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Edwin Carl Stage Jr. 

IMAGING GENETICS AND BIOMARKER VARIATIONS OF CLINICALLY 

DIAGNOSED ALZHEIMER’S DISEASE 

Neuroimaging biomarkers play a crucial role in our understanding of 

Alzheimer’s disease. Beyond providing a fast and accurate in vivo picture of the 

neuronal structure and biochemistry, these biomarkers make up a research 

framework, defined in a 2018 as the A(amyloid)/T(tau)/N(neurodegeneration) 

framework after three of the hallmarks of Alzheimer’s disease. I first used 

imaging measures of amyloid, tau and neurodegeneration to study clinically 

diagnosed Alzheimer’s disease. After dividing subjects into early (onset younger 

than 65) and late-onset (onset of 65 and older) amyloid-positive (AD) and 

amyloid-negative (nonAD) groups, I saw radically differing topographical 

distribution of tau and neurodegeneration. AD subjects with an early disease 

onset had a much more severe amyloid, tau and neurodegeneration than late-

onset AD. In the nonAD group, neurodegeneration was found only in early-onset 

FDG PET data and in a nonAlzheimer’s-like MRI and FDG pattern for late-onset.  

The late-onset nonAD resembled that of limbic-predominant age-related TDP-43 

encephalopathy.  

I next utilized an imaging genetics approach to associate genome-wide 

significant Alzheimer’s risk variants to structural (MRI), metabolic (FDG PET) and 

tau (tau PET) imaging biomarkers. Linear regression was used to select variants 

for each of the models and included a pooled sample, cognitively normal, mild 

cognitive impairment and dementia groups in order to fully capture the cognitive 
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spectrum from normal cognition to the most severely impaired. Model selected 

variants were replicated using voxelwise regression in an exploratory analysis of 

spatial associations for each modality.  For each imaging type, I replicated some 

associations to the biomarkers previously seen, as well as identified several 

novel associations. Several variants identified with crucial Alzheimer’s 

biomarkers may be potential future targets for drug interventions. 

Karmen K. Yoder, Ph.D., Chair 
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Chapter 1. Background and Justification 

 Alzheimer’s disease (AD) is the most common cause of dementia in the 

United States, currently affecting an estimated 5.8 million Americans, including 

as much as 10 percent of the U.S. population over the age of 65 1.  The financial 

burden of dementia in 2019 on both caregivers and patients is estimated to be a 

staggering 290 billion dollars, underscoring the dire need for viable treatment 

options 2.  However, recent drug failures have highlighted how much is still 

unknown about AD 3-18. What we do know is that a solution or cure for AD will 

likely require the continued research of the clinical, pathological, genetic and 

environmental factors that contribute to the underlying disease.  

 

1.1. Alzheimer’s Pathology:             

 It’s been 113 years since Alois Alzheimer published his landmark paper 

"Über eine eigenartige Erkrankung der Hirnrinde", a case description of a 55-

year-old German woman with an early age of dementia onset 19. Upon autopsy, 

Alzheimer took note of peculiar dense bundles of neurofibrils and “miliar foci” 

throughout the cortex, what we now know as neurofibrillary tangles (NFTs) and 

amyloid-beta (Aβ) plaques 19.  Though our techniques have become slightly more 

sophisticated, these pathological hallmarks of Alzheimer’s disease (the name 

was aptly given by the German psychologist, Emil Kraepelin) remain central to 

the diagnosis.   

Senile or neuritic plaque deposition follows a distinct distribution in AD 

described by Braak and Braak in 1991, following three stages, first appearing in 
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basal frontal, temporal and occipital cortex, then in isocortical association areas 

and finally depositing in primary isocortical areas 20,21. Though these plaques are 

associated with several abnormal components of the neuronal environment 

(including an abundance of microglia and astrocytes as well as paired helical 

filaments, PHFs), their primary core is the result of the accumulation of insoluble 

Aβ (largely Aβ42, Aβ40 to a lesser extent). Aβ40 and Aβ42 are released at the 

synapses of neurons after the proteolytic cleavage of amyloid precursor protein 

(APP) by β-secretase (BACE) and �-secretase 22. The accumulation of insoluble 

amyloid monomers into oligomers and plaques eventually leads to disruption of 

signaling at the synapses of cortical neurons, though it does not correlate 

temporally with cognitive decline 23.  Abnormal amyloid accumulation can 

precede cognitive symptoms by as much as 20 years and seems to plateau in 

early disease stages, making it an attractive candidate for early detection of 

disease pathological changes 24-26.   

The second pathological hallmark of AD, intracellular NFTs, are largely 

composed of PHFs which consist of hyperphosphorylated tau, a microtubule-

associated protein that loses its ability to stabilize the microtubule conformation 

when abnormally phosphorylated 27.  In human brains, there are six isoforms of 

tau generated through alternative splicing of exons 2, 3 and 10 in the 

microtubule-associated protein tau or MAPT gene. These six isoforms are 

typically categorized as either three or four repeat (3R or 4R, respectively), 

depending on whether they contain three or four carboxy-terminal repeat 

domains 28.  Tauopathies (neurodegenerative diseases involving the buildup of 
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tau protein) are often classified as 3R (Pick’s disease and some frontotemporal 

lobar degeneration MAPT mutations), 4R (progressive supranuclear palsy, 

corticobasal degeneration, globular glial tauopathies, argyrophilic grain disease 

and some frontotemporal lobar degeneration MAPT mutations) or 3R+4R 

(Alzheimer’s disease (sometimes referred to as a secondary tauopathy), primary 

age-related tauopathy and frontotemporal lobar degeneration MAPT mutations) 

depending on the isoforms that make up the PHFs 28. As with amyloid plaques, 

NFTs often follow a distinct pattern of deposition in AD, first restricted to the 

entorhinal cortex and hippocampus, then to limbic regions, and finally largely 

spanning isocortical regions 21,29.  However, contrary to amyloid, NFTs correlate 

well with the onset of clinical symptoms and severity of AD, which has prompted 

many to posit that targeting abnormal tau accumulation may be the most 

attractive target to stop or slow neurodegeneration 21,30,31.   

The combination of these pathologies may lead to downstream neuronal 

and synaptic loss, which can be seen as gross cortical atrophy, though the exact 

mechanisms to how this occurs are not well understood.  The neuropathological 

criteria for AD are dependent on an “ABC” score that is a summary of A. 

Aβ/amyloid plaque Thal phase score, B. NFT Braak score and C. Neuritic plaque 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) score 32.  

The final score is determined to be either “Not”, “Low”, “Intermediate”, or “High” 

degree of AD neuropathologic change. 
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1.2. Clinical Considerations for Alzheimer’s disease: 

In 1984, a special National Institute of Neurological and Communicative 

Disorders and Stroke and Alzheimer’s Disease and Related Disorders (NINCDS-

ADRDA) workgroup met to discuss what were the original clinical guidelines for 

dementia due to Alzheimer’s disease 33.  Twenty-seven years later a similar 

meeting took place with several key additions to the original criteria 34.  First is 

the consideration of AD as a continuum, a slowly progressing disease with 

measurable stages that can be somewhat defined.  The workgroup was divided 

into three separate groups to recognize the three stages of the disease process.  

Those stages are the asymptomatic or preclinical stage, the prodromal or mild 

cognitive impairment (MCI) stage and finally the AD dementia stage (which was 

the sole focus of the previous workgroup in 1984). The second major addition to 

the diagnostic criteria is the recognition of biomarkers as a useful tool for 

clinicians.  The biomarkers considered are restricted to two categories indicative 

of AD pathophysiology 1) biomarkers of Aβ accumulation (abnormally high 

cortical retention of amyloid tracer as measured with positron emission 

tomography (PET) neuroimaging and/or low CSF Aβ42) and 2) biomarkers of 

neuronal degeneration or injury (abnormally high CSF tau, decreased 

fluorodeoxyglucose (FDG) PET uptake in the posterior cingulate gyrus or 

evidence of mesial temporal lobe atrophy on structural imaging) (more 

information on these biomarkers on pages 6 and 7) 34,35. 

The core clinical criteria for dementia are severe functional impairment 

and decline of activities of daily living which cannot be explained by delirium or 
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another major psychiatric disorder 35,36.  The impairment must be present in at 

least two cognitive domains from the list of memory, reasoning/handling of 

complex tasks, visuospatial, language or behavioral domains.  Probable AD 

dementia patients have an insidious onset of dementia with a gradual worsening 

of cognition whose most prominent symptoms are either amnestic (by far the 

most common presentation) or nonamnestic (affecting language, visuospatial or 

executive function with relative sparing of memory function).  This is a critical 

distinction from the previous criteria, which neglected the less common 

nonamnestic presenting AD dementias such as posterior cortical atrophy (PCA), 

logopenic primary progressive aphasia (PPA) and behavior variant AD.  As with 

the other stages, a crucial step involves ruling out other neurologic, psychiatric or 

general medical disorders that may impact cognition.  For the dementia stage, 

biomarkers are used to lend additional support to the clinical diagnosis of AD 

dementia.   

Since the 1984 inception of the diagnostic criteria, MCI has emerged as a 

legitimate clinical entity, though the diagnostic group remains largely 

heterogeneous in terms of pathological burden and/or etiology.  One of the key 

distinguishing factors between MCI and dementia is that MCI subjects, while 

cognitively impaired, generally maintain the independence of their day-to-day 

functional abilities. One of the main goals of the diagnostic criteria of 2011 was to 

help identify MCI who have cognitive symptoms most likely due to underlying AD 

pathology 37.  This determination is largely done, as within the dementia stage, by 

ruling out other likely systemic or brain diseases potentially responsible for 
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cognitive decline, such as vascular, Lewy body dementia, traumatic brain injury, 

hormonal disorders, etc.   Additional support may be given by the presence of a 

genetic mutation known to increase risk, such as those seen in mendelian forms 

of AD or APOE e4 allele carriers. The role of biomarkers in the MCI stage is to 

detect evidence of AD pathology to support the diagnosis.   

The preclinical stage of AD is considered still a research entity (i.e. not a 

clinical diagnosis) and is defined by normal cognition with evidence of 

Alzheimer’s pathology 38.  As mentioned previously, Alzheimer’s 

pathophysiological changes can begin as early as 20 years before cognitive 

symptoms arise, making the preclinical or asymptomatic stage the most attractive 

target to slow or even stop the progression of AD.  The caveat, of course, is 

finding specific and sensitive biomarkers to correctly identify these preclinical 

subjects.  

