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Abstract 

The permeation of the potassium ion (K+) through the selectivity 

filter (SF) of the large conductance Ca2+-activated potassium (Slo1) 

channel remains an interesting question to study. Although the 

mode of the K+ entering and leaving SF has been revealed, the 

mechanism of the K+ passing through the SF is still not clear. In the 

present study, the pattern of K+ permeation through the SF is 

investigated by chemical computation and data mining based on 

the molecular structure of Slo1 from Aplysia californica. Both bond 

configurations and the free energy of K+s inside SF was studied 

using Discovery Studio Software. The results suggested that, to 

accommodate increasing energy levels and to tolerate more K+s, 

4-fold symmetric subunits of SF can only move at one direction that

is perpendicular to the centre axis. In addition, two configurations of

chemical bonds between K+s and the SF are usually employed

including the chelate configuration under low free energy and the

complexe configuration under high free energy conditions.

Moreover, three patterns of bond configurations for multiple K+s

within the SF are used to accommodate the energetic changes of
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the SF, and each pattern is comprised of one or two 

sub-conformations. These findings are likely resulted from the 

evolutionary optimization of protein function of Slo1. The specific 

conductance and the voltage-gating of the Slo1 channel can be 

reinterpreted with the permeation mechanism of K+s found in the 

current study. The permeation mechanism of K+s through SF can 

be used to understand the interaction between various toxins and 

the Slo1 channel, and can be employed to develop new drugs 

targeting relevant ion channels. 
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Introduction 
Potassium ions (K+s) but not sodium ions are permitted to pass 

through Slo1 channels selectively [1,2]. The permeation rate is 

close to the diffusion limit rates (108 ions s-1) for K+s to pass the 

channel pore that includes a SF of maximum diameter of 10Å and 

a 12Å-long, spanned by 4-fold symmetric amino-acid sequences, 

namely signature sequence [3-5]. The SF contains five layers of 

four in-plane oxygen atoms that point towards the ion conduction 

pathway under physiological conditions [6,7]. This arrangement 

creates a narrow tube consisting of four equally spaced ion-binding 

sites (labeled 1 to 4 from extracellular to intracellular side) [8]. In 

each binding site, a dehydrated K+ is cross-linked to eight oxygen 

atoms on the vertices of the twisted cube (named a square 

anti-prism) [9]. The three outmost binding sites are surrounded 

exclusively by eight carbonyl oxygen atoms from the amino acid 

residuals of the signature sequence. The forth binding site, 

adjacent to the central pore cavity, is formed by four carbonyl 

oxygen atoms and four oxygen atoms of the side chain of Thr. In 

each of the binding sites, a K+ is potentially held at the body center 

of the square anti-prism with one plane of four oxygen atoms above 

and one plane of four oxygen atoms below [10]. SF catalyzes the 

dehydration, transfer and rehydration of a K+ in about 10 

nanoseconds. The energetic balance of equivalent configuration is 

crucial for K+ transportation with the near diffusion-limit rate. The 

central cavity holds a K+ surrounded by eight water molecules. The 

cavity achieves a very high effective K+ concentration (2M) at the 

membrane center, with a K+ positioned on the pore axis, ready to 

enter SF. The transfer of a K+ between the inter/extracellular 

solution (where a K+ is hydrated) and SF (where the K+ is 



dehydrated) is mediated by a specific arrangement of carbonyl 

oxygen atoms that protrude into solution. The K+ ready to enter SF 

is drawn from a fully hydrated position to a position where it is half 

hydrated by the electrostatic field within the filter [7]. 

However, an interesting problem, how K+s are transmitted through 

SF, remains unclear. In this work, the intrinsic atom structure of a 

full-lengthSlo1 channel from Aplysia californica (acSlo1) channel 

was analyzed and the free energy of K+s moving through SF was 

counted with Discovery Studio Software [11]. The results revealed 

that the 4-fold symmetric signature sequences, named potassium 

transportation track (PTT), moved only in the direction 

perpendicular to the central axis of SF. In addition, it was also 

found that two configurations of chemical bonds between K+s and 

SF were usually employed including chelate for low free energy 

and complexe for high free energy. Furthermore, three allosteric 

patterns of sub-conformations were found to fit the energetic 

changes of SF.  

 
Results and Discussion  
Intrinsic structure of PTT 
The structure of acSlo1 at 3.5Å has been resolved recently [12]. In 

this work, the intrinsic structure of acSlo1 was studied with 

Discovery Studio Software. The result found that each PTT was 

comprised of five residuals and contained five backbone carbonyls 

(PTTBCs, 𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟-𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉-𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1- 𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒-𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2) from intracellular to 

extracellular. Oxygen atoms of PTTBC (PTTBCOs, 

𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟-𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉-𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1-𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒-𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2) toward the central axis 

were found to be the kernel elements for K+ transformation. 

Homologous similarity alignment found that a conserve motif of 



PTT (Thr-(Val,Ile,Leu)-Gly1-(Tyr,Phe)-Gly2,TXGXG) universally 

occurred in various KC-Pore【Table 1】【Supplement1】. In a PTT, 

a polarity residual (PR) of Thr with a hydroxyl group was located at 

the first site. Gly at the third and fifth sites were PR without R group. 

These PRs were connected with non-polarity residuals (nPRs) to 

avoid mutual exclusion of charge. The second site was usually 

filled with nPRs, such as Val, Leu and Ile. These nPRs always 

contained simplistic steady-neutral group. The forth site was 

packed of aromatic residuals, Phe or Tyr, both of which have a big 

R group. Enough capacity for the aromatic residual was supplied by 

two neighbors of Gly to accommodate large volume of benzene 

ring 【Fig.1 a】. Angulations of the sequence were avoided by 

utilizing characterization arrangement of residuals in a PTT. 
Table1 sequence alignment of PTT for various potassium channel 

PDB TYPE SEQUENCEALIGNMENT 
hSlo1A Slo1 V T M S T V G Y G D I F A 
acSlo1 Slo1 V T M S T V G F G D I F A 
5A5G Slo2.2 V T F S T V G Y G D V T P 
1ORQ KvAP V T A T T V G Y G D V V P 
3T1C NaK V T L T T V G Y G N F S P 
3T4D NAK2K V T L T T V G Y G D F S P 
3LUT Kv1.2 V S M T T V G Y G D M V P 
3LDC MthK V T I A T V G Y G D Y S P 
1P7B KirBac1.1 E T L A T V G Y G D M H P 
3SPI Kir2.2 E T Q T T I G Y G F R C V 
3ZRS KirBac3.1 Q T M A T I G Y G K L I P 
3SYO Kir3.2 E T E T T I G Y G Y R V I 
5WUA Kcnj11 E V Q V T I G F G G R M V 
1K4C Kcsa_fab E T A T T V G Y G D L Y P 
4GX2 GsuK T V M T T L G F G D I T F 

