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Abstract 

This empirical study used Keller’s (2008b) Motivation, Volition, and Performance 

(MVP) theory to develop and statistically evaluate a mathematical MVP model that can serve as 

a research and policy tool for evaluating students’ learning experiences in digital environments. 

Specifically, it explored undergraduate biology students’ learning and attitudes toward e-texts 

using a MVP mathematical model in two different e-text environments. A data set (N = 1,334) 

that included student motivation and e-text information processing, frustration with using e-texts, 

and student ability variables was used to evaluate e-text satisfaction. A regression analysis of 

these variables revealed a significant model that explained 77% of the variation in student e-text 

satisfaction in both e-text learning environments. Student motivation and intrinsic cognitive load 

were positive predictors of student satisfaction, while extraneous cognitive load and student prior 

knowledge and background variables were negative predictors. Practical implications for e-text 

learning and generalizability of a mathematical MVP model are discussed.  
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1. Introduction 

Electronic textbooks (e-texts) are gaining in popularity in K-12 and higher education settings. 

A growing number of education policy makers, researchers, and practitioners view digital 

textbooks as an integral part of the 21st century education system and urge transitioning from 

printed materials to electronic texts (Apple, 2015; Fletcher, Schaffhauser, & Levin, 2012). One 

of the major advantages of e-texts is their portability, giving students the ability to study 

anywhere and anytime using an electronic device connected to the Internet. Emerging e-text 

technologies provide interactive multimedia content allowing users to customize their e-text 

learning based on individual preferences and learning progress. This supports student motivation 

and their engagement with e-texts. These technological advances are believed to change the way 

students interact with and perceive books (Boroughs, 2010). 

There are many psychological and environmental factors that influence student e-text 

learning experiences and satisfaction. Research on e-texts use and adoption in educational 

settings shows that overall students have positive attitudes toward electronic textbooks. 

Nevertheless, students do not show a strong preference for e-texts over printed materials 

(Shepperd, Grace, & Koch, 2008; Woody, Daniel, & Baker, 2010). For instance, many 

individuals report difficulty reading off a screen, understanding and comprehending complicated 

e-texts, and fatigue (Le Bigot & Rouet, 2007; Rockinson- Szapkiw, Courduff, Carter, & Bennett, 

2013). They prefer printing certain e-text documents because it helps them better understand the 

materials and improve productivity (Woody, Daniel & Baker, 2010). Some students even prefer 

to buy a more expensive printed textbook instead of a cheaper e-text alternative (Shepperd et al., 

2008). In addition, undergraduate students perceive e-texts to be less interesting and credible 

than traditional print textbooks (Liu, 2005). 
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Many researchers argue that reading on electronic platforms requires fundamentally different 

abilities and skills than reading a print textbook (Ackerman & Lauterman, 2012; Lamb, 2001). 

Reading e-texts involves a whole set of new literacy practices, such as highlighting, 

bookmarking, digital note-taking, and configuring e-text settings. Many of these practices 

involve digital collaboration and document sharing, creating an additional layer of new literacy 

skills, which need to be taught (Hyman, Moser, & Segala, 2014). Moreover, reading off a screen 

involves different reading behaviors than reading printed materials. People who read off a screen 

often employ non-linear or selective reading, scanning, keyword spotting, and browsing, which 

results in declined sustained attention (Liu, 2005). 

Moreover, student e-text preferences can also vary based on the course requirements and are 

considerably influenced by instructor’s use of the e-texts (Dennis, 2011; Weisberg, 2011). 

Thomas (2013) argues that students’ e-textbook use closely mirrors instructor’s use and 

expectations. Students tend to direct their attention toward e-textbook features and content that 

are emphasized by their teacher and underutilize many interactive and self-directed e-textbook 

components. Moreover, e-textbook use is not intuitive; students need to be taught how to use e-

textbooks effectively for their learning (Thomas, 2013).  

Although several studies have examined student e-text learning and attitudes, the 

relationships among the psychological and environmental factors influencing e-text learning and 

satisfaction are unclear and underexplored. Thus, the intent of this study is to examine the 

relationships among psychological, environmental, and student ability variables that affect 

student satisfaction with e-text learning using Keller’s (2008b) integrative theory of Motivation, 

Volition, and Performance (MVP) theory and to develop a mathematical MVP model that can 

quantitatively represent such relationships.  
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The concept of satisfaction has been debated extensively in the literature from various 

perspectives, including a variety of intrinsic and extrinsic factors contributing to feelings of 

satisfaction, cognitive evaluation of a task and its outcomes, and strategies that promote 

satisfaction (Keller, 2010). Researchers believe that satisfaction is an important aspect of human 

performance, because feelings of satisfaction with the learning process or its outcomes contribute 

to a continuing desire to learn. The importance of satisfaction with IT systems has been 

extensively debated in the literature, as it directly influences individuals’ attitude, intention, and 

continued desire to use a technology (Deng, Turner, Gehling, & Prince, 2010; Kang & Lee, 

2010; Sepehr & Head, 2017). In this study, we define satisfaction as a subjective evaluation of an 

actual experience or its outcome based on a learner’s expectations (Keller, 2010). This definition 

is grounded in cognitive dissonance theory (Festinger, 1957), expectation confirmation theory 

(Oliver, 1977; 1980) and balance theory (Heider, 1958; Hummon & Doreian, 2003) – all of 

which provide a rigorous foundation for research on the design of digital learning environments 

that promote a desire to learn. 

2. An Integrative Theory of Motivation, Volition, and Performance 

An integrative theory of motivation, volition, and performance (Keller, 2008b) takes a broad 

view of various factors that influence human performance and learning while synthesizing 

multiple theoretical approaches and explanatory frames of reference. Unlike single theories that 

examine isolated constructs, integrative theories offer a broader framework that focuses on 

interactions of different theories and a basis for comprehensive and cross-paradigm research. 