What is currently known about AD biomarkers is that they are dynamic 

throughout the disease progression and start first with measurable changes in 

amyloid 26.  This is first detectable through a reduction in CSF Aβ42 as more 

amyloid is sequestered into plaques (i.e. fewer free-floating Aβ42), followed by 

retention of cortical amyloid PET tracers. Amyloid typically reaches its peak near 

or just after cognitive symptoms are detectable, which is likely why amyloid does 

not correlate tightly with cognitive decline.  Amyloid PET tracers have been 

available since 2004 and currently there are three tracers which are FDA 

approved, [18F]Flortbetapir, [18F]Florbetaben and [18F]Flutemetamol, all which 

bind aggregated fibrillar forms of Aβ 39.  The advent of tau PET tracers adds an 
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additional detectable biomarker. Brain tau levels become abnormal sometime 

between amyloid accumulation and when CSF tau levels increase (as a result of 

cell death and subsequent release of intracellular tau into CSF).  Current 

understanding how of tau PET uptake correlates to postmortem data is limited, 

though early results indicate that the most widely used tracer, [18F]Flortaucipir, 

provides an accurate in vivo measure of 3 and 4 repeat NFT pathology 39,40.  As 

mentioned above, the abnormal accumulation of hyperphosphorylated tau into 

NFTs more closely correlates with cognitive symptoms than amyloidosis.  Finally, 

biomarkers of neuronal degeneration, such as raised CSF tau levels, reduction in 

FDG PET uptake in the posterior cingulate and mesial temporal hippocampal 

atrophy on structural imaging, are the final biomarkers to become abnormal 

before the beginning of cognitive decline.  FDG PET is used as an indirect 

measure of synapse loss, reflected by lower cellular intake of the tracer (also 

referred to as hypometabolism), whereas structural MR imaging provides 

excellent white/gray matter contrast that is crucial for tissue volumetric and 

thickness determinations.  While both of these measures are nonspecific to a 

disease process, specific spatial changes may indicate potential etiologies 39.  

A recent addition to the National Institute on Aging and Alzheimer’s 

Association (NIA-AA) clinical diagnostic criteria utilizes the known in vivo fluid 

and imaging biomarkers to define an AD classification research framework 

34,36,37,41.  Biomarkers are divided into three categories according to their 

hypothetical dynamic progression, amyloid (A), tau (T) and neurodegeneration 

(N), with a classifying positive (+) or negative (-) added, and the “+” designation 
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indicating that the abnormal threshold for a category has been crossed 41.  In this 

framework, amyloid-positive (A+) patients would fall within the Alzheimer’s 

continuum regardless of the other biomarkers.  The assumption made is that 

A+/T+/N+, A+/T+/N- or A+/T-/N- subjects are simply at various stages in the 

disease process.  Those who are A- are either considered normal (if T and N are 

negative) or have a non-AD pathologic change if there is abnormal tau and/or 

neurodegeneration 41.  The driving etiology behind non-AD pathologic change in 

AD phenocopies (clinically diagnosed AD without evidence of AD 

pathophysiology) is unknown, though they are likely a very heterogeneous group 

of pathologies (e.g., vascular, Lewy body, argyrophilic grain disease, 

frontotemporal dementia, hippocampal sclerosis, etc).  This is explored further in 

Chapter 2, where I investigate the ATN changes in across the prodromal-

dementia spectrum and discuss the presumed etiologies hypothesized from the 

observed tau and neurodegenerative patterns in amyloid-negative AD 

phenocopies or non-AD subjects.     

An additional clinical consideration is the age of symptom onset, which 

can, among other things, drastically impact the severity and speed of disease 

course 42-46.  An estimated 97% of all Alzheimer’s cases occur in the elderly 

population (65 and older, late-onset or LO), making age the single biggest risk 

factor for AD 2.  However, among the 3% of AD with symptom onset before 65, 

termed early-onset (EO), a vast majority are sporadic in origin 41,42.  EOAD 

presents several challenges to families and clinicians, not the least of which is 

the devastating effects it can have on adults who are still essential financial 
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earners for their families. From a clinical perspective, EOAD patients often have 

greater cognitive impairment, decline faster and are significantly more likely to 

have a nonamnestic presentation than LOAD 42-47.  The pathology echoes these 

differences between EO and LOAD, as EOAD typically present with far greater 

neuritic plaque and NFT burden 48-52. More recently, imaging biomarkers of AD 

have been used to recapitulate the pathological findings and show that in 

general, EOAD patients have a far greater tau burden as well as greater 

hypometabolism and atrophy 53-61.  The driving factor for this is likely a multitude 

of reasons.  At a surface level, rational arguments can be made that cognitive 

reserve, which in general is greater at younger ages, may require even greater 

pathologic burden to achieve the same level of cognitive deficit as in older 

patients. This means that a pathological comparison of relatively equally impaired 

EO to LOAD subjects would result in greater burden seen in the EO subjects.  At 

a deeper level, why this pathology occurs at such a young age and to such a 

great extent is unknown, though it likely has strong genetic and environmental 

components.  Currently, ongoing longitudinal observational studies, like the 

Longitudinal Early-Onset Alzheimer’s Disease Study or LEADS, the first large 

multisite early-onset study of its kind, are using clinical and neuropsychological 

testing, neuroimaging, fluid biomarkers and genetics to attempt to answer some 

of these questions.  In chapter 2, as mentioned above, I present a neuroimaging 

study of Alzheimer’s vs non-AD pathologic changes, which includes further 

dividing subjects by age of onset.  For this analysis, I subdivided AD groups into 
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EOAD and LOAD, while subdividing the non-AD groups into EOnonAD and 

LOnonAD.   

1.3. Genetics of Alzheimer’s disease: 

 AD has long been known to have a genetic component that was first 

identified in the small percentage of AD patients with dominantly inherited 

mutations, termed familial early-onset AD or Mendelian AD.  Patients with familial 

AD have mutations in one of three genes directly impacting amyloid production. 

The first gene is APP, which encodes a 770 amino acid transmembrane protein 

containing sites for several nonsynonymous mutations that increase the release 

of Aβ 62-65. The remaining two genes, presenilin 1 (PSEN1) and presenilin 2 

(PSEN2) encode proteins that are central to the function of the �-secretase 

complex 66,67.  Mutations found in these genes are believed to result in increased 

production of Aβ42, which is less soluble than other Aβ species (a full list of 

known mutations in APP, PSEN1 and PSEN2 can be found at 

https://www.alzforum.org/mutations) 68-72.   

In contrast to familial AD, sporadic AD is likely due to a combination of 

both genetic and environmental factors 2.  Over the last two decades, significant 

strides have been made towards better understanding the genetic risk factors 

contributing to this more genetically complex form, which has an estimated 

heritability of 70-80% 69,70.  Before the advent of large genome-wide association 

studies (GWAS), the apolipoprotein E (APOE) gene was the only highly accepted 

risk gene for sporadic AD.  This is because APOE has a large, dose-dependent 

risk (one copy of the e4 allele triples AD risk while two copies increase risk by 15) 
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73.  The impact of APOE e4 is so great that it has been called a moderately 

penetrant gene with semi-dominant inheritance 74.  It is important to note, though, 

that carrying a copy of the e4 allele is not determinate nor is sufficiently causative 

of Alzheimer’s disease.  It is also noteworthy that APOE explains less than half of 

the overall genetic risk for sporadic AD, which was not understood until the last 

decade, when GWAS became available.   

In an attempt to identify the remaining genetic risk, large-scale GWAS and 

meta-analysis of GWAS have identified genome-wide significant variants near 

over 20 genes 75-80.  Each of the discovered alleles contributes to only a small 

amount of risk, leading some to hypothesize that these genes may have an 

additive or synergistic effect when multiple risk variants are inherited together.  

Additionally, understanding the biological roles of the risk genes, regardless of 

whether or not they are considered to have direct functional consequences, is 

imperative to a better overall biological understanding of AD.  It is currently 

known that several risk genes are involved in pathways believed to be 

dysfunctional during the progression of AD, such as cholesterol metabolism 

(ABCA7, APOE, CLU, SORL1), immune response (ABCA7, CR1, CD33, CLU, 

EPHA1, MS4A6A) and endocytosis (BIN1, CD2AP, EPHA1, PICALM, SORL1) 81. 

Loci identified more recently are still being attributed to a dysfunctional 

Alzheimer’s process, though early work suggests potential consequences for 

CASS4(tau metabolism), CELF1(cytoskeleton/axon development), 

DSG2(cytoskeleton/axon development), FERMT2(tau metabolism), INPP5D(APP 

metabolism), MEF2C(endocytosis), NME8(cytoskeleton/axon development), 
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PTK2B(endocytosis), SLC24A4/RIN3(cholesterol/endocytosis) and 

ZCWPW1(epigenetics).   

One strategy used to associate gene to function is imaging genetics, 

which utilizes specific Alzheimer’s phenotypes.  This strategy has a distinct 

advantage over traditional gene to clinical diagnosis studies because imaging 

phenotypes are closer to biological changes due to genetics and remove much of 

the unwanted biomarker variation found with clinical Alzheimer’s disease. In 

chapters 3 and 4, I use imaging genetics to test associations between identified 

GWAS risk genes with a temporoparietal tau PET region of interest, posterior 

cingulate FDG PET SUVR and medial temporal lobe thickness.   Beyond testing 

for associations with genes across the full A/T/N biomarker spectrum, I 

investigate stage-specific genetic associations among cognitively normal (CN), 

mildly impaired (MCI) and subjects who have dementia (DEM).  This additional 

stage-stratified analysis was direct extension of my previous work on the 

associations of the top AD genetic hits with brain amyloidosis (reviewed in 

greater detail in Chapter 3).  Identifying variants associated with Alzheimer’s 

pathophysiological changes in the preclinical and prodromal stages may provide 

critical insight to previously unknown disease mechanisms, which could 

ultimately lead to the discovery of new therapeutic targets. 

 

1.4. Statement of Purpose: 

In general, the goals of this work were to use imaging biomarkers of AD to better 

understand the driving factors of the heterogeneity of clinically diagnosed AD in 
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regard to age of disease onset, biomarker abnormalities and genetic risk. More 

specifically, this work aimed to:   

1. Use imaging biomarkers of amyloid, tau and neurodegeneration to identify 

and both qualitatively and quantitatively characterize the differences 

between early vs. late and amyloid-positive vs. amyloid-negative clinically 

diagnosed Alzheimer’s subjects. 

2. Use imaging genetics to identify the genome-wide significant AD variants 

associated with neurodegeneration (FDG PET and MRI) and NFTs (tau 

PET).   
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Chapter 2. Neurodegenerative Changes in Early & Late-Onset Cognitive 

Impairment with and without Brain Amyloidosis 

2.1. Introduction: 

An estimated 5.8 million people in the United States are currently 

diagnosed with Alzheimer’s disease (AD) 2.   Even when rendered by dementia 

experts, the clinical diagnosis of AD shows only modest accuracy 82. Twenty-nine 

to 56% of clinically diagnosed AD patients are AD phenocopies that fail to show 

AD pathology upon postmortem examination 82. With the development of amyloid 

tracers for positron emission tomography (PET) we can now readily distinguish 

the true AD cases from the amyloid-negative AD phenocopies (nonAD).  

Ninety-seven percent of all AD cases have symptom onset at the age of 

65 or older and are classified as “late-onset” (LO), while the remaining 3% have 

symptom onset before the age of 65 and are termed “early-onset” (EO) 2,83,84 . 

Pathologically, patients who are younger at disease onset show greater 

pathological burden 48-52. Magnetic resonance imaging (MRI), 

[18F]Fluorodeoxyglucose (FDG) PET and [18F]Flortaucipir PET (tau PET) studies 

have shown that EO Alzheimer’s subjects (EOAD) have more extensive atrophy, 

hypometabolism and tau burden compared to LO Alzheimer’s subjects  (LOAD) 

53-57.  The more advanced pathologic burden in EOAD has been associated with 

more aggressive clinical course and is more likely to have an atypical 

presentation 42-45. To date the imaging biomarker profiles of early-onset nonAD 

(EOnonAD) have not been studied.  
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The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multisite, 

longitudinal study that collects standardized imaging, genetic, clinical, and fluid 

biomarkers from clinically diagnosed amnestic mild cognitive impairment (MCI), 

clinically diagnosed Alzheimer’s dementia (DEM) and cognitively normal (CN) 

control subjects as a part of a global research effort to better understand LOAD. 

