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Daniel Abebe Asfaw 

AVOIDING BAD CONTROL IN REGRESSION FOR PARTIALLY QUALITATIVE 

OUTCOMES, AND CORRECTING FOR ENDOGENEITY BIAS IN TWO-PART 

MODELS: CAUSAL INFERENCE FROM THE POTENTIAL OUTCOMES 

PERSPECTIVE 

 The general potential outcomes framework (GPOF) is an essential structure that 

facilitates clear and coherent specification, identification, and estimation of causal effects. 

This dissertation utilizes and extends the GPOF, to specify, identify, and estimate causally 

interpretable (CI) effect parameter (EP) for an outcome of interest that manifests as either 

a value in a specified subset of the real line or a qualitative event -- a partially qualitative 

outcome (PQO). The limitations of the conventional GPOF for casting a regression model 

for a PQO is discussed. The GPOF is only capable of delivering an EP that is subject to a 

bias due to bad control. The dissertation proposes an outcome measure that maintains all 

of the essential features of a PQO that is entirely real-valued and is not subject to the bad 

control critique; the P-weighted outcome – the outcome weighted by the probability that it 

manifests as a quantitative (real) value. I detail a regression-based estimation method for 

such EP and, using simulated data, demonstrate its implementation and validate its 

consistency for the targeted EP. The practicality of the proposed approach is demonstrated 

by estimating the causal effect of a fully effective policy that bans pregnant women from 

smoking during pregnancy on a new measure of birth weight. The dissertation also 

proposes a Generalized Control Function (GCF) approach for modeling and estimating a 

CI parameter in the context of a fully parametric two-part model (2PM) for a continuous 

outcome in which the causal variable of interest is continuous and endogenous. The 
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proposed approach is cast within the GPOF. Given a fully parametric specification for the 

causal variable and under regular Instrumental Variables (IV) assumptions, the approach 

is shown to satisfy the conditional independence assumption that is often difficult to hold 

under alternative approaches. Using simulated data, a full information maximum likelihood 

(FIML) estimator is derived for estimating the “deep” parameters of the model. The 

Average Incremental Effect (AIE) estimator based on these deep parameter estimates is 

shown to outperform other conventional estimators. I apply the method for estimating the 

medical care cost of obesity in youth in the US. 

         

        Joseph V. Terza, Ph.D., Chair 
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Chapter 1  

Introduction, Background and Significance, Summary 

 Causal Inference is at the heart of nearly all empirical economic research. Essential 

for conducting valid causal inference are rigorous specification and accurate estimation of 

parameters that characterize causal relationships of interest. In this dissertation, two 

regression-based approaches are developed. The first one is designed for specification and 

estimation of causally interpretable (CI) parameter for Partially Qualitative Outcomes 

(PQO) ‒ outcomes that manifest either as a value on the real line or as a qualitative event. 

Birth weight is an example of a PQO because it is observed only when a pregnancy ends 

in a live birth; otherwise, the outcome would be non-live birth. The second approach is 

developed for specification, identification, and estimation of CI parameters in Two-Part 

Model (2PM) context for continuous nonnegative outcomes where the causal variable of 

interest is continuous and endogenous. To ensure causal interpretability of the targeted 

parameters and their estimates, both approaches are developed within the General Potential 

Outcomes framework (GPOF).  

 In the conventional Conditional Potential Outcomes Model (CPOM), an essential 

model within the GPOF, outcomes are assumed to manifest either exclusively as a value on 

the real line or exclusively as a qualitative event. Casting a regression model for a PQO 

using the CPOM is difficult because to satisfy the aforementioned assumption, one needs 

to ignore either the quantitative or the qualitative component of the PQO. While focusing 

only on the qualitative component will change the causal inference objective, ignoring it 

would cause a bias due to bad control. The dissertation proposes an outcome measure that 

maintains all of the essential features of a PQO that is entirely real-valued and is not subject 
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to the bad control critique; the P-weighted outcome – the outcome weighted by the 

probability that it manifests as a quantitative (real) value. A regression-based estimation 

method for such effect parameters is detailed and using simulated data, I demonstrate its 

implementation and validate its consistency for the targeted effect parameter. To 

demonstrate the practicality of the proposed approach, I apply the model and method to 

estimate the causal effect of a fully effective policy that bans pregnant women from 

smoking during pregnancy on a new measure of birth weight. 

 The 2PM is one of the most widely applied empirical modeling and estimation 

framework in empirical health economics. In this dissertation, I extend the generic fully 

parametric 2PM (FP2PM) framework developed in Hao and Terza (2018) to accommodate 

cases in which the causal variable of interest is endogenous. The proposed approach 

considers continuous outcome and continuous endogenous variable. By casting the 

parameter of interest within the GPOF, the proposed approach provides a consistent 

definition of endogeneity. In particular, I propose a generalized control function (GCF) 

approach to identify, estimate and draw inference for an average incremental effect (AIE) 

of a one-unit change in the causal variable of interest. Under regular Instrumental Variables 

(IV) assumptions, the GCF is shown to satisfy the conditional independence assumption 

that is often difficult to hold in alternative approaches. Within a FP2PM framework, the 

GCF specification implies a full information maximum likelihood (FIML) model whose 

parameters are estimated by FIML method. I call this estimator for the “deep” parameters 

the Generalized Control Function-Full Information Maximum Likelihood (GCF-FIML) 

estimator. The GCF-FIML is able to identify causal effects that vary across units in the 

population based on unobservable characteristics. Using these “deep” parameters, the AIE 
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(the main object of interest) is specified and estimated. The GCF estimator within the 

FP2PM allows to test two important null hypotheses: “no 2PM is needed” and “the causal 

variable is exogenous”. In a simulation study, the proposed GCF-FIML based estimator for 

the targeted parameter is shown to outperform conventional estimators that are used in 

empirical research. Finally, using data from the Medical Expenditure Panel Survey, the 

model and method are illustrated by estimating the causal effect of a unit increase in Body 

Mass Index (BMI) and of moving an average obese individual to an average normal weight 

BMI on health care cost in youth in the US. A comparison of the result based on the 

proposed GCF approach to the two-stage predictor substitution estimator used in Biener et 

al (2020) reveals that the latter significantly overestimates the effect of a change in 

BMI/obesity on medical care cost. 

  The remaining part of the dissertation is organized as follows. In chapter 2, 

specification, identification, and estimation of CI parameter within the GPOF is discussed. 

I start by specifying an AIE based on relevant counterfactuals. Then a regression model is 

detailed that can be used to estimate the AIE using observable (factual) data from an 

appropriately specified Data Generating Process (DGP). The conditions under which such 

substitution is legitimate is also detailed. This discussion is extended to define endogeneity 

of the causal variable of interest and mention a general point on how to correct a bias caused 

by endogeneity. In the last section, an important implicit assumption within the GPOF is 

discussed that limits its applicability to a special kind of outcomes. This limitation is then 

addressed in chapter 3 in the context of a PQO. By presenting a detailed overview of the 

GPOF, chapter 2 lays the ground for the approaches developed in chapters 3 and 4.  
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 Chapter 3 begins by providing definition of a PQO and further elaborating the 

limitation of the conventional GPOF. Then, a new outcome measure is defined by 

extending the GPOF that is capable of casting a regression model that maintains all the 

essential features of a PQO and enables estimation of CI parameter. I present the extended 

GPOF along with the corresponding regression modeling and estimation method. Then, a 

simulation study is presented that demonstrates the implementation of the proposed 

regression model and validate its consistency for estimating the specified AIE. This is 

followed by an empirical application of the proposed approach.  

 In chapter 4, I first specify an AIE in the context of a FP2PM for a continuous 

outcome in which the causal variable of interest is continuous and endogenous. Then, the 

proposed identification approach is detailed and a FIML model is presented followed by a 

discussion on estimation of the “deep” parameters of the model. A section is devoted to 

present statistical tests for two important null hypotheses. A simulation study follows in 

which the implementation of the proposed GCF-FIML estimator is demonstrated and its 

consistency for estimating an AIE is evaluated. Therein, the performance of the GCF-FIML 

estimator is compared with alternative approaches. Then an empirical application is 

presented where I demonstrate the implementation of the proposed approach and compare 

the estimated AIE to those obtained by using alternative estimators. Chapter 5 summarizes 

and concludes the dissertation. 
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Chapter 2 

Causal Inference Within and Outside the Conventional General Potential Outcomes 

Framework 

 Assessing causal relationships of interest based on relevant counterfactuals is at the 

heart of nearly all empirical economic research. Essential to such assessments are rigorous 

specification and accurate estimation of parameters that describe the relationship between 

a presumed causal variable of interest, X, whose value is to be set and altered in the context 

of relevant counterfactual, and a designated outcome of interest, Y.1 Relationships of this 

type are typically characterized by an effect parameter (EP) and estimation of the EP is the 

objective of the empirical analysis. The general potential outcomes framework (GPOF) 

provides a means to coherently define the EP in such a way that it is causally interpretable 

(CI).2 

 This chapter presents the GPOF in the context of estimating an average incremental 

effect (AIE) as an example of an EP that is considered in many empirical contexts. Within 

the GPOF, I detail specification of the AIE based on a conditional mean function implied 

by a conditional probability density function (pdf) for the Y given an exogenously set 

values of the X. Then, the conditional potential outcomes model (CPOM) – a model that 

facilitates a regression-based approach for estimation of the EP within the GPOF ‒ is 

discussed. Therein, I also outline the conditions under which the stated EP can be identified 

 
1 Henceforth, X and Y are to be taken as global replacements for the phrases “presumed 

causal variable of interest” and “outcome of interest,” respectively. 

 
2 The GPOF is an extension of the potential outcomes framework of Rubin (1974) to non-

binary X and nonlinear Y.  
 



6 

and is estimable by using an observable version of the data. This will be followed by a 

discussion on a consistent definition of endogeneity within the GPOF that will be employed 

in chapter 4 where a regression-based modeling and an estimation approach is proposed to 

correcting endogeneity in 2PM. The chapter closes by discussing an implicit assumption 

in the GPOF about the way the Y manifests that, if not satisfied, requires an extension of 

the framework to casting a regression-based approach for estimating CI parameter. This 

point is further elaborated in chapter 3 where I discuss regression for PQO. 

2.1 The GPOF: Introduction, Basic Concepts and Definitions 

 Many existing empirical studies in health economics and health service research 

commence their discussion of a causal inference problem from the data generating process 

(DGP) from which sample values are drawn. By focusing only on the DGP, the 

conventional approach fails to explicitly incorporate relevant counterfactuals. This in turn 

renders the approach to be deficient in recognizing the conditions under which EPs are 

identified and estimation results are CI (Terza, 2019a).  

 Casting a causal inference problem exclusively based on the DGP is even more 

problematic when the specific empirical context involves endogeneity. This is because the 

conventional DGP-based approach defines endogeneity in ambiguous and self-obviating 

way (Terza, 2019b). The GPOF, on the other hand, provides a framework that facilitates a 

clear and rigorous definition of the EP based on relevant counterfactuals. It also enables 

the analyst to define endogeneity in sustainable and unambiguous way that delivers the 

analyst a path on which to expand the DGP by adding appropriate structure to achieve 

identification of CI parameters.  
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 In chapter 3, a special case is discussed where the conventional GPOF is limited 

for casting a regression model for an empirical context. In particular, I argue that for 

partially qualitative outcomes (PQO) – outcomes that manifest either as a value in a 

specified set of the real line or a qualitative event – it is not possible to define an EP that is 

real-valued and can be estimated without bias. The GPOF, however, can be extended by 

replying on its fundamental principle, viz. characterizing outcomes based on relevant 

counterfactuals. To set the stage for the proposed approach for PQO in chapter 3 and for 

correcting endogeneity in the context of 2PM in chapter 4, below I review the GPOF as 

detailed in Terza (2019a, 2019b). 

 Here the fundamental definitions and concepts that characterize the GPOF as 

detailed in Terza (2019a) is presented. I begin with definitions of the counterfactual and 

observable versions of the X and the Y. In the GPOF, two versions of the X are 

distinguished as: 

 X* ≡  the random variable representing the hypothetical (counterfactual) 

 exogenously mandated version of the distribution of the X that might result from a 

 policy intervention (X* is, by design, independent of all other variates germane to 

 specification, identification, and estimation of the EP of interest). 

and 

 X ≡  the random variable representing the observable (factual) version of the 

 distribution of the X (sampled values of the X are drawn from the distribution of 

 X).  
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Likewise, two versions of the Y are distinguished as:  

 Y
X* ≡ the random variable representing the distribution of the potential outcome, 

 defined as the counterfactual distribution of values of the Y that would have 

 manifested for a particular X*. 

and 

 Y ≡ the random variable representing the factual version of the distribution of the 

 Y (the sampled values of the outcome are drawn from the distribution of Y). 

Note that although X* is a random variable, its character is different from X, Y and Y
X* . 

X* is a random variable in the sense that its value differs for each elementary unit in the 

population. Unlike X, Y and Y
X* , the values of X* is determinate and knowable in the 

context of relevant counterfactual.  

 Throughout the remainder of the discussion, I will explicitly and implicitly 

reference a hypothetical counterfactual (e.g., a prospective policy intervention) in which 

the X is exogenously changed from Xpre  to Xpost   (from pre-intervention to post-

intervention). Without loss of generality, I write Xpost = Xpre + ∆, where ∆ represents the 

relevant distribution of counterfactually imposed increments to Xpre (e.g., as in a policy 

intervention).  Note that, strictly speaking, Xpre, Xpost and ∆ are random variables because 

their possible values vary across the relevant population of individuals with differing 

probability densities, but these random variables differ in character from X and Y (which, 

of course, are also random variables).  Unlike X and Y which are components of the DGP; 

Xpre , Xpost  and ∆ are deterministic in the sense that, for any individual in the relevant 

population, their values are imposed by the policy maker and/or researcher as part of the 

relevant counterfactual.  Note that, for this reason, Xpre and Xpre + ∆, are independent of 
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all other variates germane to the specification, identification, and estimation of the relevant 

EP. So is ∆. To Xpre and Xpre + ∆ there correspond potential outcomes YXpre  and  YXpre + ∆, 

respectively.  The relevant EP is based on the counterfactually defined entities Xpre,  ∆, 

YXpre  and  YXpre + ∆.   

2.2 Specifying the Effect Parameter of Interest in the GPOF 

 To facilitate the discussion on the proposed approaches in this dissertation, two 

empirical settings are considered. In chapter 3, estimation of the birth weight effect of a 

hypothetical intervention that effectively bans pregnant women from smoking during their 

pregnancy is considered. In chapter 4, the illustrative empirical example focuses on 

estimating the medical care cost of a hypothetical event that increases BMI of each youth 

in the US by 1 unit. Throughout this chapter except in the last section, the latter is used to 

illustrate specification, identification, and estimation of an EP in the GPOF. The 

components of the relevant counterfactuals are 

 Xpre ≡ the random variable representing the pre-counterfactual distribution of BMI 

 among the youth in the US. 

 ∆  ≡ a one-unit increase to the pre-counterfactual level of BMI to each individual 

 in the relevant population.  

Formally, I seek to estimate the following average incremental effect (AIE) 

 AIE(∆) = E[YXpre + ∆] ‒ E[YXpre]     (1) 

where ∆ = ‒1, YXpre  is the potential outcome (PO) corresponding to Xpre, [i.e., the medical 

care cost that corresponds to the pre-counterfactual distribution of BMI]. YXpre + ∆ is the PO 
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corresponding to Xpre + ∆  [i.e., the medical care cost that corresponds to the post-

counterfactual distribution of BMI where each youth has one-unit higher BMI]. Thus, the 

AIE in (1) is the average incremental medical care cost effect of a one-unit increase in BMI 

across the entire youth population in the US. 

 Even though Y has an observable version (viz., Y), the EP [e.g., (1)] cannot be 

directly estimated because YXpre  and  YXpre + ∆ are counterfactual entities (the pre- and post-

counterfactual POs) and, therefore, are at least partially unobservable (cannot be sampled). 

In fact, one may only have data on either YXpre or YXpre + ∆ but not both. In other words, it 

is not possible to observe the distribution of the medical care cost for the entire youth under 

two different BMI distributions at the same time. Therefore, in general, attempts to 

accurately (consistently) estimate the EP with observable data (X and Y) will be futile 

because the EP (which is inherently counterfactual) in no substantive way coincides with 

the observable data from X and Y (which is inherently factual).  

2.3 Conditional Potential Outcome Model, and Identification and Estimation of an EP 

 Counterfactuals are at the heart of causal inference. In the previous sections, I 

discussed specification of the EP within the GPOF based on relevant counterfactuals. The 

problem is, however, that these counterfactuals are only partially observable i.e., although 

one may have data for the X and the Y for the entire population, it is virtually impossible 

to have data on all the relevant counterfactual outcomes for anyone in the population. 

Therefore, without a rigorous procedure that formalizes the conditions under which the 

counterfactuals are in congruity with the observed version of the relevant random variables, 

one cannot simply use the latter to estimate causally interpretable EP and make inference 

about it. 
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 Terza (2019a) discusses regression-type modeling of the potential outcome that can 

be used to bridge the gap between the counterfactual object of interest (the EP) and the 

factual data (sampled from X and Y) to be used for estimation. Terza (2019a) refers to such 

modeling of the potential outcome as the conditional potential outcome model (CPOM). 

The CPOM provides a basis on which to build conditions under which one can substitute 

observable version of the X and the Y for their counterfactuals (more on this later). This 

in turn ensures identification of the specified EP. 

  The CPOM can be defined at any level of parametricity. Throughout the discussion, 

I define a fully parametric (FP) version of the CPOM. Conditioning on a vector of control 

variables V, a FP version of the CPOM can be specified for a continuous Y
X*  as 

 pdf(Y
X* |V) ≡ f(Y

X*, X*,V; π)      (2) 

where pdf(A|B) is the conditional pdf of A given B, f( . ) is a known function whose value 

is determined by the scalars and vectors in the bracket. π is a vector of unknown regression 

parameters (henceforth I refer to π as the vector of deep parameters). Using the CPOM, it 

is possible to rewrite the EP [e.g., (1)] by exploiting the regression-like conditional mean 

function that (2) implies. It follows from (2) that 

 E[Y
X* |V] = m(X*,V; π)      (3) 

Note that, because (2) is known, the conditional mean function (3) also has known form. 

Using the law of iterated expectations and (3), (1) can be rewritten as 

 AIE(∆) = E[m(Xpre+ ∆, V; π)] ‒ E[m(Xpre, V; π)]   (4) 
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It is clear from (4) that if we had a consistent estimator for the vector of deep parameters π 

(say, π̂) and V were fully observable, then we would be able to consistently estimate (4) 

using its following sample analog3 

 AIE(∆)̂  = ∑
1

n
{m(Xi

pre
+ ∆i,Vi; π̂) ‒ m(Xi

pre
, Vi; π̂)}n

i=1   (5)     

where Xi
pre

 and ∆i are the counterfactually imposed values of Xpre and ∆, respectively, for 

the ith member of the sample of size n (i = 1, ..., n) and Vi is the value of the vector of 

controls sampled for the ith observation. Before embarking on the consistent estimation of 

the deep parameters of the model, identification must be established at two levels (Terza, 

2019a). Below I discuss these two levels of identification. 

2.3.1 Non-parametric Conditions for Identification of the CPOM 

 First, aside from any particular parametric specification one must show that the 

CPOM is non-parametrically identified. In the context of the CPOM in (2), according to 

Terza (2019a), non-parametric identification of the EP [e.g. (4)] is established if 

 pdf(Y|V, X) = f
(Y

X* |V)
(Y, V, X; π)     (6)       

In other words, the EP is identified if the conditional pdf of Y given V and X can be 

obtained by substituting X and Y for X* and Y
X*  in (2), respectively. Terza (2019a) details 

conditions under which such substitution is legitimate.  These conditions are: i) the 

 
3 The asymptotic standard error of (5) can be obtained using the approach in Terza 

(2016a, 2016b, 2016c, 2017). 
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conditional independence assumption (CIND) which requires that, conditional on V, Y
X*  

be independent of X; ii) Conditional Outcome Invariance which holds if 

  (Y
X*= a

 | V, X*= a) =  (Y | V, X = a) 

where “a” is a value in the support of the conditional distribution. ii) implies that 

conditional on V it should not matter to the value of the outcome whether X = a is chosen 

by an agent or exogenously imposed by a policy maker. iii) Overlap which holds if  

 0 < P(X | V)(x|v) < 1  

where,  P(X | V)(x|v) denotes the conditional pdf of X given V = v evaluated at X = x. 

Overlap requires that at each value of V, X has a nontrivial but uncertain probability that 

it equals x. In the case where X is binary overlap implies that at each value of V there are 

units who are and are not exposed to the relevant policy. 

  Among the above three conditions, the CIND is the most important, and the least 

likely to be true. Intuitively, CIND implies that all other variables that confound the pure 

causal relationship between the X and the Y are included in the vector of controls V. In 

other words, the CIND guarantees that for a given V, the distribution of the observed 

outcome, Y, for those units in the population with X = Xpre+ ∆ would have been the same 

as for units with X = Xpre had ∆, have been applied to the latter group. Thus, given V, ∆ 

was as good as randomly assigned.  

 

 



14 

2.3.2 Parametric Conditions for Identification of the CPOM 

 With non-parametric identification maintained, the second level of identification to 

be established is parametric identification.4 This type of identification has been extensively 

covered in the literature and in most graduate level econometrics texts. The discussion of 

parametric identification is exclusively focused on the level of the DGP. The parameters 

of the DGP model are identified if the chosen functional forms for the relevant aspects of 

the DGP (e.g. conditional mean, higher-order conditional moments, conditional pmf/pdf, 

etc.) are such that full knowledge of the values of those aspects of the DGP would imply 

knowledge of the values of the relevant parameters. 

 Given that the CPOM is non-parametrically and parametrically identified, it 

follows that π can be consistently estimated as the maximum likelihood estimator (MLE) 

obtained as 

 π̂ = argmax ∑ q(π̆, Zi)
n
i=1       (7) 

where q(π̆, Zi) = ln[f
(Y

X* |V)
(Yi, Xi, Vi; π̆)]  is the log likelihood of the ith unit in the 

sample and Zi=[Yi     Xi   Vi] is the data vector for the ith sample. 

