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Abstract

Purpose: A number of institutions have clinically implemented CYP2D6 genotyping to guide 

drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, 

barriers faced by both early adopters and institutions in the process of implementing CYP2D6 
testing, and approaches taken to overcome these barriers.

Methods: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the 

process of adoption. Data were collected on testing approaches, return of results procedures, 

applications of genotype results, challenges faced, and lessons learned.

Results: Among early adopters, CYP2D6 testing was most commonly ordered to assist with 

opioid and antidepressant prescribing. Key differences among programs included test ordering and 

genotyping approaches, result reporting, and clinical decision support. However, all sites tested for 

copy number variation and 9 common variants, and reported results in the medical record. Most 

sites provided automatic consultation and had designated personnel to assist with genotype-

informed therapy recommendations. Primary challenges were related to stakeholder support, 

CYP2D6 gene complexity, phenotype assignment, and sustainability.

Conclusion: There are specific challenges unique to CYP2D6 testing given the complexity of 

the gene and its relevance to multiple medications. Consensus lessons learned may guide those 

interested in pursuing similar clinical pharmacogenetic programs.
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INTRODUCTION

The cytochrome P450 2D6 (CYP2D6) enzyme metabolizes approximately 25% of 

prescription drugs and nearly 40% of drugs frequently cited in adverse drug reaction 

studies1. The CYP2D6 enzyme is the primary metabolic enzyme for select opioids, 

antidepressants, anti-emetics, and tamoxifen. The CYP2D6 gene is highly polymorphic, 

which can have important consequences for drug safety and effectiveness.

The CYP2D6 gene has over 100 allelic variants and subvariants, which introduces a high 

degree of complexity for gene assays and interpretation2–4. Approximately 5 to 10 percent 

of individuals inherit two nonfunctional CYP2D6 alleles (e.g. *3, *4, *5) and are poor 

metabolizers (PMs) with no enzyme activity3. Two to 11 percent are intermediate 

metabolizers (IMs) with a combination of nonfunctional and decreased function (e.g. *41, 
*17) alleles and significant reductions in enzyme activity. An additional 1 to 2 percent are 

ultra-rapid metabolizers (UMs) with multiple CYP2D6 gene copies (e.g. *1/*1×2) and 

increased enzyme activity.

The consequences of CYP2D6 variation on drug response vary depending on whether the 

enzyme biotransforms the parent drug into a more active or less active metabolite. The 

prodrugs codeine, tramadol, and tamoxifen are biotransformed via CYP2D6 into metabolites 

with greater pharmacologic activity than their parent compounds. Compared to normal 

metabolizers (NMs), PMs and IMs have lower concentrations of the more potent metabolites 

and may fail to receive therapeutic benefit from these medications5–10. On the other hand, 

UMs produce higher concentrations of the more potent metabolites of codeine and tramadol 

compared to NMs 11,12, which increases risk for serious adverse events including respiratory 

depression and death secondary to toxic concentrations of more potent metabolites13,14.

The implications of CYP2D6 polymorphisms are different when CYP2D6 biotransforms 

drugs to less active metabolites, as with some selective serotonin reuptake inhibitors 

(SSRIs), tricyclic antidepressants, ondansetron, and tropisetron. Poor metabolizers treated 

with paroxetine, fluvoxamine, and tricyclic antidepressants are at increased risk for adverse 

drug effects secondary to higher plasma concentrations of the active parent drugs, whereas 

UMs are at risk for subtherapeutic concentrations of the parent drug and therapeutic 

failure15,16. While there is insufficient evidence on the consequences of reduced metabolism 

for ondansetron and tropisetron, reduced anti-emetic effects have been observed in 

UMs17–19.

Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines are available for 

each of the drugs discussed above3,15–17,20. Many institutions within the NIH-funded 

Implementing GeNomics In pracTicE (IGNITE) Network have clinically implemented, or 

are in the process of implementing, CYP2D6 genotyping to assist with drug prescribing21. 

We previously described experiences and challenges with clinical implementation of 

CYP2C19 genotype-guided antiplatelet therapy22. Given CYP2D6 gene complexity and 

relevance for multiple medications, it may present unique implementation challenges. The 

purpose of this paper is to compare goals and strategies for operationalizing CYP2D6 
genotype-guided therapy among early test adopters and summarize challenges faced by both 
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early adopters and those in the process of adoption and approaches to overcome key 

implementation barriers.