While the majority of ADNI subjects are older than 65 years, ADNI contains a 

sizeable cohort of amnestic EO MCI or dementia subjects (age of symptom onset 

<65 years). The addition of amyloid imaging in the ADNI-GO/2 funding stages 

allowed researchers to ascertain the amyloid PET status of all ADNI participants 

and provided researchers the opportunity to study the biomarker-validated AD 

and non-AD phenocopies in greater detail.  

In this study, my aim was to ascertain the extent and severity of tau and 

neurodegenerative pathology measured with tau PET, FDG PET and MRI in EO 

and LO ADNI cohorts stratified by amyloid status as follows: EOAD MCI and 

DEM (EOADMCI ; EOADDEM), EOnonAD MCI and DEM (EOnonADMCI; 

EOnonADDEM), LOAD MCI and DEM (LOADMCI; LOADDEM) and LOnonAD MCI 

and DEM (LOnonADMCI; LOnonADDEM).  I hypothesized that EOAD and 

EOnonAD subjects would have more severe neurodegeneration and greater tau 

burden relative to their LO counterparts, indicative of the greater disease burden 

likely required to have equivalent impairment to the significantly older LO group. I 

also hypothesized that nonAD cases would have a nonAD-like pattern of 

neurodegeneration. 
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2.2. Methods: 

Subjects 

Data used in the preparation of this article were obtained from the ADNI 

database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial MRI, PET, other biological markers, 

and clinical and neuropsychological assessments can be combined to accurately 

measure and predict the progression of MCI and Alzheimer’s dementia. ADNI 

has undergone three complete funding cycles to date: ADNI1, ADNI-GO and 

ADNI2 and is now in the ADNI3 cycle. ADNI-GO, ADNI2 and ADNI3 included 

[18F]Florbetapir amyloid PET imaging.  

The clinical and biomarker characteristics of the ADNI cohort have been 

previously published 85.  ADNI has enrolled clinically diagnosed CN, amnestic 

MCI and amnestic DEM subjects. Probable AD DEM diagnosis is based on the 

National Institute of Neurological and Communicative Disorders and Stroke and 

the AD and Related Disorders Association (NINCDS-ADRDA) criteria 33. 

Probable AD DEM subjects were 56 to 90 years old at enrollment, scored 

between 20 and 26 on the Mini-Mental State Examination (MMSE) 86 and 0.5–1 

on the Clinical Dementia Rating (CDR) global score 87. Subjects diagnosed as 

amnestic MCI ranged from 55 to 91 years old at enrollment, had no significant 

functional impairment, scored between 24 and 30 on the MMSE, had a global 

CDR of 0.5 (memory score ≥ 0.5), and impairment on Wechsler Memory Scale – 

Logical Memory II test 88. CN subjects had MMSE between 24 and 30, a global 
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CDR of 0 and did not meet criteria for MCI or DEM. Subjects were excluded due 

to inability to undergo MRI or if they had other neurological disorders, active 

depression, or history of psychiatric diagnosis, alcohol, or substance dependence 

within the past 2 years, less than 6 years of education or were not fluent in 

English or Spanish. The full list of inclusion/exclusion criteria may be accessed in 

the online ADNI protocol (http://www.adni-

info.org/Scientists/ADNIStudyProcedures.html). Written informed consent was 

obtained from all participants and the institutional review board (IRB) at all ADNI 

sites have reviewed and approved ADNI data collection protocol. 

For my analysis, I used 231 EO subjects with reported age of symptom 

onset ≤ 65 years from the ADNI database with available [18F]Florbetapir amyloid 

PET or CSF Aβ data (219 of the 231 received [18F]Florbetapir PET, the remaining 

12 had CSF Aβ data). One hundred seventy-three EO subjects met criteria for 

MCI; 58 for DEM. 60 MCI and 50 DEM were amyloid-positive (EOADMCI and 

EOADDEM) and 113 and 8, respectively, were amyloid-negative (EOnonADMCI and 

EOnonADDEM) based on previously validated [18F]Florbetapir global means 

standard uptake volume ratio (SUVR) cut-off of 1.17 89 or a CSF Aβ1-42 level < 

192 pg/ml 90. The subset with tau PET, [18F]Flortaucipir, included 10 EOADMCI, 7 

EOADDEM, 38 EOnonADMCI and 3 EOnonADDEM. 

LO subjects included had either [18F]Florbetapir amyloid PET (488/539 

subjects) or CSF Aβ data (51/539 subjects), and all had FDG PET and MR 

imaging.  Special care was taken to ensure that no LO diagnostic group was 

significantly more or less cognitively impaired than their EO counterpart 
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(measured by MMSE) by removing outlier subjects, resulting in 539 subjects. 

Three hundred sixty-seven met criteria for MCI and 172 for DEM. Two hundred 

sixteen LO MCI and 148 LO DEM were amyloid-positive (LOADMCI and 

LOADDEM), while 151 LO MCI and 24 LO DEM were amyloid-negative 

(LOnonADMCI; LOnonADDEM). The subset with tau PET included 53 LOADMCI, 27 

LOADDEM, 51 LOnonADMCI and 2 LOnonADDEM. Due to the low numbers of EO 

and LO nonADDEM subjects with [18F]Flortaucipir scans (3 and 2, respectively) 

they were grouped together with the EO and LO nonADMCI, resulting in 41 

EOnonAD and 53 LOnonAD subjects in the tau comparisons.   

Since EO and LO groups cannot be directly compared because 

neurodegenerative changes associated with aging could inadvertently confound 

the results, I conducted two sets of analyses. I first compared each EO and LO 

group to the same CN comparison group comprised of the 291 amyloid-negative 

(SUVR<1.17) CN subjects within the age range of 55 to 90 years old. This 

comparison allowed for a straightforward interpretation of the effect sizes as a 

measure of disease impact. Next, I repeated the analyses comparing the LO and 

EO groups to only the older (N=146) and younger half (N=145) of CN, 

respectively. 

MRI and PET acquisition and analyses 

ADNI MRI and PET acquisition and preprocessing protocols can be found 

at www.adni-info.org. The MRI data acquisition and preprocessing have been 

previously described elsewhere 33. I downloaded preprocessed MRI data from 

LONI IDA (https://ida.loni.usc.edu). Scans were spatially warped to Montreal 
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Neurological Institute (MNI) space and segmented into gray matter (GM), white 

matter, and CSF components using voxel-based morphometry (VBM) in 

Statistical Parametric Mapping version 12 (SPM12), as described previously 91. 

GM maps were normalized and smoothed using 10 mm full-width half maximum 

(FWHM) Gaussian kernel, which yielded gray matter density (GMD) data. 

Intracranial volume (ICV) was also calculated using FreeSurfer version 5.1.   

PET scanners across sites were held to rigorous qualifications, calibration, 

and normalization standards as described in detail elsewhere 87.  I downloaded 

preprocessed amyloid, FDG PET and tau PET data from LONI IDA 

(https://ida.loni.usc.edu). The scans were already averaged, aligned to standard 

space, re-sampled to a standard image and voxel size (2mm × 2mm × 2mm), 

and smoothed to a uniform resolution as previously described 92.  I aligned the 

images to the corresponding MRI scan from the same visit and normalized them 

to MNI space using parameters obtained from the MRI segmentation using 

SPM12. PET scans were intensity normalized to mean pons uptake for FDG, 

whole cerebellum for amyloid and cerebellar crus for tau PET, resulting in whole 

brain SUVR images as previously described 93,94.   To assign subjects into 

groups by amyloid status, I used an amyloid PET cutoff of SUVR ≥ 1.17 or CSF 

Aβ1-42 level < 192 pg/ml  89,90.  

Statistical Analyses 

Clinical and Demographic Analyses: 

The statistical distribution of clinical and demographic characteristics (age, 

education, global CDR, MMSE, and amyloid PET mean global SUVR) were 
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analyzed in SPSS version 24.2 using one-way ANOVA. ANOVA p-values are 

listed in the tables and Bonferroni-corrected multiple comparisons p-values are 

listed in the results text. APOE4 genotype and sex frequency comparisons were 

done using a chi-square test with two-sided p-values. The alpha value for all 

comparisons was p<0.05.  

Parametric Mapping: 

I used voxel-wise linear regression models in SPM12 to study the extent 

and severity of neurodegeneration and tau burden in EO and LO AD and nonAD 

groups relative to CN while controlling for age, sex and education.  Additionally, 

in the MRI analyses, I covaried for MRI field strength (1.5T vs. 3T) and ICV.  

Family-wise error (FWE) cluster-level correction was applied to correct for 

multiple comparisons with a significance threshold of p<0.01.  Because side-by-

side interpretation of significance maps generated with unequal sample sizes can 

be misleading, I also derived β-coefficient maps to demonstrate the effect sizes 

in each comparison, which are visualized using the MRIcrogl version 2.1 

software. 

 

2.3. Results: 

AD analyses 

Demographic comparisons: 

The demographic, neuropsychological, and amyloid burden comparisons 

of the amyloid positive diagnostic groups relative to CN are shown in Table 1. 

The CN were significantly older than the EO and significantly younger than the 
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LO subjects (p<0.001, both). The CN subjects had significantly fewer APOE4 

carriers compared to all other groups (p<0.001, all). The age and APOE4 effects 

remained when the data were split into younger and older subgroups (Table 2). 

As expected, the EOADMCI and EOADDEM subjects were significantly 

younger compared to the LOADMCI and LOADDEM groups (p<0.001, Table 3, top). 

Compared to EOADMCI, LOADMCI had significantly fewer years of education 

(p=0.021). The EOADDEM and LOADDEM groups showed similar education. Both 

EOAD groups had a significantly higher percentage of APOE e4 homozygotes 

compared to LOAD subjects (MCI p=0.004, DEM p=0.022). There were no 

significant differences in global [18F]Florbetapir SUVR, global CDR or MMSE 

between the EO and LOAD groups. 

Regional amyloid comparisons between the AD subjects showed a 

significant difference (p=0.044) in parietal cortices and significant (p=0.048) 

difference in temporal amyloid SUVR between EOADMCI and EOADDEM (Table 4).  

  



 22 

Table 1. EOAD and LOAD demographic comparisons to CN. The comparisons 

were done using ANOVA and chi-square tests with two-sided p-values. The 

Bonferroni-corrected pairwise differences are discussed in the Results section. 

Significant p-values (<0.05) are bolded.  