 

In the SF of acSlo1, four W-like PTTs were found to stand up 

anticlockwise around the central axis and to form a tetrahedron

【Fig.1 b】. The orientation of PTTBCs was counterclockwise and 

almost perpendicular to the plane of PTT 【Fig.1 c】. Absolute 



values of dihedral angle (|𝜆𝜆|) between each pair of PTTBCs in a 

PTT were distributed from 164.73o to 179.05o and close to 180o

【Table 2】. It revealed that five PTTBCs of a PTT were in parallel

【 Fig.1 d】 . Actually, 𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟  and 𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉  and 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 were 

positioned in a zigzag line (𝑍𝑍𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉−𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1). 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 and 𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒 

and 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2were located in another zigzag line (Z𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒−𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1). 

Two PTT lines intersected at 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 with an angle of 1650. 

Table 2 dihedral angle between each PTTBC in a PTT of acSlo1 

  BCThr BCVal BCGly1 BCPhe BCGly2 

BCThr  169.15 -178.12 179.05 164.37 

BCVal 169.15  -172.23 -172.77 177.11 

BCGly1 -178.12 -172.23  176.88 169.42 

BCPhe 179.05 -172.77 176.88  178.18 

BCGly2 164.37 177.11 169.42 178.18   

 

Six planar layers of oxygen atoms (𝑍𝑍𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂 , 𝑍𝑍𝑇𝑇ℎ𝑟𝑟 , 𝑍𝑍𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺1 , 

𝑍𝑍𝑃𝑃ℎ𝑒𝑒 , 𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺2 ) were perpendicular to the central axis and were 

displayed along SF in parallel. Each layer contained four PTTBCOs 

at congener residuals, except the interior layer which was consisted 

of four hydroxyls of Thr【Fig.1 e1】. The configuration of planar layer 

was consistent with both electrophysiological records and results of 

electron density [7-9].  
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Fig.1 intrinsic structure of PTT: 
a: A shape of stand-up anticlockwise W is displayed in line model of PTT.  

b: A tetrahedron-like PTT is shown in tube model. 

c: Two diagonal PTTs are shown in CPK model. The orientation of PTTBCs is 

at counterclockwise side and almost perpendicular to the plane of PTT. Red 

balls represent the PTTBCOs. Blue balls represent nitrogen atoms. Gray balls 

represent carbon atoms. 

d: Two diagonal PTTs are shown in ball and stick model, of which dihedral 

angles between each PTTBC in a PTT are labeled. Red balls represent the 

PTTBCOs. Blue balls represent nitrogen atoms. Gray balls represent carbon 

atoms. 



e1: Five planar layers of PTTBCOs and interior layer of hydroxyl of Thr are 

shown with quadrangles of light green line in stick model of tetramer PTTs.e2: 

The stick model of tetramer PTTs is viewed from external to internal. 

f1:Six continual tortile-cuboids from intercellular to extracellular are 

surrounded and displayed with light green lines. 

f2:While𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 < 2.1285Å, three π bonds are formed among one of 𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉and 

other three𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉 at same layer. 

g:Bond-links inside SF of acSlo1 are displayed with various 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵. Red 

dashed represent ring-π-bond, other color dashed represent σ bond. g1: 

𝑛𝑛𝑑𝑑𝑇𝑇ℎ𝑟𝑟 < 2.9995 Å; g2:𝑛𝑛𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 < 2.9995 Å;g3:𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 < 2.9995 Å;g4:𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 >

2.9995 Å. 

 

The distance of each pair of layers (𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟) for acSlo1 was shown 

below: 

(𝑑𝑑𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂−𝑇𝑇ℎ𝑟𝑟 ,𝑑𝑑𝑇𝑇ℎ𝑟𝑟−𝑉𝑉𝑉𝑉𝑉𝑉 ,𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉−𝐺𝐺𝑉𝑉𝐺𝐺1 ,𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1−𝑃𝑃ℎ𝑒𝑒 ,𝑑𝑑𝑇𝑇𝐺𝐺𝑟𝑟−𝐺𝐺𝑉𝑉𝐺𝐺2) = 

(2.536 Å, 3.495 Å, 3.069 Å, 3.499 Å, 3.265 Å) 

PTTBCs in a PTT were fixed at the linear configuration without 

angulations. To preserve the feature of 4-fold axial symmetry, the 

locations of PTTBCs along the central axis were fixed also. Each 

𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 was set in steady state and the length of SF was about 

15.864Å. The value was consistent with streaming potential 

records and X-ray crystallographic measurements, which indicated 

the distance between 𝑍𝑍𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂 and 𝑍𝑍𝑃𝑃ℎ𝑒𝑒 is about a length of 12Å 

[7,13]. Otherwise, the distance of neighbor PTTBCOs in a PTT 

(𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵) was slightly different from 𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 as shown below: 

(𝑑𝑑𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂−𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟,𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟−𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉,𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉−𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1,𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1−𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒,𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒−𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2) = 

(2.740 Å, 3.665 Å, 3.083 Å, 3.545 Å, 3.979 Å) 

According to |𝜆𝜆| in Table 2 and Figure 1a, the slope PTT lines 

were coupled with few angulations. The difference between 𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 



and 𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 was root of both inclination and angulations of two 

PTT lines to the central axis. 

In each layer, a quadrangle was comprised of cross-links of 

neighbor PTTBCOs. Border length of the quadrangle (𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵) 

was changeable and could respond to distance of two PTTBCOs 

located at diagonal PTTs (𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵)【Fig.1 e2】. 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 was 

transformable in response to the opening and closing of SF. The 

closed SF was intrinsically more stable. To open the SF, the 

voltage sensors must exert positive work by applying an outward 

lateral force near the inner helix bundle [14]. Electrophysiology 

records of current-voltage behavior for K+ and its analogues had 

revealed that 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 was increased to accommodate ions with 

lager diameter, such as from value of diameter of K+ and Tl+ to that 

of NH4
+ and Rb+[15]. It suggested that the movement of PTTBCO 

only happened at one direction which is perpendicular to central 

axis of SF. 