Keller’s (2008b) integrative theory of motivation, volition, and performance (MVP) focuses on 

the learning, motivational, volitional, psychological, and environmental factors that affect human 

performance. This theory can be characterized as a macro theory that incorporates various micro 
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theories, including information-processing theories (Atkinson & Schiffrin, 1971; Mayer, 2001), 

motivation (Keller, 1999), action control theory (Kuhl, 1987), self-regulation (Zimmerman, 

2001), and implementation intentions (Gollwitzer, 1999). 

Using a systems model approach, Keller developed a MVP model to systematically represent 

relationships among explanatory components of the MVP theory (Figure 1). The MVP model 

describes inputs (i.e., considered to play an important role in explaining the theoretical 

principle), interactions among them, and outputs (i.e., measurable behaviors to be explained). 

The MVP model emphasizes two major types of inputs that affect individual motivation and 

performance: environmental factors and psychological constructs. Environmental, or external 

inputs, represent a myriad of cultural, social, and physical factors, including quality of 

instruction and/or learning materials, technical support in digital learning environments, and 

teacher enthusiasm, and may directly affect student learning and motivation. For example, Sun, 

Tsai, Finger, Chen, and Yeh (2008) found that teacher attitudes toward e-Learning as well as e-

Learning course structure, perceived usefulness, and assessment strategies can considerably 

influence student e-Learning satisfaction.  
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Figure 1. The MVP model of motivation, volition, and performance according to Keller (2008a). 

Note. Reprinted with the permission of John Keller from “An Integrative Theory of Motivation, 

Volition, and Performance,” by J. Keller, 2008, Technology, Instruction, Cognition and 

Learning, 16, 79-104, p. 94.   

  

Psychological constructs, or internal processes, include factors, such as motivation, self-

regulation control, and information processing. For instance, cognitive load experienced during 

the learning process can directly affect student performance levels and satisfaction with the 

learning process (Paas, Renkl, & Sweller, 2003). This is particularly relevant when learning 

complex cognitive skills in digital learning environments that offer an additional layer of 

multimedia and interactivity when compared to paper-based or lecture situations. Information 

processing in multimedia learning is another relevant concept that influences human 

performance and satisfaction. Mayer’s (2001) research on learning with multimedia supports the 

importance of implementing multimedia learning principles for designing effective and efficient 
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learning materials that utilize pictures and words. The MVP model helps understand the 

interactive influences of the external and internal processes and their effect on human learning 

and performance, which will be also affected by individual ability, prior knowledge, and skills.  

The MVP model’s output variables focus on individual effort direction, effort initiation, 

effort persistence, and outcomes processing. These output variables represent the “processes that 

occur in moving from initial motivation to sustained effort” (Keller, 2008b, p. 88). The “outcome 

processing” stage covers post-actional motivational processes, such as self-evaluation of 

achievement levels and reflection on the learning processes. These post-actional motivational 

behaviors determine individual’s satisfaction with the involved outcomes and processes. 

Satisfaction is also viewed as an output variable in the MVP model, as it is clearly influenced 

by various environmental, psychological, sociological, and genetic factors coupled with the 

student’s performance and the student’s mental evaluation of his/her archived performance, 

which is based on the gap between his/her current and desired performance levels. Satisfaction 

with the learning outcomes and processes is also one of the four components of the ARCS model 

of motivation that describes motivational dimensions of learning and performance (Keller, 

1999): (1) Attention (i.e., interest or curiosity), (2) Relevance (i.e., goals or motives), (3) 

Confidence (i.e., expectancy for success), and (4) Satisfaction (with the learning process). Keller 

views the first three ARCS components, attention, relevance, and confidence, as the MVP 

model’s internal psychological factors (i.e., inputs) that represent learning conditions. The fourth 

ARCS component, satisfaction, represents a learning processing outcome (see Figure 1).  

3. A Mathematical MVP Model 

A mathematical model, or any model in general, represents reality in a simplified form. 

According to Pearl (2000, p. 202), a model is “an idealized representation of reality that 
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highlights some aspects and ignores others.” A mathematical model can be described using a 

mathematical equation or a series of mathematical equations that represent relationships among 

quantitative variables. The goal of mathematical model building is to develop a model that would 

provide an accurate, yet relatively simple representation of reality. Mathematical models are 

widely used in science to explain natural phenomenon and make predictions (Pfaffl, 2001; 

Tamura, Masatoshi, & Sudhir, 2004). Behavioral researchers develop mathematical models to 

represent descriptive theories using mathematical concepts (Boland, 2014). One of the key 

advantages of developing mathematical models that explain theories is to test theoretical claims 

and evaluate the extent to which the models match empirical data collected in order to examine a 

particular area of inquiry (Rodgers, 2010).  

The reason for selecting Keller’s (2008b) integrative MVP theory as a theoretical 

framework for the present study was twofold. First, since the goal of the study was to develop a 

mathematical model that represents relationships among various variables that affect students’ e-

text learning experiences it was important to select a rigorous, well-established theory that lends 

itself to mathematical modeling. Keller’s MVP theory was a perfect candidate for this task due to 

the (1) integrative nature of the theory, which allows for an exploration of a myriad of 

environmental and psychological factors that affect students’ learning experiences, and (2) 

systems model approach that represents relationships among MVP theory components. To 

highlight the difference between the MVP theory and MVP model, Keller (2008a) wrote, “The 

phrase MVP model refers to this systems representation [that shows how all of the parts are 

interrelated and illustrates relationships that occur as explained and predicted by the theory] 

while MVP theory refers to the explanatory structures represented by the components of the 

theory” (p. 81). 
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Second, the present study builds upon previous research on mathematical models of 

MVP. The MVP theoretical framework was successfully used to develop a mathematical MVP 

model to evaluate human performance in several digital learning environments, including video 

games (Huang, Huang, & Tschopp, 2010) and simulations (Author, 2014). Both studies found 

empirical support for the elements included in the MVP theory and revealed statistically 

significant relationships among motivational, volitional, and learning outcome processing 

variables. The mathematical model revealed in these studies can be captured using the following 

linear equation (Equation 1): 

 

Satisfaction (student) = A × Attention (student) + B × Relevance (student) + C ×  

                                      Confidence (student) + D × Volition (student)                                      (1) 

(A, B, C, and D are positive parameters).  