2.4 Endogeneity in the GPOF 

 Endogeneity is one of the most common problem in empirical economic research 

that leads to inconsistent estimation of parameters of interest. Correcting for endogeneity 

bias requires a framework that facilitates a correct definition of endogeneity. The 

 
4  Note that if one cannot establish non-parametric identification as detailed in Terza 

(2019a) then subsequent discussion of parametric identification have no useful content 

from the perspective of causal inference. 
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conventional DGP-based approach is problematic in this respect as it provides ambiguous 

and self-obviating definition of endogeneity (Terza, 2019b). For instance, in a minimally 

parametric setting where only the first moment of the relevant random variables are 

specified, this approach defines endogeneity as the absence of correlation between the 

causal variable of interest and an additive error term given an arbitrarily set vector of 

controls. As discussed in Terza (2019b), this reduces the problem of endogeneity to 

misspecification of the conditional mean function. Moreover, the lack of specificity about 

the vector of controls in the conventional DGP-based approach renders the above definition 

of endogeneity ambiguous because for any vector of controls, there correspond a “true” 

parametric or nonparametric conditional mean function. 

 By taking into account of the counterfactual nature of the EP, the GPOF, on the 

other hand, provides a more consistent definition of endogeneity. In particular, the CPOM 

within the GPOF is unique because it is a known function in which a unique vector of 

essential controls, V, induces CIND between Y
X*  and X.5 Endogeneity of the X in the 

GPOF is, thus, defined as a situation where V is only partially observable. In such cases, 

one can write V = [Xo   Xu] where Xo is a partition of V comprising a vector of observable 

control variables and Xu is a scalar representing essential unobservable element of V.  

 In the context of estimating the AIE of a one-unit increase in BMI on medical care 

cost, BMI is likely endogenous because the vector V that induces CIND between observed 

BMI and potential medical care cost includes unobservable. For example, those youth with 

 
5 Terza (2019b) defines essential control as “a vector of variates comprising all, and only, 

confounders for Y
X*  and X.” 
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lower BMI may have different level of health consciousness that is unobservable and also 

related with medical care cost. 

 In the presence of Endogeneity, additional structure should be built that would 

resolve the identification problem caused by partial unobservability of the unique vector 

V. This structure expands the DGP to include additional (instrumental) variables and 

(possibly) concomitant assumptions about the specifications of conditional moment of the 

expanded DGP (and those variables). In chapter 4, I present an approach that corrects 

endogeneity in 2PM context for continuous nonnegative outcomes for the specific case 

where the endogenous variable is continuous.   

2.5 An Implicit Assumption in the Conventional GPOF 

 Implicit in the GPOF is that the Y is assumed to manifest either exclusively as a 

value in a specified subset on the real line or exclusively as a qualitative event. For example, 

in the empirical example where one studies the medical care cost of obesity, the Y can take 

only real values that are nonnegative. These kinds of empirical context can be analyzed 

within the conventional GPOF. But what if the Y in a given empirical context consists of 

a union of events that correspond to values on the real line and qualitative events? Suppose 

the interest is in estimating the AIE of a policy intervention that effectively bans all 

pregnant women from smoking during pregnancy on birth weight. In this case, birth weight 

is observed only for those pregnancies that end in a live birth. All other pregnancies that 

do not end in live birth have an observed outcome that is just non-live birth, not latent birth 

weight. As mentioned earlier, such outcomes ‒ that manifest either as a value on the real 

line or as a qualitative event ‒ are called Partially Qualitive Outcomes (PQO). In the next 
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chapter, I discuss how the extant GPOF is limited in handling causal inference for PQO 

and extend it to accommodate such cases. 
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Chapter 3 

Avoiding Bad Control Bias in Partially Qualitative Regression: Causal Inference by 

Extending the Conventional GPOF  

 Drawing causal inference within the conventional GPOF is predicated on the 

assumption that the outcome of interest manifests either exclusively as a value on the real 

line or exclusively as a qualitative event. This chapter presents an approach for 

specification, identification, and estimation of an EP for cases in which the values that Y 

takes is a union of two non-empty sets: a set containing values on the real line and a set of 

qualitative event(s). I call such outcomes as Partially Qualitative Outcomes (PQO). The 

chapter begins with a description of a PQO using the running example of estimating the 

birth weight effect of a fully effective policy that bans pregnant women from smoking 

during pregnancy. To shed light on its distinctive feature, the PQO is compared to 

outcomes that are typically modeled in the context of widely known corner solution 

models, namely the two-part model (2PM) and the sample selection model. Therein, I also 

discuss the limitation of the conventional GPOF for casting a regression model. Then the 

conventional framework is extended to encompass cases where the Y is a PQO. Within the 

expanded framework, a new outcome measure is proposed that allows casting a regression 

model that would maintain all of the essential features of a PQO and enables identification, 

and estimations of a causally interpretable EP for a PQO. The proposed outcome measure 

is referred to as the P-weighted outcome – the outcome weighted by the probability that it 

manifests as a quantitative (real) value. I discuss the practicality and usefulness of this new 

measure for specifying and identifying an EP that characterize the causal relationships 

between a policy variable of interest and the PQO. Then, a regression-based estimation 
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method for such EP is detailed and using simulated data, the implementation of the method 

and the concomitant estimator of the EP is demonstrated, and its consistency is validated. 

Using data from the National Survey of Family Growth (NSFG), I apply the proposed 

model and method in estimating the AIE of a counterfactually mandated fully effective 

policy intervention that brings the smoking levels of all pregnant women down to zero on 

natility-weighted birth weight (a new measure of birth weight discussed in detail later). 

3.1 Defining Partially Qualitative Outcomes 

 The suitability of the GPOF for casting regression model is predicated on the nature 

of the outcome under consideration. The conventional GPOF is suited to cast EP for cases 

in which the outcome of interest manifests either exclusively as a value on the real line or 

exclusively as a qualitative event that would be assigned a quantitative value for analysis. 

Examples in the former category include outcomes such as wage, BMI, health care 

expenditures and so on whereas examples for the latter category are outcomes indicating a 

person’s subjective health status, whether she has health insurance, and so on. In this 

chapter I consider PQO ‒ defined as outcomes that manifest either as a value on the real 

line or a qualitative event. For example, a newborn’s quantitative health outcome is defined 

only if a pregnancy ends in a live birth. In other words, the Y from a pregnancy might 

manifest as a non-live birth or the value of a specific measure of the newborn health 

outcome of interest, such as birth weight. For the purpose of exposition and to fix ideas, as 

running example I consider specification, identification and estimation of the EP 

representing the causal effect of smoking during pregnancy on birth weight (henceforth I 

use S+B to refer to this example).  
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 Since the US surgeon general report in 1964 that publicized the adverse relationship 

between maternal smoking and infant health, many studies have been conducted with the 

aim of investigating how changes in smoking during pregnancy affect pregnancy and infant 

health outcomes. A number of studies, for instance, document that smoking during 

pregnancy would lead to miscarriages and still births (Walsh, 1994; Ness et al., 1999; 

Mishra, Dobson, & Schofield, 2000; Pineles, Park, & Samet, 2014; Hyland et al., 2016). 

Others find that maternal smoking during pregnancy significantly reduces birth weight 

(Rosenzweig & Schultz, 1983;  Evans & Ringel, 1999; Lumley et al., 2004; Lien & Evans, 

2005; Abrevaya and Dahl, 2008). Despite using standard methodologies designed for 

estimating causal effects, these studies have limitations. On the one hand, those that focus 

on the effect of smoking on whether or not a pregnancy ends in a live birth are useful in 

that they produce arguably unbiased result, but they are less than comprehensive given the 

many other health related birth outcomes that are of great interest. On the other hand, 

studies that extend beyond the live birth question ignore the PQO nature of these other birth 

outcomes by focusing (conditioning) only on pregnancies that end in live births.6 Such 

studies, including those in the S+B context, generally produce biased estimates of the 

causal effect of the X on the quantitative component of the Y because they ignore the 

likelihood that occurrence of the qualitative event is itself affected by the X.  This results 

in bias due to so-called “bad control”. Bad control is a conditioning variable that is itself 

affected by the X (more on this later)7.   

 
6 Literature from epidemiology suggests that only 60-70% of fertilized eggs results in live 

birth (Liew et al. 2015). 

 
7 Heckman and Navarro-Lozano (2004) and Wooldridge (2005) present analytical proof 

showing how the presence of a bad control in the conditioning vector of a regression-based 
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3.2 The Conventional GPOF and PQO: the dilemma 

 In general, PQO models demand special attention for two reasons. 

1) As mentioned above, conditioning on a bad control causes bias. In order to avoid this 

problem, one must take account of the qualitative component of the model in the 

specification of the relevant potential outcome. In the S+B context, accurate estimation of 

the EP requires one to incorporate into the analysis the pregnancies that end in non-live 

birth outcomes in addition to pregnancies that end in live birth. To the best of my 

knowledge, there is no empirical study that analyzes the S+B while explicitly accounting 

for the effect of smoking during pregnancy on the event that the pregnancy may end in 

non-live birth.8  

2) In such PQO contexts, as in all modeling contexts in applied econometrics, the analyst 

seeks to specify and estimate an EP (representing the causal effect of the X on the Y) that 

is real-valued using observable real-valued data on the X and the Y. In PQO models this 

is tricky because the only definition of the Y that is real-valued is one that is conditioned 

on occurrence of the qualitative event. In the S+B context, this would be birth weight 

 

model leads to inconsistent estimation of an EP. The former demonstrates their analytical 

proof using simulation. Angrist and Pischke, (2008) also discussed how a bias arises due 

to the bad control problem. 
 
8 Bad controls are well recognized in the epidemiology literature in the context of child 

health. For example, the birth weight paradox, a phenomenon that maternal smoking is 

inversely associated with infant mortality among low-birth weight babies, is well 

documented (Wilcox, 1993, 2001; Hernandez-Diaz et al, 2006). There is also a small yet 

growing literature on the problem of conditioning on live-live birth and its consequence on 

estimated parameters for different exposures during pregnancy (Suarez et al. 2018; Liew 

et al. 2015; Lisonkova and Joseph, 2015). The studies, however, rely on simulation analysis 

with the aim of quantifying the bias due to bad control rather than coming up with an 

approach that can be used to directly estimate a consistent EP. Moreover, none of them 

specifically consider the S+B case. 
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conditional on live birth. As we have seen, however, this leads to the bad control problem. 

 To overcome this dilemma, an alternative definition of the Y is suggested that is 

real-valued but is not subject to this critique; viz., the P-weighted conditional outcome 

(PCO) – the outcome weighted by the probability that it manifests as a quantitative (real) 

value. In the S+B context, this is the birth weight conditional on live birth weighted by the 

probability of that event. This measure is called as natility-weighted birth weight.9 Note 

that the Y defined in this way does not have a version that is directly observable 

(sampleable). As I will show, however, this is of no consequence for the practical 

implementation of the PCO because, despite the fact that it is unobservable (cannot be 

sampled) it can be used to not only specify the relevant EP but also to estimate it (and 

conduct inference about it) using the observable (though not entirely real-valued) data. To 

implement the PCO, a regression-based approach is proposed that involves multiplying the 

conditional probability that the qualitative event does not occur and the conditional mean 

of the quantitative component of the PQO for the appropriate sub-population. In the S+B 

context, this is the product of the probability that the pregnancy ends in a live birth and the 

conditional mean birth weight for those pregnancies that end in live birth.  

3.3 PQO and Corner Solution Models 

 It should be noted that the empirical contexts to which the proposed PQO modeling 

approach applies differs distinctly from those for which the two-part and sample selection 

models are relevant. This section discusses the distinction between the PQO modeling and 

the two widely applied modeling frameworks. 

 
9 The word “Natility” is formed by combining two words: natal and probability. 
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3.3.1 Modeling for PQO Vs the Two-Part Model 

 The support of the outcome in the 2PM proposed by Cragg (1971) is comprised 

entirely of the nonnegative real values. In the conventional 2PM setup, the part of the model 

pertaining to manifestation (or not) of zero values for the outcome (the so-called extensive 

margin) differs systematically from the part of the model characterizing the manifestation 

of the non-zero continuous or count outcome values (the so-called intensive margin). As 

we have seen, the PQO framework likewise comprises two systematically different model 

components, but its distinguishing feature is that the PQO outcome is based on a sample 

space that includes a qualitative event (corresponding to the first component of the model) 

that is not real-valued. For this reason, the outcome for the first component of the PQO 

model has no quantitative meaning. Whereas, in the 2PM the zero values of the outcome 

manifested at the extensive margin have cardinal interpretation. Therefore, the PQO and 

2PM are not applicable under the same empirical circumstances. For example, in the S+B 

illustration the 2PM is not applicable because zero birth weight is not a meaningful concept.  

For instance, it would not be appropriate to assign zero birth weights to pregnancies that 

did not result in a live birth. 

3.3.2 Modeling for PQO Vs the Sample Selection Model 

 The sample selection model proposed by Heckman (1976, 1979) is designed for 

empirical contexts in which the objective is estimation of the parameters of an underlying 

and partially latent regression model of interest. The classic example is estimation of the 

parameters of the best wage offer regression. The problem is that best wage offers (the 

outcome variable for the regression) are not fully observable. Presumably, they are only 

observable as accepted wages for those whose best wage offers exceeded their reservation 
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wages. Such restricted observability of the Y will result in bias if there are unobservables 

that are correlated with the best wage offer and the decision to accept a wage offer. The 

sample selection estimator is designed to correct for this bias.  

 In the PQO context that I consider here, there exists no such latent regression model 

of interest. For example, in the S+B context, it is difficult to conceive such an underlying 

partially latent regression that has policy relevance whose outcome is birth weight. The 

closest one can come in this context to specifying such a regression would be one in which 

the Y is birth weight as it would have manifested if all pregnancies had resulted in live 

births. Empirical analyses based on such a regression would, however, provide policy 

makers perhaps with little (no?) relevant inferential information regarding the causal effect 

of smoking during pregnancy on birth weight. In other words, in the context of the wage 

offer, analyzing a policy that affects a wage offer may be argued to matter even if a person 

chooses not to work after exposure to the underlying policy. This is perhaps because of the 

possible effect of the increase in the latent wage on future labor supply decisions or other 

contemporaneous outcomes. In the case of the S+B, however, for the subpopulation of 

pregnancies that end in non-live birth even after the relevant policy intervention, I do not 

see any reason that one would care about birth weight.10 Even if one has an interest in this 

sub-population, because the observable (factual) data on the outcome does not exist, it is 

not possible to identify the EP non-parametrically. Therefore, in the S+B context, I assume 

 
10 Note that this is different from the effect of the smoking ban during pregnancy on the 

birth weight of those pregnancies that resolve in live birth only under the policy. This group 

whose pregnancy resolution switches from non-live birth to live birth is taken into account 

in the PQO modeling. 
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that interest lies in evaluating the effect of a counterfactually mandated smoking ban during 

pregnancy on the birth weight of the subpopulation of pregnancies that end in live birth. 

3.4 The Rationale for Extending the CPOM in the Conventional GPOF 

 The salient feature of the GPOF discussed in chapter 2 is that it takes explicit 

account of counterfactuals in specifying the EP. In particular, two versions of the X and 

the Y are distinguished. In the PQO context, the definitions of the X, X* and X require no 

special consideration. For instance, in the context of the S+B example 

 X ≡ the number of cigarettes a woman smokes per day during pregnancy, 

 X*≡ distribution of counterfactually imposed smoking levels (number of cigarettes 

 per day) for the relevant population of pregnant women  

and 

 X ≡ the random variable representing the observable (factual) version of the 

 distribution of smoking levels.  

In the context of the S+B illustrative example that I consider (a counterfactual intervention 

that fully and effectively prevents (for non-smokers) and eliminates (for smokers) smoking 

during pregnancy),   

 Xpre ≡ the counterfactually mandated pre-intervention distribution of the number of 

 cigarettes smoked per day during pregnancy, and 

 ∆ ≡ ‒ Xpre  the counterfactually imposed increment to pre-intervention smoking 

 levels (representing fully effective prevention and cessation). 

In the PQO context, however, setting up the EP as in (1) is tricky because defining the Y, 

Y
X*  and Y in the GPOF-based PQO context (and, therefore the outcome in the S+B 

illustration) is not as straightforward.   
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 The main issues in this regard clearly emerge when one attempts to define the Y in 

the S+B context. One cannot simply define it to be birth weight for the live births because 

that definition implicitly conditions on the occurrence of a live birth. This qualitative event 

is, however, itself affected by the X. So, for instance, if we try to set up a counterfactual in 

which smoking levels are increased, we are confronted with the possibility that some 

pregnancies that would have resulted in live births (with manifested birth weight) in the 

pre-counterfactual scenario would have ended in non-live births in the post-counterfactual 

scenario (without a manifested birth weight) [assuming that smoking increases the 

likelihood of a non-live birth]. How can a meaningful EP be defined based on such an 

amorphous counterfactual? This is an example of the conceptual difficulty caused by so-

called bad control – attempting to condition the analysis on a variate that is itself affected 

by the X (mentioned in 3.1 and 3.2).11 As I will argue from a technical but practical 

perspective, bad control also precludes identification of the EP (regardless of how that EP 

is defined). As part of this research, definitions for the Y, Y
X*  and Y are proposed in the 

GPOF-based PQO context that overcome this conceptual and practical impediment. I will 

discuss such definitions in detail later.  

 In the next section, I propose a version of the Y that is real-valued and is not subject 

to the bad control critique because it takes direct account of the effect of the X on the 

probability of occurrence for the qualitative event. In the S+B context, this Y accounts for 

the effect of smoking on the likelihood of a live birth. Although the proposed definition for 

 
11 In the context of S+B, the extant literature is subject to the bad control critique as it 

focuses on birth weight conditional on live birth (see Rosenzweig & Schultz, 1983;  Evans 

& Ringel, 1999; Lumley et al., 2004; Lien & Evans, 2005; Abrevaya and Dahl, 2008). 

Therefore, results obtained in these studies are really not causally interpretable. 



27 

the Y does not have an observable version, as we will see, it yields a legitimate 

specification for the relevant EP and affords consistent estimation of that parameter using 

the observable data. 

3.5 Extending the CPOM to the PQO Setting 

 As discussed in section 3.4 above, finding a clear, rigorous, and useful definition 

for the Y is difficult if it is partially qualitative. Without a definition for the Y, specification 

of the CPOM in the GPOF as exemplified in (2) is not possible. In particular, if the Y is 

not real valued, specifying a pdf like (2) is not possible. Moreover, the only way to define 

the Y as real-valued in the PQO case is to set it as conditional on occurrence of the 

qualitative event. As we have discussed, however, this approach is plagued by the bad 

control problem. I seek a way around this apparent dilemma by extending the basic CPOM 

concept to allow for a PQO. 

 Recall that we are assuming that the subpopulation of interest, on which the 

empirical causal analysis is focused, comprises those for whom a quantitative outcome 

would actually (factually) be observed. For this subpopulation, I seek to specify, identify, 

estimate and conduct inference for a parameter characterizing the causal effect of a 

counterfactually imposed change in a presumed causal variable (X*) on an outcome of 

interest (Y
X*).  For the sake of illustration, let us focus on the following version of the AIE 

as the effect parameter of interest 

 AIE(∆) = E[YXpre + ∆|Q = 0] ‒ E[YXpre |Q = 0]    (8) 

where Xpre and ∆ are defined above and YXpre  and YXpre + ∆ denote the observed versions of 

the Y that correspond with Xpre and Xpre+ ∆, respectively. Q indicates the observability of 
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the qualitative component (via the DGP) of the PQO.  Conditioning on Q = 0 is tantamount 

to conditioning on the subpopulation for whom a quantitative outcome would actually 

manifest. In the S+B illustrative example, Q = 0 denotes the subpopulation of pregnancies 

that end in a live birth. Note that I have not yet given specificity to the definition of 

(Y
X* |Q = 0) [and, therefore, (Y

Xpre |Q = 0)] in the present PQO context. I now turn to this 

issue. 

 To fix ideas and to build upon the GPOF discussion in chapter 2, for the Q = 0 

subpopulation, consider a random experiment corresponding to a counterfactually imposed 

version of X* whose sample space comprises the union of a qualitative event Q
X*  (not a 

real value) and a specified subset of the real line (ℝ), say R
X* whose typical element is 

r
X*  (note that it is possible that R

X* = ℝ). Correspondingly, (Q
X* |Q = 0)  is defined to be 

the dichotomous random variable characterizing the stochastics of the qualitative 

component of the hypothetical experiment [(Q
X*  | Q = 0) = 1 if the qualitative potential 

outcome would occur and (Q
X*  | Q = 0) = 0 if the quantitative potential outcome would 

occur]. In the S+B context, (Q
X*  | Q = 0) = 0 if the pregnancy ends in a live birth at the 

counterfactually mandated level of smoking during pregnancy for those pregnancies that 

actually (factually) end in live birth. Finally, (R
X*  | Q = 0, Q

X* = 0) is defined to be the 

random variable characterizing the quantitative component of the counterfactual 

experiment conditional on non-occurrence of the qualitative potential outcome; the support 

of (R
X*  | Q = 0, Q

X* = 0) is R
X*. In the S+B example, (R

X* |Q = 0, Q
X* = 0) is the potential 

birth weight of pregnancies that would end in live birth at the counterfactually mandated 
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level of smoking during pregnancy for pregnancies that actually (factually) ended in live 

birth.12 

 In this context, one’s first inclination for specifying (Y
X*  | Q = 0) might be to set it 

equal to (R
X*  | Q = 0, Q

X* = 0) so that (8) would be rewritten as  

  AIE(∆)† = E[RXpre + ∆|Q = 0, Q
Xpre + ∆

= 0]      

    ‒ E[RXpre |Q = 0, Q
Xpre 

= 0]   (9) 

The problem with (9) is that it fixes Q
Xpre 

 and Q
Xpre + ∆

  at 0 and thus fails to account for 

the possible impact of the counterfactual change in Xpre on Q
Xpre 

– an effect that will surely 

influence the potential outcome (whatever its definition). For this reason, (9) will be biased 

as an effect parameter intended to characterize the causal effect of the posited 

counterfactual change in Xpre on the quantitative potential outcome of interest (whatever 

its definition). It is this bias that prompts the use of the term bad control in describing the 

conditioning on Q
Xpre 

 and Q
Xpre + ∆

 that is required by (9). In general, bias due to bad 

control can be expected in any empirical causal analysis in which some elements of the 

vector of control variables can themselves be characterized as potential outcomes that 

would be impacted by the posited counterfactual change in the presumed causal variable. 