*Significantly different than CN group at p<0.05 

**Significantly different than CN group at p<0.01 

***Significantly different than CN group at p<0.001 

 

  

Variable 

 
CN  

(N=291) 
 

 
EOADMCI 
(N=60)  

EOADDEM 
(N=50) p-value 

 
LOADMCI 
(N=216) 

 

LOADDEM 
(N=148) p-value 

Age, years, 
Mean (SD) 74.3 (6.4) 65.4 (6.0)*** 64.7 (6.3)*** <0.001 76.4 (5.8)*** 78.3 

(5.9)*** <0.001 

Sex, 
Male % 52.2 46.7 44.0 0.461 60.2 58.8 0.174 

Education, 
years, Mean 

(SD) 
16.7 (2.6) 16.7 (2.8) 15.6 (2.4)** 0.022 15.8 (2.8)*** 15.4 

(3.0)*** <0.001 

% APOE e4, 
0/1/2 alleles 77/22/1 18/52/30*** 26/38/36*** <0.001 34/52/14*** 26/56/18*** <0.001 

Global CDR, 
Mean (SD) 

0.02 
(0.09) 

0.50 
(0.00)*** 

0.87 
(0.33)*** <0.001 0.50 (0.16)*** 0.84 

(0.36)*** <0.001 

MMSE, 
Mean (SD) 29.0 (1.3) 27.8 (1.8)*** 22.5 (3.3)*** <0.001 27.4 (1.9)*** 23.0 

(2.8)*** <0.001 

Global 
Cortical 

[18F]Florbet
apir SUVR, 
Mean (SD) 

1.03 
(0.06) 

1.41 
(0.15)*** 

1.48 
(0.13)*** <0.001 1.43 (0.17)*** 1.47 

(0.16)*** <0.001 

Tau Scans, 
N 126 10 7 N/A 53 27 N/A 
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Table 2.  EOAD and LOAD demographic comparisons to the young and old CN 

groups, resp. The comparisons were done using ANOVA and chi-square tests 

with two-sided p-values. The Bonferroni-corrected pairwise differences are 

discussed in the Results section. Significant p-values (<0.05) are bolded.  

*Significantly different than CN group at p<0.05 

**Significantly different than CN group at p<0.01 

***Significantly different than CN group at p<0.001 

  

Variable 

 
 Young 

CN 
(N=145) 

 

 
EOADMCI 
(N=60)  

EOADDEM 
(N=50) 

p-
value 

 
Old CN  
(N=146) 

 

LOADMCI 
(N=216) 

LOADDEM 
(N=148) 

p-
value 

Age, 
years, 

Mean (SD) 
69.1 (3.3) 65.4 

(6.0)*** 
64.7 

(6.3)*** 
<0.00

1 79.4 (4.3) 76.4 
(5.8)*** 78.3 (5.9) <0.00

1 

Sex, 
Male % 50.3 46.7 44.0 0.713 54.1 60.2 58.8 0.505 

Education
, years, 

Mean (SD) 
16.7 (2.5) 16.7 (2.8) 15.6 (2.4)** 0.027 16.7 (2.7) 15.8 (2.8)** 15.4 

(3.0)*** 
<0.00

1 

% APOE 
e4, 0/1/2 
alleles 

74/25/1 18/52/30*** 26/38/36*** <0.00
1 80/18/2 34/52/14*** 26/56/18*** <0.00

1 

Global 
CDR, 

Mean (SD) 

0.02 
(0.10) 

0.50 
(0.00)*** 

0.87 
(0.33)*** 

<0.00
1 

0.01 
(0.07) 

0.50 
(0.16)*** 

0.84 
(0.36)*** 

<0.00
1 

MMSE, 
Mean (SD) 29.1 (1.1) 27.8 

(1.8)*** 
22.5 

(3.3)*** 
<0.00

1 28.8 (1.4) 27.4 
(1.9)*** 

23.0 
(2.8)*** 

<0.00
1 

Global 
Cortical 

[18F]Florbe
tapir 

SUVR, 
Mean (SD) 

1.04 
(0.06) 

1.41 
(0.15)*** 

1.48 
(0.13)*** 

<0.00
1 

1.01 
(0.06) 

1.43 
(0.17)*** 

1.47 
(0.16)*** 

<0.00
1 

Tau 
Scans, N 55 10 7  71 53 27  
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Table 3. EO vs. LO demographic comparisons. The comparisons were done 

using ANOVA and chi-square tests with two-sided p-values. Significant p-values 

(<0.05) are bolded.  In addition, pairwise comparisons of MCI to DEM for each 

group are displayed using the following symbols to denote a significant 

difference. 

*Significantly different between MCI and DEM at p<0.05 

**Significantly different between MCI and DEM at p<0.01 

***Significantly different between MCI and DEM at p<0.001 

 

Diagnostic group (N) EOADMCI 
(N=60) 

LOADMCI 
 (N=216) p-value EOnonADMCI 

 (N=113) 
LOnonADMCI 

 (N=151) p-value 

Age, years, Mean (SD) 65.4 (6.0) 76.4 (5.8)** <0.001 65.5 (5.8) 77.6 (6.2) <0.001 

Sex, Male % 46.7 60.2 0.065 50.4 59.6* 0.138 

Education, years, Mean (SD) 16.7 (2.8)* 15.8 (2.8) 0.021 16.2 (2.5) 16.3 (2.5) 0.848 

% APOE e4, 0/1/2 alleles 18/52/30 34/52/14 0.004 68/30/2 86/13/2 0.005 

Global CDR, Mean (SD) 0.50 (0.00)*** 0.50 (0.16)*** 0.823 0.46 (0.17)*** 0.48 (0.11)*** 0.167 

MMSE, Mean (SD) 27.8 (1.8)*** 27.4 (1.9)*** 0.229 28.6 (1.5)*** 28.4 (1.6)*** 0.175 

Global Cortical 
[18F]Florbetapir SUVR, 

Mean (SD) 
1.41 (0.15)* 1.43 (0.17)* 0.315 1.03 (0.08) 1.01 (0.09) 0.115 

Tau scans, N 10 53 N/A 38 51 N/A 

Diagnostic group (N) EOADDEM 
 (N=50) 

LOADDEM 
 (N=148) p-value 

EOnonADDEM 
 (N=8) 

LOnonADDEM 
 (N=24) p-value 

Age, years, Mean (SD) 64.7 (6.3) 78.3 (5.9)** <0.001 66.3 (5.8) 79.4 (5.8) <0.001 

Sex, Male % 44.0 58.8 0.069 50.0 83.3* 0.059 

Education, years, Mean (SD) 15.6 (2.4)* 15.4 (3.0) 0.668 15.6 (3.5) 15.6 (3.0) 1.000 

% APOE e4, 0/1/2 alleles 26/38/36 26/56/18 0.022 71/14/14 83/13/4 0.642 

Global CDR, Mean (SD) 0.87 (0.33)*** 0.84 (0.36)*** 0.579 0.69 (0.26)*** 0.83 (0.24)*** 0.155 

MMSE, Mean (SD) 22.5 (3.3)*** 23.0 (2.8)*** 0.283 23.0 (2.4)*** 23.6 (1.9)*** 0.453 

Global Cortical 
[18F]Florbetapir SUVR, 

Mean (SD) 
1.48 (0.13)* 1.47 (0.16)* 0.616 1.04 (0.08) 1.01 (0.10) 0.485 

Tau scans, N 7 27 N/A 3 2 N/A 
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Table 4. Regional amyloid PET ([18F]Florbetapir) comparisons between amyloid 

positive subjects for frontal, cingulate, parietal and temporal cortices. *Temporal 

SUVR was significantly different (p=0.048) between EOADMCI and EOADDEM 

subjects 

  

Amyloid 
Regions EOADMCI EOADDEM LOADMCI LOADDEM ANOVA 

p-values 
Frontal 
SUVR 1.38 (0.18) 1.47 (0.17) 1.41 (0.17) 1.43 (0.17) 0.083 

Cingulate 
SUVR 1.47 (0.19) 1.55 (0.15) 1.50 (0.18) 1.53 (0.18) 0.112 

Parietal 
SUVR 1.38 (0.19) 1.47 (0.15) 1.40 (0.17) 1.44 (0.17) 0.044 

Temporal 
SUVR 

1.27 
(0.18)* 

1.37 
(0.17)* 1.30 (0.16) 1.33 (0.16) 0.023 
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Imaging comparisons: 

The FWE cluster-level corrected maps of the MRI, FDG PET and tau PET 

comparisons of EOAD and LOAD spectrum individuals to CN are shown in 

Figure 1. The same analyses limited to only subjects with tau PET scans are 

shown in Figure 2 while Figure 3 displays comparisons of EOAD and LOAD to 

younger and older CN subgroups, resp. The pattern of neurodegeneration and 

tau deposition seen in Figure 1 and Figures 2 and 3 are very similar discounting 

the probability of exaggerated age or selection bias.  
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Figure 1.  MRI (top), FDG PET (middle), tau PET (bottom) comparisons between 

the AD groups and CN. The significance maps show p<0.05 thresholded FWE 

cluster-level corrected results of EOADMCI (N=60), EOADDEM (N=50), LOADMCI 

(N=216) and LOADDEM (N=148) vs. CN (N=291). The results displayed here are 

for all subjects with available scans in each modality.  
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Figure 2.  MRI (top) and FDG PET (bottom) comparisons between the AD and 

CN groups restricted to only subjects with available tau PET scans. The 

significance maps show p<0.05 thresholded FWE cluster-level corrected results. 

of EOADMCI (N=10), EOADDEM (N=7), LOADMCI (N=53) and LOADDEM (N=27) vs. 

CN (N=126) 

 



 29 

Figure 3.   MRI (top), FDG PET (middle), tau PET (bottom) comparisons 

between young CN and EOnonAD and old CN and LOnonAD groups. The 

significance maps show p<0.05 thresholded FWE cluster-level corrected results 

of EOADMCI (N=60) and EOADDEM (N=50) vs young CN (N=145), LOADMCI 

(N=216) and LOADDEM (N=148) vs. old CN (N=146).  
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MRI (Figure 1, top panel) 

The EOADMCI group showed two significant clusters of atrophy in the left 

and right medial and lateral temporal and left frontal cortices relative to the CN 

group (left cluster: cluster size k=45797, cluster pFWE<0.001; right cluster: 

k=20760, cluster pFWE=0.003). Compared to the CN group, the LOADMCI cohort 

showed significant atrophy of the bilateral medial and lateral temporal, 

temporoparietal, insular, occipital and frontal regions (single cluster k=688646, 

cluster pFWE<0.001). The EOADMCI group visually showed a larger effect size (i.e., 

more severe atrophy) than LOADMCI in overlapping regions (see β-coefficient 

maps in Figure 1, top panel).  

Both EOADDEM and LOADDEM showed extensive atrophy throughout the 

brain compared to CN (single clusters, kEO=1541575, kLO=1503763, cluster 

pFWE<0.001 for both). The significance and β-coefficient maps show a stronger 

effect size (i.e., more severe atrophy) in the EOADDEM than the LOADDEM group 

(see β-coefficient maps in Figure 1, top panel). 

 

FDG PET (Figure 1, middle panel) 

Compared to CN, EOADMCI showed a significant hypometabolic cluster in 

bilateral medial and lateral temporal and lateral, temporoparietal cortices 

(k=32246, cluster pFWE<0.001). Additionally, there was a small cluster of 

hypometabolism in bilateral dorsolateral prefrontal cortex (k=3396, cluster 

pFWE<0.001). LOADMCI subjects showed hypometabolism of the bilateral inferior 

temporal, medial and lateral temporal and parietal cortices as well as bilateral 
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frontal cortex (single cluster, k=94307, cluster pFWE<0.001, Figure 1, middle 

panel).  

Both the EOADDEM and LOADDEM groups showed extensive 

hypometabolism relative to CN in bilateral parietal, temporal, and frontal lobes, 

as well as insular and cingulate cortices (single clusters, kEO=148701, 

kLO=185998, cluster pFWE<0.001 for both). As with the MRI analysis, the 

EOADDEM group showed a stronger effect size (i.e., more severe 

hypometabolism) than the LOADDEM group (see β-coefficient maps in Figure 1, 

middle panel). 