METHODS

Institutions within the IGNITE Network Pharmacogenetics Working Group, a collaboration 

of pharmacogenetic researchers and implementers who share data and real‐world 

experiences to advance genomic medicine, were invited to participate. All participating 

institutions had implemented CYP2D6 testing into practice or were in the process of 

implementation.

An existing data collection tool was adapted to capture experiences of sites implementing 

CYP2D6 genotyping22. Data elements included the testing landscape, stakeholder 

involvement, testing application, genotyping approaches, return of results procedures, 

clinical decision support (CDS), education strategies, challenges faced and lessons learned. 

A second tool was designed to collect data on the testing landscape, planned test 

applications, and initial challenges from sites in the process of establishing CYP2D6 testing. 

Data elements were selected and refined through discussions at in-person group meetings 

and teleconferences from September 2017 to December 2017 for the initial tool and January 

2018 to May 2018 for the second tool. Challenges faced across sites and recommendations 

for overcoming challenges were aggregated to a consensus list through teleconference 

discussions. This research was approved as exempt by the University of Florida Institutional 

Review Board.

RESULTS

Early adopters of CYP2D6 testing

Institutional landscape and CYP2D6 test implementation planning—As of July 

2018, 8 institutions in the IGNITE Network had implemented CYP2D6 genotyping and 

contributed information on implementation strategies (Table 1). Two institutions (Cincinnati 

Children’s Hospital Medical Center [CCHMC] and Indiana University School of Medicine 

[IU]) launched CYP2D6 testing in conjunction with testing for multiple other genes. All 

others had previously implemented testing for other genes – most commonly for CYP2C19 
to guide antiplatelet therapy after coronary intervention and TPMT to guide thiopurine 

dosing. Four of the programs were solely clinical implementations, while 4 included 

research components. At 7 institutions, a formal precision medicine team, usually including 

a pharmacist, health informatics expert(s), and physician stakeholders, led the design and 

initiation of CYP2D6 testing and provided program oversight (Figure 1A, Table S1). An 

individual physician champion specializing in psychiatry led the initiative at the University 

of Alabama at Birmingham (UAB).

Clinical applications of CYP2D6 testing and genotyped populations—Most 

institutions reported multiple indications for which CYP2D6 genotyping was ordered 

(Figure 1B, Table S1), with antidepressant and opioid prescribing being the most common. 

Other indications included prescribing of antiemetic and antipsychotic agents. Three sites 

reported limited instances of CYP2D6 testing to assist with tamoxifen prescribing.
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Most institutions used both reactive (e.g., test ordered at time of drug prescribing) and pre-

emptive (e.g., test ordered to assist with future prescribing) genotyping models (Table S1). 

At IU, the CYP2D6 test is part of a multi-gene panel ordered for patients prescribed any 

drug with CPIC Level A evidence23. In this regard, if the prescription triggering the 

genotype order was for a CYP2D6 substrate drug (e.g. opiate, SSRI), CYP2D6 genotyping 

would be reactive. Otherwise, CYP2D6 testing would be done pre-emptively as part of the 

panel to inform future prescribing of CYP2D6 substrates. Similar models were in place at 

Vanderbilt University Medical Center (VUMC) and Sanford Health. Other pre-emptive 

models included testing of patients with depressive symptoms to assist with initial 

prescribing of antidepressants or antipsychotics, testing patients pre-operatively to assist 

with opioid prescribing, and testing for primary care patients as part of a pilot 

pharmacogenetic implementation project. One site had a reactive only testing model where 

genotyping was primarily reserved for patients with depression not responding to current 

therapy.

Genetic testing—The process for CYP2D6 test ordering varied among programs (Table 

S2). Prescribers electively placed genotype orders at 7 of 8 sites. Three of these sites also 

ordered clinical genotyping for participants in pharmacogenetic studies. At one site, 

CYP2D6 genotyping was preselected on the order set for patients admitted to a psychiatric 

unit as part of routine care.