In the present context, I seek to avoid bad control by directly including the possible impact 

of counterfactual differences in the qualitative potential outcome in the specification of the 

 
12  To clarify this notation, consider the description for (R

X* |Q = 1, Q
X* = 0) . It is the 

potential birth weight of pregnancies that would have ended in live birth at the 

counterfactually mandated level of smoking during pregnancy but did not actually end in 

live birth. This implies that those pregnancies must have had levels of smoking during 

pregnancy that is different from X*. 
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quantitative potential outcome of interest. To wit, the following specific definition for the 

generic term (Y
X*  | Q = 0)  in (8) is proposed. 

 (Y
X*  | Q = 0) ≡ Pr(Q

X*  = 0 | Q = 0) × (R
X*  | Q = 0, Q

X* = 0)     

          (10) 

where, Pr(Q
X*  = 0 | Q = 0) denotes the probability that, for a given version of X* , the 

counterfactual quantitative outcome would manifest for the subgroup of the population for 

whom the quantitative outcome is actually (factually) observable. In the illustrative 

example of S+B, (10) is the potential birth weight of pregnancies that would end in live 

birth at X* weighted by the probability of a live birth outcome for those pregnancies that 

actually ended in live birth. Clearly, (10) is designed to explicitly incorporate the impact 

of X* on Q
X* ; thereby avoiding the bad control critique. Rewriting (8) accordingly we 

obtain 

 AIE(∆) = E[Pr(Q
Xpre + ∆

 = 0 | Q = 0) × (R
Xpre + ∆

 | Q = 0, Q
Xpre + ∆

 = 0)  ]   

  ‒ E[Pr(Q
Xpre  = 0 | Q = 0) × (R

Xpre  | Q = 0, Q
Xpre  = 0)  ]   

          (11)  

Let us now turn to the estimation of (11) via regression methods. 

 As discussed in the chapter 2, in the GPOF, estimation of a CI parameter is 

predicated on an appropriately designed CPOM.  The present PQO context is, however, a 

bit unorthodox. First, the relevant potential outcome as defined in (10) does not have a 

directly observable counterpart in the DGP [although, as we will see later, its components 
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are identified (non-parametrically and parametrically)]. Secondly, and related to this, is the 

fact that the relevant CPOM will be defined in three parts. For the first component of the 

CPOM I assume that conditional on a vector of controls V 

 Pr(Q
X*  = 0 | V, Q = 0) = P(V, X* ; τQ)    (12) 

where P(.  ,  .  ;  .) is a known function whose range is the unit interval and τQ is a vector 

of unknown parameters.13 This function is typically specified in terms of a cumulative 

distribution function (cdf). Secondly, the pdf for the quantitative component is specified as  

 pdf(R
X* | V, Q = 0, Q

X*  = 0) = g(r
X* , X* , V; τg)   (13) 

where g(r
X* , X* , V; τg)  is a known proper parametric pdf whose support is R

X*  

(r
X*  ϵ R

X* ) and τg is an unknown parameter vector.14 Combining (11) through (13) and 

applying the law of iterated expectations we obtain 

 AIE(∆) = E[E[Pr(Q
Xpre + ∆

 = 0 | V, Q = 0) × (R
Xpre + ∆

 | V, Q = 0, Q
Xpre + ∆

 = 0)]   

  ‒ E[Pr(Q
Xpre  = 0 | V, Q = 0) × (R

Xpre 
 | V, Q = 0, Q

Xpre 
 = 0)]] 

 = E[P(V, Xpre + ∆; τQ) × E[RXpre + ∆ | V, Q = 0, Q
Xpre + ∆

 = 0] 

 
13 To be more explicit, we might have written    

 P(V, X* ; τQ) = 𝒫(Q
X*  = 0 | V, Q = 0) (V, X* ; τQ) 

 
14 To be more explicit, we might have written  

 g(r
X* , X* , V; τg) = ℊ(R

X* | V, Q = 0, Q
X* = 0)(rX* , X* , V; τg). 
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        ‒ P(V, Xpre; τQ) ×E[RXpre | V, Q = 0, Q
Xpre = 0]] 

 = E[P(V, Xpre + ∆; τQ) m(V, Xpre + ∆; τg) ‒ P(V, Xpre; τQ) m(V, Xpre; τg)]  

                (14) 

where  

 m(V, X*; τg) = E[R
X* | V, Q = 0, Q

X* = 0]= ∫ r
X*g(r

X* , X
* , V; τg) dr

X*R
X*

 

The third component of the CPOM is 

 pmf(Q
X* | V) = h(Q

X* , V, X* ; τQ) = P(V, X* ; τQ)
1−Q

X* 
[1 ‒  P(V, X* ; τQ)]

Q
X* 

 

          (15) 

which says that the parametric specification for the likelihood of the qualitative potential 

outcome in the first component of the CPOM for the relevant subpopulation (Q = 0) as 

given in (12), also holds true for the population at large (i.e., regardless of the value of Q). 

 Now if we had consistent estimates of the “deep” parameters of the model τQ and 

τg, (say 𝜏̂Q and 𝜏̂g) we could consistently estimate the targeted effect parameter in (14) as  

 AIE(∆) = ∑
1

nQ = 0
{P(Vi, Xi

pre
+ ∆i; τ̂Q)Q = 0 m(Vi, Xi

pre
+ ∆i; τ̂g) 

    ‒ P(Vi, Xi
pre

; τ̂Q)m(Vi, Xi
pre

; τ̂g)}  (16) 

where ΣQ = 0 indicates summation over the subsample of observations for whom Q
i

= 0 

and nQ = 0 denotes the size of that subsample.  
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 Before embarking on the consistent estimation of the deep parameters of the model, 

identification must be established at the two levels as discussed in sections 2.3. First, aside 

from any particular parametric specification, the CPOM must be shown to be non-

parametrically identified. In the context of the CPOM that I have posited here, according 

to Terza (2019a), non-parametric identification is established if it can be shown that the 

following DGP versions of (13) and (15) are valid 

 pdf(R | V, Q = 0) = g(r, X, V; τg)     (17) 

and 

 pmf(Q | V) = h(Q, V, X; τQ) = P(V, X; τQ)
1−Q[1 ‒  P(V, X; τQ)]

Q
   

          (18) 

In other words, the model (i.e. the CPOM) is non-parametrically identified if the relevant 

aspects of the DGP can be obtained by simply substituting the observable versions of the 

X and the relevant components of the Y (viz., X, Q and R) for their counterfactual 

counterparts (viz., X* , Q
X* and R

X*) into the CPOM. As presented in section 2.3, the most 

important of these conditions, and the least likely to be true, is CIND between the potential 

outcomes and X given the vector of controls V. In the present context, CIND holds if Q
X*  

and R
X* are independent of X conditional on V. Among the list of sufficient conditions for 

non-parametric identification, CIND is the most troublesome because it is not only unlikely 

to be true but it is also untestable. For the present discussion, I will maintain that CIND 

and the other conditions for non-parametric identification [(as discussed in Terza (2019a) 

and reviewed in section 2.3] hold.  
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 With non-parametric identification maintained, the second level of identification to 

be established is parametric identification.15 As discussed in section 2.3.2, the parameters 

of the DGP model are identified if the chosen functional forms for the relevant aspects of 

the DGP (e.g. conditional mean, higher-order conditional moments, conditional pmf/pdf, 

etc.) are such that full knowledge of the values of those aspects of the DGP would imply 

knowledge of the values of the relevant parameters. Functional forms for P(V, X; τQ) and 

g(r, X, V; τg) are chosen that afford parametric identification of τQ and τg. 

 Given that the CPOM is non-parametrically and parametrically identified, based on 

(17) and (18), the parameter vectors τQ and τg can be estimated using the following MLE 

 τ̂Q = arg max
τ̌Q

∑ qQ(n
i=1 τ̌Q, ZQi)      (19) 

 τ̂g = arg max
τ̌g

∑ qg(
nQ = 0

i=1
τ̌g, Zgi)      (20) 

where, n denotes the size of the full sample, nQ = 0 is the size of the subsample for whom 

Q = 0, qQ(τ̌Q, ZQi) = ln[h(Q
i
, Vi, Xi; τ̌Q)] , qg(τ̌g, Zgi) = ln[g(Ri, Vi, Xi; τ̌g)] , 

Z𝒬i = [Q
i
     Vi      Xi]  and Zgi = [Ri     Vi      Xi]. The asymptotic standard errors of the 

estimators in (19) and (20) can be obtained by using the approach in Terza (2017). 

3.6 Simulation Study 

 In this section, I demonstrate the implementation of the estimators in (19) and (20) 

for the PQO model and validate the consistency of the proposed AIE estimator using 

 
15  Note that if one cannot establish non-parametric identification as detailed in Terza 

(2019a) then subsequent discussion of parametric identification have no useful content 

from the perspective of causal inference. 
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simulated data. For the sampling design of the simulation study, consider the case in which 

(12) and (13) are specified such that 

 R
X* ≡ (0, ∞) 

 P(V, X*; τQ) ≡ M{(Q
X*  | Q = 0) = 0} = Φ(VτQV+ X*τQX)  

 g(r
X*, X*, V; τg) = gg(Y

X*; VτgV+ X*τgX, κ, σ) 

where  

 gg(A; b, c, d) = 
νν

dA√νΓ(ν)
exp(z√ν ‒ u)     (21) 

denotes the pdf of a generalized gamma variate A with parameters b, c and d; ν = |κ|
-2

,    

z = 
sign(κ)[log(A) ‒ b]

d
 , u = ν × exp(|κ|z), and Γ( ) is the gamma function. The three parameter 

Generalized Gamma (GG) distribution is chosen for simulating values for the quantitative 

component because it is very flexible distribution that subsumes several known 

distributions that are commonly used for non-negative random variables, such as the 

Weibull, Exponential and Log-normal among others. 

3.6.1 The Simulated Data Generator 

 The data generator has two parts, i.e., (17) and (18). (18) generates a binary 

outcome indicator for the qualitative component of the model representing whether or not 

a pregnancy ends in a live birth. For this part, data will be generated for the full sample 

following the assumption in (15) that pregnancies that do and do not end in live birth have 

the same parametric specification for the likelihood of the qualitative potential outcome. 
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The second part, given in (17), generates strictly positive values for the quantitative 

component representing birth weight values of the pregnancies that end in live birth. Note 

that for this component, data is generated for the sub-sample of the pregnancies for which 

the simulated outcome for the first part of the generator is one that resulted in live births.  

 A uniformly distributed random variate data generator is used to simulate the data 

vectors Vo and Xo for the observable random variables V and X, respectively. To obtain 

these vectors, I specify the mean and variance of Vo and Xo. The change in the policy for 

the targeted AIE is given by Δ
o = ‒ Xo. Note that the post-intervention vector, Δ

o + Xo, is 

a null vector. For the qualitative component, I specify an indicator function  

 (Q
X*  | Q = 0) = 0  if  I(VoτQV

o  + XoτQX
o + ε > 0) = 1    (22) 

where, ε ∼ N(0, 1), τQ
o =  [τQX

o     τQVo
o ′] where  τQVo

o ′ = [τQV
o      τQo

o ] denotes the vector of 

specific parameter values chosen for the sampling design of the simulation (detailed later). 

 Because birth weight is a strictly positive outcome, the quantitative component of 

the data generator simulates values from a GG random variable. Since the GG is a 

continuous random variable, I rely on the inverse transform theorem to generate values of 

the random variate (Ross, 1997). To implement the inverse transform method, I need to 

know the cdf of the GG variate and its inverse. According to Stacy and Mihram (1965), the 

conditional cdf of the GG variable is 

     
γ(ν, (Yo a⁄ )

p
)

Γ(ν)
 if p > 0 

GG(Y
X*  | V)(Y

o, Vo, Xo, τg
o , κo, σo) =       (23) 

     1 ‒ 
γ(ν, (Yo a⁄ )

p
)

Γ(ν)
 if p < 0 
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γ(b', c') denotes the incomplete gamma function defined as γ(b', c') = ∫ tb
'
‒1e‒tdt

c'

0
,       

a =  
exp(VoτgV

o  + XoτgX
o )

(
1

|κo|
2)

σo

κo

, ν =
1

|κo|
2 and p =

κo

σo
. τg

o =  [τgX
o        τgVo

o ′] where τQVo
o ′ = [τgV

o        τgo
o ] is 

the coefficient vector for the linear index component in a. Note that 

γ(ν, (Yo a⁄ )
p
)

Γ(ν)
= SG(ν, ( Yo a⁄ )

p
), where SG(h, j) is the standard gamma cdf evaluated at h with 

shape parameter j. Manning et al (2005) provides a crosswalk between this 

parameterization (a, ν and p) and the one introduced in the expression for the GG pdf in 

(21).   From (23) it can be shown that when p > 0, we have 

 Yo =  GG(Y
X*  | V)

‒1
(U[0, 1], Vo, Xo, πg

o, κo,  σo)   

  = a × γ‒1(ν, Γ(ν)U[0, 1])
1

p     (24) 

where  GG(Y
X*  | V)

‒1
(U[0, 1], Vo, Xo, πg

o, κo,  σo)  denotes the inverse of the GG cdf as given 

in (23),  γ‒1(d', j) denotes the inverse incomplete gamma defined such that if j = γ(d', k), 

then k = γ
‒1

(d', j) and U[0, 1] is a unit uniform variate. It is not easy to get the inverse 

incomplete gamma function directly in Stata/Mata, but one can get it indirectly. Yang 

(2016) derived the following equivalent expression for (24) which can be simply 

implemented in Stata/Mata 

 Yo = a × SG
‒1

(ν, U[0, 1])
1

p      (25) 
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where SG
‒1(a, U[0, 1]) denotes the inverse standard gamma variate with shape parameter 

a. Using (25) and by choosing the values τg
o , κo,  σo, I generate the sample values of the 

quantitative component for the subsample such that (Q
X*  | Q = 0) = 0. 

 Once the two components of the data are generated, we obtain the true AIE in (14) 

using the specifications  

 P(Vo, Xo; τQ
o )  = Φ(VoτQV

o  + XoτQX
o ) 

and  

 m(Vo, Xo; τg
o ) = exp [VoτgV

o  + XoτgX
o + (

σo

κo
)  ln((κo)2) 

   + ln (Γ {(
1

(κo)2
) + (

σo

κo
)})  ‒ ln (Γ {(

1

(κo)2
)})] 

where Φ( ) and m( ) denote mean values of the binary and the GG variates, respectively. 

3.6.2 The Sampling Design and the Simulation Results 

 The main motives for the simulation are to demonstrate the implementation of the 

PQO modeling using the estimators in (19) and (20), and to validate the consistency of the 

EP in (14). For the linear index component coefficient vector of the probit specification 

τQ
o =  [τQX

o        τQVo
o ′]  where τQVo

o ′ = [τQV
o        τQo

o ]  for which the following parameter 

vector of values is specified. 

 τQ
o  = [0.15        ‒0.5       12] 

Here, I assign τQX
o  = 0.15 for Xo in the probit model to mimic the evidence that smoking 

during pregnancy increases [decreases] the probability that a pregnancy ends in a non-live 
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birth [live birth]. To obtain sample values of the GG variate representing birth weight for 

pregnancies that end in live birth, I specify the parameter values for the linear index 

component coefficient vector τg
o =  [τgX

o        τgVo
o ′] where τQVo

o ′ = [τgV
o        τgo

o ] and for the 

two ancillary parameters κo and σo as follows: 

 τg
o  = [‒0.004       0.002       8] 

  κo = 0.95 and σo = 0.175  

 Like I do for the qualitative component, I impose a negative value (τ
gX

o
 = ‒0.004) 

for Xo  in the GG model to allow a reduction in birth weight due to smoking during 

pregnancy. To obtain Vo  and Xo , I specify the mean and variances as E[V
o
] = 27 , 

E[X
o
] = 1.75, Var[V

o
] = 49 and Var[X

o
] = 1, where E[  ]  and Var[  ] denote the mean and 

variance functions. These values are chosen to get a distribution closer to birth weight for 

the outcome variable. As it can be seen on table A1 in appendix I, the average value of Yo 

is 2939 which is somehow close to an average birth weight in grams. 

 After simulating the data vectors Vo , Xo , and Yo  for (Q
X*  | Q = 0) = 0, I obtain 

estimated values for the probit and the GG model deep parameters by applying the M-

estimator in (19) and (20). Based on these values, I estimated the AIE and compared it to 

the true AIE obtained by plugging the specified parameter values into (16). A super sample 

of 2,000,000 observations is used to calculate the true AIE. To examine the consistency of 

the AIE estimator, I simulated samples of increasing size using the data generators detailed 

above. I then applied the MLE estimator for the targeted EP and calculated the absolute 

percentage bias (APB) of the estimated AIE for each of the simulated data of sample size 

n. The APB is calculated using the formula 
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 APB = |
AIE(Δ)

est
 ‒ AIE(Δ)

true

AIE(Δ)
true | ×100%     (26) 

where AIE(Δ)
est

 and AIE(Δ)
true

 denote the estimated and the true AIE values, respectively. 

 Table 1 presents the results of the simulation. In general, the results provide 

evidence for the consistency of the AIE estimator. For instance, the APB of the estimated 

AIE is 11.7% when the model is simulated using a sample of 25,000 observations for the 

entire population of which 15181 observations are used to estimate the deep parameters of 

the GG model and the corresponding AIE. This APB further decreases to 5.4% [0.7%] 

when the entire sample size increases to 100,000 [250,000] of which the relevant 

subpopulation has 60,168 [150,067] observations. Therefore, the PQO modeling approach 

and the ML estimator I proposed provide consistent estimate for the specified AIE.  

3.7 Application: Smoking and Natility-Weighted Birth Weight 

 This section presents an empirical application of the proposed PQO regression 

model to estimate the natility-weighted birth weight effect of a counterfactual intervention 

that fully and effectively bans smoking during pregnancy. I also estimate the AIE of the 

same hypothetical intervention on the conventional measure of birth weight that is subject 

to a bias due to bad control.  

 I use a probit specification to model the probability that a pregnancy ends in a live 

birth and a GG model to characterize birth weight for the sub-population of pregnancies 

that end in live birth. In particular, I estimate the AIE in (14) based on the M-estimators in 

(19) and (20) and using the following specific functional forms for the probability that a 

pregnancy ends in a live birth and for the conditional mean birth weight given that the 

pregnancy ends in a live birth 
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 P(V, X*; τQ) = Φ(VτQV+ X*τQX) 

 m(V, X*; τg) = exp [VτgV + X*τgX+ (
σ

κ
)  ln((κ)2) 

   + ln (Γ {(
1

(κ)2
) + (

σ

κ
)})  ‒ ln (Γ {(

1

(κ)2
)})] 

       Apart from the bad control problem, as discussed in section 3.5, estimating 

causally interpretable AIE requires CIND between the potential PQO (Q
X*  and R

X*) and 

X conditional on V. In other words, the potential resolution of a pregnancy (whether or not 

it ends in a live birth) and potential birth weights are independent of the observed smoking 

level given the vector of observed variates. This is unlikely to hold in observational setting 

as one can imagine a number of unobserved factors such as propensity to engage in risky 

behavior, maternal health endowment and so on that correlate with both prenatal smoking 

and pregnancy as well as birth outcomes (Grossman & Joyce, 1990). This implies that 

smoking is endogenous. 

 Studies in the conventional birth weight literature find mixed evidence on the 

endogeneity of smoking during pregnancy. Using a difference-in-differences approach, 

Fertig (2010), for instance, finds that smoking was associated to a 261 grams reduction in 

birth weight in the year 2000 up from a reduction of 160 grams in 1958 sample. She argues 

that as information about the harms of cigarette smoking become widespread, women from 

higher socioeconomic status quit smoking at a larger rate implying that the observed 

association in the result from the year 2000 is likely confounded by unobserved factors that 

is correlated with smoking behavior of pregnant women from low socioeconomic status 

group. Evans & Ringel, (1999) use tax hike as instrumental variable and find that smoking 
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during pregnancy reduces birth weight between 300 grams and 600 grams, a significantly 

larger reduction than the Ordinary Least Squares (OLS) estimates. This result suggests that 

there is probably advantageous selection – women with worse maternal health tend to quit 

smoking more than pregnant women whose health endowment during pregnancy is higher. 

On the other hand, Lien and Evans (2005) used a cigarette tax hike in four states and 

matched each state to similar control states. They find that smoking reduces birth weight 

by 185 grams. Their IV estimate was not, however, statistically different from the OLS 

estimate suggesting that smoking is perhaps exogenous. In addition to the fact that these 

studies are subject to bias due to bad control, the inconsistency in the results indicate that 

selection into smoking is also a concern. 

3.7.1 Data Source and Descriptive Statistics 

 I use data from the National Survey of Family Growth (NSFG). NSFG is a 

nationally representative of women 15-44 years of age. From 2015 onwards the age range 

expanded to 15-49. Unlike many other data sources, NSFG asks each respondent woman 

detail information about her pregnancy history covering five years prior to the interview 

date. Importantly, it has information about conception and end of month information on 

each pregnancy, how each pregnancy ended and the smoking behavior of the mother during 

each pregnancy. I use data from survey periods 2002, 2006-2010, 2011-2013 and 2013-

2015. 

 The outcome variables I consider are an indicator for whether the pregnancy ends 

in a live birth or not, and birth weight in grams for those pregnancies that end in live birth. 

The number of cigarettes smoked per day is the main policy variable in the empirical 

analysis. Given the possibility for endogeneity of observed level of smoking during 
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pregnancy, as discussed in chapter 2, one would need to expand the DGP by exploiting an 

appropriate empirical identification strategy such as state cigarette tax rate as an instrument 

to deal with the endogeneity of smoking. Because I use the public access version of the 

data that do not have state identifier for pregnancies, I am not able to match state cigarette 

tax information to the pregnancies in the dataset. Therefore, the result can have a causal 

interpretation only under the strong assumption that smoking during pregnancy is 

exogenous conditional on the vector of observable control variables such as marital status 

during pregnancy, age at pregnancy, educational attainment, and race. 

 Table 2 presents the descriptive statistics of the data for the full sample and by live 

birth status of pregnancies. For the full sample, 21.6% of pregnancies do not end in live 

birth. As expected, relative to women who had a live birth, smoking rate is higher (by 5 

percentage point) among women whose pregnancies did not end in live birth. Table 3 

compares live birth outcome, birth weight and other characteristics of the sample by 

smoking status. Women who smoke during pregnancy have a 7.2 percentage point lower 

live birth rate than those who do not smoke. Among women who have live births, the 

average birth weight was 151.5 grams (0.33 pound) lower for infants born from mothers 

who were smoking during pregnancy. 