To keep 4-fold axial symmetry of SF, the ratio of 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 was 

fixed. The smallest 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵  always occurred at the layer of 

𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1. Normalization of 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 was calculated with 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 as 

the unit for acSlo1: 

(𝑛𝑛𝑑𝑑𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂:𝑛𝑛𝑑𝑑𝑇𝑇ℎ𝑟𝑟: 𝑛𝑛𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉:𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1: 𝑛𝑛𝑑𝑑𝑃𝑃ℎ𝑒𝑒:𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2) 

=(1.76, 1.23, 1.06, 1.00, 1.33, 2.19) 

As a summary, the movement of PTT was limited by both 𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 

and the ratio of 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵.  

A cuboid was constructed with two neighboring quadrangles. The 

cuboid was a little tortile because of the inclination and angulations 

of PTT lines. The tortile-cuboid was similar to the square anti-prism 

in Mackinnon’s model [7]. A cuboid pipeline was constituted along 



the six continual tortile-cuboids arranged from intercellular to 

extracellular sides【Fig.1 f1】.  All cross-links among PTTBCOs 

inside the cuboid-pipeline were resolved【Fig.1 g1-g4】.  

A PTTBCO contained both two lone-pair-electrons and two 

unpaired-electrons meanwhile accepting DIEPs from peptide. The 

value of DIEPs from a PTTBCO to a K+ was between 1 and 2 

electrons【Supplement 2】. At the same time, empty orbits were 

remained in PTTBCOs, so that both covalent and coordination 

bonds were possible to be formed among PTTBCOs. According to 

theory of Pauling chemical bond, the property of the cross-links 

depended on both types of bonding atoms and the distance 

between two bonding atoms. Cross-links among PTTBCOs 

responded to changes of either 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 or 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵.  

While 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 < 2.1285Å, cross-link appeared among every pair 

of PTTBCOs in a layer 【Fig. 1 f2】. In the case of 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 >

2.1285Å and 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 < 2.9995 Å, cross-link occurred between 

each pair of neighbor PTTBCOs and a circle-cross-link happened 

in the layer. After 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 > 2.9995 Å, there was no cross-link 

among PTTBCOs in a layer, and PTTBCOs trended to link with 

carbon atoms in nearby PTT. 

Inside SF of acSlo1, the ratio of 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 was fixed, cross-links 

among PTTBCOs were correlated with location and orientation of 

the PTT lines. While 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2 < 2.9995 Å , five circle-cross-links, 

named 𝐵𝐵𝑇𝑇ℎ𝑟𝑟 ,𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉 ,𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 ,𝐵𝐵𝑃𝑃ℎ𝑒𝑒  and 𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 , exhibited from internal to 

external sides. The circle-cross-links gradually disappeared with 

the increase of 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵. When 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2 > 2.9995 Å and 𝑛𝑛𝑑𝑑𝑃𝑃ℎ𝑒𝑒 <

2.9995 Å,𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2disappeared. While 𝑛𝑛𝑑𝑑𝑃𝑃ℎ𝑒𝑒 > 2.9995 Å and 𝑛𝑛𝑑𝑑𝑇𝑇ℎ𝑟𝑟 <



2.9995 Å, 𝐵𝐵𝑃𝑃ℎ𝑒𝑒  was absent, 𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒  linked to β-carbon atom of 

Phe located at clockwise PTT【Fig.1 g1】. As 𝑛𝑛𝑑𝑑𝑇𝑇ℎ𝑟𝑟 > 2.9995 Å and 

𝑛𝑛𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 < 2.9995 Å , 𝐵𝐵𝑇𝑇ℎ𝑟𝑟  was disappeared, 𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟  was 

cross-linked to both β-carbon atom of Thr at clockwise PTT and 

hydroxyl oxygen atom at anticlockwise PTT【Fig.1 g2】. While 

𝑛𝑛𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 > 2.9995 Å  and 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 < 2.9995 Å , 𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉  was absent, 

𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉 linked to β-carbon atoms at clockwise PTT【Fig.1 g3】. 

Once 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 > 2.9995Å, no cross-link occurred among 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1
【Fig.1 g4】. 

Coordination bond from PTTBCO to K+ in SF 
To understand configuration features of chemical bonds between 

K+s and SF, K+s were docked to SF of acSlo1 with Discovery 

Studio Software. The results revealed that the K+ was surrounded 

by cross-links from PTTBCOs. According to theory of coordination 

bond, a K+ with hybridization-orbit of d-s-p could accept electron of 

ligands. Delocalized electrons were supplied by polarized 

PTTBCOs. As a result, the coordination bond was formed between 

PTTBCOs and the K+, in which the K+ function was an acceptor and 

PTTBCOs were regarded as ligands. In the interactions of 

acceptor-ligand, the PTTBCOs were fixed on the stationary PTTs. 

The alteration conformation of the interactions was found to depend 

on motion of the K+. Different configurations of coordination 

polymer were employed by the K+s positioned at various sites of 

the cuboid-pipeline.  

Stabilization of the configurations was studied by comparing both 

symmetry and number of coordination bonds around K+s. More 

symmetrical coordination bonds formed, more stable the K+ was. 



The results showed that series stable-state-sites arranged along 

the central axis of SF【Fig.2 a1】. 

a1 a2 

b1 b2   

Fig.2two kinds of stable-sites of K+ arraying in centre axis of SF, yellow ball 

represent K+, red ball represent oxygen atom, gray dashed represent bond 

between K+ and oxygen atom. 

a1: four stable-state-sites position along centre axis of SF. 

a2: chelate configuration is constructed with a K+ at the body-centered point of 

a dodecahedron and 12-coordination bonds: 4π-bonds to PTTBCOs in same 

layer of K+ and 8 σ-bonds to PTTBCOs in above and below layers. 

b1: five meta-stable-state-sites position along centre axis of SF. 

b2:complexe configuration is constructed with a K+ at body-centered point of a 

hexahedron and 8-coordination bonds: 4 σ-bonds to PTTBCOs in above layer 

and 4σ-bonds to PTTBCOs in below layer. 



