and Ahmed, M. (1985). Plasma glucose and 
insulin profiles in normal subjects ingesting diets of varying carbohydrate, fat, and protein 
content. J Am Coll Nutr 4, 437–450. 

Nyenwe, E.A., Jerkins, T.W., Umpierrez, G.E., and Kitabchi, A.E. (2011). Management of 
type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. 
Metabolism 60, 1–23. 

O’Donnell, V.B., Eiserich, J.P., Chumley, P.H., Jablonsky, M.J., Krishna, N.R., Kirk, M., 
Barnes, S., Darley-Usmar, V.M., and Freeman, B.A. (1999). Nitration of unsaturated fatty 
acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen 
dioxide, and nitronium ion. Chem. Res. Toxicol. 12, 83–92. 

Ofei, F. (2005). Obesity - A Preventable Disease. Ghana Med J 39, 98–101. 

Ogihara, T., and Mirmira, R.G. (2010). An islet in distress: β cell failure in type 2 diabetes. 
Journal of Diabetes Investigation 1, 123–133. 

Ohta, M., Nelson, J., Nelson, D., Meglasson, M.D., and Erecińska, M. (1993). Effect of 
Ca++ channel blockers on energy level and stimulated insulin secretion in isolated rat islets 
of Langerhans. J. Pharmacol. Exp. Ther. 264, 35–40. 

Oka, T., Nishimura, Y., Zang, L., Hirano, M., Shimada, Y., Wang, Z., Umemoto, N., 
Kuroyanagi, J., Nishimura, N., and Tanaka, T. (2010). Diet-induced obesity in zebrafish 
shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 
21. 

Okada, S., Saito, M., Kinoshita, Y., Satoh, I., Kawaba, Y., Hayashi, A., Oite, T., Satoh, K., 
and Kanzaki, S. (2010). Effects of cyclohexenonic long-chain fatty alcohol in type 2 
diabetic rat nephropathy. Biomed. Res. 31, 219–230. 

van Olden, C., Groen, A.K., and Nieuwdorp, M. (2015). Role of Intestinal Microbiome in 
Lipid and Glucose Metabolism in Diabetes Mellitus. Clin Ther 37, 1172–1177. 

de Oliveira, I.M., Zanotto-Filho, A., Moreira, J.C.F., Bonatto, D., and Henriques, J.A.P. 
(2010). The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress 
response in Saccharomyces cerevisiae. Yeast 27, 89–102. 

Olokoba, A.B., Obateru, O.A., and Olokoba, L.B. (2012). Type 2 Diabetes Mellitus: A 
Review of Current Trends. Oman Med J 27, 269–273. 

Olsen, A.S., Sarras, M.P., and Intine, R.V. (2010). Limb Regeneration is Impaired in an 
Adult Zebrafish Model of Diabetes Mellitus. Wound Repair Regen 18, 532–542. 

Olson, A.L. (2012). Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN 
Mol Biol 2012, 856987. 



201 

O’Reilly, L.A., Hutchings, P.R., Crocker, P.R., Simpson, E., Lund, T., Kioussis, D., Takei, 
F., Baird, J., and Cooke, A. (1991). Characterization of pancreatic islet cell infiltrates in 
NOD mice: effect of cell transfer and transgene expression. Eur. J. Immunol. 21, 1171–
1180. 

Ostenson, C.-G., and Efendic, S. (2007). Islet gene expression and function in type 2 
diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9 Suppl 2, 
180–186. 

Otto-Buczkowska, E., and Jainta, N. (2017). Pharmacological Treatment in Diabetes 
Mellitus Type 1 – Insulin and What Else? Int J Endocrinol Metab 16. 

Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health 
and disease. Physiol. Rev. 87, 315–424. 

Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.-H., Chen, S., Corpe, C., 
Dutta, A., Dutta, S.K., et al. (2003). Vitamin C as an antioxidant: evaluation of its role in 
disease prevention. J Am Coll Nutr 22, 18–35. 

Padma-Malini, R., Rathika, C., Ramgopal, S., Murali, V., Dharmarajan, P., Pushkala, S., 
and Balakrishnan, K. (2018). Associations of CTLA4 +49 A/G Dimorphism and HLA-
DRB1*/DQB1* Alleles With Type 1 Diabetes from South India. Biochem. Genet. 56, 489–
505. 

Pandey, V.K., Mathur, A., and Kakkar, P. (2019). Emerging role of Unfolded Protein 
Response (UPR) mediated proteotoxic apoptosis in diabetes. Life Sciences 216, 246–258. 

Pandiri, A.R. (2014). Overview of exocrine pancreatic pathobiology. Toxicol Pathol 42, 
207–216. 

Papa, F.R. (2012). Endoplasmic Reticulum Stress, Pancreatic β-Cell Degeneration, and 
Diabetes. Cold Spring Harb Perspect Med 2. 

Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M., and Edmonds, M. (2018). 
Complications of Diabetes 2017. J Diabetes Res 2018. 

Papier, K., D’Este, C., Bain, C., Banwell, C., Seubsman, S., Sleigh, A., and Jordan, S. 
(2017). Consumption of sugar-sweetened beverages and type 2 diabetes incidence in Thai 
adults: results from an 8-year prospective study. Nutr Diabetes 7, e283. 

Paquot, N., Castillo, M.J., Lefèbvre, P.J., and Scheen, A.J. (2000). No increased insulin 
sensitivity after a single intravenous administration of a recombinant human tumor necrosis 
factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. 
Metab. 85, 1316–1319. 

Parisi, L., Gini, E., Baci, D., Tremolati, M., Fanuli, M., Bassani, B., Farronato, G., Bruno, 
A., and Mortara, L. (2018). Macrophage Polarization in Chronic Inflammatory Diseases: 
Killers or Builders? J Immunol Res 2018, 8917804. 



202 

Park, H.-K., and Ahima, R.S. (2015). Physiology of leptin: energy homeostasis, 
neuroendocrine function and metabolism. Metabolism 64, 24–34. 

Paschou, S.A., Petsiou, A., Chatzigianni, K., Tsatsoulis, A., and Papadopoulos, G.K. 
(2014). Type 1 diabetes as an autoimmune disease: the evidence. Diabetologia 57, 1500–
1501. 

Paschou, S.A., Papadopoulou-Marketou, N., Chrousos, G.P., and Kanaka-Gantenbein, C. 
(2017). On type 1 diabetes mellitus pathogenesis. Endocr Connect 7, R38–R46. 

Petersen, M.C., and Shulman, G.I. (2018). Mechanisms of Insulin Action and Insulin 
Resistance. Physiol. Rev. 98, 2133–2223. 

Pham-Huy, L.A., He, H., and Pham-Huy, C. (2008). Free radicals, antioxidants in disease 
and health. Int J Biomed Sci 4, 89–96. 

Picarel-Blanchot, F., Berthelier, C., Bailbé, D., and Portha, B. (1996). Impaired insulin 
secretion and excessive hepatic glucose production are both early events in the diabetic GK 
rat. Am. J. Physiol. 271, E755-762. 

Piomelli, D. (1993). Arachidonic acid in cell signaling. Curr. Opin. Cell Biol. 5, 274–280. 

Pippitt, K., Li, M., and Gurgle, H.E. (2016). Diabetes Mellitus: Screening and Diagnosis. 
Am Fam Physician 93, 103–109. 

Pisharath, H., Rhee, J.M., Swanson, M.A., Leach, S.D., and Parsons, M.J. (2007). Targeted 
ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. 
Mech. Dev. 124, 218–229. 