3.7.2 Estimation Results  

 Table 4 presents the deep parameter estimates for the probit and the GG regression 

models. Columns 1 and 2 show the deep parameter estimates of the probit and the GG 

specifications, respectively. It can be seen that the coefficient on the number of smoking 

variable in both the qualitative and quantitative components of the PQO model are negative 

and statistically significant implying that smoking has a negative effect on natility-
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weighted birth weight. The statistically significant coefficient in the probit model provides 

empirical evidence that bad control is indeed a concern in the context of S+B, suggesting 

that one cannot interpret an EP based only of the quantitative component of the model. 

 In column 1 of table 5, I present the AIE for the natility-weighted birth weight that 

has a direct causal interpretation (under exogeneity of smoking during pregnancy) and the 

AIE estimated based on the conventional measure of birth weight that is subject to the bad 

control problem. The latter is biased because it ignores the qualitative component that 

accounts for the effect of smoking during pregnancy on the probability that the pregnancy 

ends in a live birth. The estimated AIE shown in column 1 suggests that a fully effective 

smoking ban during pregnancy would increase natility-weighted birth weight by 32.7 

grams (0.072 pounds). The result in column 2 shows that the policy increases the 

conventional measure of birth weight by 11.24 grams (0.025 pounds). This result, however, 

cannot have a causal interpretation even when smoking is truly exogenous.  

 It should be noted that the estimates in both cases are smaller than most of the 

estimates reported in the literature on the effect of smoking during pregnancy on birth 

weight. This is because the targeted effect parameter in our case applies to the entire 

population of pregnant women whose pregnancy ends in a live birth while the estimates in 

the conventional literature aims to target the subpopulation of pregnant women who 

actually smoked during pregnancy. In the language of the treatment effect literature, the 

latter is called treatment effect on the treated.  
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3.8 Summary, Discussion and Conclusion 

 A new regression-based approach is developed for specification, identification, and 

estimation of causally interpretable EP for an outcome of interest that manifests as either a 

value in a specified subset of the real line or a qualitative event -- a partially qualitative 

outcome (PQO). A PQO requires special attention because the only version of it to which 

the conventional form of the GPOF can be applied to is subject to bias due to the bad 

control problem. An outcome measure is proposed that maintains all of the essential 

features of a PQO but is entirely real-valued and is not subject to the bad control critique; 

the P-weighted outcome – the outcome weighted by the probability that it manifests as a 

quantitative (real) value. The practicality and usefulness of this new measure for specifying 

and identifying effect parameters that characterize the causal relationships between policy 

variables of interest and the PQO is discussed. Moreover, a regression-based estimation 

method is detailed for such effect parameters and, using simulated data, demonstrate its 

implementation and validate its consistency for the targeted effect parameter. The proposed 

approach is illustrated by conducting an empirical study to analyze a counterfactually 

mandated fully effective policy intervention that brings the smoking levels of all pregnant 

women down to zero on the natility-weighted birth weight. Using the NSFG public access 

data, I find that the smoking ban improves natility weighted birth weight, on average, by 

32.7 grams over the entire sub-population of pregnancies that end in live birth. The 

corresponding AIE estimated for birth weight as in the conventional approach is an 11.24 

grams increase in birth weight. While the latter result cannot be interpreted as causal effect, 

the causal interpretability of the AIE for natility-weighted birth weight relies on the 

assumption that smoking during pregnancy is exogenous conditional on the vector of 
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observable variables included in the model. In practice, there may be several unobservable 

confounders such as risky behavior of pregnant women, maternal health endowment and 

so on that could invalidate this assumption, making causal interpretability of the estimates 

questionable. As an extension to this work, I plan to incorporate such endogeneity into the 

proposed regression framework in the future. 
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Chapter 4 

Correcting Endogeneity Bias in Two-Part Models: Causal Inference from the Potential 

Outcomes Perspective 

 The two-part model (2PM) is one of the most widely applied empirical modeling 

and estimation framework in empirical health economics.16 17 It applies to cases in which 

the outcome variable is nonnegative with a non-trivial number of units having an observed 

value of zero. By design, the 2PM has two distinct components; a qualitative (binary) 

extensive margin (EM) characterizing an individual’s participation (or not) in a specified 

activity, and an intensive margin (IM) representing the individual’s level of activity 

(conditional on participation as determined at the EM). The 2PM allows the process that 

determines observed zero outcomes to systematically differ from that which determines 

non-zero observations.  

 In this chapter, a regression-based potential outcomes approach is developed to 

policy relevant causal inference in the context of 2PM in which the causal variable of 

interest is a continuous endogenous variable. In particular, the estimation objective is the 

AIE specified in (1). Endogeneity of the causal variable of interest is a common problem 

in 2PM like in any other econometric models that are specified to obtain CI parameter. 

 
16 The notion of explicitly accounting for a discrete mass at zero of a random variable was 

highlighted by Aitchison (1955). He derived the mean and variance of such random 

variables and demonstrated the enormous improvement in terms of obtaining a better fit by 

comparing the relative performance of fitting a truncated and a standard Poisson models to 

observed data on number of children in a household. The two-part model (2PM) was 

introduced in a regression framework by Cragg (1971). 
 
17  The seminal work by Duan et al (1983) was the first to apply the 2PM in health 

economics and health services research. Few of the numerous applications of the 2PM in 

health care and health service research include Biener et al 2020, Burney et al. 2016, Hyun 

et al. 2016, Li et al. 2016, Liu et al. 2010, Madden 2008, Buntin and Zaslavsky 2004, Ross 

and Chaloupka 2003, and Bradford et al. 2002.  
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Endogeneity is defined from the potential outcomes perspective detailed in chapter 2 as the 

partial observability of the unique conditioning vector, V, that induces CIND between the 

observed version of the X and the potential outcomes Y
X* . With this definition, I extend 

the generic fully parametric 2PM (FP2PM) framework developed in Hao and Terza (2018) 

to encompass cases in which the X is endogenous. As pointed out in chapter 2, when 

endogeneity is present, an additional structure is needed to identify a CI parameter. The 

main objective of this chapter is specification of such a structure within the GPOF for the 

2PM and a version of the estimator in (5) for the AIE in (1) that can be estimable using 

observable data. The chapter also highlights on the advantages of casting the causal 

inference problem in a FP2PM framework. These advantages include setting up of two 

important statistical tests. The performance of the proposed approach relative to other 

alternatives that are widely used to deal with endogeneity in the context of nonlinear 

models in general and the 2PM in particular is also demonstrated through a simulation 

study. In the last section, I implement the proposed approach to an empirical setting where 

the object of interest is estimation of the effect of a one unit increase in BMI on medical 

care spending among the youth in the US. I also estimate the medical care cost of a 

hypothetical change that moves all youth in the US from an average normal BMI to an 

average obese and severely obese BMI. 
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4.1 Specifying a Generic FP2PM with a Continuous Endogenous Variable within the 

GPOF 

 Here I extend the generic FP2PM specified within the GPOF in Hao and Terza 

(2018) to accommodate cases where the X is endogenous variable. This generic 

specification encompasses all the 2PM in the literature and also allows implementation of 

two important null hypotheses: “no 2PM is needed” and “the X is exogenous”.  

 The salient feature of the 2PM is that the process that determines zero outcome 

values is allowed to systematically differ from that which determines strictly positive 

values for the outcome variable. Below I describe the specification of a generic FP2PM for 

the EM and IM components in which the X is a continuous endogenous variable. The 

model is specified using the GPOF notation to facilitate specification of a conditional mean 

function that is amenable for specifying CI parameter. 

4.1.1 The Extensive Margin 

 Y
X*  = 0 iff  U <  G

(ζEM
*  |  Xo, Xu)

EM
(ζ

EM
, X*, Xo, Xu; τEM)   

          (27) 

where U  is uniformly distributed on the unit interval and     

 G
(ζEM

*  | Xo, Xu)

EM
(ζ

EM
, X*, Xo, Xu; τEM) is the conditional cumulative density function (cdf) of 

(ζ
EM

*  | Xo, Xu), written as a function of Xo, Xu and a vector of deep parameters for the EM, 

τEM, evaluated at ζ
EM

 (an unobserved parametric threshold).  G
(A|C)

EM
(A, B, C; ψ) denotes a 

conditional cdf of A conditional on C written as a function of A, B, C and the parameter 

vector ψ. To indicate that the X is endogenous, the unobservable scalar Xu is explicitly 
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included in (27) and in subsequent specifications for the IM as well as for the conditional 

pdf detailed later.  

4.1.2 The Intensive Margin 

 The generic FP2PM for the IM component is specified as follows: 

 (Y
X*  | Y

X*  > ζ
IM

) has a cdf GIM*

(Y
X*) iff  

 U ≥  G
(ζEM

*
|  Xo, Xu)

EM
(ζ

EM
, X*, Xo, Xu; τEM)    (28) 

where GIM*

(Y
X*) is a shorthand for 

  G
(Y

X*  | Y
X*> 0, Xo, Xu)  

IM*

(Y
X*, X*, Xo, Xu,  ζ

IM
; τIM) 

  =

G
(ζ

IM

*  | Y
X* > 0, Xo, Xu)

IM
(Y

X*, X*, Xo, Xu; τIM) 

1 ‒ G
(ζIM

*
| Xo, Xu)

IM
(ζIM, X*, Xo, Xu; τIM)

    (29) 

G
(ζ

IM

*  |  Y
X* > 0, Xo, Xu)

IM
(Y

X*, X*, Xo, Xu; τIM)  is the specified conditional cdf of ζ
IM

*
 

given  Y
X* > 0 ,  Xo  and Xu , written as a function of Y

X* ,  X*,  Xo ,  Xu , an unknown 

parametric threshold ζ
IM

 and a vector of deep parameters of the distribution for the IM, 

τIM.  

 The systematic difference between the EM and IM components of the 2PM can 

arise from two sources. The first is when the structure (or the general function form) that 

generates the zero values differs from that which generates the strictly positive values. 

Second, even when there is no such structural difference (NSD) between the EM and the 

IM, the 2PM may still be needed if the deep parameters of the functional form for the two 
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components differ. Unlike traditional 2PM specifications, the IM in (29) is written as a 

truncated cdf with a parametric and unknown truncation point. Hao and Terza (2018) show 

that such a truncated cdf specification for the IM is sufficient to set up a likelihood ratio 

test for the null that “there is no need for 2PM”. 

 The conditional pdf of (Y
X*  | Xo, Xu) can be written by combining (28) and (29) 

as 

 pdf(Y
X*  | Xo, Xu) =  f

(Y
X*  | Xo, Xu)

(Y
X*, X*, Xo, Xu; π)   

   = [ G
(ζEM

*
 | Xo, Xu)

EM
(ζ

EM
, X*, Xo, Xu; τEM) ]

I(Y
X* = 0)

 

   × [(1 −  G
(ζEM

*  | Xo, Xu)

EM
(ζ

EM
, X*, Xo, Xu; τEM))  

   ×

g
(ζ

IM

*  | Y
X* > ζ

IM
, Xo, Xu)

IM (Y
X*, X*, Xo, Xu; τIM)  

1 ‒ G
(ζIM

*  | Xo, Xu)

IM
(ζIM, X*, Xo, Xu; τIM)

]

1-I(Y
X*  = 0)

  

          (30) 

f( . )( ; ) in the first equality denotes a known conditional pdf of Y
X*  given  Xo  and Xu , 

written as a function of Y
X*, Xo, Xu and the vector of deep parameters π = [τEM

'    τIM
']. 

g
(ζ

IM

*  | Y
X*  > ζ

IM
, Xo, Xu)

IM (Y
X* , X*, Xo, Xu; τIM) is the conditional pdf of Y

X*  given  Xo 

and Xu for the subpopulation whose Y
X*  passes a parametric threshold ζ

IM
.  The indicator 

function I[A] equals 1 if the statement inside the bracket is true.  
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The conditional pdf in (30) implies the following conditional mean function for the 

outcome 

 E[Y
X*  | Xo, Xu]  = (1 −  G

(ζEM
*  | Xo, Xu)

EM
(ζ

EM
, X*, Xo, Xu; τEM))  

   ×

∫ Y
X*g

(ζ
IM

*  | Y
X*  > ζ

IM
, Xo, Xu)

IM
(Y

X* , X*, Xo, Xu; τIM)dY
X*

∝
ζIM

 

1 ‒ G
(ζIM

*  | Xo, Xu)

IM
(ζIM, X*, Xo, Xu; τIM)

  

          (31) 

Using the law of iterated expectation and (31), we can rewrite the EP in (1) as 

 AIE(∆) = E [(1 ‒ G
(ζEM

*  | Xo, Xu)

EM
(ζ

EM
, Xpre+∆, Xo, Xu; τEM))   

  ×

∫ Y
X*g

(ζ
IM

*  | Y
X* > ζ

IM
, Xo, Xu)

IM
(Y

X*, Xpre+∆, Xo, Xu; τIM)dY
X*

∝
ζIM

 

1 ‒ G
(ζIM 

*
| Xo, Xu)

IM
(ζIM, Xpre+∆, Xo, Xu; τIM)

] 

  −E [(1 −  G
(ζEM

*
| Xo, Xu)

EM
(ζ

EM
, Xpre, Xo, Xu; τEM)) 

  ×

∫ Y
X*g

(ζ
IM

*
|Y

X* > ζ
IM

, Xo, Xu)

IM
(Y

X*,Xpre, Xo, Xu; τIM)dY
X*

∝
ζIM

 

1 ‒ G
(ζIM

*
| Xo, Xu)

IM
(ζIM,Xpre, Xo, Xu; τIM)

]   

          (32) 

The AIE in (32) is not, however, identified because the underlying conditional pdf in (30) 

is written in terms of counterfactual entities that are not part of the DGP from which sample 

values are drawn. The AIE also contains a scalar control Xu that is part of the DGP yet is 

unobservable by the analyst. In the following section, I discuss identification of (31) which 

implies (32). 
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4.2 Identification of the Generic FP2PM with a Continuous Endogenous Variable 

 As discussed in chapter 2, identification of the AIE in (32) requires existence of a 

vector of control variables that induces CIND between X and Y
X* . Suppose V = [X

o
    Xu] 

is such vector where Xo  is represents the observable partition of V and  Xu  is a scalar 

comprising of the additional relevant unobservable controls needed to induce conditional 

independence. This implies that one can legitimately write the conditional pdf of Y given 

V and X by substituting X and Y for X* and Y
X*  in (30) which yields 

 pdf(Y | X, Xo, Xu) = [ G
(ζEM

*  | Xo, Xu)

EM
(ζ

EM
, X, Xo, Xu; τEM) ]

I(Y = 0)

 

   × [(1 −  G
(ζEM

*
| Xo, Xu)

EM
(ζ

EM
, X, Xo, Xu; τEM))  

   ×

g
(ζ

IM

*
|Y

X*  > ζ
IM

, Xo, Xu)

IM (Y, X, Xo, Xu; τIM)  

1 ‒ G
(ζIM

*
| Xo, Xu)

IM
(ζIM, X, Xo, Xu; τIM)

]

1-I(Y = 0)

 (33) 

Although the conditional pdf in (33) is written virtually in terms of factual entities that are 

elements of the DGP, it contains a scalar Xu that is essential but unobservable. As a result, 

it is not possible to solely base identification and estimation of the AIE in (32) on the 

feature of the DGP shown in (33). Instead, one needs to impose additional structure that 

expands the DGP to include additional variables and relevant assumptions about the 

specifications of the conditional moments of the expanded DGP. Next, I present the 

proposed approach that adds structure to (33) to identification of its deep parameters and 

hence the AIE in (32). Note that the approach is specifically relevant to the 2PM for 

continuous nonnegative outcome with a continuous endogenous variable. 
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4.2.1 A Generalized Control Function Approach 

 A generalized control function (GCF) is specified based on a flexible distributional 

assumption for the endogenous variable. This approach is a specific case of an 

encompassing modeling and estimation framework proposed by Terza (2019c) for a very 

general class of nonlinear models involving an endogenous presumed causal variable. 

Under regular instrumental variables (IV) assumptions detailed later in this section, the 

GCF is a deep residual that necessarily induces CIND between X and Y
X* . This property 

of the GCF is not satisfied by design in many other control function or predictor 

substitution approaches.18  

 As in Terza (2019c), the relationship between X and Xu implied by a fully specified 

parametric distribution for X can be written as 

 X = H-1(Xu,W; δ)       (34) 

where H-1( . ) is the inverse of a known cdf of X given the vector W = [Xo     W+], W+ is a 

vector of identifying instruments and δ is the parameter vector to be estimated.19 The 

expression in (34) can be thought of as one resulting from the inverse transform theorem 

where Xu  is a unit unform random variable (Ross, 1997). Thus, given that H-1( . )  is 

continuous, we have 

 Xu = H(X,W; δ)        (35) 

 
18 Carlson (2020) demonstrates how the CIND assumption fails to hold in well-known 

control function approaches. 

 
19 H-1( . ) could be written in long form as  H(X|W)

-1 ( . ). 
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where Xu = U(0, 1), U(a, b) denotes a random variable that is uniformly distributed on the 

interval (a, b) and H( ) is the conditional cdf of X given W.  A vector of IV satisfying the 

regular IV assumptions completes identification of (33) and the relevant AIE in (32) which 

is a version of (1). These assumptions are reviewed below. 

IV1. Exclusion Restriction 

  Y
X*  ⊥ W+|V        (36a) 

where ⊥ indicates statistical independence. IV1 states that Y
X*  and W+ are independent 

conditional on V implying that W+ is excluded from the conditional pdf of Y
X* |V. In terms 

of the relevant DGP, (36a) amounts to20 

 f(Y | X, W, Xu; π) =  f(Y | X, Xo, Xu; π) 

where f(. ; .) is a known conditional pdf and π is a parameter vector. For a minimally 

parametric specification of the 2PM, the relevant version of IV1 is 

 E[Y | X,W, Xu]= E[Y | X, Xo, Xu]= μ(Y, X, Xo, Xu; β)  (36b) 

where μ(.  ; .) is a known conditional mean function and β is a sub-vector of π. 

 

 

 
20 The equality could be written in long form as f(Y | X, W, Xu)( . ; .) =  f(Y | X,  Xo, Xu)( . ; .) 
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IV2. Independence Between the Instrument and the Potential Value of the Endogenous 

Variable (Random assignment) 

 XW+ ⊥ W+|Xo        (37a) 

This assumption states that the identifying instrument W+  and XW+  are conditionally 

independent given Xo.  XW+ denotes a random variable representing the level of X that 

corresponds to an exogenously determined level of W+.  In the econometric literature on 

treatment effects, this IV assumption is called the random assignment to highlight the fact 

that units take on values of W+ independent of unobservable characteristics that determine 

the observed version of X i.e., X. Alternatively, (37a) can be stated as Xu ⊥ W+|Xo. IV1 

and IV2 imply that W+ affects Y only indirectly through X. For consistent estimation of 

the conditional mean, a weaker version of (37a) given below is sufficient. 

 E[Xu|W+] = 0       (37b) 

IV3. Strength of the Instrument 

 Conditional on Xo, variation in W+ should generate variation in X. In other words, 

COV(X, W+) ≠ 0 where COV(a, b) denote the covariance between a and b. Given the 

specification for X in (34) and assumption IV2, it is clear that variation in W+ generates an 

exogenous variation in X for a given value of Xo. Assumptions IV1- IV3 are sufficient to 

identify homogenous effect parameter i.e., where the effect of the X is constant for each 

unit in the population. 

 



57 

IV4. Monotonicity of the Instrument and the Unobservable in the Specification for X 

 Monotonicity assumption is especially important to identify an EP where the effect 

of the X is allowed to vary across units based on their Xu which can be thought to represent 

types of units. In such heterogenous effect models, except for the case where the causal 

variable of interest is binary and the instrument is discrete, monotonicity of X in the 

instrument W+ and the unobservable scalar Xu are not equivalent (Imbens, 2007). Thus, I 

discuss each separately below. 

IV4.1 Strict Monotonicity in the Instrument 

 If H-1(Xu = xu, Xo,W+ = w; δ) > H-1(Xu = xu, Xo, W+ = w'; δ)  

for some (Xu = xu, W+=w, W+=w'), then 

H-1(Xu = xu
' , Xo,W+ = w; δ) > H-1(Xu = xu

' , Xo,W+= w'; δ) for all possible realizations of 

Xu. In other words, the instrument should move the value of X (also called the level of 

treatment) in the same direction for all types of units. 

IV4.2 Strict Monotonicity in the Unobservable 

 If H-1(Xu = xu, Xo, W+ = w; δ) > H-1(Xu = xu
' , Xo, W+= w; δ)  

for some (Xu = xu, Xu = xu
′ , W+=w), then  

H-1(Xu = xu, Xo,W+ =w'; δ) > H-1(Xu = xu
′ , Xo,W+=w'; δ) for all W+ = w'. Alternatively 

stated, strict monotonicity in Xu indicates that as the value units take in (0, 1) increases, 

their corresponding level of X must move in the same direction for all possible realizations 

of W+.  

 A sufficient condition for strict monotonicity of X in W+ and Xu is that H-1( . ) is 

either strictly increasing or strictly decreasing function in W+ and Xu , respectively. By 
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construction, the proposed GCF approach satisfies IV4.2 because once known fully 

parametric model is specified for X, by the inverse transform theorem, Xu, the cdf of X, is 

necessarily strictly monotonic. Therefore, if one can argue that assumption IV4.1 is 

satisfied, in addition to IV1-IV3, the GCF induces CIND between X and Y
X*  and hence 

identifies heterogenous effects. 

THEOREM: Given the expression in (34) and under assumptions IV1-IV4 above, 

conditional on V = [X
o
  Xu = H(X, W; δ)], X and Y

X*  are independent. 

Proof 

By IV1-IV2 we have 

 Y
X*  ⊥ (W

+
| Xo, Xu) 

Given (34) and IV4.2, (35) holds where H(X, W; δ) is one-to-one function of Xu. 