 

Tau PET (Figure 1, bottom panel) 

These analyses were limited to the subset of individuals with available tau 

PET imaging. Compared to the CN group, the EOADMCI group had a significant 

cluster of tau binding covering temporal, parietal, parietooccipital and right frontal 

cortices (k=74981, cluster pFWE<0.001).  An additional significant cluster of tau 

binding was present in the left prefrontal cortex (k=9800, cluster pFWE<0.001). 

The LOADMCI cohort showed tau deposition in a similar pattern (single cluster, 

k=96885, cluster pFWE<0.001). The beta coefficient maps demonstrated greater 

tau burden in EOADMCI compared to LOADMCI (see β-coefficient maps in Figure 

1, bottom panel). 

EOADDEM showed tau binding in all cortical regions save for the primary 

sensorimotor and visual cortices (single cluster, k=157966, cluster pFWE<0.001). 

LOADDEM showed two significant clusters of tau binding – one in the posterior 
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association cortices (k=67260, cluster pFWE<0.001) and a smaller one in the 

bilateral prefrontal cortices (k=4931, cluster pFWE<0.001). The β-coefficient maps 

show much more severe and extensive tau deposition in EOADDEM compared to 

LOADDEM (see β-coefficient maps in Figure 1, bottom panel). 

 

NonAD analyses: 

Demographic comparisons: 

Direct comparisons of CN to EOnonADMCI, LOnonADMCI, EOnonADDEM 

and LOnonADDEM showed the expected significant difference in age, global CDR 

and MMSE (p<0.001, Table 5). Compared to CN, LOnonADDEM had a greater 

proportion of men (p=0.003) and lower education (p=0.044). Even when split in 

younger and older subgroups, the age differences between CN and the 

respective disease groups remained significant (Table 6). 

 By definition, EOnonADMCI and EOnonADDEM were significantly younger 

than the corresponding LOnonAD groups (p<0.001). The EOnonADMCI group had 

a higher proportion of APOE e4 carriers compared to the LOnonADMCI group 

(p=0.005). There were no significant differences in sex, education, global CDR, 

MMSE or global [18F]Florbetapir SUVR between the groups. 

 A closer look into regional amyloid differences among nonAD subjects 

revealed significant differences between LOnonADMCI and LOnonADDEM parietal 

amyloid SUVR (p=0.045, Table 7). No other region was significantly different 

across nonAD groups.  
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Table 5. EOnonAD and LOnonAD demographic comparisons to CN. The 

comparisons were done using ANOVA and chi-square tests with two-sided p-

values. The Bonferroni-corrected pairwise differences are discussed in the 

Results section. Significant p-values (<0.05) are bolded. 

*Significantly different than CN group at p<0.05 

**Significantly different than CN group at p<0.01 

***Significantly different than CN group at p<0.001 

 

  

Variable 

 
CN  

(N=291) 
 

EOnonADMCI 
(N=113) 

EOnonADDEM 
(N=8) p-value LOnonADMCI 

(N=151) 
LOnonADDE

M(N=24) p-value 

Age, years, 
Mean (SD) 74.3 (6.4) 65.5 (5.8)*** 66.3 (5.8)*** <0.001 77.6 (6.2)*** 79.4 (5.8)*** <0.001 

Sex, 
Male % 52.2 50.4 50.0 0.944 59.6 83.3** 0.008 

Education, 
years, Mean 

(SD) 
16.7 (2.6) 16.2 (2.5) 15.6 (3.5) 0.095 16.3 (2.5) 15.6 (3.0)* 0.037 

% APOE e4, 
0/1/2 alleles 77/22/1 68/30/2 71/14/14 0.028 86/13/2* 83/13/4 0.173 

Global CDR, 
Mean (SD) 0.02 (0.09) 0.46 (0.17)*** 0.69 (0.26)*** <0.001 0.48 (0.11)*** 

0.83 
(0.24)*** 

<0.001 

MMSE, 
Mean (SD) 29.0 (1.3) 28.6 (1.5)* 23.0 (2.4)*** <0.001 28.4 (1.6)*** 23.6 (1.9)*** <0.001 

Global 
Cortical 

[18F]Florbeta
pir SUVR, 
Mean (SD) 

1.03 (0.06) 1.03 (0.08) 1.04 (0.08) 0.214 1.01 (0.09) 1.01 (0.10) 0.160 

Tau scans, N 126 38 3 N/A 51 2 N/A 
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Table 6.  EOnonAD and LOnonAD demographic comparisons to the young and 

old CN groups, resp. The comparisons were done using ANOVA and chi-square 

tests with two-sided p-values. The Bonferroni-corrected pairwise differences are 

discussed in the Results section. Significant p-values (<0.05) are bolded. 

*Significantly different than CN group at p<0.05 

**Significantly different than CN group at p<0.01 

***Significantly different than CN group at p<0.001 

  

Variable 

 
Young CN 

(N=145) 
 

 
EOnonADMCI 

(N=113)  

EOnonADDE
M 

(N=8) 
p-

value 

 
Old CN  
(N=146) 

 

LOnonADMCI 
(N=151) 

LOnonADDE
M 

(N=24) 
p-

value 

Age, years, 
Mean (SD) 69.1 (3.3) 65.5 (5.8)*** 66.3 (5.8)* 

<0.00
1 79.4 (4.3) 77.6 (6.2)** 79.4 (5.8) 0.010 

Sex, 
Male % 50.3 50.4 50.0 0.990 54.1 59.6 83.3** 0.026 

Education, 
years, Mean 

(SD) 
16.7 (2.5) 16.2 (2.5) 15.6 (3.5) 0.138 16.7 (2.7) 16.3 (2.5) 15.6 (3.0) 0.078 

% APOE e4, 
0/1/2 alleles 74/25/1 68/30/2 71/14/14* 0.066 80/18/2 86/13/2 83/13/4 0.630 

Global CDR, 
Mean (SD) 0.02 (0.10) 0.46 (0.17)*** 0.69 (0.26)*** 

<0.00
1 0.01 (0.07) 0.48 (0.11)*** 0.83 (0.24)*** <0.001 

MMSE, 
Mean (SD) 29.1 (1.1) 28.6 (1.5)** 23.0 (2.4)*** <0.00

1 28.8 (1.4) 28.4 (1.6)** 23.6 (1.9)*** <0.001 

Global 
Cortical 

[18F]Florbet
apir SUVR, 
Mean (SD) 

1.04 (0.06) 1.03 (0.08) 1.04 (0.08) 0.749 1.01 (0.06) 1.01 (0.09) 1.01 (0.10) 0.986 

Tau Scans, 
N 55 38 3  71 51 2  
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Table 7. Regional amyloid PET ([18F]Florbetapir) comparisons between amyloid 

negative subjects for frontal, cingulate, parietal and temporal cortices.  

  

Amyloid 
Regions CN EOnonADMCI EOnonADDEM LOnonAD-

MCI LOnonADDEM 
ANOVA 

p-
values 

Frontal 
SUVR 

1.01 
(0.07) 1.01 (0.06) 1.05 (0.08) 1.00 (0.08) 0.99 (0.12) 0.304 

Cingulate 
SUVR 

1.11 
(0.08) 1.11 (0.09) 1.16 (0.07) 1.09 (0.09) 1.09 (0.11) 0.187 

Parietal 
SUVR 

1.02 
(0.07) 1.02 (0.07) 1.06 (0.06) 1.01 (0.08) 1.02 (0.10) 0.394 

Temporal 
SUVR 

0.96 
(0.06) 0.95 (0.06) 0.99 (0.05) 0.95 (0.07) 1.01 (0.08) 0.112 
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Imaging comparisons: 

The FWE cluster-level corrected MRI, FDG PET and tau PET comparison 

maps of the nonAD groups to CN are shown in Figure 4. The same analyses 

limited to only subjects with tau PET scans are shown in Figure 5, while Figure 

6 displays comparisons of EOnonAD and LOnonAD to younger and older CN 

subgroups, resp. The pattern of neurodegeneration and tau deposition seen in 

Figure 16 is largely identical to the one in Figure 4, with the exception of 

emerging tau deposition in bilateral frontal and right parietal lobes in EOnonAD 

when compared to the young CN.  
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Figure 4. MRI (top), FDG PET (middle), tau PET (bottom) comparisons between 

the nonAD groups and CN. The significance maps show p<0.05 thresholded 

FWE cluster-level corrected results of EOnonADMCI (N=113), EOnonADDEM 

(N=8), LOnonADMCI (N=151) and LOnonADDEM (N=24) vs. CN (N=291).  The 

results displayed here are for all subjects with available scans in each modality. 
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Figure 5.   MRI (top) and FDG PET (bottom) comparisons between the nonAD 

and CN groups restricted to only subjects with available tau PET scans. The 

significance maps show p<0.05 thresholded FWE cluster-level corrected results 

of EOnonADMCI (N=38), EOnonADDEM (N=3), LOnonADMCI (N=51) and 

LOnonADDEM (N=2) vs. CN (N=126).  
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Figure 6.   MRI (top), FDG PET (middle), tau PET (bottom) comparisons 

between young CN and EOAD and old CN and LOAD groups. The significance 

maps show p<0.05 thresholded FWE cluster-level corrected results of 

EOnonADMCI (N=113) and EOnonADDEM (N=8) vs young CN (N=145), 

LOnonADMCI (N=151) and LOnonADDEM (N=24) vs. old CN (N=146). 
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MRI (Figure 4, top panel) 

EOnonAD showed no significant atrophy compared to the CN group.  

LOnonADMCI showed extensive atrophy in the bilateral medial and lateral 

temporal, temporoparietal, parietooccipital and frontal cortices (single cluster, 

k=569219, cluster pFWE<0.001). LOnonADDEM had similarly widespread atrophy 

showing two significant clusters – one in bilateral temporoparietal and frontal 

cortices (k=602716, cluster pFWE <0.001) and another in the cerebellum 

(k=13494, cluster pFWE=0.020). The largest effect size was observed in 

LOnonADDEM with greatest predilection for the medial and inferior temporal lobes 

(see β-coefficient maps in Figure 4, top panel).  

 

FDG PET (Figure 4, middle panel) 

Compared to CN, EOnonADMCI showed no significant hypometabolism, 

while the EOnonADDEM group showed three significant clusters in left and right 

temporoparietal (left: k=15114, cluster pFWE<0.001; right: k=6104, cluster 

pFWE<0.001) and bilateral frontal cortices (single cluster, k=3002, cluster 

pFWE<0.001). LOnonADMCI showed a significant cluster of hypometabolism in 

bilateral temporal and prefrontal cortices (k=24278, cluster pFWE<0.001). A similar 

fronto-temporal pattern of hypometabolism was also observed in LOnonADDEM; 

however, it also extended to the parietal lobes (single cluster, k=78550, cluster 

pFWE<0.001). 
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Tau PET (Figure 4, bottom panel) 

Due to the small sample sizes, the EOnonAD and LOnonAD groups were 

not split by disease stage.  There were no significant tau binding in either 

EOnonAD or LOnonAD. As mentioned above, EOnonAD showed tau deposition 

in bilateral frontal (single cluster, k=7215, cluster pFWE<0.001) and right parietal 

lobes (single cluster, k=4664, cluster pFWE<0.001) when compared to young CN 

only (Figure 4). 