While 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵  of a layer was smaller than 2.9995 Å , a 

stable-state-site occurred at the central point of the layer. The K+ 

located at the stable-state-site was coordinated by 12 PTTBCOs. In 

the layer of K+, π-bonds were formed among each pair of 

neighboring PTTBCOs so that a ring-π-bond with quadrilateral 

ligands occurred around the K+. Delocalized electrons were 

supplied from the ring-π-bond to K+, meanwhile were reversed from 

K+ to ring-π-bond because of the symmetry of SF. It suggested that 

chelate bonds were formed between the PTTBCOs and the K+. 

Furthermore, hybridization orbits of the K+ accepted DIEPs from 

both 4 PTTBCOs of the above layer and 4 PTTBCOs of the below 

layer simultaneously. 8 σ-bonds from either the above layer or the 

below layer were in rotational and mirror symmetry. In the 

tortile-cuboid, the stable-state-site was always out of central point 

of the layer when 𝑛𝑛𝑑𝑑𝐿𝐿𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 was changed.  

The chelate of the K+ with maximum symmetrical coordination 

bonds was the steadiest state inside SF【Fig.2 a2】. The chelate 

occupying two continual tortile-cuboids looked like a square 

antiprism surrounding the K+. A body-centered-cube of monoclinic 

system was constituted by two continual tortile-cuboids, which 

contained 8 PTTBCOs from both the above and the below layers. 

The K+ locating at any site of the body-centered-cube trended to 

come back to the stable-state-site. On the other hand, three layers 

of PTTBCOs were employed by the chelate of the K+. Two 

continual chelates were impossible to overlap because bonding 

electrons were mutually exclusive. To prevent overlapping of two 

continual chelates, two layers with ring-π-bond were separated by 

a layer without ring-π-bond. It suggested that two neighboring K+s 



at the stable-state-site were necessary to be separated by a 

tortile-cuboid. 

4 stable-state-sites were linearly displayed along center axis of SF, 

labeled as (S𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉 , SGly1 , 𝑆𝑆𝑃𝑃ℎ𝑒𝑒 ), corresponding to 𝑍𝑍𝑇𝑇ℎ𝑟𝑟 , 𝑍𝑍𝑉𝑉𝑉𝑉𝑉𝑉 , 

𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺1 and 𝑍𝑍𝑃𝑃ℎ𝑒𝑒,【Fig.2 a1】. The result was consistent with the 

one-dimensional electron density obtained by sampling the 

difference in Fourier omit map [8]. The outmost 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2  were 

infiltrated in external solution and 𝑑𝑑𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2  was larger than other 

𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵. It looked like an opening mouth of SF. While 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2 ≅

2.9995 Å, 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 ≅ 1.369 Å, the K+ was forbidden by four 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 

to pass through SF. In open state of SF, 𝑑𝑑𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2 was too large for 

K+ to form ring-π-bond. The K+ at the center point of 𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺2 was 

half-hydrated with 4 σ-bonds to 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 and some other bonds to 

water molecules. The identical molecular structure was suitable for 

the K+ to be released from SF to external solution. At the internal 

entrance, the hydroxyl-oxygen-atoms of Thr were protruded into 

the internal solution. The K+ in internal solution was easy to be 

caught, and a half-hydration conformation of the K+ was formed 

with both 4 water molecules and 4 hydroxyl-oxygen-atoms. The 

special configuration was suitable for the K+ to be transferred from 

internal solution into SF. 

While 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 of a layer is larger than 2.9995 Å, ring-π-bonds 

were impossible to be formed and a meta-stable-state-site 

occurred at the body-center of the tortile-cuboid. A K+ at the 

meta-stable-state-site was coordinated with 8 symmetrical 

PTTBCOs to form complexe of K+ including 4 σ-bonds from the 

above layer and 4 σ-bonds from the below layer【Fig.2 b2】. Free 

energy of a K+ at the meta-stable-state-site was higher than that at 



the stable-state-site. 5 meta-stable-state-sites were linearly arrayed 

along the central axis of SF, labeled as 

(S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂−𝑇𝑇ℎ𝑟𝑟,𝑆𝑆𝑇𝑇ℎ𝑟𝑟−𝑉𝑉𝑉𝑉𝑉𝑉,S𝑉𝑉𝑉𝑉𝑉𝑉−Gly1,𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1−𝑃𝑃ℎ𝑒𝑒,𝑆𝑆𝑃𝑃ℎ𝑒𝑒−𝐺𝐺𝑉𝑉𝐺𝐺2) . According to the 

feature of the PTTBCOs, K+s located at the meta-stable-state-sites 

were continuous inside SF【Fig.2 b1】.  

Conformation of K+ inside SF 
To interpret the pattern of K+ transformation, trajectory of K+ 

passing through SF was simulated with Discovery Studio Software. 

Some rules were abided by in the simulation. First, coulomb 

repulsion was the main interactive force between two K+s inside SF, 

and K+s were pushed to move one by one without gap. The SF was 

filled with K+s as many as possible. At the same time, there was no 

overlap among configurations of K+s because electron clouds were 

mutually excluded. 

Second, because asymmetric bond-links caused unbalance 

interaction of K+s with SF, K+s with asymmetric bond-links 

maintained higher free energy and resided in the 

unstable-state-sites of SF. Symmetry of bond-links around K+s at 

meta-stable-state-sites was larger than that at unstable-state-sites 

but smaller than that at stable-state-sites, free energy of K+s at 

meta-stable-state-sites was higher than that at stable-state-sites 

but lower than that in unstable-state-sites. Most sites in SF were 

unstable with higher free energy except stable-state-sites and 

meta-stable-state-sites. Probability of K+s at meta-stable-state-sites 

was smaller than that at stable-state-sites, and larger than that at 

unstable-state-sites. K+s tended to occupy stable-state-sites and 

meta-stable-state-sites rather than unstable-state-sites. 

In the case of SF opening under normal physiological conditions, 

allosteric conformations of K+s in a scene were observed according 



to the rules. While  𝑛𝑛𝑑𝑑𝑃𝑃ℎ𝑒𝑒 ≅ 2.9995 Å , a combination of two 

chelates and one complexe of K+s was found inside SF. There 

were two potential sub-conformations. In one sub-conformation, 

two K+s sat at S𝑇𝑇ℎ𝑟𝑟 and SGly1 respectively and another K+ sat at 

𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2. This sub-conformation was labeled as [S𝑇𝑇ℎ𝑟𝑟-SGly1,𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2] 

【Fig.3 a】. In the other sub-conformation, a K+ sat at S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 

and two other K+s sat at 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉  and 𝑆𝑆𝑃𝑃ℎ𝑒𝑒  respectively. This 

sub-conformation was labeled as [S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉-𝑆𝑆𝑃𝑃ℎ𝑒𝑒] 【Fig.3 b】. 