⟹      Y
X*  ⊥ (W

+
| Xo, Xu = H(X, W; δ))  

IV2-IV3 (the variation in W+ generates an exogenous variation in X that is independent of 

Xu) and (34) implies 

 Y
X*  ⊥ (H-1(Xu, W; δ )|Xo, Xu = H(X, W; δ)) 

⟹ Y
X*  ⊥ (X|Xo, Xu= H(X, W; δ)) □ 

Theorem 1 establishes that the proposed approach satisfies the CIND needed to identify 

the conditional mean in (31) and the corresponding AIE in (32). Because Xu entails full 

information about the residual, I call the proposed approach as the generalized control 

function (GCF) approach.21  

 
21 The GCF identification argument here is closely related to those put forth for less 

parametric cases by Imbens and Newey (2002, 2009), Newey, Powell and Vella (1989) 
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 Following the result from theorem 1, we can substitute H(X,W; δ) for Xu in (33) to 

obtain the relevant DGP as 

 pdf(Y|X, Xo, H(X,W; δ)) = f(Y|X, W, H(X,W; δ); π)  

  = [ G
(ζEM

*
| Xo, H(X,W; δ))

EM
(ζ

EM
, X, Xo, H(X,W; δ); τEM) ]

I(Y = 0)

 

  × [(1 −  G
(ζEM

*
| Xo, H(X,W; δ))

EM
(ζ

EM
, X, Xo, H(X,W; δ); τEM))  

  ×

g
(ζ

IM

*
|Y

X*  > ζ
IM

, Xo, H(X,W; δ))

IM (Y,X, Xo, H(X,W; δ); τIM) 

1 ‒ G
(ζIM

*
| Xo, H(X,W; δ))

IM
(ζIM, X, Xo, H(X,W; δ); τIM)

]

1 ‒ I(Y= 0)

  

          (38) 

The corresponding conditional mean is  

 E[Y | X,W, H(X,W; δ)] = (1 ‒ G
(ζEM

*
| Xo, H(X,W; δ))

EM
(ζ

EM
, X, Xo, H(X,W; δ); τEM))   

  ×

∫ Yg
(ζ

IM

*
|Y

X* > ζ
IM

, Xo, H(X,W; δ))

IM (Y, X, Xo, H(X,W; δ); τIM)dY
∝
ζIM

 

1 ‒ G
(ζIM

*
| Xo, H(X,W; δ))

IM
(ζIM, X, Xo, H(X,W; δ); τIM)

   

          (39) 

Evaluating (39) at  Xpre+∆ and  Xpre  and finding the difference and averaging over the 

entire Xo and H(X,W; δ) yields a version of the AIE in (32). The deep parameters of the 

model in (38) and the AIE based on (39) can be estimated by a two-stage GCF approach 

(more detail later). We first discuss in the next section a more efficient approach to 

estimating these deep parameters. 

 

and Heckman and Robb (1986). It is also related to the fully parametric case in Terza 

(2009) where the X is assumed to be binary. 
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4.3 Full Information Maximum Likelihood Estimation of the Deep Parameters 

 A Full Information Maximum Likelihood (FIML) model for the 2PM is constructed 

based on the joint pdf of Y and X conditional on W and deep parameter vectors. The FIML 

model has the attractive that it implies a FIML estimation that provides asymptotically 

efficient estimates of the vector of deep parameters. We write a generic FIML model as 

 f(Y, X|Xu, W)(Y, X, Xo,Xu; τ, δ) = ∫ f(Y, X, Xu|W)(Y, X, Xo, Xu; τ)dXu

∞

-∞
 

since Xu is unit uniform, we have  

 = ∫ f(Y, X, Xu|W)(Y, X, W, Xu; τ, δ)dXu

1

0
   

Further simplifying yields 

 = ∫ f(Y|X, Xu, W)(Y, X, W, Xu; τ, δ)×g
(X, Xu|W)

(X, W, Xu; δ)dXu

1

0
   

where g
(X, Xu|W)

(Y, X, W, Xu; δ) is the joint pdf of X and Xu conditional on W and a vector 

of parameter δ. The GCF implies that Xu is unit uniform and the variation in X due to 

variation in W is independent of Xu. Thus, 

 g
(X, Xu|W)

(X, W, Xu; δ) = g
(X|W)

(X, W, Xu; δ)× g
(Xu)

(Xu) 

where g
(X| W)

(X, W, Xu; δ) is the pdf of X conditional on Xu, W and the parameter vector 

δ; g
(Xu)

(Xu) is the pdf of the unit-uniform random variable Xu which equals 1. Therefore, 

the joint pdf of Y and X conditional on W and deep parameter vectors is   

 f(Y, X|Xu, W)(Y, X, Xo,Xu; τ, δ) = f(Y|X, Xu, W)(Y, X, W, Xu; τ, δ)×g
(X|W)

(X, W, Xu; δ) 
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Substituting Xu = H(X,W; δ) from (35), the joint pdf upon which the FIML model is based 

is given as 

 f(Y, X|Xu, W)(Y, X, Xo,Xu; τ, δ) = f(Y|X, Xu, W)(Y, X, W, H(X,W; δ) ; τ) 

     ×g
(X|W)

(X, W, H(X,W; δ))    

          (40) 

The conditional pdf in (40) is a FIML model for the FP2PM with GCF that affords a FIML 

estimation. I call the MLE of the deep parameter vectors (τ, δ) based on the log-likelihood 

function of the pdf in (40) as the Generalized Control Function-Full Information Maximum 

Likelihood (GCF-FIML) estimator. 

 To obtain the specific GCF-FIML estimator of the deep parameter vectors, specific 

functional forms for the EM and IM need to be specified. In traditional 2PM framework, 

different functional forms are specified for the EM and the IM components. For instance, 

for modeling a continuous outcome in 2PM context, a logit EM and a gamma IM can be 

specified (Biener et al, 2020). However, as demonstrated in Hao and Terza (2018), such 

difference in structure is not needed. In a generic FP2PM, Hao and Terza (2018) 

analytically and via simulation show the robustness of maintaining NSD assumption for 

the EM and IM. In the context of the conditional pdf in (38) and a specific version of the 

joint conditional pdf in (40), this amounts to setting 

 G
(ζEM

*
| Xo, H(X,W; δ))

EM
(ζ

EM
, X,  Xo, H(X,W; δ); τEM)   to have a functional form that is the 

same as G
(ζ

IM

*
| Xo, H(X,W; δ))

IM
(Y,X, Xo, H(X,W; δ); τIM) . Specifying the FP2PM this 



62 

way allows a formulation of a statistical test for the null hypothesis that “no 2PM is needed” 

in a particular empirical context. Once NSD is maintained the only source of the systematic 

difference between the process that generates zero values and that which determines the 

strictly positive values comes from a difference in the deep parameter vectors for the two 

components of the 2PM. This parametric difference refers to the possibility that the 

parameter vectors τEM and  τIM in (38) are different. In the next subsection, a functional 

form is specified for the 2PM with NSD between the EM and the IM components. To 

appease any concern with misspecification of the fully parametric model, I assume a very 

flexible distribution for the EM and IM components of the 2PM as well as for the 

endogenous variable.  

4.3.1 Specification of the Conditional Density with NSD 

 I specified a GG distribution for both the EM and IM components as well as for the 

endogenous variable.  GG is parametrically very flexible distribution that subsumes several 

known distributions such as the Weibull, exponential, the standard gamma, and so on. The 

GG has been discussed and is being increasingly utilized in health economics and health 

service research methodology (Manning et al. 2005, Liu et al. 2010, Smith et al, 2015). The 

GG is particularly useful to fit continuous outcomes in empirical health economics (e.g 

health care cost) that are characterized by nonnegative values with long tail. Such a flexible 

distributional assumption appeases concern for misspecification of the functional form.22  

 
22 The generalized linear model (GLM) is extensively employed modeling framework to 

analyze the IM component in continuous 2PM (e.g Biener et al. 2020; Cawley et al. 2015; 

Chang and Mayerhoefer, 2016) Despite the fact that choosing an appropriate link and 

variance functions are the key for the performance of GLM estimators, no theoretically 

well-grounded procedure is available to guide these choices.  Some tests such as the Park 

Test (Pregbon, 1980) and a modified Hosemer-Lemeshow test (Hosemer and Lemeshow, 

1995) can be used to diagnose but not to fix misspecification of the link function. The 
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 Accordingly, the specific version of the conditional joint pdf in (40) for the 2PM 

with a GG distributional assumption for both the outcome and the continuous endogenous 

variable is  

 f(Y, X|W, H(X,W; δ))(Y, X, W, H(X,W; δ); π) 

    = [GG
(ζEM

+
 | X, W, H(X,W; δ))

EM
(ζ

EM
, Xβ

X1
+ Xoβ

o1
+ GG(X | W)(X, W; δ)β

u1
, σEM,κEM)]

I(Y = 0)

    

× [(1 ‒ GG
(ζEM

+
 | X, W, H(X,W; δ))

EM
(ζ

EM
, Xβ

X1
+Xoβ

o1
+ GG(X | W)(X, W; δ)β

u1
, σEM, κEM)) 

 ×

gg
(ζ

IM

+
 | X, W, H(X,W; δ))

IM (Y, XβX2+Xoβo2+ GG(X | W)(X, W; δ)βu2; σIM, κIM) 

1 ‒ GG
(ζIM

+
 | X, W, H(X,W; δ))

IM
(ζIM, XβX2+Xoβo2+ GG(X | W)(X, W; δ)βu2; σIM, κIM)

]

1 ‒ I(Y = 0)

 

 ×gg
(X | W)

(X, Wδ ; σδ, κδ)       

          (41) 

where π' = [δ'     β
1

'
     σEM     κEM     β

2

'
     σIM     κIM] is the deep parameter vector such 

that δ' = [δW     σδ     κδ] ; β
1

' = [β
X1

     β
o1

'     β
u1

] ; β
2

' = [β
X2

     β
o2

'     β
u2

] ; ζXM

+
 is the 

component of the DGP that may be observed as a strictly positive outcome depending on 

whether or not it passes an unknown parametric threshold in the XM component of the 

2PM.  GG
(A|B )
XM

(A, b, c, d)  and gg
(A|B )
XM (A, b, c, d) are the cdf and pdf, respectively, 

of a GG random variable A given B for the XM component of the 2PM with location 

 

modified Park Test suggested by Manning and Mullahy (2001) might be used to specify 

the variance function conditional on appropriately specified link function but this test relies 

on strong assumptions. On the other hand, the GG subsumes all the popular GLM 

specifications. 
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parameter b and shape parameters c and d. GG(X | W)(X, W; δ) and gg(X | W)(X, W; δ) are 

also the cdf and pdf, respectively, of a GG random variate X given W with parameter vector 

δ. The specific expression for the pdf and cdf of the GG are given in (21) and (23), 

respectively. 

 The shape parameters σEM and κEM are not, however, identified. Nevertheless, the 

following reduction is admissible (more detail later).23 

  GG
(ζEM

+
|X, W, G(X,W; δ))

EM
(ζ

EM
, Xβ

X1
+ Xoβ

o1
+ GG(X,W; δ)β

u1
, σEM,κEM) 

  = SG(exp(Xβ
X1

p
+Xoβ

o1

p
+ GG(X,W; δ)β

u1

p
; ν)    

          (42) 

where SG (h, j) is the standard gamma variate evaluated at h with shape parameter j, β
X1

p
 = 

‒ p
EM

β
X1

, β
o1

p
 = ‒ p

EM
β

o1
 and β

u1

p
 = ‒ p

EM
β

u1
 with its constant term shifted by 

[p
EM

ln(ζ
EM

)+
1

pEM

ln(νEM) ]. Combining (41) and (42), we obtain an approximation for the 

conditional joint pdf in (41) as 

 f(Y, X|W, H(X,W; δ))
~ (Y, X, W, GG(X,W; δ); π)     

=  [SG(exp(Xβ
X1

p
+Xoβ

o1

p
+ GG(X,W; δ)β

u1

p
; ν) ]

I(Y = 0)
 

× [(1 − SG(exp(Xβ
X1

p
+Xoβ

o1

p
+ GG(X,W; δ)β

u1

p
; ν)  

 
23 See Hao and Terza (2018) for a simulation evidence on the consistency of an estimator 

for an AIE based on such an admissible reduction. 
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 ×

gg
(ζ

IM

+
|X, W, H(X,W; δ) )

IM (Y, XβX2+Xoβo2+ GG(X,W; δ)βu2; σIM,κIM) 

1 ‒ GG
(ζIM

+
|X, W, H(X,W; δ))

IM
(ζIM, XβX2+ Xoβo2+ GG(X, W; δ)βu2;  σIM,κIM)

]

1 ‒ I(Y = 0)

 

  × gg
(X | W)

(X, Wδ ; σδ, κδ)       

          (43)  

The vector of deep parameters π can be estimated by maximizing the following log-

likelihood function based on (43). 

 L(π|Y, X, W)= ∑ ln (f(Y, X|W, H(X,W; δ))
~ (Yi, Xi, Wi, GG(Xi,Wi; δ); π) )n

i=1    

          (44) 

where, Yi, Xi, and Wi are the values of Y, X, and W observed for the ith individual in the 

sample (i = 1, 2, …, n). ζ
IM

 is estimated by the minimum order statistics i.e., the smallest 

non-zero value in the sample. An estimator of the AIE in (32) can then be derived by 

plugging in the deep parameter estimates of the above log-likelihood function and the 

minimum order statistics ζ
IM

 for the corresponding deep parameter vectors and replacing 

the expectation operators by summation notation. Hence, the AIE estimator is 

 AIE(∆)  = ∑ [(1 ‒SG(exp((Xi
pre

 + ∆i)β̂X1

p
+Xoiβ̂o1

p
+ GG(Xi,Wi; δ̂)β̂

u1

p
; ν)n

i=1     

  ×
∫ YiggIM(Yi, (Xi

pre
 + ∆i)β̂X2+Xoiβ̂o2+ GG(Xi,Wi; δ̂)β̂u2; σ̂IM, κ̂IM) dY

Ymax
ζ̂IM

 

1 ‒ GGIM(ζ̂IM, (Xi
pre

 + ∆i)β̂X2+Xoiβ̂o2+ GG(Xi,Wi; δ̂)β̂u2; σ̂IM,κ̂IM)
] 

  ‒ ∑ [(1 ‒ SG(exp(Xi
pre

β̂
X1

p
+ Xoiβ̂o1

p
+ GG(Xi,Wi; δ̂)β̂

u1

p
; ν)n

i=1   
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  ×
∫ YggIM(Yi, Xi

pre
β̂X2+Xoiβ̂o2+ GG(Xi,Wi; δ̂)β̂u2; σ̂IM, κ̂IM) dY

Ymax
ζ̂IM

 

1 ‒ GGIM(ζ̂IM, Xi
pre

β̂X2+Xoiβ̂o2+ GG(Xi,Wi; δ̂)β̂u2; σ̂IM, κ̂IM)
]   

          (45) 

where π̂' = [δ̂     β̂
X1

p
     β̂

o1

p '
     β̂

u1

p
     β̂

X2
     β̂

o2

p '
     β̂

u2

p
     σ̂IM     κ̂IM] is a vector of the MLE 

estimates, ζ̂
IM

 and Ymax  are the minimum and maximum values of Y in the sample, 

respectively. For notational clarity, the subscripts in the gg and GG are suppressed. I call 

the AIE estimator in (45) the GCF-FIML based AIE estimator. The asymptotic standard 

errors of the MLE for the deep parameter in (45) can be obtained using the approach in 

Terza (2017). 

4.3.2 Hypothesis Testing 

 The proposed approach affords easy-to-implement procedures for testing two 

crucial hypotheses in the context of the FP2PM framework where the X is a continuous 

endogenous variable. These are testing procedures for the null hypotheses that “no 2PM is 

needed” and “the causal variable of interest is exogenous”. Below I discuss each of them. 

4.3.2.1 Testing the “No 2PM is needed” Null Hypothesis 

 As mentioned earlier, the main features of the 2PM is that it allows the process 

governing the zero outcomes to systematically differ from that which determines strictly 

positive outcomes. Practically, the choice regarding the 2PM as the analytical framework 

in a given empirical context is guided by the presence of excess zeros and/or a theoretical 

ground. For example, in the health utilization research, analysts put forward two 

justifications for using the 2PM. First, a substantial proportion of individuals in a given 

sample have zero health care expenditure. Second, the decision to spend the first dollar is 



67 

determined entirely by the patient while subsequent decisions are largely influenced by 

physicians (Pohlmeier and Ulrich, 1995). Testing statistically whether the 2PM is needed 

can, therefore, facilitate the choice of parsimonious model while providing insight into 

important theoretical predictions. 

 I developed a “no 2PM is needed” hypothesis testing procedure by utilizing the 

NSD assumption and by arguing that a certain reduction of unidentified ancillary 

parameters of the EM is admissible.24  The NSD assumption implies that  

 G
(ζEM

*
| Xo, Xu)

EM
(ζ

EM
, X,  Xo, H(X,W; δ); τEM) and G

(ζ
IM

*
| Xo, Xu )

IM
(Y,X, Xo, H(X,W; δ); τIM) 

have same functional forms. In our case, the underlying EM latent variable and the 

observed IM component for those units with strictly positive outcome are assumed to have 

a GG distribution. Next, I argue that the following reduction of the version of the model 

given in (41) is admissible.  

 f(Y, X|W, H(X,W; δ))(Y, X, W, H(X,W; δ); π) 

= [
                    

GG
(ζEM

+
 | X, W, GG(X | W)(X,W; δ))

EM
(ζ, Xβ

X1
+ Xoβ

o1
+ GG(X | W)(X, W; δ)β

u1
 ;σ, κ)]

I(Y = 0)

 

× [(1 ‒ GG
(ζEM

+
 | X, W, GG(X | W)(X,W; δ))

EM
(ζ, Xβ

X1
+Xoβ

o1
+ GG(X | W)(X, W; δ)β

u1
; σ, κ)) 

×

gg
(ζ

IM

+
 | X, W, GG(X | W)(X,W; δ))

IM (Y, Xβ
X2

+Xoβ
o2

+ GG(X | W)(X, W; δ)β
u2

;σ, κ) 

1 ‒ GG
(ζIM

+
 | X, W, GG(X | W)(X,W; δ))

IM
(ζ, Xβ

X2
+Xoβ

o2
+ GG(X | W)(X, W; δ)β

u2
; σ, κ)

]

1 ‒ I(Y = 0)

 

 
24 See the discussion in Terza (1985) about admissible reduction. 
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   × gg
(X | W)

(X, Wδ ; σδ, κδ)        

          (46) 

In other words, (46) implies that the following reduction of the model is admissible (i.e., it 

reduces the number of parameters to be estimated but does not distort the probability 

densities as assigned by the DGP).   

 σEM = σIM = σ  

 κEM  = κIM = κ   

 ζ
EM

+
 = ζ

IM

+
 = ζ

+
 

As the basis for this argument let 

  α = 
exp(XβX1+Xoβo1 + GG(X | W)(X, W; δ)βu1)

(ν)

1
p

 

 where 

 ν =
1

|κEM|2
 

and 

 p = 
κEM

σEM
  

Given that  ζ
EM

+
 is a GG variate with parameters Xβ

X1
+ Xoβ

o1
+ GG(X | W)(X, W; δ)β

u1
, 

σEM and κEM, we have that 



69 

 (
 ζEM

+

α
)

P

 

is a standard gamma variate with shape parameter ν (Crooks, 2010). We seek a 

representation of the probability that  

  ζ
EM

+ ≤ ζ
EM

 

and, given that α is positive, this is equivalent to 

 
 ζEM

+

α
 ≤  

ζEM

α
  

Therefore, for p > 0   

 (
 ζEM

+

α
)

p

 ≤ (
ζEM

α
)

p

 

Now 

 (
ζEM

α
)

p

= exp (ln [(
ζEM

α
)

p

]) 

 = exp (p ln (
ζEM

α
)) 

 = exp (p ln(ζ
EM

) ‒ p { ln[exp(Xβ
X1

 + Xoβ
o1

 + GG(X, W; δ)β
u1

)] ‒ 
1

p
ln(ν)}) 

 = exp(p ln(ζ
EM

) ‒ p(Xβ
X1

 + Xoβ
o1

+ GG(X, W; δ)β
u1

) + ln(ν)) 

 = exp(p ln(ζ
EM

) + ln(ν) + X(‒pβ
X1

) + Xo(‒pβ
o1

)+ GG(X, W; δ)(‒pβ
u1

) ) 

 = exp(Xβ
X1

o
 +Xoβ

o1

o
+ GG(X, W; δ)β

u1

o ) 
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where β
X1

o
 =  ‒pβ

X1
, β

u1

o
 =  ‒pβ

u1
 and β

o1

o
 is the same as ‒pβ

o1
 with its constant term 

shifted by p ln(ζ
EM

) + ln(ν).  Therefore, for the probability that  ζ
EM

+ ≤ ζ
EM

 we have 

 Pr(ζ
EM

+ ≤ ζ
EM

) =  GG(ζ
EM

; Xβ
X1

+ Xoβ
o1

+ GG(X,W; δ)β
u1

, σEM, κEM) 

       = SG(exp(Xβ
X1

o
 +Xoβ

o1

o
+ GG(X, W; δ)β

u1

o ); ν).   

          (47)  

This discussion clearly demonstrates the fact that the values of ζ
EM

 and σEM are absorbed 

by β
X1

o
, β

o1

o
  and  β

u1

o
 so that they are not identified.  Their values are, in this sense, arbitrary.  