  

2.4. Discussion: 

The current study aimed to map neurofibrillary, structural and metabolic 

differences between EO and LO MCI and DEM subjects stratified by amyloid 

positivity.  As expected I found that EOADMCI and EOADDEM subjects show more 

severe neurodegeneration and greater tau deposition compared to LOADMCI and 

LOADDEM, respectively, a finding that is consistent with previous imaging reports 

45,48-54,57, and with the fact that EO individuals have a much more aggressive 

disease course 42,45.  

The availability of amyloid PET imaging or CSF Aβ measurements allowed 

me to identify nonAD cases that were enrolled as Alzheimer’s phenocopies. 

While I failed to find significant neurodegeneration in EOnonADMCI, I observed 

significant hypometabolism in EOnonADDEM in the absence of significant atrophy, 

a finding that could be indicative of synaptic dysfunction before cellular loss.  The 

lack of findings, particularly in the EOnonADMCI subjects, where the 

neurodegenerative changes are likely subtle, may be due to the inability to 

properly account for age-related degeneration (despite covarying for age during 
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the analysis) when comparing directly to the CN subjects who are significantly 

older. In the EOnonADDEM subjects, the lack of visible atrophy on statistical maps 

may be due to a relatively small sample size, as the beta-coefficient maps 

indicate a pattern of neurodegeneration similar to that seen in the FDG PET 

analysis.  Furthermore, the EOnonADDEM subjects may be a heterogeneous 

group of multiple etiologies, making detection of significant clusters of atrophy 

difficult.   

LOnonAD cases showed pronounced atrophy and hypometabolism with 

greatest predilection for the temporal and frontal lobes. This pattern of 

neurodegeneration has been reported in primary age-related tauopathy (PART) 

and hippocampal sclerosis with TAR-DNA binding protein 43 (TDP-43) inclusions 

(HS-TDP-43) 95,96. Both conditions are highly prevalent among the elderly with 

and without cognitive deficit 95,96, however, of these two, HS-TDP-43 (also known 

as limbic-predominant age-related TDP-43 encephalopathy (LATE)97) is the more 

likely etiology due to the lack of tau binding in the medial temporal lobes which is 

expected in PART.  It is worth noting that though [18F]Flortaucipir binds well to 

mature tangles in 3R+4R tauopathies, such as in AD and PART 98,99, further post 

mortem studies are needed to say with confidence which tauopathy tau variants 

can reliably be bound with Flortaucipir.  

The hypometabolic pattern I observed in LOnonAD fits well with previous 

pathologic and imaging reports of LATE. TDP-43 inclusions and neurite deposits 

first appear in the hippocampal dentate granule cells, subiculum and the 

amygdala 96,100,101. In more advanced stages, TDP-43 pathology is also found in 
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frontal and temporal neocortex 96,100,101.  TDP-43 pathology is extremely 

prevalent among cognitively impaired elderly and is the stand-alone pathology in 

4.2% of these cases 96,100,102,103. 86% of TDP-43 positive cases have HS-TDP-43 

96,104-106. HS-TDP-43 oftentimes show episodic and semantic memory 

dysfunction, explaining how they could easily be diagnosed clinically with AD 107. 

Individuals with HS-TDP-43 have greater hippocampal atrophy and greater 

cognitive impairment than those with HS without TDP-43 100,101,104.  Additional 

support for my hypothesis that the LOnonAD subjects likely harbor HS-TDP-43 

are the recent reports that HS-TDP-43 cases show hypometabolic changes in the 

medial and lateral temporal, posterior and middle cingulate, precuneus, and 

prefrontal cortex, similar to the FDG PET pattern I observed in LOnonADMCI and 

LOnonADDEM 
108. Similar hypometabolic and atrophy patterns involving medial 

and lateral temporal and prefrontal cortices were recently reported in two 

additional clinic-pathologic studies 109,110.   

An additional possibility is that some LOnonAD subjects may suffer from 

behavioral variant frontotemporal dementia (bvFTD).  However, this is less likely 

given the mean age of the LOnonAD cohorts (77.6 and 79.4 years, respectively) 

and their amnestic predominant presentation at enrollment as required by ADNI 

(see http://www.adni-info.org/Scientists/ADNIStudyProcedures.html). It is worth 

noting, however, that in rare cases (10% of pathologically confirmed bvFTD 

cases), patients presented with primarily amnestic symptoms and some studies 

have even reported as much as 25% of pathologically confirmed FTLD cases to 

have a disease onset after the age of 65 111,112.   
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2.5. Strengths and Limitations: 

Several strengths and limitations of my study should be noted. One of the 

strengths is the relatively large sample size of EO subjects available through 

ADNI.  Additionally, ADNI employs meticulously standardized clinical and 

imaging data collection, which is routinely subjected to quality control. One of the 

limitations of my analyses is the cross-sectional design and the measurement of 

atrophy, which has a temporal component. This means that I am actually 

measuring differences in gray matter density, which implies atrophy, but is not 

synonymous.  Longitudinal analyses are needed to assess atrophy and 

metabolic changes over time. Additionally, while the rigorous exclusion criteria 

employed in ADNI are typical of clinical trials, this renders the ADNI’s population 

as not representative of the general population. Furthermore, there is very little 

post mortem data currently available for ADNI, which means diagnosis of AD 

largely lacks pathological verification.  Finally, while I am including the 

EOnonADDEM in my report for completeness, one must keep in mind that the 

number of subjects in this group is very small, thus, the findings should be 

interpreted with caution.  Larger research studies such as the recently funded 

Longitudinal Early-onset Alzheimer’s Disease Study (LEADS) which will use 

amyloid imaging and detect EOnonAD cases will be able to define the 

neurodegenerative pattern in this group. 
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2.6. Conclusions: 

In conclusion, my study found a similar neurodegenerative pattern 

between amnestic amyloid-positive EO and LO MCI and DEM subjects. These 

processes were more severe in the EO group indicating a more aggressive 

disease course. I also found that LOnonADDEM subjects show anterior temporal 

neurodegeneration which might reflect the presence HS-TDP-43 or LATE. In the 

absence of reliable in vivo TDP-43 biomarker, the only feasible method of 

confirmation is through post-mortem examination of the brains. Other large 

research consortia such as the recently funded LEADS project will allow the 

opportunity to systematically study EOAD and EOnonAD and further characterize 

these highly understudied disease states.  
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Chapter 3. The effect of the top 20 Alzheimer’s disease risk genes on gray 

matter density and FDG PET brain metabolism 

3.1. Introduction: 

 Alzheimer’s disease (AD) is a chronic neurodegenerative disease 

characterized by short-term memory loss in the early disease stages and 

progressive cognitive and functional deficits as the disease advances. The 

clinical symptoms result from the deposition of two toxic proteins - β-amyloid (Aβ) 

and tau, which give rise to neuritic plaques and neurofibrillary tangles 

respectively 115. The clinical appearance of AD is the direct result of neuronal 

dysfunction and death, which is manifested by brain atrophy and 

hypometabolism.  

  Brain imaging is increasingly utilized to measure AD-associated changes 

in vivo.  Amyloid positron emission tomography (PET), a novel Food and Drug 

Administration approved imaging technology, uses selective Aβ tracers to 

visualize brain amyloidosis and can reliably detect the presence of neuritic 

plaques in the symptomatic and presymptomatic stages.  Brain atrophy is best 

evaluated with longitudinal studies of high-field magnetic resonance imaging 

(MRI). The atrophic changes are first noticeable in the medial temporal lobe, 

eventually spreading through the remainder of the brain as the disease 

progresses 116.  Brain hypometabolism, a decrease in brain metabolic activity, 

can be visualized using [18F]Fluorodeoxyglucose (FDG) PET or single-photon 

emission tomography (SPECT) with 99mTc exametazime. The hallmark pattern in 
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AD is early hypometabolism of the posterior cingulate, lateral temporal and 

parietal lobes with spread to the frontal lobes as the disease progresses 117.  

 Seventy-80% of sporadic Alzheimer’s disease can be attributed to genetic 

risk 118,119. Recent large-scale genome-wide association studies (GWAS) have 

discovered more than 20 AD gene variants that confer genetic risk 75-80. Among 

these variants is the apolipoprotein E (APOE) gene, which is the most 

established genetic risk factor for AD. Individuals with a single APOE4 allele 

have a three-fold increase in AD risk while homozygotes have a 15-fold increase 

120.  APOE is a major protein component of chylomicrons and is highly expressed 

in both liver and brain, where it plays a role in lipid metabolism and is thought to 

be involved in the breakdown of Aβ, both inside and outside of cells.  The APOE4 

protein is less effective in clearing Aβ than the e3 allele, providing a possible 

explanation for the increased risk of amyloid buildup 121.  With the help of imaging 

studies, APOE4 was found to be strongly associated with brain amyloidosis 

122,123, atrophy 124 and hypometabolism 125,126.  These data indicate that valuable 

observations related to gene function can be made with imaging phenotypes. 

 Many of the remaining top 20 AD variants have also been implicated in 

brain metabolism and neurodegeneration.  Several SORL1 variants, EPHA1 

rs11771145 and CR1 rs6656401 were found to be associated with hippocampal 

atrophy and cerebro- or cardio-vascular disease 127,128. Additionally, various 

research groups have shown that ABCA7 rs3764650, MS4A6A rs983392, 

MS4A6A rs610932 and rs11230161, BIN1 rs6733839 and rs744373, CR1 

rs1408077, CR1 rs6656401, CR1 rs3818361, PICALM rs3851179, CLU 
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rs11136000 and rs2279590, CD2AP rs10948363, and CD33 rs3865444 are all 

associated with MRI-measured brain atrophy 129-135. BIN1 rs7561528 was found 

to be significantly associated with both hippocampal volume and FDG PET brain 

metabolism 136.  The studies mentioned have unquestionably contributed to the 

field of imaging genetics and AD research as a whole, but many of these papers 

have either analyzed the effect of a single gene variant at a time 127-130,132,134,135 

or investigated the association between a polygenic risk score with the imaging 

trait, which does not allow for the interpretation of the individual contribution of 

genetic variants 131. The commonly used univariate imaging genetics approach 

ignores the fact that in any given human subject, many of these risk variants are 

simultaneously present, and the genetic contribution of each variant should be 

investigated in the presence of the rest and not in isolation. Additionally, these 

studies have investigated the effects in the pooled samples consisting of 

asymptomatic individuals, of whom only a portion harbor AD pathology, as well 

as symptomatic individuals who are in different stages of the disease.  Such an 

approach would miss any stage-specific associations that might occur for genes 

that influence the timing and course of development of disease traits (e.g., early 

vs. late neurodegeneration or amyloidosis, early vs. late impairment in a specific 

cognitive domain), and/or could explain, at least in part, AD heterogeneity.   

Using a multivariable approach across the disease spectrum allows for 

accurate modeling of this complex polygenic disease that is constantly evolving. 

Here, I report a comprehensive analysis of the associations of well-validated AD 

risk variants from recent large-scale GWAS studies with two markers of 
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neurodegeneration – brain gray matter density (GMD) and brain glucose 

metabolism. My goal was to establish the relative contribution of the top 20 AD 

risk genes to changes in GMD and metabolic dysfunction. I hypothesized that I 

would find gene variants that show a profound effect on these two 

neurodegenerative phenotypes and that some variants will show associations in 

a stage-specific manner. 