Poitout, V., Hagman, D., Stein, R., Artner, I., Robertson, R.P., and Harmon, J.S. (2006). 
Regulation of the insulin gene by glucose and fatty acids. J. Nutr. 136, 873–876. 

Porro, B., Songia, P., Squellerio, I., Tremoli, E., and Cavalca, V. (2014). Analysis, 
physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-
lipoxygenase product. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 964, 26–40. 

Porta, C., Riboldi, E., Ippolito, A., and Sica, A. (2015). Molecular and epigenetic basis of 
macrophage polarized activation. Semin. Immunol. 27, 237–248. 

Portha, B., Giroix, M.H., Serradas, P., Gangnerau, M.N., Movassat, J., Rajas, F., Bailbe, 
D., Plachot, C., Mithieux, G., and Marie, J.C. (2001). beta-cell function and viability in the 
spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 50 Suppl 1, 
S89-93. 

Pouvreau, C., Dayre, A., Butkowski, E.G., de Jong, B., and Jelinek, H.F. (2018). 
Inflammation and oxidative stress markers in diabetes and hypertension. J Inflamm Res 
11, 61–68. 



203 

Prada, P.O., Zecchin, H.G., Gasparetti, A.L., Torsoni, M.A., Ueno, M., Hirata, A.E., 
Corezola do Amaral, M.E., Höer, N.F., Boschero, A.C., and Saad, M.J.A. (2005). Western 
diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor 
substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 146, 1576–
1587. 

Prentki, M., and Madiraju, S.R.M. (2012). Glycerolipid/free fatty acid cycle and islet β-
cell function in health, obesity and diabetes. Mol. Cell. Endocrinol. 353, 88–100. 

Prentki, M., and Nolan, C.J. (2006). Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 
116, 1802–1812. 

Prentki, M., Matschinsky, F.M., and Madiraju, S.R.M. (2013). Metabolic signaling in fuel-
induced insulin secretion. Cell Metab. 18, 162–185. 

Prodi, E., and Obici, S. (2006). Minireview: the brain as a molecular target for diabetic 
therapy. Endocrinology 147, 2664–2669. 

Pugliese, A., Gianani, R., Moromisato, R., Awdeh, Z.L., Alper, C.A., Erlich, H.A., 
Jackson, R.A., and Eisenbarth, G.S. (1995). HLA-DQB1*0602 is associated with dominant 
protection from diabetes even among islet cell antibody-positive first-degree relatives of 
patients with IDDM. Diabetes 44, 608–613. 

Pugliese, A., Zeller, M., Fernandez, A., Zalcberg, L.J., Bartlett, R.J., Ricordi, C., 
Pietropaolo, M., Eisenbarth, G.S., Bennett, S.T., and Patel, D.D. (1997). The insulin gene 
is transcribed in the human thymus and transcription levels correlated with allelic variation 
at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–
297. 

Qu, H.-Q., Bradfield, J., Grant, S., Hakonarson, H., and Polychronakos, C. (2009). 
Remapping the type I diabetes association of the CTLA4 locus. Genes Immun 10, S27–
S32. 

Qu, S., Altomonte, J., Perdomo, G., He, J., Fan, Y., Kamagate, A., Meseck, M., and Dong, 
H.H. (2006). Aberrant Forkhead box O1 function is associated with impaired hepatic 
metabolism. Endocrinology 147, 5641–5652. 

Quesada, I., Tudurí, E., Ripoll, C., and Nadal, A. (2008). Physiology of the pancreatic 
alpha-cell and glucagon secretion: role in glucose homeostasis and diabetes. J. Endocrinol. 
199, 5–19. 

Quianzon, C.C., and Cheikh, I. (2012). History of insulin. J Community Hosp Intern Med 
Perspect 2. 

Raab, J., Giannopoulou, E.Z., Schneider, S., Warncke, K., Krasmann, M., Winkler, C., and 
Ziegler, A.-G. (2014). Prevalence of vitamin D deficiency in pre-type 1 diabetes and its 
association with disease progression. Diabetologia 57, 902–908. 



204 

Rabe, K., Lehrke, M., Parhofer, K.G., and Broedl, U.C. (2008). Adipokines and Insulin 
Resistance. Mol Med 14, 741–751. 

Rai, G., Joshi, N., Perry, S., Yasgar, A., Schultz, L., Jung, J.E., Liu, Y., Terasaki, Y., Diaz, 
G., Kenyon, V., et al. (2010). Discovery of ML351, a Potent and Selective Inhibitor of 
Human 15-Lipoxygenase-1. In Probe Reports from the NIH Molecular Libraries Program, 
(Bethesda (MD): National Center for Biotechnology Information (US)), p. 

Randeria, S.N., Thomson, G.J.A., Nell, T.A., Roberts, T., and Pretorius, E. (2019). 
Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and 
abnormal clot formation. Cardiovasc Diabetol 18. 

Rankin, M.M., and Kushner, J.A. (2009). Adaptive β-Cell Proliferation Is Severely 
Restricted With Advanced Age. Diabetes 58, 1365–1372. 

Rasmussen, M.S., Lihn, A.S., Pedersen, S.B., Bruun, J.M., Rasmussen, M., and Richelsen, 
B. (2006). Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, 
and fat depots. Obesity (Silver Spring) 14, 28–35. 

Ray, A., and Dittel, B.N. (2010). Isolation of Mouse Peritoneal Cavity Cells. J Vis Exp. 

Reaven, G.M. (1995). Pathophysiology of insulin resistance in human disease. Physiol. 
Rev. 75, 473–486. 

Redondo, M.J., Rewers, M., Yu, L., Garg, S., Pilcher, C.C., Elliott, R.B., and Eisenbarth, 
G.S. (1999). Genetic determination of islet cell autoimmunity in monozygotic twin, 
dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin 
study. BMJ 318, 698–702. 

Rees, D.A., and Alcolado, J.C. (2005). Animal models of diabetes mellitus. Diabetic 
Medicine 22, 359–370. 

Reissaus, C.A., Twigg, A.N., Orr, K.S., Conteh, A.M., Martinez, M.M., Kamocka, M.M., 
Day, R.N., Tersey, S.A., Dunn, K.W., Mirmira, R.G., et al. (2019). Longitudinal Intravital 
Imaging of Biosensor-labeled In Situ Islet Beta Cells. BioRxiv 518753. 

Resnick, H.E., and Howard, B.V. (2002). Diabetes and cardiovascular disease. Annu. Rev. 
Med. 53, 245–267. 

Rewers, M., and Ludvigsson, J. (2016). Environmental risk factors for type 1 diabetes. 
Lancet 387, 2340–2348. 

Richardson, S.J., and Morgan, N.G. (2018). Enteroviral infections in the pathogenesis of 
type 1 diabetes: new insights for therapeutic intervention. Curr Opin Pharmacol 43, 11–19. 

Richardson, S.J., Morgan, N.G., and Foulis, A.K. (2014). Pancreatic pathology in type 1 
diabetes mellitus. Endocr. Pathol. 25, 80–92. 



205 

Riley, K.G., Pasek, R.C., Maulis, M.F., Dunn, J.C., Bolus, W.R., Kendall, P.L., Hasty, 
A.H., and Gannon, M. (2015). Macrophages are essential for CTGF-mediated adult β-cell 
proliferation after injury. Mol Metab 4, 584–591. 

del Río, L.A., and López-Huertas, E. (2016). ROS Generation in Peroxisomes and its Role 
in Cell Signaling. Plant Cell Physiol 57, 1364–1376. 