This, of course, means that 

 ζ
EM

 =  ζ
IM

 = ζ   

 σEM  = σIM = σ 

constitutes an admissible reduction. The argument for the admissibility of the reduction 

 κEM  = κIM = κ 

seems not as clear-cut.  In essence, we seek to examine the extent to which κEM is absorbed 

by β
X1

o
, β

o1

o
  and  β

u1

o
. In a simulation analysis, I demonstrated that fixing the value of κEM, 

and hence ν, at any arbitrary level does not affect the consistency of an AIE estimator, 

which is based on a likelihood function that is constructed from the conditional pdf in 
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(47).25 Thus, the “no 2PM model is needed” null amounts to setting the β parameters of the 

EM and IM component equal. i.e., 

  Ho: β
i1

= β
i2

= β   

  H1: Ho is not true 

for i = 1,2,…K where K is the number of deep parameter coefficients. Thus, the relevant 

joint pdf conditional on Xo, and H(.) under the null becomes  

   f(Y, X|W, H(X,W; δ))
~ (Y, X, W, GG(X,W; δ); π)     

=  [SG(exp(p ln(ζ) + ln(ν) + X(‒pβ
X

) + Xo(‒pβ
o
)+ GG(X, W; δ)(‒pβ

u
); ν) ]

I(Y = 0)
 

× [(1 − SG(exp(p ln(ζ) + ln(ν) + X(‒pβ
X1

) + Xo(‒pβ
o1

)+ GG(X, W; δ)(‒pβ
u1

); ν)  

      ×

gg
(ζ

IM

+
|X, W, H(X,W; δ) )

IM (Y, XβX+Xoβo+ GG(X,W; δ)βu; σ, κ) 

1 ‒ GG
(ζIM

+
|X, W, H(X,W; δ))

IM
(ζ, XβX+ Xoβo+ GG(X, W; δ)βu; σ, κ)

]

1 ‒ I(Y = 0)

    

      × gg
(X | W)

(X, Wδ ; σδ, κδ)        

          (48)  

This is a version of the joint pdf in (43) with the “no 2PM is needed” null imposed. The 

corresponding approximate log-likelihood function is 

 LHo
(λ | Y, X, W) = ∑ ln [f(Yi, Xi, Wi, GG(Xi,Wi; δ); λ)]n

i=1    

 
25 See appendix II for a detail discussion of the simulation design and the results. 
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LHo
(. | .) denote the log-likelihood function to be maximized under the null. Given the 

unrestricted log-likelihood in (44), the likelihood ratio (LR) statistics  

 LR = ‒2×[L(π|Y, X, W) ‒ LHo
(λ|Y, X, W) ]     (49) 

has a χ
(Kπ ‒ Kλ)
2  where χ

(Ka ‒ Kb)
2  denotes the chi-square distribution with the degrees of 

freedom equal to the difference between the number of parameters in vectors a and b. 

4.3.2.2 Testing for Exogeneity 

 In general, control function (CF) approaches address endogeneity by constructing 

a function that when conditioned on is supposedly induce CIND between the observed 

causal variable of interest and the potential outcomes. CF approaches naturally affords a 

simple procedure to test the null hypothesis that the causal variable of interest is exogenous. 

In particular, a t-test on the coefficient of the control function can be conducted to test if 

there is an evidence for endogeneity of the X. The deep parameters in our case are, however, 

more than one. In particular, under the GG specification the null (Ho) and the alternative 

(H1) hypotheses for testing exogeneity of the X are  

 Ho: β
1u

= 0 and β
2u

=0         

 H1: Ho is not true 

Similar to the test for “no 2PM is needed”, the log-likelihood function under the null is a 

version of (48) with the restriction of the Ho . Because such log-likelihood is a nested 

version of the log-likelihood in (44), a likelihood ratio test statistic can be obtained by 

multiplying the difference in the log-likelihood values under H1  and Ho  by 2 which is 
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distributed as χ(2)
2 . Unlike two-step estimation protocols, because the proposed GCF-FIML 

is a one-step FIML estimator, it provides correct standard errors regardless of the decision 

about the above null hypothesis.  

4.4 Simulation Study: Validating the Consistency of the GCF-FIML Based AIE Estimator 

and Comparing its Performance with Alternative Approaches 

 In this section, I demonstrate the implementation of the GCF approach, validate the 

consistency of the GCF-FIML based AIE estimator in (45) for a version of the AIE in (32) 

and compare its performance to four alternative estimators: namely, the two-stage residual 

inclusion (2SRI), the two-stage least square (2SLS), the two-stage predictor substitution 

(2SPS) and the two-stage Generalized Control Function (2SGCF) estimator. I first present 

the data generator for the true model in (38). Then the sampling design for generating a 

pseudo sample is presented. This will be followed by the analytical detail of the four 

alternative estimators. At the end of this section, the results of the simulation will be 

discussed. 

4.4.1 The Data Generator 

 In order to conduct the simulation study, first, I develop Stata/Mata code for the 

true model in (41). The protocol for the simulator is as follows: 

 1) Choose the elements for the parameter vector 

 π' = [δ'   σδ     κδ     β
1

'
     σEM     κEM     β

2

'
     σIM     κIM]   and the unobserved 

parametric thresholds  ζ
EM

 and ζ
IM

. 
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 2) Generate a sample of simulated data for Xo  and W+ ; each assumed to be 

uniformly distributed with mean and variances chosen as part of the sampling design. 

 3) Generate a sample of simulated data for X from a GG distribution as 

 X =  GG(X | W)
‒1

(U[0, 1], Xoδo
'
+W+δW+

'
, σX, κX)   

   = aX × SG
‒1

(νX, U[0, 1])
1

pX      (50) 

with a specified parameter vector δ' = [δW
'

  σX   κX]  where δW
'

 = [δ
W+   δXo

    δcon], the 

coefficient vector for the linear index δW that represents the location parameter, and σX 

and  κX denote the shape parameters of the distribution. δcon is an intercept term of the 

linear index δW. As specified in (24), aX =  
exp(Xoδo

'
+W+δ

W+
'

)

(
1

|κX|
2

)

1
pX

, νX =
1

|κX|
2 and p

X
 =

κX

σX
. 

 4) Recover the values for Xu by calculating the cdf of X i.e.,   

  Xu = GG
(X | W)

(X; Xoδo
'
+W+δW+

'
, σX, κX)    (51) 

 5) Generate a sample of outcomes at the EM (Y = 0 or not) i.e., 

 EM = 1 iff 

 GG
(ζEM

+
 | X, W, H(X,W; δ))

EM
(ζ

EM
, Xβ

X1
+Xoβ

o1
+ GG(X | W)(X, W; δ)β

u1
, σEM, κEM) > U  

          (52) 

where U is a unit uniform random variable.  
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 6) Complete the construction of the sample by simulating the IM values for the 

subpopulation of units for whom the EM = 1 . These values need to be drawn from 

appropriately specified truncated distribution. Below I extend the derivation of the data 

generator for the truncated GG distribution discussed in Hao and Terza (2018) for the case 

where the X is endogenous. 

 A version of the cdf of a GG variate in (23) can be written in an important way as 

    SG(ν, ( ζ a⁄ )
p
)  if p > 0 

 GG(ζ, Xβ, σ, κ) =        (53)  

    1 ‒  SG(ν, ( ζ a⁄ )
p
) if p < 0 

where Xβ is a linear index, a = 
exp(Xβ)

(
1

|κ|
2
)

1
p

, νIM =  
1

|κ|2, p =
κ

σ
 and ζ is unobserved parametric 

threshold. (52) implies that for p > 0,  

 GG
‒1 

(P, Xβ, σ, κ) = a× [SG
‒1

(P ; ν,1)]
1

p    

where P is a value in the unit interval and GG
‒1 

(P; c, d, e) is the inverse cdf of a GG 

variate with parameters c, d and e evaluated at P. For a truncated GG random variable, a 

version of the cdf in (29) is given in a shorthand notation as     

 GG
* 

(Y; Xβ
X2

+ Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM) 

=
GG(Y ≥ζIM)(Y; Xβ

X2
+Xoβ

o2
+ GG(X,W; δ)β

u2
, σIM, κIM) 

1 ‒ GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM,κIM)
 

          (54) 
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where GG
* 

(Y; c, d, e, ζ) is the cdf of a truncated GG for Y with parameters c, d and e 

truncated at ζ. Now (54) implies that I can generate a truncated GG random variable y 

based on   

 [1 ‒ GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM,κIM) ]×U(0,1) 

 = GG(Y ≥ζIM)(Y; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM)  (55) 

We want to use GG
‒1 

(Y; c, d, e)  not GG(Y ≥ζIM)
‒1

(Y; c, d, e)  to generate the desired 

random variable. To achieve this, adding to both sides of (55) the following term 

GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM) gives 

 [1 ‒ GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM,κIM) ]×U(0,1) +  

 GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM) 

 = GG(y; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM)   (56) 

where the right side is the sum of GG(Y ≥ζIM)(Y; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM) 

and GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM). From (56), it follows that 

 y = GG
‒1 

(A; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM)  (57) 

where  

A = [1 ‒ GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM) ]×U(0,1) +   

 GG(ζ
IM

; Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

, σIM, κIM) 
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To complete the data generation,  

 5a) Generate U(0,1) 

 5b) Obtain the linear index Xβ
X2

+Xoβ
o2

+ GG(X,W; δ)β
u2

 based on 1) to 4) above. 

 5c) Plug the values from 5a, 5b and the parameter values  σIM and κIM into (56) to 

get the desired pseudo random variable y. 

4.4.2 The Sampling Design 

 To validate the consistency of the GCF-FIML based AIE estimator for a version of 

the AIE in (32) and to compare its performance with the alternative estimators such as the 

2SRI, 2SLS, 2SPS and 2SGCF, the following sample design is considered.  

 1) To generate pseudo values for X, I set 

  δW
'

 = [δ
W+   δXo

    δcon] = [0.75     ‒0.5     ‒1] 

for the linear index coefficients. The means and variances of Xo  and W+  are set to be 

E[X
o
] = 1, E[W+] = 1, Var[X

o
] = 0.45 and Var[W

+
] = 1. I also set values for the shape 

parameters as σX = 0.51 and κX = 0.25. 

 2) For generating the values at the EM, I set the values for the linear index 

coefficients, the shape parameters and the parametric threshold for (52) as follows 

 [β
X1

     β
u1

     β
o1

'] = [0.4      0.8     ‒0.5     0.25]   

where β
o1

' = [β
Xo1

   β
cons1

] are the coefficients for Xo and the intercept, respectively.  

 σEM = 0.5    
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 κEM = 1 

  ζ
EM

 = 0.75 

Note that σEM, κEM and ζ
EM

 are not identified in 2PM. 

 3) Similarly, to generate the pseudo values, the following parameter values for (57) 

are set 

 [β
X2

     β
u2

     β
o2

'] = [0.5      0.25     ‒0.5     0.5]  

where β
o2

'= [β
Xo2

   β
cons2

] are the coefficients for Xo and the intercept, respectively.  

 σIM  = 1.5    

 κIM =  1.5 

  ζ
IM

 = 2 

 4) For testing the consistency of the AIE based on the proposed approach, samples 

of increasing size are generated based on the above sampling design. In particular, the 

samples are generated with the following sizes. 

 n = 1,000    

 n = 5,000     

 n = 15,000         

 n = 25,000   

 n = 50,000   

 n = 100,000   
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 n = 250,000   

 n = 500,000  

4.4.3 Alternative Approaches to Correcting Endogeneity in the 2PM 

 In sections 4.2 and 4.3 I presented detailed discussion on the proposed GCF 

identification approach and the implied GCF-FIML estimator for correcting endogeneity 

in a FP2PM framework from the potential outcomes perspective. In this sub-section, I 

layout four alternative approaches for correcting endogeneity mentioned at the beginning 

of section 4.4. These approaches except the 2SGCF are employed in empirical research in 

the context of the 2PM with continuous outcome and continuous endogenous variable. Like 

the GCF-FIML approach, all of these approaches use an IV to identify CI parameters. To 

facilitate comparison with the proposed approach, these alternative approaches are cast 

within the GPOF. Thus, I commence the discussion on this sub-section by assuming that 

the conditional pdf in (30) holds.  

4.4.3.1 The Two-Stage Residual Inclusion Approach26 

 This approach requires only specification of the conditional mean function for the 

outcome and endogenous variables. To facilitate comparison with the proposed approach, 

I instead focus on a 2SRI approach based on a FP2PM. Such approach helps provide a 

correct specification for the conditional mean and also improves the efficiency of estimated 

parameters.  Terza, Basu and Rathouz (2008) suggested the following auxiliary regression 

for the endogenous variable. 

 
26 The 2SRI estimation approach, popularized by Terza, Basu and Rathouz [TBR] (2008), 

is a control function approach for estimating causal effects in a general additive non-linear 

triangular model in which nonlinear models are specified both for the outcome and 

endogenous variables such that the former does not causally affect the later. 
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 X = r(W; δ) + Xu       (58) 

where r( . ) is a known conditional mean function. Extending the assumption of a GG 

distribution for the X to this context, we have       

 r(W; δ) = exp {Wξ + (σ/κ) × ln(κ2) + ln[Γ( 1
κ2⁄ ) + (σ/κ)] ‒ ln[Γ( 1

κ2⁄ )] }  

          (59) 

where the right-hand side is an expression for the conditional mean of a GG variate X. 

Although δ' = [ξ'     σ   κ] can be consistently estimated by using non-linear least square 

(NLS), by taking advantage of a known distributional assumption for X, a more efficient 

estimate for the parameter vector δ can be obtained via MLE. Invoking the standard IV 

conditions IV2-IV3 (in addition to the IV1 that ensures exclusion of W+ from the specified 

model for the outcome), TBR argue that the following raw residual can serve as a control 

function that induces CIND between X and Y
X* . 

 X̂u = X ‒ r(W; δ̂)       (60) 

By plugging (60) for Xu  into a version of (41) where the standard gamma admissible 

reduction replaces the GG in the EM, the relevant conditional pdf is given as 

 pdf(Y | X, Xo, Xu) = [SG(exp(Xβ
X1

2SRIp
+Xoβ

o1

2SRIp
+ X̂uβ

u1

2SRIp
; 1) ]

I(Y = 0)

 

  × [(1 − SG(exp(Xβ
X1

2SRIp
+Xoβ

o1

2SRIp
+ X̂uβ

u1

2SRIp
; 1))  
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  ×

gg
(ζ

IM

*
|Y

X* > ζ
IM

, Xo, Xu)

IM (Y; XβX2
2SRI

+Xoβo2
2SRI

+ X̂uβu2
2SRI

, σIM
2SRI, κIM

2SRI)  

1 ‒ GG
(ζIM

*
| Xo, Xu)

IM
(ζIM; XβX2

2SRI
+Xoβo2

2SRI
+ X̂uβu2

2SRI
, σIM

2SRI, κIM
2SRI)

]

1‒I(Y = 0)

 

          (61) 

The deep parameter vectors τEM
2SRI' = [β

X1

2SRIp
    β

o1

2SRIp
'

    β
u1

2SRIp
]  for the EM and 

τIM
2SRI' = [β

X2

2SRI
    β

o2

2SRI'
    β

u2

2SRI
    σIM

2SRI]  for the IM can then be estimated by maximizing the 

log-likelihood function based on (61). 27  The corresponding AIE estimator whose 

consistency for a version of the AIE in (32) will be evaluated is 28  

 AIE(∆)  = ∑ [(1 ‒SG(exp((Xi
pre

 + ∆i)β̂X1

2SRIp
+ Xoiβ̂o1

2SRIp
+ X̂uiβ̂u1

2SRIp
;1)n

i=1    

  ×
∫ YiggIM(Yi, (Xi

pre
 + ∆i)β̂X2

2SRI
+Xoiβ̂o2

2SRI
+ X̂uiβ̂u2

2SRI
; σ̂IM

2SRI
, κ̂IM

2SRI
) dY

Ymax
ζ̂IM

 

1 ‒ GGIM(ζ̂IM, (Xi
pre

 + ∆i)β̂X2

2SRI
+Xoiβ̂o2

2SRI
+ X̂uiβ̂u2

2SRI
; σ̂IM

2SRI
,  κ̂IM

2SRI
)

] 

  ‒= ∑ [(1 ‒ SG(exp(Xi
pre

β̂
X1

2SRIp
+ Xoiβ̂o1

2SRIp
+ X̂uiβ̂u1

2SRIp
;1)n

i=1   

  ×
∫ YggIM(Yi, Xi

pre
β̂X2

2SRI
+Xoiβ̂o2

2SRI
+ X̂uiβ̂u2

2SRI
; σ̂IM

2SRI
, κ̂IM

2SRI
) dY

Ymax
ζ̂IM

 

1 ‒ GGIM(ζ̂IM, Xi
pre

β̂X2

2SRI
+Xoiβ̂o2

2SRI
+ X̂uiβ̂u2

2SRI
; σ̂IM

2SRI
,  κ̂IM

2SRI
)

]  (62) 

 
27 The 2SRI model does not require a fully parametric specification for the outcome. In 

fact, by plugging (53) into a conditional mean function for the outcome, TBR show that 

the 2SRI is the best predictor in the sense of minimizing mean square prediction error. 

28  Corresponding to the result shown in the admissible reduction in (47), β
X1

2SRIp  =  ‒

pEM
2SRIβ

X1

2SRI
, β

o1

2SRIp  =  ‒pEM
2SRIβ

o1

2SRI
 and β

u1

2SRIp  =  ‒pEM
2SRIβ

u1

2SRI
 with its constant term shifted 

by [pEM
2SRIln(ζ

EM
2SRI)+

1

pEM

ln(νEM
2SRI) ]. 
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The consistency of the above 2SRI estimators for the AIE depends on whether or not the 

specified raw residual based on the auxiliary regression function for Xu  in (60) is correct. 

4.4.3.2 The Two-Stage Least Squares Approach 

 The 2SLS approach is one of the most widely used approach to estimate causal 

effects when the causal variable of interest is endogenous. Its applicability for 2PM is, 

however, limited because it ignores the nonlinearity in the EM and IM components of the 

2PM that is often inherent in many empirical settings. Some applied research, however, 

still use it mainly for its simplicity in estimation and interpretation. Under the 2SLS, the 

auxiliary regression model for X is specified as 

 X = δW + Xu        (63) 

which is typically estimated using the OLS approach. By IV3 and the minimally parametric 

version of IV2, the above model generates a variation in X that is independent of Y
X* , 

making  Xu redundant in the conditional mean function for the outcome. This exogenous 

variation in X is obtained from the predicted values based on the OLS estimates of δ in 

(63). These predicted value are given as 

 X̂ = δ̂W         (64) 

On the other hand, the minimally parametric version of IV1 ensures that W+ is excluded 

from the linear conditional mean function specified under 2SLS. This implies that the 

conditional mean is given by 
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 E[Y | X, Xo, Xu] =  E[Y |X, W]  

 = [αX1X̂ + αo1Xo]×[αX2X̂ + αo2Xo]     (65) 

where P(Y > 0|X, W) = [αX1(δ̂W) + αo1Xo]  and E[Y | 𝑌 > 0, X, W] = [αX2(δ̂W) + 

αo2Xo] are the conditional mean functions for the EM and IM components of the 2PM, 

respectively. The 2SLS AIE estimator for a version of (32) is, thus,  

 AIE(∆)  = ∑ [[(X̂i

pre
 + ∆i)α̂X1+ α̂o1Xoi]×[(X̂i

pre
 + ∆i)α̂X2 + α̂o2Xo]]n

i=1    

  ‒ ∑ [[X̂i

pre
α̂X1+ α̂o1Xoi]×[X̂i

pre
α̂X2 + α̂o2Xo]]n

i=1    (66) 

When the object of interest is causal estimation, Angrist (2001) argues that linear 

probability model for the EM component can often provide a good approximation to the 

conditional probability whether the X is binary, count or continuous. Black et al (2018), 

for instance, specified a linear IV model for the EM component of the 2PM to estimate 

health care cost of childhood obesity and find identical estimate as logit estimates. They 

also argue in favor of using 2SLS for the IM component of the 2PM because log health 

cost is approximately normally distributed. Linear approximation to the IM component is, 

however, problematic due to skewness and heavy tail that typically characterize many of 

the semi-continuous outcomes cast in a 2PM context. Although transformation of the 

continuous component of the IM mitigates these data problems, the issues involved in the 

retransformation of outcomes to the original scale makes 2SLS unattractive. 
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4.4.3.3 The Two-Stage Predictor Substitution Approach 

 The 2SPS is a rote extension of the 2SLS approach. The argument for the first stage 

regression is the same as the 2SLS approach where the auxiliary regression for X is 

specified as in (63) and the corresponding predicted values are obtained as in (64). These 

predicted values are then substituted in the second stage in a specified nonlinear conditional 

mean function. Like the 2SRI approach, I specify a FP2PM to evaluate the consistency of 

an AIE estimator for a version of (32) based on the 2SPS approach. The protocol for 

estimating an AIE under 2SPS approach is as follows: 

First stage 

Obtain the predicted values from a first stage linear regression of X on the vector of controls 

and instruments W like the one in (64).  

Second Stage 

Note that like the 2SLS, the 2SPS approach assumes that under the minimally parametric 

version of IV1-IV2 and IV3, the Xu is redundant. Therefore, the relevant conditional pdf 

can be obtained by substituting (64) for X in a version of (33) where Xu  is excluded. 

Assuming a GG for both the EM and IM components of the 2PM and using the standard 

gamma admissible reduction for the EM component, we have the relevant conditional pdf 

upon which the second stage estimation is based as 

 pdf(Y | X, Xo, Xu) = [SG(exp(X̂β
X1

2SPSp
+Xoβ

o1

2SPSp
; 1) ]

I(Y = 0)

 

  × [(1 − SG(exp(X̂β
X1

2SPSp
+Xoβ

o1

2SPSp
; 1))  
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  ×

gg
(ζ

IM

*
|Y

X* > ζ
IM

, Xo, Xu)

IM (Y; X̂βX2
2SPS

+Xoβo2
2SPS

+ X̂uβu2
2SPS

, σIM
2SPS, κIM

2SPS)  

1 ‒ GG
(ζIM

*
| Xo, Xu)

IM
(ζIM; X̂βX2

2SPS
+Xoβo2

2SPS
+ X̂uβu2

2SPS
, σIM

2SPS, κIM
2SPS)

]

1‒I(Y = 0)

 

          (67) 

The deep parameters of the above model can be estimated by maximizing a log-likelihood 

function based on (67) above. The corresponding 2SPS AIE estimator for a version of (32) 

is 29  

  AIE(∆)  = ∑ [(1 ‒SG(exp((X̂i

pre
 + ∆i)β̂X1

2SPSp
+ Xoiβ̂o1

2SPSp
; 1)n

i=1    

  ×
∫ YiggIM(Yi, (X̂i

pre
 + ∆i)β̂X2

2SPS
+Xoiβ̂o2

2SPS
; σ̂IM

2SPS
, κ̂IM

2SPS
) dY

Ymax
ζ̂IM

 

1 ‒ GGIM(ζ̂IM, (X̂i
pre

 + ∆i)β̂X2

2SPS
+Xoiβ̂o2

2SPS
; σ̂IM

2SPS
,  κ̂IM

2SPS
)

] 

  ‒ ∑ [(1 ‒ SG(exp(X̂i

pre
β̂

X1

2SPSp
+ Xoiβ̂o1

2SPSp
; 1)n

i=1   

  ×
∫ YggIM(Yi, X̂i

pre
β̂X2

2SPS
+Xoiβ̂o2

2SPS
; σ̂IM

2SPS
, κ̂IM

2SPS
) dY

Ymax
ζ̂IM

 

1 ‒ GGIM(ζ̂IM, X̂i
pre

β̂X2

2SPS
+Xoiβ̂o2

2SPS
; σ̂IM

2SPS
,  κ̂IM

2SPS
)

]   (68) 

 

 

 

29  Corresponding to the result shown in the admissible reduction in (47), β
X1

2SPSp  =  ‒

pEM
2SPSβ

X1

2SPS
, β

o1

2SPSp  =  ‒pEM
2SPSβ

o1

2SPS
 and β

u1

2SPSp  =  ‒pEM
2SPSβ

u1

2SPS
 with its constant term 

shifted by [pEM
2SPSln(ζ

EM
2SPS)+

1

pEM

ln(νEM
2SPS) ]. 
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4.4.3.4 The Two-Stage Generalized Control Function Estimator 

 The 2GCF is a two-stage estimator of the conditional pdf given in (38). It is an 

estimator of the deep parameter vector in (38) that is computationally less demanding yet 

less efficient than the GCF-FIML estimator, a one-step MLE estimator based on the joint 

pdf in (43). The procedure for estimating the deep parameter vector in (38) under the 

2SGCF approach is as follows: 

First stage 

Estimate the deep parameters of the fully parametric model for the endogenous variable 

and obtain its cdf based on the estimated parameters. In the specific case we consider here, 

the first stage involves estimating δ, the GG parameter vector for X, and obtain the cdf of 

X as X̂ui = GG(Xi,Wi; δ̂).  