Six sites performed testing onsite in a College of American Pathologists (CAP)/Clinical 

Laboratory Improvement Act (CLIA)-certified laboratory (Table S2). Deciding factors in 

choosing in-house testing (versus outsourcing) included having existing expertise and 

infrastructure for clinical genotyping, desire to have the ability to alter variants tested as 

evidence evolves, and in the case of very early adopters, the limited availability of 

commercial testing when the program began. While genotyping platforms varied across 

these sites, all tested and reported allele-defining variants for *2, *3, *4, *6, *9, *10, *17, 
and *41, at minimum, in addition to gene deletion (*5) and copy number variation (Figure 

2). Four institutions genotyped CYP2D6 as part of a multi-gene panel. Factors considered in 

genotyping platform selection were workflow; turn-around time; ability to batch samples, 

detect full gene deletion and duplication, and customize variants tested; capability for 

multiplexed targeted genotyping; and FDA clearance. Four sites had validated assays for 

blood and either buccal cell or saliva samples. Genotype test turnaround time ranged from 2 

to 14 business days across sites.

Two sites relied solely on commercial or reference laboratories for genotyping. Two sites 

with in-house genotyping capabilities also reported use of commercial laboratories in select 

cases, such as when patients preferred noninvasive sample collection and in-house 

genotyping was validated for blood samples only or when patient payment assistance, 

available through some commercial laboratories, was desired. Factors influencing the choice 

of outside laboratory included which genes were tested besides CYP2D6, cost of testing, 

characteristics of patient assistance programs, and provider knowledge/awareness of a 

specific laboratory.
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Phenotype assignment—All but one site reported CYP2D6 phenotype assignment 

based on activity scores as described in the current CPIC guidelines3; IU classified patients 

with one no-function and one normal function allele (e.g. *1/*4) as NM for codeine, per 

CPIC guidelines, and as IM for tramadol, per Dutch Pharmacogenetic Working Group 

guidelines24. Three sites reported that either the laboratory report or patient-specific clinical 

consult note mentioned of use of CYP2D6 inhibitors that can cause phenoconversion (i.e. 

change the phenotype from that predicted based on genotype alone).

Communication of results, approach to therapy modification, and education 
strategies—All institutions reported CYP2D6 test results in the EHR, usually within the 

“laboratory results” section (Table S3). Six sites reported both CYP2D6 genotype and 

predicted phenotype (metabolizer status) in the laboratory report, and two sites (CCHMC 

and IU) additionally provided genotype-specific drug therapy recommendations. All but one 

institution had a designated service or pharmacist available to provide genotype-informed 

drug therapy recommendations, and 4 institutions provided an automatic consultation via 

personal communication or an electronic consult note. Five of 8 sites provided downstream 

alerting or electronic CDS triggered with future drug orders within the EHR, most 

commonly with codeine, tramadol, and antidepressants. A sixth site was in the process of 

building electronic CDS.

Five programs provided patients with their test results via a patient web portal. Most 

programs provided education to patients about CYP2D6 testing through disseminated 

brochures, pamphlets, or other literature, or in-person education. Authors reported that 

providers were most engaged when education was delivered through focused discussions 

with providers who prescribe the target drugs, particularly when directly related to a patient 

case, and in-services to specialty groups.

Institutions in the process of implementing CYP2D6 testing into practice

Eight institutions were in the process of CYP2D6 implementation (Table S4). All but one 

had previously implemented testing of other genes, with CYP2C19 being most common. 

Precision medicine “teams” or “steering committees” were the drivers of these efforts at 

most sites. Four institutions were in the process of engaging stakeholders and leadership 

support. Development of informatics-related support and resources and selection or 

validation of the genotyping platform were also commonly identified as a current step in the 

implementation process. Nearly all locations were weighing considerations related to panel 

(multi-gene) versus single gene testing and whether to conduct CYP2D6 testing internally 

versus through a reference laboratory. All but two institutions were planning to implement 

CYP2D6 testing as part of clinical practice (as opposed to a research protocol). Varying 

therapeutic areas were identified for implementation, although pain management and 

psychiatry were specifically noted by 6 and 5 institutions, respectively. Institutions 

anticipated deploying CYP2D6 testing in settings ranging from targeted populations and 

specific clinical care locations to a larger, institution-wide general patient population.
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Implementation challenges and lessons learned

Table 2 summarizes challenges reported and lessons learned across sites. A major challenge 

was the inability to determine which allele was duplicated or multiplicated for heterozygous 

genotypes with copy number variation (CNV), which often led to the inability to 

unambiguously assign phenotype. Further challenges were variable phenotype assignment 

based on the CYP2D6 substrate, and the potential for phenoconversion with concomitant 

CYP2D6 inhibitor use. An additional challenge reported by sites in the process of adopting 

testing was related to potential risk management issues in the event that appropriate action 

was not taken in response to genotype results. Sites reported that providers were especially 

concerned given the multiple drug substrates for CYP2D6 whose response may be impacted 

by genotype. This concern was not shared by sites that had already adopted testing, though 

they reported it was discussed prior to implementation.