Robertson, R.P., and Harmon, J.S. (2007). Pancreatic islet beta-cell and oxidative stress: 
the importance of glutathione peroxidase. FEBS Lett. 581, 3743–3748. 

Robertson, R.P., Harmon, J., Tran, P.O.T., and Poitout, V. (2004). Beta-cell glucose 
toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53 Suppl 1, 
S119-124. 

Robinson, S., and Kessling, A. (1992). Diabetes secondary to genetic disorders. Baillieres 
Clin. Endocrinol. Metab. 6, 867–898. 

Röder, P.V., Wu, B., Liu, Y., and Han, W. (2016). Pancreatic regulation of glucose 
homeostasis. Exp Mol Med 48, e219. 

Romagnani, S. (2006). Immunological tolerance and autoimmunity. Intern Emerg Med 1, 
187–196. 

Rondinone, C.M., Wang, L.M., Lonnroth, P., Wesslau, C., Pierce, J.H., and Smith, U. 
(1997). Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein 
for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent 
diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 94, 4171–4175. 

Rossaint, J., Nadler, J.L., Ley, K., and Zarbock, A. (2012). Eliminating or blocking 12/15-
lipoxygenase reduces neutrophil recruitment in mouse models of acute lung injury. Crit 
Care 16, R166. 

Rowe, R.E., Leech, N.J., Nepom, G.T., and McCulloch, D.K. (1994). High genetic risk for 
IDDM in the Pacific Northwest. First report from the Washington State Diabetes Prediction 
Study. Diabetes 43, 87–94. 

Rowley, W.R., Bezold, C., Arikan, Y., Byrne, E., and Krohe, S. (2017). Diabetes 2030: 
Insights from Yesterday, Today, and Future Trends. Popul Health Manag 20, 6–12. 

Saleem, S., and Kannan, R.R. (2018). Zebrafish: an emerging real-time model system to 
study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov 4. 

Sano, R., and Reed, J.C. (2013). ER stress-induced cell death mechanisms. Biochim. 
Biophys. Acta 1833, 3460–3470. 

Scalapino, K.J., and Daikh, D.I. (2008). CTLA-4: a key regulatory point in the control of 
autoimmune disease. Immunol. Rev. 223, 143–155. 



206 

Scapin, G., Dandey, V.P., Zhang, Z., Prosise, W., Hruza, A., Kelly, T., Mayhood, T., 
Strickland, C., Potter, C.S., and Carragher, B. (2018). Structure of the insulin receptor-
insulin complex by single-particle cryo-EM analysis. Nature 556, 122–125. 

Scherer, P.E., and Hill, J.A. (2016). Obesity, Diabetes, and Cardiovascular Diseases: A 
Compendium. Circ Res 118, 1703–1705. 

Schloot, N.C., Willemen, S.J., Duinkerken, G., Drijfhout, J.W., de Vries, R.R., and Roep, 
B.O. (2001). Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to 
GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not 
crossreact with homologous counterpart. Hum. Immunol. 62, 299–309. 

Schmoll, D., Walker, K.S., Alessi, D.R., Grempler, R., Burchell, A., Guo, S., Walther, R., 
and Unterman, T.G. (2000). Regulation of glucose-6-phosphatase gene expression by 
protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin 
response unit-dependent and -independent effects of insulin on promoter activity. J. Biol. 
Chem. 275, 36324–36333. 

Schneider, C., and Pozzi, A. (2011). Cyclooxygenases and lipoxygenases in cancer. Cancer 
Metastasis Rev 30, 277–294. 

Schrader, M., and Fahimi, H.D. (2006). Peroxisomes and oxidative stress. Biochim. 
Biophys. Acta 1763, 1755–1766. 

Schrauwen, P., and Hesselink, M.K.C. (2004). Oxidative Capacity, Lipotoxicity, and 
Mitochondrial Damage in Type 2 Diabetes. Diabetes 53, 1412–1417. 

Schrauwen, P., Schrauwen-Hinderling, V., Hoeks, J., and Hesselink, M.K.C. (2010). 
Mitochondrial dysfunction and lipotoxicity. Biochim. Biophys. Acta 1801, 266–271. 

Schröder, M., and Kaufman, R.J. (2005). ER stress and the unfolded protein response. 
Mutat. Res. 569, 29–63. 

Sears, D.D., Miles, P.D., Chapman, J., Ofrecio, J.M., Almazan, F., Thapar, D., and Miller, 
Y.I. (2009). 12/15-lipoxygenase is required for the early onset of high fat diet-induced 
adipose tissue inflammation and insulin resistance in mice. PLoS ONE 4, e7250. 

Serreze, D.V., and Leiter, E.H. (1994). Genetic and pathogenic basis of autoimmune 
diabetes in NOD mice. Curr. Opin. Immunol. 6, 900–906. 

Shao, S., He, F., Yang, Y., Yuan, G., Zhang, M., and Yu, X. (2012). Th17 cells in type 1 
diabetes. Cell. Immunol. 280, 16–21. 

Shepherd, P.R., Withers, D.J., and Siddle, K. (1998). Phosphoinositide 3-kinase: the key 
switch mechanism in insulin signalling. Biochem. J. 333 ( Pt 3), 471–490. 



207 

Shi, C., Zhu, L., Chen, X., Gu, N., Chen, L., Zhu, L., Yang, L., Pang, L., Guo, X., Ji, C., et 
al. (2014). IL-6 and TNF-α Induced Obesity-Related Inflammatory Response Through 
Transcriptional Regulation of miR-146b. J Interferon Cytokine Res 34, 342–348. 

Shi, L., Shu, X.-O., Li, H., Cai, H., Liu, Q., Zheng, W., Xiang, Y.-B., and Villegas, R. 
(2013). Physical Activity, Smoking, and Alcohol Consumption in Association with 
Incidence of Type 2 Diabetes among Middle-Aged and Elderly Chinese Men. PLoS One 
8. 

Shirakawa, J., De Jesus, D.F., and Kulkarni, R.N. (2017). Exploring inter-organ crosstalk 
to uncover mechanisms that regulate β-cell function and mass. European Journal of 
Clinical Nutrition 71, 896–903. 

Shu, C.J., Benoist, C., and Mathis, D. (2012). The immune system’s involvement in 
obesity-driven type 2 diabetes. Semin Immunol 24, 436–442. 

Simon, H.U., Haj-Yehia, A., and Levi-Schaffer, F. (2000). Role of reactive oxygen species 
(ROS) in apoptosis induction. Apoptosis 5, 415–418. 

Singh, V.P., Bali, A., Singh, N., and Jaggi, A.S. (2014). Advanced Glycation End Products 
and Diabetic Complications. Korean J Physiol Pharmacol 18, 1–14. 

Sisson, G., Jeong, J.Y., Goodwin, A., Bryden, L., Rossler, N., Lim-Morrison, S., 
Raudonikiene, A., Berg, D.E., and Hoffman, P.S. (2000). Metronidazole activation is 
mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli 
containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. J. Bacteriol. 182, 5091–
5096. 

Skelin, M., Rupnik, M., and Cencic, A. (2010). Pancreatic beta cell lines and their 
applications in diabetes mellitus research. ALTEX 27, 105–113. 

Skolnik, E.Y., Lee, C.H., Batzer, A., Vicentini, L.M., Zhou, M., Daly, R., Myers, M.J., 
Backer, J.M., Ullrich, A., and White, M.F. (1993). The SH2/SH3 domain-containing 
protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for 
insulin control of ras signalling. EMBO J. 12, 1929–1936. 