Second Stage 

Substitute as X̂ui = GG(Xi,Wi; δ̂) into the conditional pdf in (38) and estimate its deep 

parameters by maximizing the implied log-likelihood function. Under the conditions 

outlined in theorem 1, the MLE obtained in this way is necessarily consistent. Although 

the 2SGCF is computationally less burdensome, it leads to unnecessary efficiency loss as 

it ignores relevant information entailed in the joint pdf of Y and X. The 2SGCF approach 

is also amenable to conduct the two hypotheses discussed in sections 4.3.2.1 and 4.3.2.2. 

4.4.4 Simulation Results 

 As discussed above the true model outlined in section 4.4.1 is based on (38). I 

generated a super sample of n =1,500,000 to compute the true AIE. The proposed GCF-

FIML, 2SGCF and the three alternative AIE estimators are applied on each of the samples 
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generated. The absolute percentage bias (APB) for each AIE estimate is then computed 

using the formula in (26).  

 Table 6 presents the result of the simulation. The true AIE based on the sampling 

design is 2.1449. The AIE estimates from six different estimators are presented in 

successive columns. These estimators are the GCF-FIML, 2SGCF, 2SRI, 2SPS, 2SLS and 

the Full Information Maximum Likelihood Estimator with exogenous causal variable 

(FIML-EXOG). The last estimator is based on a FIML model that ignores the endogeneity 

of the causal variable. The APB of the GCF-FIML and 2SGCF based AIE estimates are 

almost the same for most of the sample sizes. The estimated AIEs from these two estimators 

have small APB that gets close to 0% as the sample size of the simulated data increases. 

On the other hand, the 2SLS based AIE estimates have an APB of around 30% even for 

very large sample sizes. The 2SPS AIE estimates are also biased with an APB of around 

25% for very large samples.30 This APB is comparable to the APB of the FIML estimator 

that ignores the endogeneity of the X. While the 2SRI based AIE estimator performs better 

than the 2SPS, 2SLS and FIML-EXOG based AIE estimators, the APB for its estimates 

hoovers around 10% even for very large sample sizes. 

 To examine how sensitive the estimates are to the amount of endogeneity and 

nonlinearity, I design a different sample with lower parameter values for β
u1

, β
u2

 and β
X2

. 

31 The resulting model based on this sample has much lower endogeneity and nonlinearity. 

As shown in table 7, the new true AIE computed based on a super sample of n =1,500,000 

 
30  Convergence was not achieved for sample sizes of n = 25,000 , n = 50,000  and 

n = 100,000. 

 
31 See the entire sampling design in appendix IV. 
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is 2.009. The table also presents the AIE estimates based on the six estimators outlined 

above using new samples of increasing size. Again, the GCF-FIML and 2SGCF based AIE 

estimators perform very well in terms of consistency as the APB of the estimates gets close 

to zero for large sample sizes. The 2SRI and 2SLS based AIE estimators perform well. The 

2SPS based AIE estimator, however, still has a substantial APB even for very large samples. 

In fact, in this particular sampling design, the 2SPS AIE estimator is even worse than the 

FIML-EXOG based AIE estimator that ignores endogeneity. The above results imply that 

the proposed GCF-FIML and the 2SGCF based AIE estimators are consistent for a version 

of the AIE in (32) and outperforms the alternative three estimators that are commonly used 

in the context of the 2PM.  

4.5 Application: The Medical Care Cost of Obesity in Youth in the US 

 Obesity rate among children in the US has more than quadrupled from 5% in 1971-

1974 to 20.5% in 2015-2016. (Anderson and Butcher, 2006; Ogden et al., 2012; Ogden et 

al., 2016; Hales et al., 2018). Obesity is linked to several chronic diseases such as diabetes, 

high blood pressure, asthma, depression, musculoskeletal diseases and cardiovascular 

diseases. A growing number of policies and programs are implemented to curb this 

alarming trend. To determine the optimal level of spending towards addressing obesity in 

children, it is imperative to have an accurate estimate of the effect of obesity on the 

healthcare system. Medical care expenditure is suitable for two-part modeling because a 

substantial proportion of youth has zero medical spending in a given year. For instance, 

31.9% of the youth in our sample have observed zero amount of medical expenditure. 

Pohlmeier and Ulrich (1995) also discussed theoretical grounds that justify two-part 

modeling of medical utilization.  
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 In this section, I illustrate the econometric models and methods discussed in this 

chapter to estimating the average incremental effect of a one-unit increase in BMI on the 

total medical care spending among the youth in the US. I also estimate the total medical 

care spending AIE of a hypothetical event that moves every youths’ BMI from an average 

normal to an average obese and severely obese BMI. The potential outcomes specification 

for the AIE is 

 AIE(∆) = E [(1 ‒ SG
(ζEM

*  | Xo, Xu)

EM
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,exp((X* + ∆)β
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p
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          (69) 

4.5.1 Identification of the AIE  

 Our discussion in section 4.2 made it clear that identification of (69) is predicated 

on the requirement that Xo  and Xu induce CIND between X and Y
X* . Because Xu is an 

essential unobservable confounder, the X is endogenous and completing the identification 

requires one to add structure to the conditional pdf that imply the AIE in (69). In the context 

of the empirical setting that I consider, BMI/obesity can be endogenous because of 

unobserved health behavior that determine both the observed BMI and the potential 

medical care spending. For instance, those youth with higher BMI may also have 
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unobserved health behavior that leads to higher medical care spending implying that one 

would overestimate the AIE without addressing endogeneity. On the other hand, youth 

from lower socioeconomic status households tend to have higher BMI and lower access to 

medical care. In this case, ignoring the endogeneity of BMI causes underestimation of the 

AIE. Thus, addressing the endogeneity of BMI is crucial to obtain causally interpretable 

AIE.  

 I follow Biener et al (2020) and use mothers’ BMI as an instrumental variable for 

child BMI. The validity of this instrument is discussed extensively in the literature.32 Given 

the IV, we have the GCF-FIML and 2SGCF estimators of the deep parameters of (44) and 

(38), respectively, based on which the AIE in (69) is estimated. For comparison, I also 

estimate (69) using the 2SRI, 2SLS and 2SPS estimators given in (62), (66) and (68) 

respectively. In addition, the FIML-EXOG based AIE estimator is applied to the data. The 

log-likelihood from the FIML-EXOG MLE is used to test the null hypothesis that X is 

exogenous. I also estimate a one-part version of the GCF-FIML model to test the null that 

“no 2PM is needed”. 

4.5.2 Data and Descriptive Statistics 

 The data source for the empirical application is the public use version of the 

Medical Expenditure Panel Survey (MEPS). The household component of the MEPS is a 

comprehensive, nationally representative data for US civilian population. Information for 

each member of a participant household is obtained through 5 rounds of survey over two 

years. The unique feature of MEPS is that information on medical expenditure is 

 
32 For discussion of Instrumental Variables approach in estimating the medical care cost 

of obesity, see Biener et al (2020); Cawley and Meyerhoefer (2012); Cawley et al (2015) 

and Chang and Meyerhoefer (2016). 
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supplemented by expenditure data directly collected from participants’ medical providers 

and pharmacies through the medical provider component. Like Biener et al (2020), I limit 

the sample to individuals aged 11-17 as data is missing for several variables for those 

younger than this age group. The constructed sample also excludes underweight children 

because the focus is on obesity. The data I use covers the period 2009-2015. Following 

Biener et al (2020), the total medical care spending is top coded at $50,000.  

  Beiner et al (2020) exclude children who live with stepmother as doing so 

minimizes the concern for weak instrument. The biological linkage information is, 

however, part of the restricted use MEPS data. Thus, I do not distinguish stepmothers’ BMI 

from biological mothers’ BMI. To the extent that considerable proportion of children in 

the sample live with stepmothers, the strength of mothers’ BMI as instrument of child’s 

BMI reduces. This is not a concern for our case because the main goal of the empirical 

application is to demonstrate the implementation of the proposed approach and compare 

the estimates for the targeted parameters to those obtained using alternative estimators. In 

fact, the fact that the 2SPS AIE closely matches that in Biener et al (2020) implies that the 

biological linkage information is unlikely to have substantial effect on estimated AIEs. 

 Table 8 presents the descriptive statistics of the data for the full sample and by 

mothers’ obesity status (34% of the sample have obese and severely obese mothers). The 

outcome variable at the EM is whether a child has any medical spending and, in the sample, 

only 68.1% have positive total medical care spending, suggesting that the 2PM may 

provide the right framework for this empirical setting. For those children with positive 

annual expenditure, the average total expenditure is $993.46 with no statistically significant 

difference by mothers’ obesity status.  
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 The average BMI for the full sample is 21.23 while for children with obese and 

non-obese mothers the corresponding averages are 22.8 and 20.4, respectively. Children’s 

weight is classified into severely obese, obese, overweight and normal weight using the 

gender-age-specific CDC growth rate. Among children with obese mothers, 33% of 

children are obese and severely obese and the corresponding rate among those with non-

obese mothers is 17.1%, suggesting a potential for high strength of the instrument. The 

sample statistics for many of the control variables indicate significant differences by 

mothers obesity status especially for the race, insurance and mother’s health status 

variables. Biener et al (2020) analyzed whether differences in many other controls exist 

within race/insurance category and found that within most of the groups these differences 

disappear. Table 9 presents the descriptive statistics for the full sample and by children’s 

obesity status. A striking point in this table is that spending a positive amount and the 

average expenditure for those who spend is higher among children with overweight and 

normal weight BMI relative to obese and severely obese children. This could be due to 

unobserved socioeconomic status that is positively correlated with obesity and negatively 

correlated with access to medical care. 

4.5.3 Empirical Results 

 I intended to estimate the AIE using the five estimators discussed earlier. The GCF-

FIML estimator is burdensome and had convergence problems. I used the 2SGCF estimates 

as initial values for the one-step GCF-FIML estimator. 

4.5.3.1 Estimated AIE Across Different Approaches 

 Table 11 presents the estimated AIE of the five estimators discussed in sections 

4.3.1 and 4.4.3 (i.e., GCF-FIML, 2SGCF, 2SPS, 2SLS and 2SRI) and the FIML-EXOG, 
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GCF-FIML with “no 2PM is needed” null and OLS based AIE estimators.33 Panel A and 

B in table 11 report, respectively, the estimated AIE of a one-unit increase in BMI and of 

a hypothetical change that moves every youth BMI from an average normal to an average 

obese and severely obese. 

 The first and second rows in panel A of table 11 show that the GCF-FIML and 

2SGCF AIE estimates are almost identical. In both cases, a one unit rise in BMI across the 

entire youth population in the US leads to a $14.8 AIE on the total medical expenditure.  

The corresponding estimates based on the 2SPS, 2SRI and 2SLS approaches are $69.6, 

$117.41 and $45.88, respectively. The result I obtain for the 2SPS is close to that reported 

in Biener et al (2020) who find a $76 increase in total medical care spending.34 The GCF-

FIML AIE estimator that ignores the two-part structure of medical expenditure estimates a 

$23.17 increase in total medical expenditure to a one-unit rise in BMI. The FIML-EXOG 

AIE estimator which ignores endogeneity estimates a $1.64 AIE of a one-unit rise in BMI. 

Formal statistical tests, however, reject the “no 2PM is needed” and “X is exogenous” null 

hypotheses. Finally, I also estimate the AIE based on a linear model that ignores 

endogeneity of the X. The estimated OLS based AIE is a $3.08 increase in total medical 

expenditure. 

 
33 Each of these AIE are estimated based on deep parameter estimates from an underlying 

model. Table 10, for instance, shows the deep parameter estimates of the GCF-FIML 

model, which are used to compute the GCF-FIML based AIE.  

 
34 Note that Beiner et al (2020) specified a Generalized Linear Model with gamma variance 

structure and log link while the specification for the 2SPS approach in this chapter is a GG 

that subsumes the gamma distribution. Biener et al (2020) also used the biological linkage 

restricted use MEPS data to exclude children who live with stepmothers. 
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 Like the results from panel A discussed above, the different approaches lead to 

substantially different estimates for the AIE of a hypothetical change in BMI that moves 

every youth BMI from average normal to an average obese and severely obese.35 The GCF-

FIML and 2SGCF based AIE estimates reported in the first two rows on panel B show that 

such change in BMI would lead to an AIE of $143. The corresponding estimates based on 

the 2SPS, 2SRI and 2SLS approaches are $705.73, $1401.5, and $442.56, respectively.  On 

the other hand, the FIML-EXOG, GCF-FIML with one-part null and OLS estimates 

indicate that the total medical expenditure, on average, increases by $15.49, $224.35, and 

$29.01, respectively. 

4.5.3.2 Likelihood Ratio Test Results 

 I applied the likelihood ratio test discussed in section 4.3.2 to test whether 

parametric distinction between the EM and the IM is needed. The log-likelihoods based on 

the joint pdf under the “no 2PM is needed” null in (47) and the 2PM with NSD are 

L̂one-part= -150,638.61  and L̂GCF-FIML = -150,470.45 , respectively. Thus, the likelihood 

ratio test statistics is LR= ‒2 × [-150,638.61 + 150,470.45] = 336.32 , and 

P(χ(31)
2  > 336.32) = 0 implying that the 2PM is relevant to this empirical context. I also 

tested whether BMI is exogenous using a likelihood ratio test. The loglikelihood of the 

FIML model with no endogeneity and the GCF-FIML model where X is endogenous are 

L̂no endogeneity= -150,475.37 and L̂GCF-FIML = -150,470.45, respectively. The corresponding 

 
35 In the sample, the average BMI among obese and severely obese youth is 27.77 while 

the average BMI among normal weight youth is 18.35. 
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likelihood ratio test statistics is LR= ‒2 × [-150,475.37 + 150,40.45] = 9.84  and 

P(χ(2)
2  > 9.84) = 0.00006. Therefore, BMI is endogenous.  

4.6 Summary and Conclusion 

 In this chapter a regression-based approach is developed for causally interpretable 

AIE in the context of a generic FP2PM from the potential outcomes perspective. I consider 

the case where the IM component of the 2PM is continuous and the causal variable of 

interest is continuous and endogenous. By casting the AIE within the GPOF, I give 

unambiguous definition of endogeneity. I propose a new approach – a generalized control 

function (GCF) – to specify, identify and estimate causally interpretable AIE. Under a 

distributional assumption for the endogenous variable and regular IV conditions, the 

approach is shown to satisfy the CIND assumption that is difficult to hold in alternative 

approaches. Given a FP2PM for the outcome and a fully specified model for the 

endogenous variable, a FIML model and estimation method is developed for obtaining 

consistent estimates of the targeted effect parameter. A GG distribution is specified for the 

EM and IM components of the 2PM as well as for the endogenous variable. The proposed 

approach is suitable to conduct two important statistical tests: a test for a one-part null and 

a test for exogeneity of the causal variable. A simulation analysis is conducted to 

demonstrate the implementation of the GCF-FIML based AIE estimator and validate its 

consistency. A comparison of this estimator with conventional estimators shows that the 

proposed estimator performs better. Using data from the MEPS, I apply the approach to 

estimate the medical care spending effect of an increase in BMI by one-unit, and of moving 

every youth aged 11-17 from an average normal BMI level to an average obese and 

severely obese BMI. Following Biener et al (2020), I use mothers’ BMI as an instrumental 
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variable for children’s BMI. The GCF-FIML and the 2SGCF based AIE estimates are 

substantially smaller than those obtained using conventional estimators, which are 

demonstrated to be inconsistent in the simulation study.  
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Chapter 5 

Summary, Discussion and Conclusions 

 In this dissertation, two regression-based approaches are developed for 

specification, identification, and estimation of causally interpretable (CI) average 

incremental effects (AIE). Both of the approaches are cast within the General Potential 

Outcomes Framework (GPOF) in which effect parameters (EPs) are specified based on 

relevant counterfactuals. The GPOF also makes clear the conditions under which such EPs 

can be identified and estimated using observed version of the data. The first approach is 

developed for specifying, identifying, and estimating causally CI AIE for a Partially 

Qualitative Outcome (PQO) – an outcome that manifests either as a value in the real line 

or a qualitative event. Casting a regression model for a PQO within the conventional GPOF 

is difficult because the only version of a PQO that would be amenable to conventional 

potential outcomes framework is the one that is conditioned on non-occurrence of the 

qualitative event. Such conditioning, however, would lead to bias due to bad control. By 

extending the GPOF, a new measure is proposed that maintains all the essential features of 

a PQO that is real-valued and is not subject to the bad control critique: a P-weighted 

conditional outcome. The second approach provides a Fully Parametric Two-Part Model 

(FP2PM) potential outcomes framework that allows a continuous causal variable to be 

endogenous. The two-part model (2PM) applies to cases in which the outcome of interest 

is nonnegative with large fraction of zeros. To accommodate endogeneity within the 

FP2PM, a generalized control function (GCF) model is specified in which a full 

information residual is recovered from a fully specified model for the endogenous variable, 

which in turn serve as a control function for the unobservable in the FP2PM. Given a 
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correct specification for the endogenous variable and under regular instrumental variables 

assumptions, the GCF approach is shown to satisfy the conditional independence 

assumption ‒ a key assumption for obtaining CI parameter ‒ that is difficult to hold in 

alternative approaches. The FP2PM with a distributional assumption for the endogenous 

variable gives a Full Information Maximum Likelihood (FIML) model which can be 

estimated via a FIML method. Using flexible distributional assumption, the consistency of 

the GCF-FIML based estimator for the specified targeted parameter is validated. Although 

a very flexible distributional assumption is used, to appease for any concern for 

misspecifications, in the future I plan to develop a distribution free version of the GCF-

FIML approach. 
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Tables 

Table 1: Simulation Results of the Partially Qualitative Regression Model 

Parameter TRUE 

ML Estimates 

500* 1000 5000 25000 50000 100000 250000 

τQX
o  0.15 0.249 0.363 0.088 0.169 0.162 0.144 0.152 

τQV
o  -0.5 -0.5 -0.581 -0.486 -0.49 -0.502 -0.499 -0.5 

τQo
o  12 11.88 13.81 11.76 11.7 12.03 12 12.02 

τgX
o  -0.004 0.0053 -0.0103 -0.0031 -0.0045 -0.0047 -0.0038 -0.0038 

τgV
o  0.002 0.0001 0.0018 0.0006 0.0027 0.0021 0.0019 0.002 

τgo
o  8 8.032 8.01 8.03 7.98 8 8 8 

σo 0.175 0.183 0.176 0.177 0.177 0.177 0.175 0.175 

κo 0.95 0.839 0.78 0.908 0.963 0.921 0.961 0.949 

AIE 66.26 48.49 131.18 43.71 74.02 71.53 62.67 65.77 

APB  26.8% 97.9% 34% 11.7% 8% 5.4% 0.7% 

Subsample Size 

 
307 596 3011 15181 30217 60168 150067 

 *Sample sizes are indicated in the second row starting from the third column. 
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Table 2: Descriptive Statistics of the NSFG Data (Full Sample and By Live Birth Status) 

Variable Name 
Full sample  Live Birth  Non-live Birth 

Mean SD  Mean SD  Mean SD 

Outcome Variable         

Live birth 0.784 0.411  1 0    

Birth weight (grams)* 3283.57 613.48  3283.57 613.48    

Policy variable         

If smoker 0.136 0.343  0.125 0.331  0.175 0.38 

# cigarettes smoked per 

day 
1.12 3.979  0.908 3.42  1.89 5.477 

Control variables         

age 27.04 6.05  26.892 5.838  27.639 6.746 

Proportion that is         

Married 0.484 0.5  0.502 0.5  0.42 0.494 

Hispanic 0.264 0.441  0.278 0.448  0.214 0.41 

Non-Hispanic white 0.455 0.498  0.444 0.497  0.493 0.5 

Black 0.227 0.419  0.222 0.415  0.244 0.43 

Other race 0.053 0.224  0.055 0.228  0.049 0.215 

Less than High school 0.259 0.438  0.262 0.44  0.249 0.432 

High school complete 0.269 0.443  0.271 0.445  0.259 0.438 

Some college 0.265 0.441  0.259 0.438  0.287 0.453 

College 0.207 0.405  0.208 0.406  0.205 0.404 

N  15,658   12,274   3,384 

*number of observations for calculating the mean and standard deviation of birth weight in columns 2 and 3,  

 respectively, is based on 12,274 live births. 
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Table 3: Descriptive Statistics of the NSFG Data (Full Sample and By Smoking Status) 

Variable Name 
Smoking Women  Nonsmoking Women 

Mean SD  Mean SD 

Outcome Variable      

Live birth 0.722 0.448  0.794 0.405 

Birth weight (grams)* 3151.15 622.406  3302.48 609.88 

Policy variable      

If smoker 1 0  0  
# cigarettes smoked per 

day 
8.249 7.604 

   