Choosing genotyping methodology that detects copy number variation was felt to be critical 

in order to identify UMs (due to gene duplication) and some IMs (due to gene deletion). 

Recognizing that most genotype platforms at present cannot detect which allele is 

duplicated/multiplicated, sites agreed that a process must be in place for assigning 

phenotype for heterozygous genotypes with CNV to allow for appropriate reporting and 

downstream CDS25,26. Most sites used a ranged phenotype (e.g. NM to UM) when this 

occurred. Also ranked as important was having multidisciplinary stakeholder involvement 

and in particular, a physician champion, to facilitate implementation and additional 

stakeholder buy-in. It is in the authors’ consensus opinion, that while not required for 

implementation, in an ideal future state where feasible to do so, the following would also be 

in place to support the provision of CYP2D6 genotype-guided therapies: 1) noninvasive 

methods for DNA sample collection, especially for pediatric patients; 2) assay methods 

capable of assessing which allele was duplicated or multiplicated; 3) rapid or pre-emptive 

testing to minimize or eliminate delays in prescribing decisions; 4) CYP2D6 result 

(genotype and phenotype) reporting in an easily accessible location in the EHR, preferably 

one for lifetime results, and as discrete data to enable automated CDS; 5) automated CDS 

that accounts for phenoconversion secondary to use of CYP2D6 inhibitors; and 6) a 

mechanism for patients and providers to access genotype results throughout the patient’s 

life.

DISCUSSION

In surveying early adopters of CYP2D6 genotyping to guide prescribing decisions, we found 

multiple approaches to implementation, even within the same institution, with sites reporting 

use of both reactive and preemptive genotyping models, single and multi-gene testing, and 

clinical- and research-based deployment, much like in our previous report of implementation 

of CYP2C19-guided antiplatelet therapy22. Other similarities between implementing 

CYP2D6-guided therapies and CYP2C19-guided antiplatelet therapy22 included the role of a 

physician champion working alongside clinicians who ordered and applied test results 

clinically and use of a multi-disciplinary team approach, including pharmacists and health 

informatics experts, to lead implementation. While CYP2D6 testing was most commonly 

ordered to assist with antidepressant and opioid prescribing, most institutions applied 
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genotype results to multiple therapies. In addition, most sites had electronic CDS tools in 

place or under development and designated personnel to assist with interpretation and 

translation of genotype results to inform prescribing decisions. Provider education and 

building evidence to support the utility and cost effectiveness of testing were recognized as 

keys to driving greater stakeholder engagement.

There were also notable differences between CYP2D6 testing and CYP2C19-guided 

antiplatelet therapy22. Whereas CYP2C19-guided antiplatelet therapy was most often the 

first pharmacogenetic implementation, CYP2D6 genotyping was typically a subsequent 

deployment or only implemented as part of a larger, more comprehensive pharmacogenetics 

program. This may be reflective of the relative complexity of the CYP2D6 genotype and 

resultant challenges related to genotype procedures and phenotype assignment. In contrast to 

CYP2C19 where all institutions deployed testing on site, half of the early adopters of 

CYP2D6 testing leveraged external reference labs as primary or supporting CYP2D6 testing 

facilities. For CYP2C19-guided antiplatelet therapy, institutional efforts were focused on a 

single use case and engaged the interventional cardiology practitioners. This allowed for 

highly tailored workflows and targeted educational efforts. In our experiences, CYP2D6 
implementation efforts, in contrast, required engaging practitioners across multiple practice 

areas (e.g. psychiatry, primary care, surgery, and oncology) given the multiple drug 

substrates for the CYP2D6 enzyme (e.g. antidepressants, opioids, anti-emetics, tamoxifen). 