Smith, W.L., and Murphy, R.C. (2016). Chapter 9 - The Eicosanoids: Cyclooxygenase, 
Lipoxygenase and Epoxygenase Pathways. In Biochemistry of Lipids, Lipoproteins and 
Membranes (Sixth Edition), N.D. Ridgway, and R.S. McLeod, eds. (Boston: Elsevier), pp. 
259–296. 

Solinas, G., and Becattini, B. (2016). JNK at the crossroad of obesity, insulin resistance, 
and cell stress response. Mol Metab 6, 174–184. 

Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D.G., and Pae, H.-O. (2011). 
Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate 
MAPK Pathways? J Signal Transduct 2011. 



208 

Sørensen, I.M., Joner, G., Jenum, P.A., Eskild, A., Torjesen, P.A., and Stene, L.C. (2012a). 
Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 
diabetes in the offspring. Diabetes 61, 175–178. 

Sørensen, I.M., Joner, G., Jenum, P.A., Eskild, A., and Stene, L.C. (2012b). Serum long 
chain n-3 fatty acids (EPA and DHA) in the pregnant mother are independent of risk of 
type 1 diabetes in the offspring. Diabetes Metab. Res. Rev. 28, 431–438. 

Spranger, J., Kroke, A., Möhlig, M., Hoffmann, K., Bergmann, M.M., Ristow, M., Boeing, 
H., and Pfeiffer, A.F.H. (2003). Inflammatory cytokines and the risk to develop type 2 
diabetes: results of the prospective population-based European Prospective Investigation 
into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812–817. 

Srinivasan, K., and Ramarao, P. (2007). Animal models in type 2 diabetes research: an 
overview. Indian J. Med. Res. 125, 451–472. 

Standaert, M.L., Ortmeyer, H.K., Sajan, M.P., Kanoh, Y., Bandyopadhyay, G., Hansen, 
B.C., and Farese, R.V. (2002). Skeletal muscle insulin resistance in obesity-associated type 
2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-
zeta/lambda/iota. Diabetes 51, 2936–2943. 

Starkov, A.A. (2008). The role of mitochondria in reactive oxygen species metabolism and 
signaling. Ann. N. Y. Acad. Sci. 1147, 37–52. 

Stefater, J.A., Ren, S., Lang, R.A., and Duffield, J.S. (2011). Metchnikoff’s policemen: 
macrophages in development, homeostasis and regeneration. Trends Mol Med 17, 743–
752. 

Stein, D.T., Stevenson, B.E., Chester, M.W., Basit, M., Daniels, M.B., Turley, S.D., and 
McGarry, J.D. (1997). The insulinotropic potency of fatty acids is influenced profoundly 
by their chain length and degree of saturation. J. Clin. Invest. 100, 398–403. 

Steiner, D.J., Kim, A., Miller, K., and Hara, M. (2010). Pancreatic islet plasticity: 
Interspecies comparison of islet architecture and composition. Islets 2, 135–145. 

Stokes, A., and Preston, S.H. (2017). Deaths Attributable to Diabetes in the United States: 
Comparison of Data Sources and Estimation Approaches. PLoS One 12. 

Størling, J., and Pociot, F. (2017). Type 1 Diabetes Candidate Genes Linked to Pancreatic 
Islet Cell Inflammation and Beta-Cell Apoptosis. Genes (Basel) 8. 

Straub, S.G., Shanmugam, G., and Sharp, G.W.G. (2004). Stimulation of insulin release by 
glucose is associated with an increase in the number of docked granules in the beta-cells 
of rat pancreatic islets. Diabetes 53, 3179–3183. 

Styskal, J., Van Remmen, H., Richardson, A., and Salmon, A.B. (2012). Oxidative stress 
and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse 
models? Free Radic. Biol. Med. 52, 46–58. 



209 

Suckale, J., and Solimena, M. (2008). Pancreas islets in metabolic signaling--focus on the 
beta-cell. Front. Biosci. 13, 7156–7171. 

Sulaiman, M.K. (2019). Diabetic nephropathy: recent advances in pathophysiology and 
challenges in dietary management. Diabetol Metab Syndr 11. 

Sun, D., and Funk, C.D. (1996). Disruption of 12/15-lipoxygenase expression in peritoneal 
macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished 
oxidation of low density lipoprotein. J. Biol. Chem. 271, 24055–24062. 

Sun, J., Cui, J., He, Q., Chen, Z., Arvan, P., and Liu, M. (2015). Proinsulin misfolding and 
endoplasmic reticulum stress during the development and progression of diabetes. Mol. 
Aspects Med. 42, 105–118. 

Sundar Rajan, S., Srinivasan, V., Balasubramanyam, M., and Tatu, U. (2007). Endoplasmic 
reticulum (ER) stress & diabetes. Indian J. Med. Res. 125, 411–424. 

Szablewski, L. (2014). Role of immune system in type 1 diabetes mellitus pathogenesis. 
Int. Immunopharmacol. 22, 182–191. 

Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of 
the rat pancreas. Physiol Res 50, 537–546. 

Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., Terauchi, Y., 
Ueki, K., Kaburagi, Y., and Satoh, S. (1994). Insulin resistance and growth retardation in 
mice lacking insulin receptor substrate-1. Nature 372, 182–186. 

Tan, H.-Y., Wang, N., Li, S., Hong, M., Wang, X., and Feng, Y. (2016). The Reactive 
Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and 
Treatment of Human Diseases. 

Tan, T., Xiang, Y., Chang, C., and Zhou, Z. (2014). Alteration of regulatory T cells in type 
1 diabetes mellitus: a comprehensive review. Clin Rev Allergy Immunol 47, 234–243. 

Tarasov, A., Dusonchet, J., and Ashcroft, F. (2004). Metabolic regulation of the pancreatic 
beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53 Suppl 3, S113-122. 

Taylor, R. (2013). Type 2 Diabetes. Diabetes Care 36, 1047–1055. 

Tehrani, Z., and Lin, S. (2011). Endocrine pancreas development in zebrafish. Cell Cycle 
10, 3466–3472. 

Templin, A.T., Hogan, M.F., Esser, N., Zraika, S., Hull, R.L., and Kahn, S.E. (2018). 
Evidence for Necroptosis as a Mechanism of Islet Amyloid–Induced Beta-Cell Death. 
Diabetes 67. 



210 

Tersey, S.A., Maier, B., Nishiki, Y., Maganti, A.V., Nadler, J.L., and Mirmira, R.G. (2014). 
12-Lipoxygenase Promotes Obesity-Induced Oxidative Stress in Pancreatic Islets. Mol 
Cell Biol 34, 3735–3745. 

Tersey, S.A., Bolanis, E., Holman, T.R., Maloney, D.J., Nadler, J.L., and Mirmira, R.G. 
(2015). Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes. Mol 
Endocrinol 29, 791–800. 

Tessem, J.S., Jensen, J.N., Pelli, H., Dai, X.-M., Zong, X.-H., Stanley, E.R., Jensen, J., and 
DeGregori, J. (2008). Critical roles for macrophages in islet angiogenesis and maintenance 
during pancreatic degeneration. Diabetes 57, 1605–1617. 

Teta, M., Long, S.Y., Wartschow, L.M., Rankin, M.M., and Kushner, J.A. (2005). Very 
Slow Turnover of β-Cells in Aged Adult Mice. Diabetes 54, 2557–2567. 

Thomas, H.E., Trapani, J.A., and Kay, T.W.H. (2010). The role of perforin and granzymes 
in diabetes. Cell Death Differ. 17, 577–585. 