The energy of these sub-conformations was equilibrium. When 

𝑛𝑛𝑑𝑑𝑇𝑇ℎ𝑟𝑟 ≅ 2.9995 Å, two possible sub-conformations were mixed with 

chelates and complexes of K+. One sub-conformation was 

[S𝑇𝑇ℎ𝑟𝑟-SGly1,𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2] as described above【Fig.3 a】. In the other 

sub-conformation, three K+s sat at S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒  and 

𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2 respectively and another K+ sat at 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉 . This 

sub-conformation was labeled as 

[S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒- 𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2] 【Fig.3c】. As 𝑛𝑛𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 ≅ 2.9995 Å, 

there were two sub-conformations including the 

[ S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟, 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉, 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒-𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2 ] 【 Fig.3c 】 and similarly the  

[S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟- 𝑆𝑆𝑇𝑇ℎ𝑟𝑟-𝑉𝑉𝑉𝑉𝑉𝑉 , SGly1 ,𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2] 【Fig.3d】. These sub-conformations 

were coincided with the records of two-dimensional infrared (2D IR) 

spectroscopy [16]. When 𝑛𝑛𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1 were over 2.9995 Å, 

there were five complexes of K+ inside SF. And the 

sub-conformation was labeled as 

[S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟- 𝑆𝑆𝑇𝑇ℎ𝑟𝑟-𝑉𝑉𝑉𝑉𝑉𝑉- S𝑉𝑉𝑉𝑉𝑉𝑉-Gly1- 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒-𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2]【Fig.2 b1】. This 

sub-conformation agreed with the 2Fo - Fc electron density map [7] 

and 2D IR spectroscopy [16]. 



a b 

c d 

Fig.3 Pattern of K+ transportation inside SF, yellow ball represent K+, gray 

dashed represent bond around K+ 

a,b: pattern 1, including two sub-conformations, each of which contains a 

chelate configuration and two complexes configurations; 

c,d: pattern 2, including two sub-conformations, each of which contains a 

chelate configuration and three complexes configurations. 

 

All sub-conformations of K+ in SF were summarized and clustered 

into three patterns: 1) [S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉- 𝑆𝑆𝑃𝑃ℎ𝑒𝑒]  and  

�S𝑇𝑇ℎ𝑟𝑟- SGly1 , 𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2� ; 2) 

�S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒-𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2� and

�S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟- 𝑆𝑆𝑇𝑇ℎ𝑟𝑟-𝑉𝑉𝑉𝑉𝑉𝑉 , SGly1 , 𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2� ; 3) 

�S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟- 𝑆𝑆𝑇𝑇ℎ𝑟𝑟-𝑉𝑉𝑉𝑉𝑉𝑉- S𝑉𝑉𝑉𝑉𝑉𝑉-Gly1- 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒- 𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2� . The pattern of 



sub-conformations changed according to the energy level of the 

Slo1 channel. The sub-conformations in pattern 1 with a complexe 

and two chelate configurations were employed to suit the lower 

energy of Slo1 channel. When the energy level of the Slo1 channel 

was medium, 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵  was enlarged to tolerate more K+s and 

therefore a chelate configuration was replaced by two complexe 

configurations, resulting in 4 configurations in the pattern 2. When 

the energy level of the Slo1 channel was high, another chelate 

configuration was split into two complexe configurations, resulting 

in five K+s in SF with the largest 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵  in pattern 3. The 

changes of sub-conformations were consisted with Mackinnon’s 

model, and were crucial to the operation of SF in the cellular 

context [10]. 

Energy gradient for K+ transporting through SF 
The ability for K+s to form coordination polymer is rooted in both 

energy levels of d orbit splitting and of d-s-p orbit hybridizing. The 

orbit distribution of extra-nuclear electron for a K+ is 3d4s14p. 

Energy level of d orbit is split from group 𝐾𝐾(𝑧𝑧)  to group 

𝑑𝑑4𝑑𝑑�e3�dxz, dyz�, e2�dxy, dx2−y2�, a2(dz2)� , and then to group 𝐵𝐵ℎ

�t2g�dxy, dxz, dyz�, eg�dz2 , dx2−y2��  corresponding to symmetry of 

ligand-field decreases. The energy-level-split orbit is hybridized 

with either s or p orbit to form hybridization-orbit, such as d5p3 and 

d5sp2.  

According to ligand-field theory, the number of ligands responds to 

the free energy of the K+. An icosahedron is suitable for group 𝐾𝐾(𝑧𝑧) 

of K+ with minimum free energy. A body-centered-cube of 

monoclinic system fits group 𝑑𝑑4𝑑𝑑  as the free energy of K+ 

increases. And group Oh of K+ with high free energy is satisfied by 



a cube. For example, an icosahedron with water molecules usually 

occurs to suit minimum free energy of K+ in the extracellular 

solution with low K+ concentration and a cube with 8 water 

molecules always occur to fit high free energy of K+ in the 

intercellular solution with high K+ concentration. Within the SF, the 

K+ with low free energy prefers a chelate configuration with 12 

coordination bonds, and a complexe configuration with 8 σ-bonds 

trends to be employed by the K+ with high free energy. 

Furthermore, at the internal side of SF, there is a very high effective 

concentration of K+ (2M). The K+ is surrounded by 8 water 

molecules. The unique picture of a hydrated K+ results from a 

geometric and chemical match between the cavity and the 

hydration complexe of the K+. While crossing the internal threshold 

of SF, a K+ comes through fully-hydrated, half-hydrated and 

dehydrated state. This process is achieved with help of four 

hydroxyl-oxygen-atoms at side-chain of Thr, which protrude into the 

internal solution [17]. The translocation of a K+ from the internal 

solution into SF is an active process that is driven by chemical 

potential gradient. At external side of SF, an icosahedron of water 

molecules is rendered for K+ with 20-coordinations in minimum 

concentration (3~5mM). As crossing the external threshold of SF, a 

K+ undergoes dehydrated, half-hydrated and rehydrated states. 