This work was performed in conjunction with the published findings of 

Apostolova et el in 2018, which used imaging genetics to explore the association 

of the top 20 Alzheimer’s risk variants to cortical amyloid PET retention 113.  The 

study design, as in the chapters below, uses a multivariable regression model to 

select variants in a polygenic fashion as to establish relative contribution of 

selected genes to amyloidosis.  This study also emphasized the importance of 

modeling throughout each of the disease stages, preclinical to dementia, to 

potentially capture stage-dependent associations.  The results of the regression 

models were then reproduced in a voxelwise fashion as exploratory analysis of 

regional associations.  

 Data included were from 322 cognitively normal, 496 MCI and 159 

dementia subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

who were genotyped and received [18F]Flortbetapir PET scans.   

 The main findings of this work were that outside of the APOE e4 allele, 

ABCA7 rs3752246 had the largest association to amyloidosis.  ABCA7’s 

association with the early stages of the disease (preclinical and MCI) aligns with 
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neurodegeneration dementia findings presented below in chapter 3 and fits along 

the hypothetical dynamic biomarker model proposed by Jack et al in 2010 114.   

Additionally, I found evidence of a stage dependent gene effects in AD. 

The association for FERMT2 rs17125944 was strongest in the MCI stage. This 

observation indicates that a subset of AD genes might exhibit dynamic 

associations across the cognitive continuum. 

 

3.2. Methods: 

Subjects 

 I sourced the study data from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http://adni.loni.usc.edu). ADNI is an international 

longitudinal study with approximately 50 sites across the United States and 

Canada that was launched in 2003. ADNI’s goal is to track the progression of AD 

using clinical and cognitive tests, MRI, FDG PET, amyloid PET, cerebrospinal 

fluid and blood biomarkers (http://adni.loni.usc.edu/study-design).  

ADNI has undergone three study cycles: ADNI1, ADNI GO and ADNI2. 

The study population was composed of participants from all three phases 137. 

The MRI and FDG PET analyses included all subjects with GWAS and baseline 

MRI or FDG PET data that were successfully preprocessed. A total of 1564 ADNI 

subjects had baseline MRI and GWAS data. Of those, 65 failed in the MRI 

preprocessing steps and were excluded from the structural analyses. The final 

MRI cohort consisted of 441 cognitively normal (NC) subjects, 764 mild cognitive 

impairment (MCI) subjects and 294 dementia subjects (total N=1499). As not all 
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ADNI1 subjects received FDG PET, the FDG PET cohort was smaller and 

consisted of 381 NC, 634 MCI and 243 dementia subjects (total N=1258). There 

were 59 subjects with available FDG PET data whose MRI scans failed in the 

preprocessing steps as described above. These subjects were included in the 

FDG PET analyses.  

The clinical characteristics of the ADNI cohort were described previously 

85. Diagnosis of AD was based on the National Institute of Neurological and 

Communicative Disorders and Stroke and the AD and Related Disorders 

Association (NINCDS-ADRDA) criteria 33. AD subjects were required to have 

Mini-Mental State Examination (MMSE) 86 scores between 20 and 26 and a 

Clinical Dementia Rating scale (CDR) score of 0.5–1 at baseline 87. Qualifying 

MCI subjects had memory complaints but no significant functional impairment, 

scored between 24 and 30 on the MMSE, had a global CDR score of 0.5, a CDR 

memory score of 0.5 or greater, and objective memory impairment on Wechsler 

Memory Scale – Logical Memory II test 138. NC subjects had MMSE scores 

between 24 and 30, a global CDR of 0 and did not meet criteria for MCI and AD. 

Subjects were excluded if they refused or were unable to undergo MRI, had other 

neurological disorders, active depression, or history of psychiatric diagnosis, 

alcohol, or substance dependence within the past 2 years, less than 6 years of 

education, or were not fluent in English or Spanish. The full list of 

inclusion/exclusion criteria may be accessed on pages 23–29 of the online ADNI 

protocol (http://www.adni-info.org/Scientists/ADNIStudyProcedures.html). Written 

informed consent was obtained from all participants.  
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Gene Variant Selection and Imputation 

ADNI-1 participants were genotyped using the Illumina Human610-Quad 

BeadChip array, while ADNI-2/GO participants were genotyped using the 

Illumina HumanOmniExpress BeadChip (Illumina, Inc., San Diego, CA). The 

decision to include gene variants was based on the AD GWAS studies that 

discovered these variants to date. Genes previously associated with the defining 

AD pathologic hallmark - amyloid pathology, were also included in the study  

(Table 8) 139-141. The total number of variants selected was 36.  

ABCA7 rs3752246, BIN1 rs6733839, CASS4 rs7274581, CD2AP 

rs9349407, CELF1 rs10838725, INPP5D rs35349669, PTK2B rs2883497, 

SORL1 rs11218343 and SORL1 rs1131497 were not genotyped on either ADNI 

GWAS array or needed full imputation. The following variants were only 

genotyped on one of the platforms and needed partial imputation: NME8 

rs2718058 in ADNI1 and CLU rs933194, DSG2 rs8093731, MEF2C rs190982 

and ZCWPW1 rs1476679 in ADNI-GO/2 (Table 9). The imputation procedures 

have been previously described 142. Imputation was performed using MACH and 

minimac methodology and the 1000 Genomes project (www.1000genomes.org) 

as the reference panel. The accuracy threshold was set at r2=0.30.  

I assessed Hardy-Weinberg equilibrium (HWE) using the --hardy option in 

PLINK.  In the test, I used a quantitative phenotype (global cortical metabolism) 

and a case-control phenotype. The result indicates that all 27 single nucleotide 

polymorphisms (SNPs) do not show any evidence of deviation from HWE (p-
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value > 0.01). The accepted significance threshold for declaring SNPs to be in 

HWE is p-value < 0.001.  

Nine of the 20 genes were represented by more than one SNP. Given that 

such variants could be in linkage disequilibrium (LD) and introduce co-linearity 

bias, I performed LD analyses followed by Cohen’s kappa (κ) statistics (Table 10 

and Figure 7). When variants providing identical information (those with high LD 

and high κ) were detected I chose the SNP with the smallest amount of missing 

data. This reduced the variants from 36 to 27.  

I assessed the allele frequencies for each gene variant. SNPs were coded 

by minor allele dosage except for the following: ABCA7 rs3764650 GG/GT vs. 

TT, CASS4 rs7274581 CC/TC vs. TT, CLU rs9331949 AG/GG vs. AA, DSG2 

rs8093731 TT/TC vs. CC, FERMT2 rs17125944 CC/TC vs. TT and SORL1 

rs112183431 CC/TC vs. TT where the minor allele homozygote frequency was 

less than 2%.  
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Table 8. All variants of the top 20 AD risk genes that were considered for 

inclusion in analyses 

Variants selected were identified in AD GWAS.  Included is minor allele, 

minor allele frequency, odds ratio and the paper(s) where the association was 

found. 

SNPs PAPER 
MINOR MAF OR CITATIONS 

ABCA7 rs3752246 G 0.17 1.15 [1.09-1.21] Hughes et al., 2014 

ABCA7 rs3764650 G 0.2 1.23 [1.18-1.30] Hollingworth et al., 2011; Shulman et al., 
2013 

ABCA7 rs4147929 A 0.18 1.15 [1.11-1.19] Lambert et al., 2013 
BIN1 rs6733839 T 0.39 1.22 [1.18-1.25] Lambert et al., 2009 

BIN1 rs744373 G 0.36 1.17 [1.12-1.21] Seshadri et al., 2010; Hohman et al., 2013; 
Gharesouran et al., 2014 

BIN1 rs7561528 A 0.2 1.17 [1.13–1.22] Biffi et al., 2010; Naj et al., 2011; Hohman 
et al., 2013 

CASS4 rs7274581 C 0.09 0.88 [0.84-0.92] Lambert et al., 2013 

CD2AP rs9349407 C 0.19 1.12 [1.07–1.17] Hollingworth et al., 2011; Naj et al., 2011; 
Shulman et al., 2013 

CD2AP rs10948363 G 0.19 1.1 [1.07-1.13] Lambert et al., 2013 

CD33 rs3865444 A 0.21 0.94 [0.91-0.96] Hollingworth et al., 2011; Naj et al., 2011; 
Lambert et al., 2013 

CELF1 rs10838725 C 0.26 1.08 [1.05-1.11] Lambert et al., 2013 

CLU rs11136000 T 0.38 0.84 [0.79-0.89] Harold et al., 2009; Lambert et al., 2009; 
Seshadri et al., 2010 

CLU rs9331949 C 0.1 1.29 [1.09–1.52] Yu et al., 2013 
CLU rs1532278 T 0.26 0.89 [0.85-0.93] Naj et al., 2011 
CLU rs9331896 C 0.38 0.86 [0.84-0.89] Lambert et al., 2013 

CR1 rs12034383 A 0.41 1.32 [1.10–1.59] Brouwers et al., 2012 
CR1 rs3818361 A 0.25 1.18 [1.13-1.24] Thambisetty et al., 2013 

CR1 rs6656401 A 0.07 1.18 [1.14-1.22] Lambert et al., 2009; Lambert et al., 2013 

CR1 rs6701713 A 0.25 1.16 [1.11-1.22] Naj et al., 2011; Shulman et al., 2013 

DSG2 rs8093731 T 0.12 0.73 [0.62–0.86] Lambert et al., 2013 

EPHA1 rs11767557 C 0.2 0.87 [0.83–0.91] Hollingworth et al., 2011; Naj et al., 2011; 
Hughes et al., 2014 

EPHA1 rs11771145 A 0.43 0.9 [0.88-0.93] Lambert et al., 2013 
FERMT2 rs17125944 C 0.11 1.14 [1.09-1.19] Lambert et al., 2013 
INPP5D rs35349669 T 0.21 1.08 [1.05-1.11] Lambert et al., 2013 

MEF2C rs190982 G 0.22 0.93 [0.90-0.95] Lambert et al., 2013 
MS4A6A rs610932 A 0.45 0.9 [0.87-0.92] Hollingworth et al., 2011 
MS4A6A rs983392 G 0.23 0.9 [0.87-0.92] Lambert et al., 2013 
NME8 rs2718058 G 0.34 0.93 [0.90-0.95] Lambert et al., 2013 

PICALM rs3851179 T 0.31 0.9 [0.83–0.99] Harold et al., 2009; Biffi et al., 2010; 
Seshadri et al., 2010 

PICALM rs10792832 A 0.31 0.87 [0.85–0.89] Lambert et al., 2013 
PICALM rs561655 G 0.34 0.87 [0.84–0.91] Naj et al., 2011 

PTK2B rs28834970 C 0.32 1.1 [1.08-1.13] Lambert et al., 2013 
SLC24A4/RIN3 

rs10498633 T 0.15 0.91 [0.88-0.94] Lambert et al., 2013 

SORL1 rs11218343 C 0.11 0.77 [0.72-0.82] Lambert et al., 2013 

SORL1 rs1131497 G 0.37 1.92 [1.28–2.90] Seshadri et al., 2007; Zhang et al., 2015 

ZCWPW1 rs1476679 C 0.21 0.91 [0.89-0.94] Lambert et al., 2013 
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Table 9. List of variants that needed partial or full imputation 

 Some variants required imputation using data from the 1000 Genomes 

project.  Need for imputation was dependent on the phase which subjects were 

genotyped. 