Thomas, H.E., Graham, K.L., Chee, J., Thomas, R., Kay, T.W., and Krishnamurthy, B. 
(2013). Proinflammatory cytokines contribute to development and function of regulatory 
T cells in type 1 diabetes. Ann. N. Y. Acad. Sci. 1283, 81–86. 

Titchenell, P.M., Quinn, W.J., Lu, M., Chu, Q., Lu, W., Li, C., Chen, H., Monks, B.R., 
Chen, J., Rabinowitz, J.D., et al. (2016). Direct Hepatocyte Insulin Signaling Is Required 
for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell Metab. 
23, 1154–1166. 

Titos, E., and Clària, J. (2013). Omega-3-derived mediators counteract obesity-induced 
adipose tissue inflammation. Prostaglandins Other Lipid Mediat. 107, 77–84. 

Tobias, D.K., and Manson, J.E. (2016). The Obesity Paradox in Type 2 Diabetes and 
Mortality. Am J Lifestyle Med 12, 244–251. 

Todd, J.A. (2010). Etiology of type 1 diabetes. Immunity 32, 457–467. 

Tomita, T. (2017). Apoptosis of pancreatic β-cells in Type 1 diabetes. Bosn J Basic Med 
Sci 17, 183–193. 

Triantafyllou, G.A., Paschou, S.A., and Mantzoros, C.S. (2016). Leptin and Hormones: 
Energy Homeostasis. Endocrinol. Metab. Clin. North Am. 45, 633–645. 

Trivedi, P., Graham, K.L., Krishnamurthy, B., Fynch, S., Slattery, R.M., Kay, T.W.H., and 
Thomas, H.E. (2016). Perforin facilitates beta cell killing and regulates autoreactive CD8+ 
T-cell responses to antigen in mouse models of type 1 diabetes. Immunol. Cell Biol. 94, 
334–341. 

Trowsdale, J. (2011). The MHC, disease and selection. Immunol. Lett. 137, 1–8. 



211 

Tsalamandris, S., Antonopoulos, A.S., Oikonomou, E., Papamikroulis, G.-A., Vogiatzi, G., 
Papaioannou, S., Deftereos, S., and Tousoulis, D. (2019). The Role of Inflammation in 
Diabetes: Current Concepts and Future Perspectives. Eur Cardiol 14, 50–59. 

Tsuchiya, Y., Saito, M., Kadokura, H., Miyazaki, J., Tashiro, F., Imagawa, Y., Iwawaki, 
T., and Kohno, K. (2018). IRE1–XBP1 pathway regulates oxidative proinsulin folding in 
pancreatic β cells. J Cell Biol 217, 1287–1301. 

Turner, M.D., Nedjai, B., Hurst, T., and Pennington, D.J. (2014). Cytokines and 
chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et 
Biophysica Acta (BBA) - Molecular Cell Research 1843, 2563–2582. 

Underhill, D.M., Bassetti, M., Rudensky, A., and Aderem, A. (1999). Dynamic Interactions 
of Macrophages with T Cells during Antigen Presentation. Journal of Experimental 
Medicine 190, 1909–1914. 

Usui, M., Yamaguchi, S., Tanji, Y., Tominaga, R., Ishigaki, Y., Fukumoto, M., Katagiri, 
H., Mori, K., Oka, Y., and Ishihara, H. (2012). Atf6α-null mice are glucose intolerant due 
to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin 
resistance. Metab. Clin. Exp. 61, 1118–1128. 

Vafiadis, P., Bennett, S.T., Todd, J.A., Nadeau, J., Grabs, R., Goodyer, C.G., 
Wickramasinghe, S., Colle, E., and Polychronakos, C. (1997). Insulin expression in human 
thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15, 289–292. 

Van Gassen, N., Staels, W., Van Overmeire, E., De Groef, S., Sojoodi, M., Heremans, Y., 
Leuckx, G., Van de Casteele, M., Van Ginderachter, J.A., Heimberg, H., et al. (2015). 
Concise Review: Macrophages: Versatile Gatekeepers During Pancreatic β-Cell 
Development, Injury, and Regeneration. Stem Cells Transl Med 4, 555–563. 

Vargas, E., and Carrillo Sepulveda, M.A. (2019). Biochemistry, Insulin Metabolic Effects. 
In StatPearls, (Treasure Island (FL): StatPearls Publishing), p. 

Vargas, R., and Vásquez, I.C. (2017). Effects of overfeeding and high-fat diet on 
cardiosomatic parameters and cardiac structures in young and adult zebrafish. Fish Physiol. 
Biochem. 43, 1761–1773. 

Verge, C.F., Howard, N.J., Irwig, L., Simpson, J.M., Mackerras, D., and Silink, M. (1994). 
Environmental factors in childhood IDDM. A population-based, case-control study. 
Diabetes Care 17, 1381–1389. 

Virgin, H.W., and Todd, J.A. (2011). Metagenomics and personalized medicine. Cell 147, 
44–56. 

Virtanen, S.M., Saukkonen, T., Savilahti, E., Ylönen, K., Räsänen, L., Aro, A., Knip, M., 
Tuomilehto, J., and Akerblom, H.K. (1994). Diet, cow’s milk protein antibodies and the 
risk of IDDM in Finnish children. Childhood Diabetes in Finland Study Group. 
Diabetologia 37, 381–387. 



212 

Virtanen, S.M., Läärä, E., Hyppönen, E., Reijonen, H., Räsänen, L., Aro, A., Knip, M., 
Ilonen, J., and Akerblom, H.K. (2000). Cow’s milk consumption, HLA-DQB1 genotype, 
and type 1 diabetes: a nested case-control study of siblings of children with diabetes. 
Childhood diabetes in Finland study group. Diabetes 49, 912–917. 

Virtanen, S.M., Niinistö, S., Nevalainen, J., Salminen, I., Takkinen, H.-M., Kääriä, S., 
Uusitalo, L., Alfthan, G., Kenward, M.G., Veijola, R., et al. (2010). Serum fatty acids and 
risk of advanced beta-cell autoimmunity: a nested case-control study among children with 
HLA-conferred susceptibility to type I diabetes. Eur J Clin Nutr 64, 792–799. 

Vlassara, H., and Uribarri, J. (2014). Advanced Glycation End Products (AGE) and 
Diabetes: Cause, Effect, or Both? Curr Diab Rep 14, 453. 

Wali, J.A., Masters, S.L., and Thomas, H.E. (2013). Linking metabolic abnormalities to 
apoptotic pathways in Beta cells in type 2 diabetes. Cells 2, 266–283. 

Walker, J.T., Shrestha, S., Prasad, N., Richardson, T., Aramandla, R., Poffenberger, G., 
Bottino, R., Brissova, M., and Powers, A.C. (2018). Pancreatic Islets in Short Duration 
Type 2 Diabetes (T2D) Show Macrophage Infiltration and Increased Inflammatory 
Signaling. Diabetes 67. 

Wall, S.B., Oh, J.-Y., Diers, A.R., and Landar, A. (2012). Oxidative Modification of 
Proteins: An Emerging Mechanism of Cell Signaling. Front Physiol 3. 

Wallis, R.H., Wang, K., Marandi, L., Hsieh, E., Ning, T., Chao, G.Y.C., Sarmiento, J., 
Paterson, A.D., and Poussier, P. (2009). Type 1 diabetes in the BB rat: a polygenic disease. 
Diabetes 58, 1007–1017. 

Wang, W., and Lo, A.C.Y. (2018). Diabetic Retinopathy: Pathophysiology and 
Treatments. Int J Mol Sci 19. 