 

This mathematical MVP model represents the relationships among individual internal 

processes (i.e., motivation and volition) and learning outcome processing (i.e., satisfaction) and 

was statistically evaluated for fitting two different data sets collected to assess student 

performance in video games (Huang et al., 2010) and simulations (Author, 2014). Both studies 

confirmed that attention, relevance, confidence, and volitional effort were significant and 

effective positive predictors of student’s satisfaction with the experienced learning processes, 

thus providing empirical support for these MVP theory elements. The present study aims to 

further demonstrate the generalizability of this mathematical model by testing for additional 

empirical support of these MVP elements. These MVP elements will be used to develop a more 

comprehensive mathematical MVP model that can be applied to other digital learning 
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environments as a means of diagnosing students’ learning experiences. Specifically, the goal is 

to (1) statistically evaluate this mathematical model (Equation 1) for fitting two different data 

sets collected to assess undergraduate biology students’ e-text satisfaction and attitudes, and (2) 

expand this model by including additional variables that affect student outcome processing in e-

text learning environments, and (3) determine whether the expanded model fits the empirical 

data.  Furthermore, this report draws practical recommendations for e-texts learning from the 

MVP model and discusses the generalizability of the MVP mathematical model across different 

digital learning environments.  

In addition to the MVP theory variables explored in previous studies (i.e., motivation, 

volition, and learning outcome processing), the current study included indicators of (a) student 

information processing in e-text learning environments, (b) environmental factors (frustration 

with using e-texts), and (c) student ability variables (prior knowledge and academic background). 

Information processing was measured using a Likert-type e-text cognitive load instrument that 

assessed e-text intrinsic and extraneous cognitive load (Authors, 2018). The concepts of intrinsic 

and extraneous load (Leppink, Paas, Van der Vleuten, Van Gog, & Van Merriënboer, 2013; 

Leppink, Paas, van Gog, van der Vleuten, & van Merriënboer, 2014) relate to general 

information processing and are essential to the MVP theory (Keller, 2008b). Intrinsic cognitive 

load (IL) is influenced by student prior knowledge and learning task difficulty, whereas 

extraneous cognitive load (EL) involves processes that do not contribute to knowledge 

construction and may even hamper the learning process. Research shows that IL and EL play an 

important role in student learning and satisfaction and therefore these variable were considered 

in the development of a mathematical MVP model. 
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The influence of environmental factors related to e-text instructional alignment and 

technical issues was assessed using a Likert-type questionnaire that evaluated student frustration 

with these factors. Frustration with computers and web browsing is a well-known universal 

experience for digital media consumers (Ceaparu, Lazar, Bessiere, Robinson, & Shneiderman, 

2004). Keller (2008b) suggested that frustration with the environmental conditions (external 

inputs), such as technology and computers, is one of the areas of inquiry that is directly related to 

the MVP model: “User efforts to perform well… are frustrated by the environmental conditions 

(external inputs) that either facilitate or restrict performance due to poor man-machine 

interfaces” (p. 97). In a similar vein, a lack of instructional alignment between e-textbooks and 

course goals and requirements can lead to frustration with using e-text materials, directly 

influencing a student’s satisfaction (Keller, 2008a; Wigfield & Eccles, 2000).  

In the current study, student ability variables included student prior knowledge as 

measured by their college admissions test (ACT math scores) and their academic background as 

measured using the number of completed academic hours at the time of data collection. ACT 

math performance is considered a good predictor of student success in undergraduate biology 

courses since it measures mathematical aptitude and reasoning skills that are critical indicators of 

achievement in college biology (Anderson, 2014; Biermann & Sarinsky, 1989). Student prior 

knowledge and academic experience can influence a student’s e-text satisfaction directly 

interacting with environmental and psychological factors. These ability variables affect student 

academic engagement and attitudes toward learning and, therefore, can influence a student’s 

mental evaluation of the entire learning process.  
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4. Method 

4.1 Participants 

A total of 2,392 undergraduate biology students at a four-year public comprehensive 

university located in the southeastern United States were invited to participate in the study. Out 

of 2,392 students, 1,334 consented to participate in the study (55.8% participation rate). 

However, only 727 students completed all of the study questionnaires. Students were enrolled in 

six general biology courses (N = 456) and two anatomy and physiology (A&P) laboratory 

courses (N = 271).  Among all participants, 63% were female, 17% represented a racial/ethnic 

minority group, the average age was 20.4 years old, and the average student had completed 56 

credit hours of course at the time of the study.  Moreover, 75.9% of the participants had used e-

texts in previous classes, and 28.8% were repeating the current course due to a previous course 

withdrawal or unsatisfactory grade.   

The courses sampled for the present study were part of the instructional sequence 

required by students majoring in biology and were usually taken during the first two years of 

college. The students enrolled in these course usually have a wide variety of academic and career 

goals. Many of these students have defined goals, such as medical, dental or veterinary graduate 

programs, upon graduation and therefore have higher ACT scores than the general 

population. Other students take these courses in order to fulfill general education requirements. 

This group of students may have variable ACT scores and choose to defer their biology course 

until their final semester. 