This process is mediated by four 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 with large 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺2. The 

translocation of a K+ from SF to the extracellular solution is also an 

active process, which is driven by the diffusion force resulted from 

chemical potential gradient. Inside SF, the entering of a K+ entering 

into a stable-state-site is an active process, in which a variable 

accelerated motion of the K+ occurs with motive power resulted 

from the free energy decline. On the contrary, the escape of a K+ 



from a stable-state-site is a passive process with variable 

decelerated motion. A K+ undergoes the dehydration, 

transportation and rehydration inside SF. The translocation of a K+ 

from internal threshold to external threshold is driven by 

recombination kinetics of both chemical potential gradient and 

membrane voltage potential. 

In either pattern 1 or pattern 2, three or four K+s move in a 

concerted fashion between two sub-conformations until a new K+ 

enters to displace a K+ on the opposite side. The two 

sub-conformations are in alteration and in equilibrium of energy in 

the transportation of K+. The alteration of two sub-conformations is 

consisted with Mackinnon’s model [10] 

Recombination kinetic for K+ transporting 

A vector function of recombination kinetics (𝑅𝑅𝐾𝐾�����⃑ ) for K+ in SF 

resulted from the chemical dynamics analysis is as below: 

𝑅𝑅𝐾𝐾�����⃑ = 𝐵𝐵𝐶𝐶�����⃑ + 𝐸𝐸𝐶𝐶�����⃑ = 𝛩𝛩�𝐵𝐵𝐶𝐶�����⃑ 𝑖𝑖𝑖𝑖𝑖𝑖� + �𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑜𝑜𝑜𝑜 + ∑ 𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �    (4) 

𝐵𝐵𝐶𝐶�����⃑  : represents diffusion force of ion concentration, which interacts 

with congener ion-itself. The value of 𝐵𝐵𝐶𝐶�����⃑  is vector function of 

chemical potential gradient and given by Nernst-Frank function as 

shown as following [18,19]: 

𝐵𝐵𝐶𝐶�����⃑ = 𝛩𝛩�𝐵𝐵𝐶𝐶�����⃑ 𝑖𝑖𝑖𝑖𝑖𝑖� = 𝛩𝛩 ��𝑅𝑅𝑇𝑇
𝐹𝐹
𝑙𝑙𝑛𝑛 [𝐼𝐼𝑖𝑖𝑖𝑖]𝑜𝑜

[𝐼𝐼𝑖𝑖𝑖𝑖]𝑖𝑖
�
𝑖𝑖𝑖𝑖𝑖𝑖
�         (5) 

R: gas constant, 8.3143 J/(K·mol) 

T: abstract temperate K 

F: faraday constant, 9.6485*104 C/mol 
[𝐼𝐼𝐼𝐼𝑛𝑛]𝑖𝑖: external ionic activity  

[𝐼𝐼𝐼𝐼𝑛𝑛]𝑖𝑖: internal ionic activity 



𝐸𝐸𝐶𝐶�����⃑ : represents electric potential force, which is a vector component 

value on SF resulting from cellular membrane voltage (𝑚𝑚𝑚𝑚������⃗ ). 

Accumulation of inter/extracellular ions are shown as following: 

𝐸𝐸𝐶𝐶�����⃑ = 𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑜𝑜𝑜𝑜 + ∑ 𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑜𝑜𝑜𝑜 + 𝑅𝑅𝑇𝑇
𝐹𝐹
𝑙𝑙𝑛𝑛 ∑ [𝐼𝐼𝑖𝑖𝑖𝑖]𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖

∑ [𝐼𝐼𝑖𝑖𝑖𝑖]𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖
     (6) 

𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑜𝑜𝑜𝑜 : represents additional electric potential on cellular 

membrane. 

In vector computation of 𝑅𝑅𝐾𝐾�����⃑ , positive direction is defined at 

extracellular. At physiology condition, 𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑜𝑜𝑜𝑜 = 0, the value of 𝑅𝑅𝐾𝐾�����⃑  

for K+ is shown as below: 

𝑅𝑅𝐾𝐾�����⃑ 𝐾𝐾+ = �𝐵𝐵𝐶𝐶�����⃑ 𝐾𝐾+� + �𝐸𝐸𝐶𝐶�����⃑ 𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

= �
𝑅𝑅𝑅𝑅
𝐹𝐹
𝑙𝑙𝑛𝑛

[𝐾𝐾+]𝑖𝑖
[𝐾𝐾+]𝑖𝑖

� −
𝑅𝑅𝑅𝑅
𝐹𝐹 𝑙𝑙𝑛𝑛

∑ [𝐼𝐼𝐼𝐼𝑛𝑛]𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∑ [𝐼𝐼𝐼𝐼𝑛𝑛]𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
≅ 0 

According to Hodgkin-Huxley assumption [20,21], conductance of 

K+ (𝑔𝑔𝐾𝐾+) is given by the following equation: 

𝑔𝑔𝐾𝐾+ = 𝑔𝑔𝐾𝐾+����� ∗ 𝑑𝑑𝑅𝑅𝐾𝐾
������⃑

𝐾𝐾+

𝑑𝑑𝑑𝑑
                     (7) 

𝑔𝑔𝐾𝐾+�����: represents a intrinsic conductance constant, that is decided by 

total energy of sub-configurations in SF. 𝑅𝑅𝐾𝐾�����⃑ K+  is a function of 

position. Current of K+ (𝐼𝐼𝐾𝐾+) is shown as below equation: 

𝐼𝐼𝐾𝐾+ =  𝑅𝑅𝐾𝐾�����⃑ K+ ∗  ∫𝑔𝑔𝐾𝐾+����� ∗  𝑑𝑑𝑅𝑅𝐾𝐾
������⃑

𝐾𝐾+

𝑑𝑑𝑑𝑑
                 (8) 

Under physiological conditions, K+s diffuse via SF at rates 

approaching 108 ions/s [10]. It means that 10 nano-seconds are 

consumed for a K+ to pass through SF. However, according to 

Newtonian mechanics, theoretical time for K+ freely flying cross SF 

with length of 15.864Å, is about 2.48 pico-seconds 【Supplement 

3】. Actual time for a K+ spent in SF is longer than the theoretical 



time. That means the K+ is far from the state of free moving driven 

by the electric field between the inter/external sides of SF. The 

conductivity of SF is a chemical reaction limiting parameter. It is 

restricted by the slowest step of the K+ escaping from the 

stable-state-sites. In theoretical statement, a K+ is forbidden in the 

stable-state-sites when SF is in polarization.  𝑅𝑅𝐾𝐾�����⃑ K+  continually 

increases while SF begins to be depolarized. After 𝑅𝑅𝐾𝐾�����⃑ K+ is raised 

over potential barrier of the stable-state-sites, it is possible for K+ to 

escape from the stable-state-sites and to be transmitted from 

intercellular to extracellular sides. The K+ permeability is decided by 

both the configuration of the K+ in the stable-state-sites and the 

combinational pattern of sub-conformations. 
The role of waters in the moving of K+ through the SF 