Control variables      

age 25.812 5.84  27.236 6.064 

Proportion that is      

Married 0.267 0.443  0.519 0.5 

Hispanic 0.1 0.3  0.29 0.454 

Non-Hispanic white 0.675 0.469  0.421 0.494 

Black 0.192 0.394  0.233 0.423 

Other race 0.033 0.178  0.057 0.231 

Less than High school 0.417 0.493  0.234 0.424 

High school complete 0.31 0.463  0.262 0.44 

Some college 0.231 0.422  0.269 0.444 

College 0.041 0.198  0.233 0.423 

N  2,126   13532   

*number of observations for Birth weight is calculated for a subsample that 

equals the proportion of live birth by N in the respective column 
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Table 4: Deep Parameter Estimates of the PQO Model 

 Probit estimates  GG estimates 

  Column (2)   Column (4) 

Variable name 
𝝉̂Q 

  
s.e 

 

𝝉̂g 

  
s.e 

      

# of cigarettes 
-0.0259*** 0.0027 

 
-0.00387*** 0.0004 

smoked per day 

      

Age at pregnancy -0.0204*** 0.0021  0.00147*** 0.0003 

      

Marital status at 
0.301*** 0.0271 

 
0.0135*** 0.0035 

pregnancy 

      

Hispanic 0.188*** 0.0306  -0.00531 0.0039 

      

Black 0.0534* 0.0306  -0.0491*** 0.0041 

      

Other races 0.111** 0.053  -0.0210*** 0.0067 

      
Less than High 

school 
0.00278 0.0322 

 
-0.00284 0.0041 

      

Some college -0.0926*** 0.0372  0.00428 0.0041 

      

College -0.0419 0.0371  -0.00199 0.0048 

      

Constant 1.201*** 0.0583  2.013*** 0.0081 

Ancillary Parameters         

Sigma    0.163*** 0.001 

Kappa       0.934*** 0.0153 

N 15658   12274 

Note: ***P<0.01, **P<0.05, *P<0.1    
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Table 5: Estimated AIE of Smoking Ban During Pregnancy 

Natility-weighted Bad Control 

Birth weight Birth weight 

AIE se AIE se 

32.68*** 3.178 11.35*** 0.036 

Note: ***P<0.01, **P<0.05, *P<0.1 
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Table 6: Simulation Results for GCF-FIML Based and Alternative AIE Estimators 

 

True 

AIE 

2.1449 

 
GCF-FIML 2SGCF 2SRI 2SPS 2SLS FIML-EXOG 

n Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB 

1K 2.262 5.5% 2.250 4.9% 2.544 18.9% 2.712 26.4% 3.315 54.6% 2.860 33.3% 

5K 2.255 5.1% 2.258 5.3% 2.573 20.0% 2.711 26.4% 2.926 36.4% 2.763 28.8% 

15K 2.184 1.8% 2.185 1.9% 2.446 14.0% 2.968 38.4% 2.899 35.1% 2.662 24.1% 

25K 2.059 4.0% 2.057 4.1% 2.282 6.4% ** ** 2.674 24.7% 2.624 22.3% 

50K 2.159 0.6% 2.160 0.7% 2.425 13.1% ** ** 3.051 42.2% 2.704 26.1% 

100K 2.109 1.7% 2.109 1.7% 2.360 10.0% ** ** 2.800 30.5% 2.620 22.2% 

250K 2.141 0.2% 2.141 0.2% 2.366 10.3% 2.708 26.2% 2.859 33.3% 2.700 25.9% 

500K 2.133 0.6% 2.133 0.6% 2.361 10.1% 2.687 25.3% 2.786 29.9% 2.643 23.2% 

  ** Convergence was not achieved.  
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Table 7: Simulation Results for GCF-FIML Based and Alternative AIE Estimators with Lower Endogeneity and Nonlinearity 

  

True 

AIE 

2.009 

 
GCF-FIML 2SGCF 2SRI 2SPS 2SLS FIML-EXOG 

n Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB Est 

AIE 

APB 

1K 2.109 5.0% 2.107 4.9% 2.236 11.3% 1.595 20.6% 2.073 3.2% 2.349 16.9% 

5K 2.042 1.7% 2.043 1.7% 2.149 7.0% 1.693 15.7% 2.049 2.0% 2.172 8.1% 

15K 2.106 4.8% 2.106 4.8% 2.161 5.6% 1.765 12.1% 2.082 3.6% 2.267 12.8% 

25K 1.968 2.0% 1.968 2.0% 2.031 1.0% 1.545 23.1% 1.872 6.8% 2.120 5.5% 

50K 2.033 1.2% 2.033 1.2% 2.130 6.0% 1.681 16.3% 2.006 0.2% 2.184 8.7% 

100K 1.966 2.1% 1.966 2.1% 2.048 1.9% 1.649 17.9% 1.934 3.7% 2.097 4.4% 

250K 1.992 2.3% 1.992 2.3% 2.066 2.8% 1.656 17.6% 1.953 2.8% 2.139 6.5% 

500K 2.020 0.5% 2.020 0.5% 2.092 4.1% 1.654 17.9% 1.974 1.7% 2.150 7.0% 
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Table 8: Descriptive Statistics for the MEPS Data (Full Sample and By Mother’s Obesity 

Status) 

 

 Full Sample        Mother BMI > 30  Mother BMI < 30 

Variable Name    

 Mean  Std. D Mean  Std. D Mean  Std. D 

Outcomes       

If Any Expenditure 0.681 0.466 0.693 0.461 0.674 0.469 

Total Medical 

Expenditure 993.556 3493.458 1013.307 3350.074 983.362 3565.313 

Policy Variable       

BMI 21.227 5.216 22.805 5.950 20.412 4.586 

Severely Obese 0.081 0.273 0.134 0.341 0.054 0.225 

Obese 0.144 0.351 0.195 0.396 0.118 0.322 

Overweight 0.183 0.387 0.209 0.407 0.169 0.375 

Normal 0.592 0.491 0.461 0.499 0.660 0.474 

Instrument       

Mom BMI 28.319 6.683 35.666 5.577 24.527 3.067 

Control Variables       

Age in Month 140.983 37.457 141.641 37.149 140.643 37.611 

Female 0.487 0.500 0.492 0.500 0.485 0.500 

Hispanic 0.381 0.486 0.439 0.496 0.351 0.477 

Black 0.250 0.433 0.257 0.437 0.247 0.431 

Medicaid Insurance 0.375 0.484 0.457 0.498 0.332 0.471 

Private Insurance 0.534 0.499 0.451 0.498 0.577 0.494 

Uninsured 0.065 0.246 0.064 0.244 0.065 0.247 

West 0.314 0.464 0.281 0.450 0.331 0.471 

Midwest 0.193 0.394 0.201 0.401 0.188 0.391 

south 0.358 0.479 0.408 0.491 0.332 0.471 

Mother is married 0.915 0.27854 0.897 0.304 0.925 0.264 

Mothers' Age group       

35-44 years 0.506 0.500 0.490 0.500 0.515 0.500 

45-54 years 0.223 0.416 0.203 0.402 0.233 0.423 

55-64 years 0.014 0.117 0.012 0.109 0.015 0.120 

Mothers' Education       

High School 0.198 0.398 0.226 0.418 0.183 0.387 

Some College 0.236 0.424 0.262 0.440 0.222 0.416 

BA Degree 0.145 0.352 0.095 0.293 0.171 0.376 

More than BA 0.115 0.319 0.072 0.259 0.138 0.344 

Mothers' Health       
Poor or fair  

(overall health) 0.108 0.310 0.157 0.364 0.083 0.275 
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Continued 

Poor or fair  

(mental health) 0.053 0.224 0.072 0.258 0.044 0.204 

Activity Limitation 0.117 0.322 0.161 0.368 0.095 0.293 

Father is married 0.918 0.274 0.900 0.300 0.928 0.259 

Fathers' Age group       

35-44 years 0.473 0.499 0.490 0.500 0.465 0.499 

45-54 years 0.309 0.462 0.284 0.451 0.321 0.467 

55-64 years 0.052 0.223 0.044 0.204 0.057 0.232 

Fathers' Education       

High School 0.230 0.421 0.266 0.442 0.211 0.408 

Some College 0.192 0.394 0.194 0.395 0.191 0.393 

BA Degree 0.122 0.327 0.079 0.269 0.144 0.351 

More than BA 0.116 0.320 0.064 0.245 0.143 0.350 

N 17,307 5,892 11,415 
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 Table 9: Descriptive Statistics for the MEPS Data (Full Sample and By Child’s 

Obesity Status) 

 

                                              Full Sample             Obese & above         Below Obese 

Variable Name    

 Mean  Std. D Mean  Std. D Mean  Std. D 

Outcomes       

If Any Expenditure 0.681 0.466 0.663 0.473 0.686 0.464 

Total Medical 

Expenditure 993.55 3493.45 869.83 3317.04 1029.47 3542.34 

Policy Variable       
BMI 21.227 5.216 27.771 5.674 19.327 3.118 

Severely Obese 0.081 0.273 0.360 0.480 0 0 

Obese 0.144 0.351 0.640 0.480 0 0 

Overweight 0.183 0.387 0 0 0.236 0.425 

Normal 0.592 0.491 0 0 0.764 0.425 

Instrument       
Mom BMI 28.319 6.683 30.847 7.421 27.586 6.265 

Control Variables       
Age in Month 140.98 37.46 129.59 37.10 144.29 36.91 

Female 0.487 0.500 0.413 0.493 0.509 0.500 

Hispanic 0.381 0.486 0.499 0.500 0.346 0.476 

Black 0.250 0.433 0.199 0.400 0.265 0.441 

Medicaid Insurance 0.375 0.484 0.493 0.500 0.340 0.474 

Private Insurance 0.534 0.499 0.410 0.492 0.571 0.495 

Uninsured 0.065 0.246 0.065 0.247 0.064 0.246 

West 0.314 0.464 0.297 0.457 0.319 0.466 

Midwest 0.193 0.394 0.178 0.383 0.197 0.398 

south 0.358 0.479 0.405 0.491 0.344 0.475 

Mother is married 0.915 0.279 0.873 0.333 0.927 0.259 

Mothers' Age group       
35-44 years 0.506 0.500 0.491 0.500 0.511 0.500 

45-54 years 0.223 0.416 0.167 0.373 0.239 0.426 

55-64 years 0.014 0.117 0.009 0.093 0.015 0.123 

Mothers' Education       
High School 0.198 0.398 0.228 0.419 0.189 0.392 

Some College 0.236 0.424 0.227 0.419 0.238 0.426 

BA Degree 0.145 0.352 0.096 0.294 0.159 0.366 

More than BA 0.115 0.319 0.074 0.262 0.127 0.333 

Mothers' Health       
Poor or fair  

(overall health) 0.108 0.310 0.146 0.353 0.097 0.296 

Poor or fair  0.053 0.224 0.063 0.243 0.050 0.218 
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(mental health) 

Continued 

Activity Limitation 0.117 0.322 0.124 0.330 0.115 0.320 

Father is married 0.918 0.274 0.878 0.327 0.930 0.255 

Fathers' Age group       
35-44 years 0.473 0.499 0.504 0.500 0.464 0.499 

45-54 years 0.309 0.462 0.249 0.433 0.326 0.469 

55-64 years 0.052 0.223 0.035 0.184 0.057 0.233 

Fathers' Education       
High School 0.230 0.421 0.267 0.442 0.219 0.413 

Some College 0.192 0.394 0.171 0.377 0.198 0.398 

BA Degree 0.122 0.327 0.070 0.254 0.137 0.344 

More than BA 0.116 0.320 0.064 0.245 0.131 0.338 

N 17,307 3,894 13,413 
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Table 10: Deep Parameter Estimates of the GCF-FIML Model 

 GG for X  EM  IM  

          

  Column (1) Column (1) Column (1) 

 δ̂ 

Std. 

Err.  τ̂EM 

Std. 

Err.  τ̂IM 

Std. 

Err.  
BMI    -0.005 0.0059  0.017 0.0057 *** 

Xu    0.124 0.0966  -0.271 0.0940 *** 

Mom BMI 0.004 0.0002 ***       

Medicaid 0.008 0.0046 * -0.310 0.0532 *** -0.034 0.0534  

Private -0.002 0.0046  -0.091 0.0531 * 0.308 0.0537 *** 

Uninsured 0.002 0.0065  0.698 0.0643 *** -0.375 0.0877 *** 

Female -0.011 0.0024 *** 0.022 0.0273  -0.064 0.027 *** 

Age (months) 0.002 0.0000 *** 0.002 0.0005 *** 0.001 0.0005 *** 

Hispanic 0.030 0.0030 *** -0.047 0.0346  -0.142 0.0355 *** 

Black -0.003 0.0031  -0.090 0.0372 ** 0.009 0.0354  

Midwest 0.000 0.0042  0.100 0.0531 * 0.016 0.0468  

South 0.009 0.0038 ** 0.235 0.0477 *** -0.068 0.0428  

West -0.003 0.0039  0.348 0.0482 *** -0.200 0.0443 *** 

Mom High School 0.001 0.0039  0.014 0.0424  -0.041 0.0451  

Mom Some College -0.004 0.0038  -0.156 0.0436 *** 0.162 0.0443 *** 

Mom BA -0.008 0.0046 * -0.267 0.0546 *** 0.208 0.0524 *** 

Mom BA plus -0.005 0.0048  -0.312 0.0570 *** 0.296 0.0540 *** 

Mom Age 35-44 -0.002 0.0035  -0.043 0.0402  0.085 0.0406 ** 

Mom Age 45-54 0.002 0.0048  -0.058 0.0546  0.100 0.0554 * 

Mom Age 55- 64 -0.011 0.0116  -0.168 0.1343  0.598 0.1331 *** 

Dad High School 0.000 0.0036  0.028 0.0410  0.040 0.0425  

Dad Some College -0.010 0.0039 * -0.071 0.0456  -0.055 0.0454  

Dad BA -0.015 0.0048 *** -0.111 0.0566 * 0.042 0.0541  

Dad BA plus -0.015 0.0047 *** -0.107 0.0554 * 0.055 0.0536  

Dad Married -0.018 0.0045 *** -0.138 0.0496 *** 0.003 0.0530  

Dad Age 35-44 0.011 0.0040 *** -0.083 0.0451 * -0.073 0.0459 * 

Dad Age 45-54 0.003 0.0048  0.047 0.0544  -0.063 0.0557  

Dad Age 55-64 0.001 0.0073  0.028 0.0826  -0.001 0.0840  
Mom Overall 

Health 0.004 0.0044  -0.164 0.0517 *** 0.104 0.0482 ** 

Mom Mental 

Health -0.006 0.0059  -0.160 0.0727 ** 0.410 0.0642 *** 

Mom Activity 

Limit -0.001 0.0039  -0.160 0.0472 *** 0.247 0.0431 *** 

Constant 2.491 0.0100 *** -0.887 0.1118 *** 5.338 0.1121 *** 

Ancillary 

Parameters                   

Sigma-X -0.156 0.0087 ***       
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Kappa-X -1.051 0.0252 ***       

Sigma-Y       1.474 0.007 *** 

Kappa-Y       -0.095 0.0202 *** 

N 17,307 17,307 11,782 

Note: ***P<0.01, **P<0.05, *P<0.1        
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Table 11: Estimated AIEs of BMI and Obesity on Total Medical Care Cost 

 Panel A 

 ∆ = a 1unit increase in BMI 

Estimator AIE Asy-SE Asy-t-stat P-value 

GCF-FIML $14.87 1.77 8.42 0.000 

2SGCF $14.79 1.82 8.11 0.000 

2SPS $69.6 4.41 15.79 0.000 

2SRI $117.41 7.64 15.36 0.000 

2SLS $45.88 27.46 1.67 0.095 

FIML-EXOG $1.64 0.86 1.91 0.056 

GCF-FIML (ONE PART) $23.17 7.52 3.08 0.002 

OLS $3.08 6.85 0.45 0.653 

     

 Panel B 

 

∆  = average normal BMI  
‒ average of obese and severely obese BMI 

Estimator AIE Asy-SE Asy-t-stat P-value 

GCF-FIML $143.52 17.23 8.32 0.000 

2SGCF $142.74 17.78 8.02 0.000 

2SPS $705.73 45.43 15.53 0.000 

2SRI $1401.5 82.33 17.02 0.000 

2SLS $442.56 267.53 1.65 0.098 

FIML-EXOG $15.49 8.19 1.89 0.058 

GCF-FIML (ONE PART) $224.35 75 2.99 0.002 

OLS $29.01 64.48 0.45 0.653 
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Appendices 

Appendix I 

 

Table A1: Summary Statistics for the Simulated Data in Section 3.6 

 

 

 

 

 

 

 

 **The first three rows are based on the entire population and the last three rows 

are calculated for the subpopulation for which the qualitative event does not occur. 

 

 

 

 

 

 

 

 

 

  

 

 

Variables** Observations Mean Std. Dev Min Max 

 Xo 250,000 1.75 1 0.018 3.482 

Vo 250,000 26.97 7.01 14.88 39.12 

Q 250,000 0.4 0.5 0 1 

Yo 150,067 2932.6 585.4 409.9 4908.5 

 Xo 150,067 1.73 0.99 0.018 3.482 

Vo 150,067 31.68 4.44 17.76 39.12 
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Appendix II 

Simulation Evidence on the Arbitrariness of κEM 

 Here the objective is to establish the validity of an AIE estimator based on the 

density of the standard gamma distribution, where the value of κEM is fixed arbitrarily to 

any value. For simplicity, consider the following version of (47), where X is not 

endogenous.  

  Pr(ζ
EM

+ ≤ ζ
EM

) = SG(exp(Xβ
X1

o
 +Xoβ

o1

o ); ν).  (47’) 

where β
X1

o  =  ‒pβ
X1

 and β
o1

o
 are defined analogous to (47). I conducted the simulation 

following the steps outlined below. 

Step 1 – I picked the values for the parameters that are conjectured to constitute an 

admissible reduction. In particular, ζ
EM

= 2.5 , σEM= 1.5  and κEM= 2  and set 

ν = |κEM|
‒2

= 0.25.   

Step 2 – I generated X (not endogenous) and Xo (a two-dimensional vector including a 

constant term say Xo = [Xo
+     1]. X and Xo

+ are uniform random variables with means and 

variances E[X] = 1.5, E[Xo
+] = 1, Var[X] = 1 and Var[Xo

+] = 0.25. 

Step 3 - For generating the values at the EM, I set the values for the linear index coefficients, 

as 

 [β
X1

     β
o1

'] = [0.15      1     ‒0.75]   
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Step 4 – Generate (non-endogenous X) binary EM data {I(Y = 0)} based on (47’). The data 

is generated with a sample size n = 1,500,000.  

Step 5 – Set νfixed = |κEM|
‒2

 where κEM is the value used to generate the data.  Apply the 

maximum likelihood binary outcome estimator to the simulated data based on the 

following conditional pdf 

 f(Y|X, Xo)(Y, X, Xo; β
X1

o
, β

o1

o
 ) 

 

= SG(exp(Xβ
X1

o
 + Xoβ

o1

o ); νfixed)
I(Y = 0)

 

 

  × [1 ‒SG(exp(Xβ
X1

o
 + Xoβ

o1

o ), νfixed)]
(1 ‒ I(Y = 0))

  (47’a) 

 

 

Note that the log-likelihood function is optimized with respect to β
X1

o
 and β

o1

o
; not with 

respect to νfixed = |κEM|
‒2

 which is held fixed. 

Step 6 – Estimate the AIE(1) for X as  

 AIE(1) = [1 ‒SG(exp((Xi+1)β
X1

o
 + Xioβ

o1

o
),νfixed)]  

  ‒[1 ‒SG(exp(X
i
β

X1

o
 + Xioβ

o1

o
),νfixed)] 

Step 7 – I set νfixed = |κEM|
‒2

 at a different value and repeat Steps 5 and 6. Note that the 

same large, simulated sample is used to estimate the parameters of (47’a) and the 

corresponding AIE. I repeated steps 5-7, the results of which is presented in the following 

table.  
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Table A2: Simulation Result for Arbitrariness of κEM 

κEM νfixed = |κEM|
‒2

 Estimated AIE 

0.1 100 0.0267732 

0.25 16 0.026765 

0.5 4 0.0267342 

1 1 0.0266065 

2 0.250 0.0261212 

3 0.111 0.0257261 

4 0.0625 0.0256069 

5 0.04 0.0255895 

7.5 0.01778 0.0255879 

10 0.01 0.0255879 

 

The simulation results implies that the estimated value of κEM  does not affect the 

consistency of an AIE estimator. Hence, the reduction of the model with respect to κEM is 

admissible. 
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Appendix III 

Sampling Design for a FP2PM with GG EM, GG IM and GG Endogenous Variable: 

Lower Endogeneity and Nonlinearity 

 1) To generate pseudo values for X, I set 

  δW
'

 = [δ
W+   δXo

    δcon] = [0.75     ‒0.5     ‒1] 

for the linear index coefficients. The means and variances of Xo  and W+  are set to be 

E[X
o
] = 1, E[W+] = 1, Var[X

o
] = 0.45 and Var[W

+
] = 1.5. I also set values for the shape 

parameters as σX = 0.51 and κX = 0.25.  

 2) For generating the values at the EM, I set the values for the linear index 

coefficients, the shape parameters and the parametric threshold for (51) as follows 

 [β
X1

     β
u1

     β
o1

'] = [0.5      0.2     ‒0.5     0.25]   

where β
o1

' = [β
Xo1

   β
cons1

] are the coefficients for Xo and the intercept, respectively.  

 σEM = 0.5    

 κEM = 1 

  ζ
EM

 = 0.5  

Note that σEM, κEM and ζ
EM

 are not identified. 

 3) Similarly, to generate the pseudo values, the following parameter values for (56) 

are set 

 [β
X2

     β
u2

     β
o2

'] = [0.2      0.1     ‒0.5     0.5] 

where β
o2

'= [β
Xo2

   β
cons2

] are the coefficients for Xo and the intercept, respectively.  
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 σIM  = 1.5    

 κIM =  1.5 

  ζ
IM

 = 10 

 4) For testing the consistency of the AIE based on the proposed approach, samples 

of increasing size are generated based on the above sampling design. In particular, the 

samples are generated with the following sizes. 

 n = 1,000    

 n = 5,000     

 n = 15,000         

 n = 25,000   

 n = 50,000   

 n = 100,000   

 n = 250,000   

 n = 500,000  
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