Wang, Z., and Gleichmann, H. (1998). GLUT2 in pancreatic islets: crucial target molecule 
in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47, 50–56. 

Wang, B., P., C.C., and Pippin, J.J. (2014a). Leptin- and Leptin Receptor-Deficient Rodent 
Models: Relevance for Human Type 2 Diabetes. Curr Diabetes Rev 10, 131–145. 

Wang, N., Liang, H., and Zen, K. (2014b). Molecular mechanisms that influence the 
macrophage m1-m2 polarization balance. Front Immunol 5, 614. 

Wang, Q., Somwar, R., Bilan, P.J., Liu, Z., Jin, J., Woodgett, J.R., and Klip, A. (1999). 
Protein kinase B/AKT participates in GLUT4 translocation by insulin in L6 myoblasts. 
Mol. Cell. Biol. 19, 4008–4018. 

Ward, M.G., Li, G., and Hao, M. (2018). Apoptotic β-cells induce macrophage 
reprogramming under diabetic conditions. J. Biol. Chem. 293, 16160–16173. 



213 

Wauters, M., Considine, R.V., Yudkin, J.S., Peiffer, F., De Leeuw, I., and Van Gaal, L.F. 
(2003). Leptin levels in type 2 diabetes: associations with measures of insulin resistance 
and insulin secretion. Horm. Metab. Res. 35, 92–96. 

Weaver, J.R., Holman, T.R., Imai, Y., Jadhav, A., Kenyon, V., Maloney, D.J., Nadler, J.L., 
Rai, G., Simeonov, A., and Taylor-Fishwick, D.A. (2012). Integration of pro-inflammatory 
cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol. Cell. 
Endocrinol. 358, 88–95. 

Weickert, M.O. (2012). Nutritional Modulation of Insulin Resistance. Scientifica (Cairo) 
2012. 

Weir, G.C., and Bonner-Weir, S. (2004). Five stages of evolving beta-cell dysfunction 
during progression to diabetes. Diabetes 53 Suppl 3, S16-21. 

Wen, L., Ley, R.E., Volchkov, P.V., Stranges, P.B., Avanesyan, L., Stonebraker, A.C., Hu, 
C., Wong, F.S., Szot, G.L., Bluestone, J.A., et al. (2008). Innate immunity and intestinal 
microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113. 

Wernstedt Asterholm, I., Tao, C., Morley, T.S., Wang, Q.A., Delgado-Lopez, F., Wang, 
Z.V., and Scherer, P.E. (2014). Adipocyte inflammation is essential for healthy adipose 
tissue expansion and remodeling. Cell Metab. 20, 103–118. 

Westwell-Roper, C., Dunne, A., Kim, M.L., Verchere, C.B., and Masters, S.L. (2013). 
Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods 
Mol. Biol. 1040, 9–18. 

Westwell-Roper, C.Y., Ehses, J.A., and Verchere, C.B. (2014). Resident Macrophages 
Mediate Islet Amyloid Polypeptide–Induced Islet IL-1β Production and β-Cell 
Dysfunction. Diabetes 63, 1698–1711. 

Whelan, S.A., Dias, W.B., Thiruneelakantapillai, L., Lane, M.D., and Hart, G.W. (2010). 
Regulation of Insulin Receptor Substrate 1 (IRS-1)/AKT Kinase-mediated Insulin 
Signaling by O-Linked β-N-Acetylglucosamine in 3T3-L1 Adipocytes. J Biol Chem 285, 
5204–5211. 

White, M.F. (2002). IRS proteins and the common path to diabetes. Am. J. Physiol. 
Endocrinol. Metab. 283, E413-422. 

White, D.T., and Mumm, J.S. (2013). The nitroreductase system of inducible targeted 
ablation facilitates cell-specific regenerative studies in zebrafish. Methods 62, 232–240. 

Whiteway, J., Koziarz, P., Veall, J., Sandhu, N., Kumar, P., Hoecher, B., and Lambert, I.B. 
(1998). Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in 
development of resistance to 5-nitrofuran derivatives in Escherichia coli. J. Bacteriol. 180, 
5529–5539. 



214 

Wieczorek, M., Abualrous, E.T., Sticht, J., Álvaro-Benito, M., Stolzenberg, S., Noé, F., 
and Freund, C. (2017). Major Histocompatibility Complex (MHC) Class I and MHC Class 
II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 8, 292. 

Wierup, N., Svensson, H., Mulder, H., and Sundler, F. (2002). The ghrelin cell: a novel 
developmentally regulated islet cell in the human pancreas. Regul. Pept. 107, 63–69. 

Wilcox, G. (2005). Insulin and Insulin Resistance. Clin Biochem Rev 26, 19–39. 

Wilcox, N.S., Rui, J., Hebrok, M., and Herold, K.C. (2016). Life and death of β cells in 
Type 1 diabetes: a comprehensive review. J Autoimmun 71, 51–58. 

Willcox, A., Richardson, S.J., Bone, A.J., Foulis, A.K., and Morgan, N.G. (2009). Analysis 
of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173–181. 

Williams, M.D., Van Remmen, H., Conrad, C.C., Huang, T.T., Epstein, C.J., and 
Richardson, A. (1998). Increased oxidative damage is correlated to altered mitochondrial 
function in heterozygous manganese superoxide dismutase knockout mice. J. Biol. Chem. 
273, 28510–28515. 

Williamson, D., Gallagher, P., Harber, M., Hollon, C., and Trappe, S. (2003). Mitogen-
activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on 
human skeletal muscle. J Physiol 547, 977–987. 

Winzell, M.S., and Ahrén, B. (2004). The high-fat diet-fed mouse: a model for studying 
mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53 
Suppl 3, S215-219. 

Withers, D.J., Burks, D.J., Towery, H.H., Altamuro, S.L., Flint, C.L., and White, M.F. 
(1999). Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral 
insulin signalling. Nat. Genet. 23, 32–40. 

Wolf, G., and Ziyadeh, F.N. (2007). Cellular and molecular mechanisms of proteinuria in 
diabetic nephropathy. Nephron Physiol 106, p26-31. 

Wolfram, T., and Ismail-Beigi, F. (2011). Efficacy of high-fiber diets in the management 
of type 2 diabetes mellitus. Endocr Pract 17, 132–142. 

Wu, L.L., Chiou, C.C., Chang, P.Y., and Wu, J.T. (2004). Urinary 8-OHdG: a marker of 
oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. 
Chim. Acta 339, 1–9. 

Wuest, S.J.A., Crucet, M., Gemperle, C., Loretz, C., and Hersberger, M. (2012). 
Expression and regulation of 12/15-lipoxygenases in human primary macrophages. 
Atherosclerosis 225, 121–127. 

Wymann, M.P., and Pirola, L. (1998). Structure and function of phosphoinositide 3-
kinases. Biochim. Biophys. Acta 1436, 127–150. 



215 

Xia, C., Rao, X., and Zhong, J. (2017). Role of T-lymphocytes in Type 2 Diabetes and 
Diabetes-Associated Inflammation. J Diabetes Res 2017. 

Xiao, J., Li, J., Cai, L., Chakrabarti, S., and Li, X. (2014a). Cytokines and Diabetes 
Research. J Diabetes Res 2014. 

Xiao, X., Gaffar, I., Guo, P., Wiersch, J., Fischbach, S., Peirish, L., Song, Z., El-Gohary, 
Y., Prasadan, K., Shiota, C., et al. (2014b). M2 macrophages promote beta-cell 
proliferation by up-regulation of SMAD7. Proc. Natl. Acad. Sci. U.S.A. 111, E1211-1220. 