This may require a broader strategy and more extensive educational effort to rally the 

practice groups in acceptance and adoption of CYP2D6 genotype-guided medication 

therapy. In addition, unlike CYP2C19 testing for antiplatelet guidance where patients are 

undergoing an invasive procedure and collection of a blood sample for genotyping was not 

an issue, having a non-invasive sample collection method for CYP2D6 testing was deemed 

important as it is commonly done in an outpatient setting where phlebotomy may not be 

available or for children who may be especially averse to blood collection.

There were several common challenges with CYP2D6-guided therapy. Some were technical 

in nature and related to CYP2D6 gene complexity, with variation including single nucleotide 

polymorphisms, deletions and multiple copies of the entire gene, and fusions with 

downstream pseudogenes4. As the field moves more towards whole genome sequencing, 

these unique characteristics of CYP2D6 make extracting the accurate information from short 

read whole genome sequencing difficult and requiring special informatics approaches to 

accurately call the alleles27,28. Thus, sites agreed that local CYP2D6 expertise was an 

important asset to implementation, and in the absence of such, sites may prefer to utilize a 

commercial laboratory for genotyping.

Despite gene complexity and independent assay development, there is remarkable similarity 

across sites in the variants tested. No site was performing comprehensive analysis of all 

known CYP2D6 variants, and each site tested for copy number variation and assays enabling 

the assignment of 9 common alleles. While having a list of “must-test alleles” would be 

helpful to guide assay development, in the absence of that, the list of variants tested across 

sites may be useful for other institutions considering CYP2D6 testing.
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A second layer of technical challenges surround reporting test results in EHRs and use of 

results in CDS. Many systems do not have mature EHR systems in place for storing, 

reporting, and using genetic results. Historically, many genetic testing results have been 

reported in EHRs in text-based reports or scanned documents. Building the technical 

capability for genetic results to be stored as discrete data enables downstream applications 

like genotype specific electronic CDS but requires an initial investment and ongoing 

maintenance. In addition, accounting for use of CYP2D6 inhibitors is important for refining 

CYP2D6 phenotype given evidence of altered enzyme activity, disposition of CYP2D6 

substrates, and drug response with CYP2D6 inhibitors29–32. Strong inhibitors (e.g. 

paroxetine) can convert NMs, based on genotype results, to PMs, whereas moderate 

inhibitors (e.g. duloxetine) can convert NMs, based on genotype, to IMs3,32. More 

sophisticated decision support may be necessary to account for this phenoconversion with 

concomitant use of CYP2D6 inhibitors.

Challenges that were specific to the early implementation phase included the unknown 

ramifications of failure to act on genotype results, especially since CYP2D6 genotype has 

implications for multiple therapies, and having sufficient personnel in place to facilitate 

implementation. Interestingly, early test adopters stated that potential risk management 

issues were discussed prior to implementation but are no longer perceived as a barrier, 

indicating that potential risk ramifications around pharmacogenetic testing are a common 

perceived obstacle, but may not be a practical reality at this time. Indeed, there are limited 

examples of a legal action involving the use or lack of use of pharmacogenetic information 

in clinical practice33. Regarding personnel, early adopters were able to overcome this 

obstacle by engaging across departments, teams, and services to build multidisciplinary 

teams. Of note, the effort of those teams is ongoing, as CYP2D6 testing and 

pharmacogenetic CDS requires maintenance in the face of laboratory and EHR changes, and 

continual assessment of new developments in all aspects from variant detection to 

prescribing advice.

Strengths of this research are the inclusion of multiple institutions and different applications 

of genotype results, increasing the generalizability of challenges faced and lessons learned. 

A potential limitation is that all institutions were from a common research network and 

approaches to implementation may be similar for this reason. In addition, we do not provide 

data on specific recommendations provided or implementation success metrics as our intent 

was to survey the landscape of CYP2D6 testing across multiple sites. Future studies may 

focus on individual applications of CYP2D6 testing. While we provide information on the 

platforms used for genetic testing, it was beyond the scope of the paper to provide details on 

genotyping methodology in each laboratory. Finally, we do not address the cost of 

implementation or genetic testing. The cost of analytical validation can be significant with a 

new laboratory test (approximately $30,000 in reagents alone based on personal 

observations [V.M.P.]), and increase further if the laboratory has to invest in new equipment. 