4.2 Materials 

A recent evaluation of classroom and laboratory practices in the Department of Biology 

at this public university found that classroom practices and some laboratories needed significant 
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updating to meet the learning goals of its students, to increase student retention, and to reduce 

costs to students.  Toward this end, the Biology Department negotiated a contract with McGraw 

Hill to provide multiple digital materials, including common e-texts, at an economical price for 

students enrolled in 100-level and 200-level biology courses. The general biology classes were 

lecture sections of General Biology for non-majors, Biological Concepts I: Cells, Metabolism 

and Genetics, Biological Concepts II:  Ecology and Evolution, Human Anatomy and Physiology 

(A&P) I, Advanced Human Anatomy and Physiology, and General Microbiology. The general 

biology courses (N = 895) adopted the McGraw-Hill LearnSmart and Smartbook adaptive 

learning tools, further identified as the general biology group of this study. The A&P laboratory 

courses (N = 439) adopted McGraw-Hill E-text and Connect learning environments, 

subsequently labeled the lab group.  

The e-text materials used in each group offered distinctly different learning experiences. 

The general biology lecture courses’ e-texts were “Smartbooks” that used LearnSmart which 

included embedded  questioning and interactive modules that assessed student reading 

comprehension and tailored the book content to individual student needs.  Highlighted segments 

of the Smartbook changed from yellow to green as a student mastered content as measured by 

the questions in the Learnsmart software (Figure 2). Students who mastered content more 

quickly were given fewer questions than students who guessed or did not understand the 

material.  Metacognition data were collected measuring how confident a student was about 

his/her answers to questions.   
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Figure 2. A screenshot of LearnSmart and Smartbook interactive learning modules 

 

 

The A&P lab courses used an e-text as well, but they were not Smartbooks.  Instead of 

using the adaptive Learnsmart system, students were assigned homework within the Connect 

platform that was not adaptive. Specific question sets were selected for the lab exercises to help 

students master lab content.  Often this content emphasized skill and drill learning activities to 

reinforce student factual knowledge of human anatomy and physiology (Figure 3). 
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Figure 3. Sample screenshots of McGraw-Hill E-text and Connect learning environments 

4.3 Procedure 

Students completed a series of anonymous online questionnaires that were administered 

near the end of spring semester (May) of 2015 after students had worked with the e-texts during 

the whole semester.  A link to an online survey was embedded within the learning management 

system (LMS) for each course section of the general biology and anatomy and physiology 

courses.  Students were provided with an informed consent document at the beginning of the 

online survey that outlined the purpose of the study, the voluntary nature of the study, the 

anticipated benefits and potential risks, and steps that were being taken by the research team to 

protect the confidentiality of the data collected.  The consent process also outlined steps to link 

Institutional/University records/data with individual survey responses.  The institutional data 

included student’s college admissions test (ACT) scores, age, academic year, number of 

completed hours, and current undergraduate Grade Point Average (GPA).  

All procedures performed in studies involving human participants were in accordance 

with the ethical standards of the institutional and/or national research committee and with the 

1964 Helsinki declaration and its later amendments or comparable ethical standards. 
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4.4 Measures 

Student motivation associated with a self-directed use of e-text materials was assessed using a 

simplified version of Keller’s (1993, 2010) Instructional Material Motivation Survey (IMMS) 

that was designed in correspondence with Keller’s ARCS theory of motivation (Keller, 1987a, 

1987b). The IMMS instrument included 16 Likert-type items that measured four motivational 

dimensions of the ARCS model: attention, relevance, confidence, and satisfaction (ARCS). Each 

ARCS dimension was assessed using four items with response choices of 1 (not true), 2 (slightly 

true), 3 (moderately true), 4, (mostly true), and 5 (very true). The ARCS scores were calculated 

by averaging the four items on each sub-scale respectively. The IMMS instrument and its four 

sub-scales had a moderately high level of internal consistency (Table 1) as measured using a 

Cronbach’s alpha test. The IMMS instrument’s validity was empirically established in several 

previous studies with a large number of participants (e.g., Huang, Huang, Diefes-Dux, & Imbrie, 

2006; Loorbach, Peters, Karreman, & Steehouder, 2015). 

Table 1 

Cronbach’s Alpha Test of Reliability for Dimensions of ARCS Model 

 General Biology 

(N = 456) 

A&P Lab Courses 

(N = 271) 

Attention  .791 .791 

Relevance  .614 .682 

Confidence  .748 .765 

Satisfaction  .793 .817 

Intrinsic Cognitive Load .869 .892 

Extraneous Cognitive Load .840 .867 

Frustration  .895 .905 
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Intrinsic and extraneous cognitive load (IL and EL) measurements associated with using e-texts 

were assessed using a nine-item questionnaire (Authors, 2018). The e-text cognitive load 

questionnaire used in the current study was adapted from the questionnaire developed by 

Leppink et al. (2013) to measure cognitive load for a lecture/paper-based mode of learning. The 

item response choices ranged from 0 (not true at all) to 10 (completely the case). The first four 

items included statements intended to capture e-text IL, such as “the topics covered in the e-text 

were very complex” and “I invested a very high mental effort in the complexity of the e-text 

content.” The last five items  measured e-text EL and included items such as “Manipulating e-

texts (e.g., highlighting, bookmarking, navigating, searching information) was very distracting” 

and “Reading e-texts off a screen was, in terms of learning, very ineffective.” The intrinsic and 

extraneous cognitive load scales exhibited high reliabilities (Table 1). The e-text cognitive load 

instrument was empirically validated with a large sample of 1377 undergraduate students 

(Authors, 2018). 

 

Frustration with e-text technical issues and lack of instructional alignment were measured using 

eleven 7-point Likert scale questions. Eight of these questions evaluated students’ experiences 

with e-text technical issues and three additional questions evaluated perceived lack of 

instructional alignment between e-text materials and course goals and requirements. The 

questions were developed based on previous research that showed that error messages, poor 

network connections, long download time, and hard-to-find features were among the most-cited 

reasons for frustrating experiences with computers (Ceaparu et al., 2004; Selvidge, Chaparro, & 

Bender, 2002). In addition, prior research on challenges associated with using e-texts (i.e., e-text 
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navigation, bookmarking, highlighting, lack of physical structure like in printed materials, 

reading off a screen) was used to develop items measuring student frustration with using e-texts.  