Xue, J., Schmidt, S.V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., 
Gohel, T.D., Emde, M., Schmidleithner, L., et al. (2014). Transcriptome-based network 
analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–
288. 

Yadav, U.C.S., Rani, V., Deep, G., Singh, R.K., and Palle, K. (2016). Oxidative Stress in 
Metabolic Disorders: Pathogenesis, Prevention, and Therapeutics. 

Yale, J.-F., Grose, M., and Marliss, E.B. (1985). Time Course of the Lymphopenia in BB 
Rats: Relation to the Onset of Diabetes. Diabetes 34, 955–959. 

Yamamoto, S. (1992). Mammalian lipoxygenases: molecular structures and functions. 
Biochim. Biophys. Acta 1128, 117–131. 

Yamauchi, T., and Kadowaki, T. (2013). Adiponectin Receptor as a Key Player in Healthy 
Longevity and Obesity-Related Diseases. Cell Metabolism 17, 185–196. 

Yanai, H., Adachi, H., Masui, Y., Katsuyama, H., Kawaguchi, A., Hakoshima, M., 
Waragai, Y., Harigae, T., Hamasaki, H., and Sako, A. (2018). Exercise Therapy for Patients 
With Type 2 Diabetes: A Narrative Review. J Clin Med Res 10, 365–369. 

Yang, Y., and Santamaria, P. (2003). Dissecting autoimmune diabetes through genetic 
manipulation of non-obese diabetic mice. Diabetologia 46, 1447–1464. 

Yang, W.-S., Lee, W.-J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C.-L., Chen, C.-
L., Tai, T.-Y., and Chuang, L.-M. (2002). Plasma adiponectin levels in overweight and 
obese Asians. Obes. Res. 10, 1104–1110. 

Yao, Y., Xu, X.-H., and Jin, L. (2019). Macrophage Polarization in Physiological and 
Pathological Pregnancy. Front Immunol 10. 

Yazıcı, D., and Sezer, H. (2017). Insulin Resistance, Obesity and Lipotoxicity. Adv. Exp. 
Med. Biol. 960, 277–304. 

Ye, L., Robertson, M.A., Hesselson, D., Stainier, D.Y.R., and Anderson, R.M. (2015). 
Glucagon is essential for alpha cell transdifferentiation and beta cell neogenesis. 
Development 142, 1407–1417. 



216 

Ye, L., Robertson, M.A., Mastracci, T.L., and Anderson, R.M. (2016). An insulin signaling 
feedback loop regulates pancreas progenitor cell differentiation during islet development 
and regeneration. Dev Biol 409, 354–369. 

Yeagley, D., Guo, S., Unterman, T., and Quinn, P.G. (2001). Gene- and activation-specific 
mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth 
factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription. Roles of 
forkhead and insulin response sequences. J. Biol. Chem. 276, 33705–33710. 

Yeung, E.H., Zhang, C., Mumford, S.L., Ye, A., Trevisan, M., Chen, L., Browne, R.W., 
Wactawski-Wende, J., and Schisterman, E.F. (2010). Longitudinal Study of Insulin 
Resistance and Sex Hormones over the Menstrual Cycle: The BioCycle Study. J Clin 
Endocrinol Metab 95, 5435–5442. 

Ylipaasto, P., Klingel, K., Lindberg, A.M., Otonkoski, T., Kandolf, R., Hovi, T., and 
Roivainen, M. (2004). Enterovirus infection in human pancreatic islet cells, islet tropism 
in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47, 225–239. 

Yoon, J.W., and Jun, H.S. (2001). Cellular and molecular pathogenic mechanisms of 
insulin-dependent diabetes mellitus. Ann. N. Y. Acad. Sci. 928, 200–211. 

Yoon, K.H., Shin, J.A., Kwon, H.S., Lee, S.H., Min, K.W., Ahn, Y.B., Yoo, S.J., Ahn, 
K.J., Park, S.W., Lee, K.W., et al. (2011). Comparison of the Efficacy of Glimepiride, 
Metformin, and Rosiglitazone Monotherapy in Korean Drug-Naïve Type 2 Diabetic 
Patients: The Practical Evidence of Antidiabetic Monotherapy Study. Diabetes Metab J 35, 
26–33. 

Yu, L., Zhao, Z., and Steck, A.K. (2017). T1D Autoantibodies: Room for Improvement? 
Curr Opin Endocrinol Diabetes Obes 24, 285–291. 

Zang, L., Shimada, Y., and Nishimura, N. (2017). Development of a Novel Zebrafish 
Model for Type 2 Diabetes Mellitus. Sci Rep 7, 1461. 

Zang, L., Maddison, L.A., and Chen, W. (2018). Zebrafish as a Model for Obesity and 
Diabetes. Front Cell Dev Biol 6. 

Zhang, K. (2010). Integration of ER stress, oxidative stress and the inflammatory response 
in health and disease. Int J Clin Exp Med 3, 33–40. 

Zhang, P.-Y. (2014). Cardiovascular disease in diabetes. Eur Rev Med Pharmacol Sci 18, 
2205–2214. 

Zhang, P., McGrath, B., Li, S., Frank, A., Zambito, F., Reinert, J., Gannon, M., Ma, K., 
McNaughton, K., and Cavener, D.R. (2002). The PERK Eukaryotic Initiation Factor 2α 
Kinase Is Required for the Development of the Skeletal System, Postnatal Growth, and the 
Function and Viability of the Pancreas. Molecular and Cellular Biology 22, 3864. 



217 

Zhang, Q., Fillmore, T.L., Schepmoes, A.A., Clauss, T.R.W., Gritsenko, M.A., Mueller, 
P.W., Rewers, M., Atkinson, M.A., Smith, R.D., and Metz, T.O. (2013). Serum proteomics 
reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 210, 191–
203. 

Zhang, T., Kim, D.H., Xiao, X., Lee, S., Gong, Z., Muzumdar, R., Calabuig-Navarro, V., 
Yamauchi, J., Harashima, H., Wang, R., et al. (2016). FoxO1 Plays an Important Role in 
Regulating β-Cell Compensation for Insulin Resistance in Male Mice. Endocrinology 157, 
1055–1070. 

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). 
Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–
432. 

Zheng, P., Li, Z., and Zhou, Z. (2018a). Gut microbiome in type 1 diabetes: A 
comprehensive review. Diabetes Metab Res Rev 34. 

Zheng, Y., Ley, S.H., and Hu, F.B. (2018b). Global aetiology and epidemiology of type 2 
diabetes mellitus and its complications. Nat Rev Endocrinol 14, 88–98. 

Zhong, C., Zhuang, M., Wang, X., Li, J., Chen, Z., Huang, Y., and Chen, F. (2018). 12-
Lipoxygenase promotes invasion and metastasis of human gastric cancer cells via 
epithelial-mesenchymal transition. Oncol Lett 16, 1455–1462. 

Zhou, T., Hu, Z., Yang, S., Sun, L., Yu, Z., and Wang, G. (2018). Role of Adaptive and 
Innate Immunity in Type 2 Diabetes Mellitus. 

(2000). Obesity: preventing and managing the global epidemic. Report of a WHO 
consultation. World Health Organ Tech Rep Ser 894, i–xii, 1–253. 

(2006). Death by Necrosis: The Early Stages of Type 1 Diabetes. PLoS Med 3. 

(2010). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 33, S62–S69. 