The cost of genetic testing for institutions and patients or payors is influenced by multiple 

factors, including technology used for the assay, turn-around time, number of samples, and 

state-specific rules and regulations. With evolving technology and policies, genotyping costs 

are also variable over time.
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In summary, despite of the complexity of the CYP2D6 genotype and associated challenges 

with genotype interpretation and phenotype assignment, multiple institutions have 

prioritized implementation of CYP2D6 genotyping to inform drug prescribing. To our 

knowledge, this is the first description of strategies for CYP2D6 testing to guide drug 

prescribing across multiple sites along with challenges faced and important lessons learned. 

Implementation resources from our sites, including supporting literature, CDS language, and 

education materials are available through the IGNITE website (https://ignite-genomics.org/). 

Our experiences and lessons learned may be valuable for other institutions seeking to 

implement CYP2D6 testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1A. 
Groups enabling CYP2D6 genotype implementation at 8 early adopters of testing.

EHR, electronic health records; CTSI, Clinical Translational Science Institute
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Figure 1B. 
Target drugs for CYP2D6 genotyping among 8 early adopters.

SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant

*aripiprazole, haloperidol, olanzapine, perphenazine, risperidone, thioridazine, venlafaxine, 

atomoxetine
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Figure 2. 
CYP2D6 variations tested across sites

Dup, duplications
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Table 2.

Primary implementation challenges and lessons learned

Challenges Lessons learned

Obtaining provider/stakeholder buy-in

• Limited provider exposure to pharmacogenetics and 
awareness about genotyping availability.
• Limited data on clinical utility of CYP2D6 genotype-
guided drug therapy.

• Having broad, multidisciplinary program buy-in, including a physician champion, 
facilitates implementation.
• Important to educate providers about testing availability and applications to 
prescribing decisions and to engage physicians when building CDS language.

Sample collection and CYP2D6 genotyping

• Multiple single nucleotide variants, gene deletion, 
duplication, and multiplication define alleles
• Difficult to quantitate duplication/multiplication or 
determine which allele is duplicated/multiplicated in 
heterozygotes

• Noninvasive sample collection method facilitates testing for children and when no 
phlebotomy services are available on site.
• Saliva and buccal cell samples can give inconsistent copy number results
• CYP2D6 genotype expertise important for establishing genotyping procedures 
and interpreting results.
• Platform must be able to detect gene deletion and copy number variation, with a 
process should be in place for indeterminate genotypes due to copy number 
variation

Genotype reporting and phenotype assignment

• Large number of possible CYP2D6 diplotypes 
complicates automation of EHR processes.
• Phenotype assignment may vary depending on drug 

substrate.
a

• Moderate to strong CYP2D6 inhibitors can cause 
phenoconversion
• EHR changes may interfere with functioning of 
electronic CDS.

• Genotypes should be reported in a consistent location in the EHR.
• Entering genotype results as discrete data enables genotype specific electronic 
CDS.
• Designated personnel and/or electronic CDS are important to assist with 
integrating genotype results into prescribing decisions.
• Need CDS system that assigns phenotype based on drug substrate and accounts 
for phenoconversion
• Quality control procedures are important for ensuring electronic CDS maintained 
with EHR updates

Sustainability

• Building a reimbursement model
• Updates to genotype reports and automated CDS 
needed as evidence evolves to support genotype-guided 
prescribing for additional medications.

• Clinical outcomes and cost-effectiveness data may support reimbursement and 
additional stakeholder buy-in.
• Personnel need to stay abreast of scientific developments in the field and update 
reports and decision support as needed.

Personnel issues
b

• Having sufficient personnel to direct and support 
implementation

• Create partnerships with pharmacists or other clinicians on clinical teams through 
a decentralized model

Risk management issues
b

• Concern if there is an actionable variant and no one acts 
on it

• While risk management issues may be part of the discussion prior to 
implementation, they were no longer voiced as a concern post-implementation

a
Combination of one normal function allele plus one no function allele may be assigned the intermediate metabolizer phenotype for tamoxifen, but 

the normal metabolizer phenotype for codeine, tricyclic antidepressants, and select selective serotonin reuptake inhibitors).14,15,19

b
Challenges specific to institutions in the process of implementing

CDS, clinical decision support; EHR, electronic health record
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