Questions that assessed frustrating experiences with the lack of instructional alignment 

were developed based on the expectancy-value theories that assume that individual willingness 

to engage in a particular effort depends on the perceived importance of that effort (Wigfield & 

Eccles, 2000). A clear connection between the e-text learning materials and course requirements 

is believed to promote student motivation and persistence to learn (Keller, 2008a). If students can 

clearly see how e-text assignments and activities can help achieve course expectations, they will 

be more willing to use the e-texts resulting in higher perceived value. Overall, the frustration 

questionnaire had a high level of internal consistency (Table 1). 

 

4.5 Data Analysis 

A series of hierarchical multiple regression analyses were computed to analyze the 

relationships among motivational processing variables (ARC components), cognitive load 

(information processing), frustration with e-texts, and academic ability variables. The 

motivational processing variables were previously explored in Huang et al.’s (2010) and 

Author’s (2014) studies and, therefore, were entered into the model first. Additional predictor 

variables were entered in the following order: (1) ACT math scores and academic hours 

completed, (2) intrinsic and extraneous cognitive load, and (3) frustration using e-texts. The 

order of entering these additional predictors was determined based on their theoretical 

importance and prior research that examined similar variables as predictors of human 

performance or attitudes (Field, 2013). Based on past research, student distal variables (long-

standing academic characteristics) were found to be effective predictors of student success, and 
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therefore ACT math scores and academic hours completed variables were entered into the model 

after the motivational processing variables (ARC components). Proximal variables (closer to the 

time of data collection in the present study), e.g., information processing and frustration with e-

texts variables, were entered afterward.   

 In line with the MVP theory that views student satisfaction as a learning outcome or the 

product of the learner’s mental evaluation of her/his achievement, student satisfaction, as 

measured by the ARCS satisfaction subscale (Keller, 1993), was the dependent variable. 

 

5. Results 

The means and standard deviations for the outcome and predictor variables in general 

biology and A&P lab courses are presented in Table 2.  

 

Table 2 

Means and SDs of Predictors and Criterion Variables in General Biology and A&P Lab Courses 

 

 General Biology (N =456) A&P Lab courses (N = 271) 

Variable M SD M SD 

Satisfaction 3.22 .98 3.14 1.01 

Attention 2.85 .93 2.89 .84 

Relevance 3.35 .79 3.25 .82 

Confidence 3.35 .86 3.25 .85 

ACT Math 22.94 4.83 22.13 4.44 

Academic Hours Completed 54.93 28.49 59.11 31.76 

Intrinsic CL 5.12 1.96 5.23 1.99 

Extraneous CL 3.97 2.28 4.20 2.45 

Frustration  3.18 1.33 3.37 1.43 
Note. Possible score range for Attention, Relevance, Confidence, Satisfaction scales and Computer Skills: 1-5. Possible score range for Intrinsic 

and Extraneous CL: 0-10. ACT math scores range from 1-36, with 36 being the highest possible score. 

 

A correlation matrix of all of the study variables is presented in Table 3 for the six 

general biology courses and in Table 4 for the A&P Lab Courses.   
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Table 3  

Correlation matrix: General biology courses 

 Variable 1 2 3 4 5 6 7 8 9 

1. Satisfaction 1.00                

2. Attention .79** 1.00              

3. Relevance .75** .71** 1.00            

4. Confidence .76** .66** .67** 1.00          

5. ACT math  -.10* .10* .002 .06 1.00        

6. Academic Hours 

Completed 
-.04 .001 -.04 .08* .18** 1.00      

7. Intrinsic CL .06 .08* .09* -.11* -.13** -.11** 1.00    

8. Extraneous CL -.38** -.22** -.23** -.36** -.08 .03 .45** 1.00  

9. Frustration -.53** -.44** -.41** -.48** -.07 .05 .18** .57** 1.00 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Table 4  

Correlation matrix: A&P lab courses 

 Variable 1 2 3 4 5 6 7 8 9 

1. Satisfaction 1.00                

2. Attention .78** 1.00              

3. Relevance .79** .73** 1.00            

4. Confidence .81** .67** .74** 1.00          

5. ACT math  -.02 .06 .08 .16** 1.00        

6. Academic Hours 

Completed 
-.06 .04 -.01 .07 .24** 1.00      

7. Intrinsic CL .07 .09 .10 -.08 -.18** -.18** 1.00    

8. Extraneous CL -.39** -.28** -.28** -.39** -.15** -.06 .53** 1.00  

9. Frustration -.45** -.37** -.34** -.48** -.18** -.07 .33** .64** 1.00 

**. Correlation is significant at the 0.01 level (2-tailed) 

 

Table 5 illustrates the prediction for student satisfaction across the two learning 

conditions. Using a hierarchical multiple regression analysis, attention, relevance, confidence, 

intrinsic and extraneous cognitive load, ACT math scores, and academic hours completed were 

found to be significant predictors of student satisfaction in both learning conditions. Student 

frustration with e-text was a significant predictor in the general biology lecture condition, but not 
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in the A&P lab. Since the motivational processing variables (ARC components) were identified 

in previous research as significant predictors of student satisfaction (Huang et al., 2010; Author, 

2014), these variables were entered into the model’s first block of the hierarchical regression. 

The first multiple regression model explained 73% of the variation in the students’ satisfaction in 

the general biology condition and in the A&P lab courses. Similar to Huang et al.’s (2010) and 

Author’s (2014) studies, attention, relevance, and confidence had significant predicting power.  

Student ability variables (prior knowledge as measured by ACT math score and previous 

academic background as measured by academic hours completed) were entered into the second 

model. The predictor variables on Model 2 explained 75% of the variation in the students’ 

satisfaction in the general biology condition and 76% in the A&P lab courses.  Both prior 

knowledge and academic background variables were significant negative predictors of student e-

text satisfaction. 