 



 
  

Curriculum Vitae 
Abhishek Anant Kulkarni 

 
Education:  
Indiana University (IUPUI), Indianapolis (2016-2020) 

§ Degree: Doctor of Philosophy (Ph.D.) 
§ Major: Biochemistry and Molecular Biology  
§ Minor: Bioinformatics 

S.I.E.S College of Arts, Science and Commerce, University of Mumbai (2012-2014) 
§ Degree: Master of Science (M.Sc.) 
§ Major: Biotechnology  

Kishinchand Chellaram (K.C.) College, University of Mumbai (2009-2012) 
§ Degree: Bachelor of Science (B.Sc.) 
§ Major: Biotechnology  

 
Research experience: 
§ Graduate student under Dr. Raghavendra Mirmira working on the project titled “Role 

of 12-LOX in macrophage activity in diabetes”, IUSM, Indiana, USA. (05/17-04/20) 
§ Graduate student under Dr. Mark Kaplan working on project titled “Transcriptional 

Regulation in Th9 cells”, IUSM Indiana, USA. (03/17 - 05/17) 
§ Graduate student under Dr. Haitao Guo working on the project titled “Molecular 

mechanisms of HBV replication”, IUSM, Indiana, USA. (09/16 - 12/17) 
§ Research assistant under the guidance of Dr. Indraneel Mittra working on the project 

titled “miRNA as therapeutic targets in Breast Cancer”, Advanced Centre for 
Treatment, Research & Education in Cancer, Navi Mumbai, India. (02/16- 06/16) 

§ Research assistant under the guidance of Dr. Vikrant Bhor working on the project titled 
“Studies on HIV-1 gp120 mediated α4β7 integrin dependent signaling in T-cells 
and its role in HIV pathogenesis”, National Institute for Research in Reproductive 
Health (NIRRH), Mumbai, India. (07/15- 12/15) 

§ Research assistant under the guidance of Dr. Ikram Khatkhatay on the project titled 
“Effect of estrogen on the migration of primary monocytes, National Institute for 
Research in Reproductive Health (NIRRH), Mumbai, India. (11/13- 04/14) 

§ Research fellow under the guidance of Dr. Suvarna Sharma working on the project 
titled “A survey on awareness of HIV /AIDS amongst the educated working class”, 
Kishinchand Chellaram College, Mumbai, India. (07/10-02/11)  

Skills: 
§ Technical Skills- Zebrafish and mice handling and experimentation, Cell culturing, 

qRT-PCR, Cell Isolation (PBMC, CD4 T-cells, Monocytes, Macrophages, Bone 
marrow cells), Biomolecules extraction (DNA, RNA, miRNA& Proteins), SDS-PAGE, 
Western blot, Flow cytometry, Immunofluorescence assay, Transwell migration assay, 
Recombinant DNA technology. 

§ Software Skills: R programming, Galaxy, Graphpad Prism 8.0, BLAST, CATH, 
SCOP, CLUSTALW, RasMol, Microsoft Office (Word, Excel, PowerPoint).  

  



 

§ Management Skills: 
• Organizing head of intercollegiate festival “BIOGENEi 2010”, organized by 

Department of Biotechnology, K.C. College, Mumbai, India. 
• Logistics head of intercollegiate festival “OPERON 2012”, organized by 

Department of Biotechnology, S.I.E.S. College, Mumbai, India. 

Publications: 
§ Abhishek A. Kulkarni, Abass M. Conteh, , et al., “An In Vivo Zebrafish Model for 

Interrogating ROS-Mediated Pancreatic β-Cell Injury, Response, and Prevention”, 
Oxidative Medicine and Cellular Longevity, vol. 2018, Article ID 1324739, 2018. 

§ Mr. Sameer Neve, Mr. Abhishek Kulkarni, Miss. Manjushree Aithal, ‘Effect of 
Temperature Hike on Coastal Thermal Power Plants: A Case Study of Mundra, 
International Journal of Innovative Research and Advanced Engineering, Volume- 2, 
Issue – 6, Page No.180-184, ISSN 2349-2163, June 2015. 

§ Abhishek Kulkarni, Annie R. Piñeros, Marimar Hernandez-Perez, Sarah Tersey, 
Ryan Anderson and Raghavendra Mirmira, “12-lipoxygenase regulates macrophage 
migration during islet inflammation” (Manuscript in preparation) 

§ Marimar Hernandez-Perez, Abhishek Kulkarni, Niharika Samala, Cody Sorrell, 
Kimberly El, Isra Heider, Theodore R. Holman, Sarah A. Tersey, Raghavendra G. 
Mirmira, and Ryan M. Anderson, “A 12-Lipoxygenase-Gpr31 signaling axis is 
required for pancreatic organogenesis in the zebrafish” (Manuscript in preparation)  

§ Emily Anderson-Baucum, Annie R. Piñeros, Bernard Maier, Abhishek Kulkarni, 
Ryan Anderson, Sarah A. Tersey, Teresa L. Mastracci, Donalyn Scheuner, 
Raghavendra G. Mirmira and Carmella Evans-Molina, “Deoxyhypusine Synthase 
Promotes a Proinflammatory Macrophage Phenotype” (Manuscript in preparation)  

§ Annie R. Piñeros, Abhishek Kulkarni, Kara S. Orr, Christopher Reissaus, Marimar 
Hernandez-Perez, Marcia McDuffie, Jerry L. Nadler, Margaret A. Morris, 
Raghavendra G. Mirmira, Sarah A. Tersey, “Islet Proinflammatory Signaling is 
Required for Type 1 Diabetes Development in NOD mice” (Manuscript in preparation) 

 
Presentations and conferences: 
§ Oral presentation titled “Role of 12-LOX in macrophage migration in diabetes” at 

Midwest Islet Club conference, Michigan, USA. (05/19) 
§ Presented a poster titled “Role of 12-LOX in macrophage migration in diabetes” at 

Wells Centre Symposium, Indiana, USA. (04/19) 
§ Presented a poster titled “An In Vivo Zebrafish Model for Interrogating ROS-

Mediated Pancreatic β-Cell Injury, Response, and Prevention” at Midwest Islet 
Club conference, Missouri, USA. (05/18) 

§ Presented a poster titled “An In Vivo Zebrafish Model for Interrogating ROS-
Mediated Pancreatic β-Cell Injury, Response, and Prevention” at ENDO 2018 
conference, Chicago, USA. (03/18) 

§ Presented a poster titled “Deoxyhypusine synthase activity is essential for the 
inflammatory response of macrophages to injury in Zebrafish” at Annual Diabetes 
Symposium, Indiana, USA. (08/17) 

  



 

Achievements: 
§ People’s choice award for 3-minute thesis competition 2019 at I.U.P.U.I (12/19) 
§ Recipient of DeVault Fellowship 2019-2020 (07/19) 
§ Completed teachers training course at IU School of Medicine (05/19) 
§ Recipient of highly competitive “Travel Grant” from IU School of Medicine for 

Midwest Islet club conference (twice), Indiana, USA (05/18 & 04/19) 
§ First prize for poster presentation at the Annual Diabetes symposium, Indiana, USA 

(08/17) 
§ First rank in college during Semester IV of MS Biotechnology, Mumbai, India. (06/14) 
§ First position in college dissertation project, Mumbai, India. (06/14) 
§ Conferred the degree of Science Honor’s in Biotechnology qualifying for the same with 

“A” grade (09/10) 
§ Certified as a ‘Peer Educator’ at Red Ribbon Club- MDACS, Mumbai, India. (10/12) 