The role of water molecules inside SF has been studied by the 

detection of streaming potential in the Slo1 channel [13]. In this 

study, K+ coupled with water molecules has been used as a 

prerequisite in the discussion of streaming potential records. In 

Mackinnon’s model that is constructed based on synchrotron 

crystals and electron density, two K+s with diameter of 2.7Å are 

assumed to be separated by an intervening water molecule to 

avoid an unstable binding configurations resulting from coulomb 

repulsion. However, it is difficult to distinguish electron density of 



K+s from that of water molecules in X-ray crystallographic. In this 

model, the K+s pair moves back and forth in a concerted manner 

between two configurations of minimal energy difference, namely 

K+-water-K+-water(1-3 configuration) and water-K+-water-K+ 

(2-4configuration) [17]. A2D IR spectra are reproduced by MD 

simulations of structures with waters separating two K+s in SF [16]. 

The results rule out the configurations with K+ occupying adjacent 

sites on the one hand. On the other hand, it is still in doubt whether 

or not water molecules are actually inside SF. 

Motivation is an important factor for water molecule to pass through 

SF. Water molecules are independent of K+s inside SF because 

K+s are dehydrated inside SF. Under 𝑅𝑅𝐾𝐾�����⃑  of the Slo1 channel, 

neutral water molecules without charges are impossible to be 

driven and to pass through SF. In water molecules, hydrogen 

hydrate ions are potential components that can be transmitted 

through the electro-negativity field of SF. And the hydronium (H3O+) 

seems to be the only cation with a suitable diameter for 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 

according to the Coordination bond Theory. However, hydronium 

with sp3 orbit hybridizing tends to form a tetrahedron rather than an 

octahedron or a dodecahedron. Therefore, hydronium is hard to be 

transferred along the SF based on their coordination with 

PTTBCOs. Indeed, it suggests that permeation capability of water 



molecules is similar to that of sodium ion, and is far smaller than 

that of K+ inside SF. 

On the other hand, a comparison of atomic structure between the 

Mackinnon’s model and the pattern 1 conformation of the current 

study reveals that the configurations of the Mackinnon’s model 

seem to be part of sun-conformations of pattern 1 conformation in 

this study. 1-3 configuration of the Mackinnon’s model corresponds 

to combine stable-state-sites of 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉- 𝑆𝑆𝑃𝑃ℎ𝑒𝑒  in 

[S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟 ,𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉- 𝑆𝑆𝑃𝑃ℎ𝑒𝑒] and 2-4 configuration of the Mackinnon’s 

model corresponds to combine stable-states-sites of S𝑇𝑇ℎ𝑟𝑟- SGly1 in 

�S𝑇𝑇ℎ𝑟𝑟- SGly1 , 𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2�. Chelate configurations are employed and it is 

found that two K+s are separated by a tortile-cuboid rather than a 

water molecule. 

Furthermore, a survey of a database of small-molecule structure 

(Cambridge Crystallographic Data Centre, 

http://www.ccdc.cam.ac.uk) shows that two K+s rarely occur with a 

separation distance of less than 3.5Å. In sun-conformation of 

[ S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟- 𝑆𝑆𝑇𝑇ℎ𝑟𝑟-𝑉𝑉𝑉𝑉𝑉𝑉- S𝑉𝑉𝑉𝑉𝑉𝑉-Gly1- 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒-𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2 ], when 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 

increases, 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1-𝑃𝑃ℎ𝑒𝑒 and 𝑆𝑆𝑃𝑃ℎ𝑒𝑒-𝐺𝐺𝑉𝑉𝐺𝐺2 are shifted toward extracellular, 

at the same time, 𝑆𝑆𝑇𝑇ℎ𝑟𝑟-𝑉𝑉𝑉𝑉𝑉𝑉  and S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂-𝑇𝑇ℎ𝑟𝑟  are drifted toward 

intercellular. Coulomb repulsion among five continual K+s is 

avoided by displacement of the meta-stable-state-sites. In 

http://www.ccdc.cam.ac.uk/


summary, the present study suggests that water molecules are not 

necessary to be transmitted with K+s in SF of the Slo1 channels. 

Experiment 

Calculation of intrinsic atom structure of PTT in acSlo1 

Molecular structure parameters of SF in acSlo1 are calculated in 

Discovery Studio Software. Computational process for dihedral 

angle between each pair of PTTBCs is as following：1）carbon 

atoms and oxygen atoms of two PTTTBCs are selected; 2）push 

the button of “Structure-Monitor-Torsion” in drop-down menu, and 

acquire the value of dihedral angle. Computational process for 

𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 is as following: 1) link two pair of diagonal PTTBCOs in a 

layer and get the intersection; 2) link the intersections at two 

neighboring layers; 3) push the button of “Structure-Monitor- 

Distance” in drop-down menu, and acquire the value of 𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 . 

Computational process for𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 is as following: 1) select two 

neighboring PTTBCOs in a PTT; 2) push the button of “Structure- 

Monitor-Distance” in drop-down menu, and acquire the distance of 

𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵. Computational process for 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 is as following: 1) 

select two neighboring PTTBCOs in a layer; 2) push the button of 

“Structure-Monitor-Distance” in drop-down menu, and acquire the 

value of 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 ; 3) 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 𝑛𝑛𝑑𝑑𝐺𝐺𝑉𝑉𝐺𝐺1⁄  for each layer is 

calculated.  