Including IL and EL variables (Model 3) significantly increased the adjusted R2 value to 

.77 in the general biology and A&P conditions. IL had a positive significant influence while EL 

had significant negative effect on e-text satisfaction. 

Model 4 accounted for the contributions of motivational processing variables, student 

ability variables, information processing, and e-text frustration. Including e-text frustration 

resulted in a significant model in both learning conditions, explaining 78% of the variation in the 

students’ satisfaction in the general biology condition and 77% in the A&P lab courses. 

However, the incremental increase in R2 was not significant in the A&P lab courses. In addition, 

e-text frustration was a significant negative predictor in the general biology condition only 

(Table 5).  
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Table 5 

Multiple Regression Models Predicting Students’ Satisfaction in General Biology and A&P Lab 

Courses 

 
  General Biology Courses (N = 456) A&P Lab courses (N = 271) 

 
 

Unstandardized 

Standar

dized  

Unstandardized Standar

dized 

 

 Variable Beta SE Beta β T Beta SE Beta β T 

Model 1         

 Constant -.29 .11  -2.65** -.51 .14  -3.69** 

 Attention .44 .04 .41 12.00*** .36 .06 .30 6.63*** 

 Relevance .31 .05 .25 7.04*** .30 .06 .24 5.03*** 

 Confidence .36 .04 .32 9.72*** .51 .06 .43 9.32*** 

 

Model 2 
  

 
 

    

 Constant .17 1.53  1.13 .13 .19  .70 

 Attention .42 .04 .40 11.74*** .35 .05 .29 6.65*** 

 Relevance .30 .04 .24 6.89*** .29 .06 .24 5.14*** 

 Confidence .39 .04 .34 10.58*** .55 .05 .46 10.39*** 

 ACT -.02 .01 -.07 -2.99** -.03 .01 -.11 -3.58*** 

 

Academic 

Hours 

Completed 

-.002 .001 -.08  -3.18** -.003 .001 -.08 -2.65** 

 

Model 3 
    

    

 Constant .44 .17  2.59* 2.54 .23  1.09 

 Attention .40 .03 .38 11.56*** .33 .05 .27 6.38*** 

 Relevance .27 .04 .21 6.33*** .25 .06 .20 4.48*** 

 Confidence .36 .04 .32 9.89*** .53 .05 .45 9.74*** 

 ACT -.02 .01 -.07 -3.16** -.03 .01 -.11 -3.51** 

 

Academic 

Hours 

Completed 

-.002 .001 -.05 -2.21* 

-.002 .001 -.06 -2.09* 

 Intrinsic CL .07 .01 .12 4.73*** .07 .02 .14 3.78*** 

 Extraneous CL -.08 .01 -.19 -7.22*** -.07 .02 -.16 -4.33*** 

 

Model 4 
    

    

 Constant .65 .19  3.36** .36 .27  1.34 

 Attention .38 .04 .36 11.08*** .32 .05 .27 6.29*** 

 Relevance .26 .04 .21 6.24*** .24 .06 .20 4.39*** 

 Confidence .35 .04 .30 9.45*** .52 .06 .44 9.44*** 

 ACT -.02 .01 -.08 -3.35** -.03 .01 -.11 -3.55*** 

 

Academic 

Hours 

Completed 

-.002 .001 -.05 -2.05* 

-.002 .001 -.07 -2.14* 

 Intrinsic CL .06 .01 .12 4.81*** .07 .02 .14 3.83*** 

 Extraneous CL -.07 .01 -.16 -5.08*** -.06 .02 -.15 -3.45** 

 Frustration -.05 .02 -.07 -2.23* -.02 .03 -.03 -.78 

          

Note. * ρ < .05, ** ρ < .01, *** ρ < .001 

General biology:  

Model 1: R2 = .74, adjusted R2 = .73, F(3,452) = 418.08, ρ < .001;  

Model 2: ∆R2 = .01, adjusted R2 = .75, F(2,450) = 11.48, ρ < .001;  

Model 3: ∆R2 = .03, adjusted R2 = .77, F(2,448) = 27.98, ρ < .001;  

Model 4: ∆R2 = .002, adjusted R2 = .77, F(1,447) = 4.95, ρ < .05.  
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A&P Lab courses: 

Model 1: R2 = .74, adjusted R2 = .73, F(3,267) = 249.66, ρ < .001;  

Model 2: ∆R2 = .02, adjusted R2 = .76, F(2,265) = 13.01, ρ < .001;  

Model 3: ∆R2 = .02, adjusted R2 = .77, F(2,263) = 11.27, ρ < .001;  

Model 4: ∆R2 = .001, adjusted R2 = .77, F(1,262) = .61, ρ > .05. 

 

6. Discussion 

The study revealed significant relationships among motivational, information processing, 

student academic background and prior knowledge variables, and student satisfaction with e-text 

learning in two different learning conditions, a set of general biology courses as well as anatomy 

and physiology (A&P) lab courses. Student interest toward e-texts (attention), clear connection 

between student goals and e-texts (relevance), expectancy for success with e-texts (confidence), 

intrinsic and extraneous cognitive load, academic background and prior knowledge were 

significant and consistent predictors of e-text satisfaction in the general biology and A&P lab 

learning conditions.  

In line with previous research, student motivational variables had the strongest predicting 

power on the outcome processing variable (Huang et al., 2010); Author, 2014). Student ability, 

information processing, and frustration variables have not been examined in previous research on 

MVP mathematical modeling. The current study revealed that information processing had the 

second highest predicting power. Student ability levels had a very small yet significant (negative) 

effect. Student frustration with using e-text was a significant negative predictor of student 

satisfaction in the general biology condition only, thus somewhat limiting the generalizability of 

this variable in the MVP mathematical model. Given the significance of the model that predicted 

students’ satisfaction based on the variables that were consistent significant predictors in both 

learning conditions, it is possible to present the following mathematical MVP model:  
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Satisfaction (s) = A × Attention(s) + B × Relevance(s) + C × Confidence(s) + D × IL(s) + E × 

                            EL(s) + F × Academic_Background(s) + G × Prior_Knowledge(s)                 (2) 

 

(A, B, C, and D are positive parameters; E, F, and G are negative parameters; s = student).  

 

A closer examination of the mathematical MVP model predictors in the general biology 

courses and A&P lab courses revealed that attention and confidence had the highest (positive) 

predicting power on student satisfaction in both learning conditions. However, the magnitude of 

these variables was different in the two conditions, reflecting the differences in these two distinct 

learning environments. Attention was the strongest predictor of student satisfaction in the general 

biology condition (βLecture = .36 vs. βLab = .27) while confidence was the strongest predictor in the 

A&P lab condition (βLecture = .30 vs. βLab = .44). Interestingly, these findings reflect the actual 

differences in two e-text learning environments. The general biology lecture courses aimed to 

promote an understanding of biological concepts and interrelationships among them. The e-text 

selected for these courses mirrored the course objectives. They employed adaptive learning tools 

that offered various self-assessments and consequently responded to the students’ academic 

needs by directing their attention to specific sections in the e-text and additional learning 

resources, such as multimedia presentations, videos, and tutorials, when they experienced 

confusion. In keeping with expectations, the novelty of these e-text materials and their 

interactivity is reflected in students’ increased interest toward e-text materials, which was 

captured by the attention variable.  

The A&P lab courses had completely different learning targets. A major goal was to 

build student factual knowledge of human anatomy and physiology. Students had hands-on 
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experience with lab materials, such as bones and models, and needed the e-text and assignments 

to provide practice with learning the names of structures outside of scheduled time in the lab. 

Their e-text materials emphasized skill and drill learning activities, helping students memorize 

structures illustrated in their e-texts, which consequently resulted in higher confidence. 

The rest of the mathematical MVP model predictors appeared to have similar predicting 

power in the general biology and A&P lab courses. The e-text relevance to course objectives and 

expectations was the third strongest (positive) predictor of student satisfaction with the e-texts 

(βLecture = .21 vs. βLab = .20). This positive relationship is consistent with the goal orientation and 

self-determination theories (Deci & Ryan, 1985) that highlight the importance of engaging in 

activities that match learners’ interests and preferences. 

The IL variable had a smaller (positive) effect (βGeneral_Biology = .12 vs. βA&P_Lab = .14), 

suggesting that both learning environments used e-texts that were compatible with student 

academic needs and prior knowledge. According to cognitive load theory, IL captures mental 

effort associated with processing of new information (Sweller, 2010; Van Merriënboer & 

Sweller, 2005). It is influenced by student prior knowledge and learning task difficulty. 

Therefore, optimal learning materials can enhance learning and result in higher satisfaction with 

the learning processes, as suggested by the MVP mathematical model. It is important to note that 

student prior knowledge and academic background were entered into the hierarchical regression 

prior to the IL variable. This research design allowed for the control of student prior knowledge 

when examining the relationships among the outcome processing variable and IL, and the model 

determined that IL was a positive, significant predictor of student outcome processing even after 

controlling for the effects of motivation and prior knowledge. 
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The EL variable had the strongest negative predicting power (βGeneral_Biology = -.16 vs. 

βA&P_Lab = -.15). EL involves the additional load beyond the IL that is necessary to process new 

information. It may be attributed to the factors that activate additional cognitive processes that 

are extraneous to the learning process and do not contribute to better learning, such as poorly 

designed learning materials, reading off a screen, and manipulating (navigating, bookmarking, 

searching, etc.) e-texts (Authors, 2018). Consistent with cognitive load theory, our MVP 

mathematical model revealed that EL had a negative effect on student satisfaction with the e-text 

learning.  

Student general ability variables (academic background and prior knowledge) had the 

smallest effect. It appears that students who had lower prior knowledge and/or fewer academic 

hours reported higher satisfaction levels than students with higher prior knowledge and/or more 

advanced academic background. One of the possible explanations for these findings could be that 

e-texts provided extra learning resources and scaffolding that were particularly beneficial for 

students with lower ability levels. Students with higher ability levels possibly did not need these 

extra resources and therefore perceived them less helpful. In any case, the student ability 

variables had almost negligent (negative) yet significant predicting power on student e-text 

satisfaction.  

 

7. Practical Implications 

In addition to research implications discussed above, the MVP mathematical model can 

be used as a tool for diagnosing and remediating students’ learning experiences as well as 

analyzing learning materials and environments. Table 6 summarizes the elements that received 

empirical support in the MVP mathematical model. The motivational variables positively 
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correlated with student satisfaction, suggesting that (1) in order to increase student satisfaction 

with e-text learning it is important to select e-texts of high-quality design and align them with 

course objectives (attention and relevance) and that (2) preparing students for e-text learning can 

increase their confidence and result in higher satisfaction (confidence). The quality of well-

designed e-text materials is crucial when implementing e-text learning. It directly influences 

students’ satisfaction and motivates continuous use of e-text materials (Piccoli et al. 2001; Sun et 

al., 2008). In addition to selecting high quality e-texts, it is imperative to prepare students for e-

text learning. The importance of students’ e-learning readiness has received a considerable 

attention from the research community. Researchers argue that a successful completion of e-

learning course materials is critical for students’ satisfaction with the learning process and 

academic success, since it serves as a prerequisite for completing other course requirements 

(Hao, 2016; Hung, Chou, Chen, & Own, 2010; Yilmaz, 2017). According to Hung et al. (2010), 

students’ e-learning readiness includes five dimensions: self-directed learning, motivation for 

learning, computer/Internet self-efficacy, learner control, and online communication self-

efficacy. When implementing e-text learning, instructors should consider students’ readiness 

across these five dimensions. For instance, it would be beneficial to assess students’ e-learning 

readiness before introducing students to e-texts. Based on the assessment results, instructors can 

decide which aspects of e-learning readiness need to be enhanced and what is the best way of 

doing it. Research on e-textbook learning provides similar recommendations arguing that many 

students do not know how to use e-textbooks effectively and need to be taught how to do it 

(Thomas, 2013). 
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Table 6 

A Summary of Practical Implications for Learning with E-Texts.  