Simulation and clustering of cross-links among PTTS of SF 

States of cross-links among PTTs of SF are simulated in Discovery 

Studio Software. Algorithm of homology model is employed in the 

simulation of calculation, and the algorithm of cluster analyze is 

used in the classification of cross-links. Computational process is 

listed step by step as following: 1) 4-fold symmetrical subunits of 

acSlo1 channel are moved away from the central point 

synchronously at the direction perpendicular to the central axis, so 

that 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 varies from 2Å to 15Å. Every molecular structure of 

Slo1 channel with various value of 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 is employed to be 

template for homology models rebuilding. 2) Push the button of 

“macromolecules-create homology models-build homology models” 

and construct homological model with various value of 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵. 3) 

For every rebuilding homology model, push the button of 

“Macromolecules-Dock and analyze protein complexes-calculate 

ligand interface” and analyze the cross-links between each pair of 

PTTs. 4) Changes of cross-links among PTTs corresponding to 

various 𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵  are compared and recoded in details. 5) All 

statements of cross-links are clustered, and features of cross-links 

in each statement are classified. 6) Every kind of cross-links is 

identified according to its feature. 
Construction of coordination conformation for the K+ inside 
SF and trajectory simulation of the K+ passing through SF 



The configuration of a K+ in SF is imitated with Discovery Studio 

Software. Algorithm of CDOCKER and feature cluster are 

employed and the computational process is listed step by step as 

following ： 1) Select the window of “Receptor-ligand 

interactions-view interactions”, define K+ as receptor and PTTBCOs 

as ligand. 2) Define and edit the binding site. 3) Push the button of 

“Receptor-Ligand interactions-dock ligand (CDOCKER)” and dock 

a K+ to SF in each binding site. 4) Push the button of 

“Receptor-ligand interactions-view interactions-analyze ligand 

poses”, view the receptor-ligand interactions and display the 

surface of receptor and ligand, and free energy of K+s is calculated 

and recorded. 5) Push the button of "structure-monitor", the 

features of cross-links, such as orientation, torsion, length and so 

on, are recorded in details. 6) Push the button of 

"simulation-electrostatics potential", forces on K+, such as 

symmetry, balance and kinetics, are analyzed and recorded. 7) The 

kinds of bonds around the K+ are estimated according to the feature 

of cross-links.8) The configuration of K+ is constructed with all 

bonds around the K+.  

Furthermore, the process of simulation of K+ passing through SF is 

listed step by step as following: 1) Push the button of 

"simulation-calculate interaction energy", calculate and compare 

free energy of every conformation of K+, steady-states of K+ with 

low free energy are labeled. 2) Push the button of 

"simulation-analyze trajectory" and acquire the trajectory of K+ 

inside SF. K+s are observed to be trans-located among the 

steady-states along the central axis of SF. 3) According to the 

regulation of coulomb repulsion and the rule of lowest free energy, 

continuous configurations of K+s are combined so that 



sub-conformations are deduced and clustered corresponding to 

varying 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵. 

 

Abbreviation: K+:potassium ion; SF: selectivity filter; Slo1:large 

conductance Ca2+-activated potassium; acSlo1: Slo1from Aplysia 

californica;hSlo1: Slo1 from human; PTT: potassium transportation 

track; PTTBC and 𝐵𝐵𝐵𝐵𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑑𝑑𝑜𝑜𝑉𝑉𝑉𝑉: backbone carbonyl of PTT, including 

𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟 , 𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉 , 𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 , 𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒  and 𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 ; PTTBCO and 

𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑒𝑒𝑟𝑟𝑖𝑖𝑑𝑑𝑜𝑜𝑉𝑉𝑉𝑉 : oxygen atom of PTTBC including 𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟 , 𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉 , 

𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 , 𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 ; PR: polarity residuals; nPR: 

non-polarity residual; 𝑍𝑍𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂 , 𝑍𝑍𝑇𝑇ℎ𝑟𝑟 , 𝑍𝑍𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺1 , 𝑍𝑍𝑃𝑃ℎ𝑒𝑒 , 𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺2 : six 

layer along central axis of SF from intercellular to 

extracellular;𝑑𝑑𝑉𝑉𝑉𝑉𝐺𝐺𝑒𝑒𝑟𝑟 : distance of each pair of layers; 𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 : 

distance of neighbor PTTBCOs in a PTT; 𝑛𝑛𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵: border length 

of the quadrangle which is comprised with cross-links of neighbor 

PTTBCOs in each layer;𝑑𝑑𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵 : distance of two PTTBCOs 

located at diagonal PTTs; Z𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉−𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 : a zigzag line of 𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇ℎ𝑟𝑟 

and 𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉  and 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 ; 𝑍𝑍𝑍𝑍𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒−𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 : a zigzag line of 

𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1  and 𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃ℎ𝑒𝑒  and 𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 ; 𝐵𝐵𝑇𝑇ℎ𝑟𝑟 ,𝐵𝐵𝑉𝑉𝑉𝑉𝑉𝑉 ,𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺1 ,𝐵𝐵𝑃𝑃ℎ𝑒𝑒 ,𝐵𝐵𝐺𝐺𝑉𝑉𝐺𝐺2 : 

circle-cross-links in each layer; S𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑉𝑉𝑉𝑉𝑉𝑉 , SGly1 , 𝑆𝑆𝑃𝑃ℎ𝑒𝑒 : 4 

stable-state-sites which are located along center axis of SF, 

corresponding to four layer of 𝑍𝑍𝑇𝑇ℎ𝑟𝑟 , 𝑍𝑍𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑍𝑍𝐺𝐺𝑉𝑉𝐺𝐺1  and 𝑍𝑍𝑃𝑃ℎ𝑒𝑒 ; 

S𝑇𝑇ℎ𝑟𝑟.𝐵𝐵𝑂𝑂−𝑇𝑇ℎ𝑟𝑟 , 𝑆𝑆𝑇𝑇ℎ𝑟𝑟−𝑉𝑉𝑉𝑉𝑉𝑉 , S𝑉𝑉𝑉𝑉𝑉𝑉−Gly1 , 𝑆𝑆𝐺𝐺𝑉𝑉𝐺𝐺1−𝑃𝑃ℎ𝑒𝑒 , 𝑆𝑆𝑃𝑃ℎ𝑒𝑒−𝐺𝐺𝑉𝑉𝐺𝐺2 : 5 



meta-stable-state-sites which are located along the center axis of 

SF; DIEP: Delocalization ion electron pair; ESR: electron spin 

resonance; 2D IR: two-dimensional infrared spectroscopy; MD: 

molecular dynamics. 
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TOC graph: 

 

 

Three patterns of K+ passing through the membrane channel were 

found under diffusion force of ion concentration and electric 

potential on cellular membrane. To accommodate increasing 

energy levels, 4-fold symmetric subunits of the channel can only 

move at one direction that is perpendicular to the centre axis, and 

tolerate more K+. 