Predictor Indicator of Implications  

Attention Interest toward e-text learning E-text design, novelty, and appeal 

Relevance Connection between goals and 

interests, and e-text learning and 

motivational processes 

 

Clear alignment between course 

objectives and e-text materials 

Confidence Expectancy for success with e-texts Prepare students for learning with e-

texts 

 

Intrinsic CL Processing of new information Use of optimal learning materials 

Extraneous CL Processes that do not contribute to or 

hamper knowledge construction 

 

E-textbook usability 

Academic 

Background 
Student ability variables 

E-textbooks can be particularly 

recommended for new and low-

performing students Prior 

Knowledge 

 

In addition to motivational variables, the MVP mathematical model provided empirical 

support for the information processing variables, i.e., intrinsic and extraneous cognitive load. 

Intrinsic cognitive load was positively correlated with student satisfaction, suggesting that 

providing students with optimal learning materials increases their satisfaction with the learning 

process. Extraneous cognitive load (e.g., reading off a screen, navigating, scrolling, 

bookmarking, and searching e-text materials) was negatively correlated with student satisfaction. 

This finding is in line with prior research demonstrating that factors associated with extraneous 

cognitive load can negatively affect student satisfaction (Leppink et al., 2014; Sweller & 

Chandler, 1994). This negative correlation suggests the importance of selecting e-text materials 

that are intuitive and easy to use. It is worth mentioning that in spite of the growing e-textbook 

adoption rates in K-12 and higher education settings, students do not strongly prefer e-texts over 
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printed textbooks (Authors, 2018; Shepperd et al., 2008; Woody et al., 2010). Among the 

possible reasons are factors contributing to e-text extraneous cognitive load, such as navigating, 

scrolling, bookmarking, and searching e-texts (Authors, 2018). As such, in order to increase 

students’ satisfaction with e-text learning it is important to evaluate both the content and 

usability/perceived ease of use of e-texts with the targeted learning audience.  

Finally, student academic background and prior knowledge variables were significant 

negative predictors of e-text satisfaction, indicating that e-texts can be particularly beneficial for 

sustaining a continuous desire to learn among new and low-performing students. Overall, the 

practical implications suggested by the mathematical MVP model have been extensively 

acknowledged in the professional educational literature, which provides further support for the 

elements included in the mathematical MVP model and model’s applicability to various learning 

environments.  

8. Generalizability of a Mathematical MVP Model 

 

A mathematical MVP model developed in the present study describes relationships 

among various motivational, cognitive, and environmental variables that affect student e-text 

learning experiences. The model (Equation 2) performed well in two distinct e-text learning 

settings providing support for its generalizability. Examining how well a mathematical MVP 

model performs across a broader range of learning environments can provide further empirical 

support for the elements that are included in the model. If a model can accurately predict the 

same outcome variable from the same set of predictor variables in a different sample, then its 

level of generalizability increases. Although the amount of research on MVP mathematical 

modeling is extremely limited, two additional studies used a MVP mathematical model to 

examine student learning (Huang et al., 2010; Author, 2014). Huang et al. (2010) applied 
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Keller’s (2008b) MVP theory to examine game-based learning and Author (2014) studied 

student performance in a simulation-based learning environment. A comparison of MVP model 

indicators across the four distinct learning environments (Table 7) suggests that a mathematical 

MVP model performed reasonably well within each learning environment, producing consistent 

trends and findings. In particular, it revealed that motivation processing variables had the highest 

predictive power in explaining the student outcome processing variable in all four learning 

conditions. Moreover, its predictive power, as measured by R2, has increased considerably from 

.43 in Huang and colleagues’ (2010) study to .77 in the present study, clearly indicating that 

applying a model with additional predictor variables to different groups of people results in an 

increased predictive power, and therefore, the model generalizes across different learning 

environments and populations.  

Table 7 

Summary Statistics of MVP Mathematical Model Indicators by Learning Setting 

Predictor General Biology 

E-text 

(N = 456) 

A&P Lab                 

E-text 

(N = 271) 

Author (2014) 

Simulation 

(N = 62) 

Huang et al. (2010) 

Video Game 

(N = 264) 

Attention Β = .36 β = .27 β = .51 β = .32 

Relevance β = .21 β = .20 β = .37 β = .37 

Confidence β = .30 β = .44 β = .19 β = .19 

Intrinsic CL β = .12 β = .14 N/A N/A 

Extraneous CL β = -.16 β = -.15 N/A N/A 

Academic Background β = -.05 β = -.07 N/A N/A 

Prior knowledge  β = -.08 β = -.11 N/A N/A 

Volition N/A N/A β = .17 N/A 

Frustration β = -.07 Non-sig N/A N/A 
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Total R2 .77  .77 .69 .43 

Note. N/A means that a variable was not examined 

 

A review of the aforementioned studies that developed and evaluated MVP mathematical 

models highlights the challenges associated with mathematical modeling in educational and 

more generally in social and behavioral research – data availability and need for replication 

studies. An MVP mathematical model includes many variables, which are often difficult to 

obtain for a given set of study participants and replicate in different learning settings. For 

instance, the initial intent of the present study was to include an indicator of student volition 

(e.g., effort persitance), which could be measured by e-text homework scores or/and e-text 

learning time. These data were only available through the e-text publishing company, which 

limited our ability to test the volition component in a mathematical MVP model. This lack of 

consistency in data sets poses considerable research challenges and requires development and 

application of appropriate methodological data analysis approaches (Dabbaghian & Mago, 2014) 

as well as additional research that attempts to replicate existing mathematical models in different 

learning environments with different populations and additional variables. 
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