 

 

 

 

 

 

 

 

 

 

  

SNP Imputed in 

ABCA7 rs3752246 ADNI-1, ADNI-2/GO 
BIN1 rs6733839 ADNI-1, ADNI-2/GO 

CASS4 rs7274581 ADNI-1, ADNI-2/GO 
CD2AP rs9349407 ADNI-1, ADNI-2/GO 
CELF1 rs10838725 ADNI-1, ADNI-2/GO 

CLU rs9331949 ADNI-1 
DSG2 rs8093731 ADNI-1 

INPP5D rs35349669 ADNI-1, ADNI-2/GO 
MEF2C rs190982 ADNI-1 
NME8 rs2718058 ADNI-2/GO 

PTK2B rs28834970 ADNI-1, ADNI-2/GO 
SORL1 rs11218343 ADNI-1, ADNI-2/GO 
SORL1 rs1131497 ADNI-1, ADNI-2/GO 

ZCWPW1 rs1476679 ADNI-1 
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Table 10. Linkage analysis for genes with multiple variants included 

Linkage disequilibrium and kappa statistics results for the variants retained 

in the analyses. 

  

 

 

 

 

 

 

  

GENE SNP 1 SNP 2 LD (D’) KAPPA 

ABCA7 rs3752246 rs3764650 65 0.38 

BIN1 
rs6733839 rs744373 88 0.58 
rs744373 rs7561528 77 0.7 
rs7561528 rs6733839 63 0.45 

CLU rs11136000 rs9331949 100 -0.01 
CR1 rs12034383 rs3818361 97 0.03 

EPHA1 rs11767557 rs11771145 69 0.32 
SORL1 rs11218343 rs1131497 100 -0.02 
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Figure 7. LD analysis 

 Results from the linkage analysis.  For variants with significant overlap, 

the variant with the least missing data was retained for maximum N.  Figure 7 

shows variants who reside within a linkage block outline in black.  
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MRI and FDG PET data acquisition and analyses 

 The MRI acquisition and preprocessing protocols can be found on 

www.adni-info.org. ADNI MRI data acquisition and preprocessing have been 

previously described elsewhere 143-145.  Briefly, I downloaded pre-processed MRI 

data from LONI IDA (https://ida.loni.usc.edu)146. 785 subjects had 3T scans 

available and for the remaining 715 subjects, I used 1.5T data. MRI field strength 

was included as a covariate in all MRI analyses. I analyzed all scans using voxel-

based morphometry (VBM) in Statistical Parametric Mapping (SPM8), as 

described previously 91,147. Scans were downloaded from the ADNI site in NifTI 

format, co-registered to MNI space, bias corrected, and segmented into gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) compartments 

using SPM templates. GM density maps were converted to 1mm × 1mm × 1mm 

voxel resolution and smoothed using 10 mm full-width half maximum (FWHM) 

Gaussian kernel. Total intracranial volume (ICV) and baseline mean medial 

temporal lobe thickness measures were extracted for each subject using 

Freesurfer version 5.1, as described previously 148,149. The medial temporal 

region of interest included the entorhinal, fusiform, parahippocampal and 

temporopolar cortical areas.  

The FDG PET acquisition and preprocessing protocols can be found on 

www.adni-info.org.  PET scanners and related equipment across sites were held 

to the same qualifications, calibration, and normalization standards, as described 

in detail 92. I downloaded preprocessed FDG PET data from LONI IDA 

(https://ida.loni.usc.edu). These scans were already averaged, aligned to a 
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standard space, re-sampled to a standard image and voxel size (2mm × 2mm × 

2mm), smoothed to a uniform resolution as previously described 92. The 

downloaded images were aligned to each corresponding MRI image on a 

subject-by-subject basis in MNI space using SPM8, as previously described 149. 

Each scan’s intensity was scaled to the pons to create standard uptake value 

ratio (SUVR) images. Finally, baseline mean FDG SUVR in bilateral posterior 

cingulate was extracted for each subject 150,151. 

Statistical Analyses 

R Statistical Analyses: 

The distributions of clinical and demographic characteristics [age, sex, 

education, MMSE, APOE4 genotype, diagnosis] for each variant were analyzed 

using t-tests or Chi-square tests with two-sided p-values as appropriate. 

My main analyses were done in R v3.3.0 (https://www.r-project.org/). First, I 

performed stepwise linear regression with all 27 AD risk variants as predictors 

and age, gender, education and APOE4 genotype as covariates in the pooled 

sample and then in each diagnostic group. I used medial temporal lobe thickness 

or posterior cingulate SUVR, AD biomarkers of neurodegeneration, as outcome 

measures. Additional covariates were the diagnosis in the pooled analyses and 

magnetic field strength and ICV in all MRI analyses. The decision to exclude 

variables in the stepwise regression models was based on the Akaike 

Information Criterion (AIC) using the critical p-value of 0.157 152. Given that all 

the risk genes were previously validated (i.e., all were candidate genes) and I 

used a multivariable model, I set the significance threshold at p<0.05. After 
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discovering stage-specific genetic influences I repeated the pooled sample 

analyses introducing interaction terms between the genetic variants retained in 

the models and diagnosis.  

Analyses in Imaging Space: 

All imaging analyses were done in an exploratory fashion. I reproduced the 

final stepwise regression models using voxel-wise regression in SPM8 for 

visualization purposes in order to explore, on a whole-brain level, the extent and 

spatial pattern of these imaging genetic associations established using a region 

of interest approach. These models included all variants retained in the R 

stepwise linear regression models and were covaried for age, gender and 

APOE4 genotype. Consistent with the original regression model, the pooled 

analyses also included diagnosis as a covariate and the MRI analyses were 

additionally controlled for MRI field strength and ICV. Due to the exploratory 

nature of the secondary results, I used a less stringent visualization voxel-wise 

threshold, which was uncorrected p < 0.01 with a minimum cluster size (k) of 50 

voxels. Next, I report all family-wise error (FWE) and false discovery rate (FDR) 

significant within-cluster peak effects for all genetic variants identified in the 

models.    

 

3.3. Results: 

 Group comparisons of demographic characteristics and distributions of the 

genotypes that were retained in the regression models are shown in Tables 11 

and 12 for the MRI and PET samples, respectively. As expected, AD subjects 
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were the oldest, least educated, had the greatest frequency of APOE4 and 

performed the worst on MMSE (Tables 11 and 12). There were no significant 

differences in age, gender, education, MMSE and APOE4 distribution between 

carriers and non-carriers or by allele dosage for any of the genotypes except the 

following: DSG2 minor allele carriers were more likely to be male (p=0.028 in the 

FDG sample) and less likely to be APOE4 carriers (p=0.04 in the MRI sample); 

EPHA1 rs11767557 minor allele carriers were less likely to be APOE4 carriers 

and had significantly higher MMSE scores in the FDG sample (p=0.037 and 

p=0.047, respectively); SORL1 rs11218343 minor allele carriers were less 

educated and more likely to be male in both samples (MRI: p=0.01 and p=0.008, 

and FDG p=0.008 and p=0.026, respectively), and  ZCWPW1 risk allele carriers 

were significantly less educated and had higher MMSE scores in both samples 

(MRI p=0.0012 and p=0.034, and FDG p=0.025  and p=0.034, respectively).  For 

completeness, the allele dosage for all 27 variants including the ones not 

retained in the models can be seen in Tables 13 and 14.  
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Table 11. MRI descriptives  

Descriptive characteristics and distribution of the genotypes of the study 

groups who received MRI. 

VARIABLES NC 
(N=441) 

MCI 
(N=764) 

DEM 
(N=294) p-value 

Age, mean years (SD) 74.1 (5.7) 72.6 (7.6) 74.6 (7.9) <0.001 

Sex, N male (%) 222 (50%) 453 (59%) 165 (56%) 0.010 

Education, mean years (SD) 16.4 (2.6) 16.0 (2.8) 15.2 (3.0) <0.001 

MMSE, Mean (SD) 29.1 (1.1) 27.6 (1.8) 23.3 (2.1) <0.001 

APOE4, %0/1/2 71/27/2 49/40/11 34/47/19 <0.001 

ABCA7 rs3752246, % 0/1/2 69/29/2 68/28/4 67/30/3 0.580 
CELF1 rs10838725, % 0/1/2 46/45/9 44/46/10 45/48/7 0.450 
EPHA1 rs11771145, % 0/1/2 44/44/12 43/45/12 45/42/13 0.950 
FERMT2 rs17125944, % 0/1 85/15 84/16 78/22 0.020 

INPP5D rs35349669, % 0/1/2 30/48/22 30/46/24 26/51/23 0.520 
SLC24A4/RIN3 rs10498633, % 

0/1/2 60/35/5 61/34/5 60/35/5 0.990 

ZCWPW1 rs1476679, % 0/1/2 50/41/9 51/41/8 60/33/7 0.080 
 

  

  



 

 63 

Table 12. FDG descriptives  

Descriptive characteristics and distribution of the genotypes of the study 

groups who received FDG PET 

VARIABLES 
NC 

(N=381) 
MCI 

(N=634) DEM (N=243) p-value 

Age, mean years (SD) 74.3 (6.2) 72.6 (7.6) 75.0 (7.7) <0.001 
Sex, N male (%) 190 (50%) 380 (60%) 148 (61%) 0.003 

Education, mean years (SD) 16.4 (2.7) 16.1 (2.7) 15.4 (2.9) <0.001 

MMSE, Mean (SD) 29.0 (1.2) 27.8 (1.8) 23.1 (2.8) <0.001 
APOE4, %0/1/2 73/25/2 51/38/11 33/50/17 <0.001 

CD2AP rs9349407, % 0/1/2 49/44/7 53/40/7 49/40/11 0.220 
CELF1 rs10838725, % 0/1/2 48/42/10 44/46/10 43/50/4 0.270 
CLU rs11136000, % 0/1/2 36/50/14 37/50/13 43/42/15 0.280 
CLU rs9331949, % 0/1 95/5 97/3 95/5 0.310 
CR1 rs12034383, % 0/1/2 14/49/37 15/48/37 21/46/33 0.190 
DSG2 rs8093731, % 0/1 98/2 98/2 97/3 0.840 

EPHA1 rs11771145, % 0/1/2 44/44/12 45/42/13 43/44/13 0.940 
EPHA1 rs11767557, % 0/1/2 66/30/4 70/27/3 63/34/3 0.290 
MS4A6A rs610932, % 0/1/2 31/48/21 37/47/16 38/45/17 0.250 
NME8 rs2718058, % 0/1/2 39/47/14 40/45/15 38/49/13 0.880 
PTK2B rs28834970, % 0/1/2 42/42/16 42/42/16 39/49/12 0.390 

SLC24A4/RIN3 rs10498633, % 0/1/2 61/34/5 62/34/4 58/37/5 0.870 
SORL1 rs11218343, % 0/1 91/9 92/8 93/7 0.550 
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Table 13. MRI FWE and/or FDR significant clusters 

Family-wise error (FWE) and False Discovery Rate (FDR) corrected 

cluster analyses and within-cluster peak effects for the genetic variants identified 

in the exploratory MRI analyses   

 

NC – Cognitively normal; DEM - Dementia; pFWE-corr - Family Wise 

Error-corrected p-value; qFDR-corr - False Discovery Rate-corrected q-value; kE 

- cluster size; puncorr: - uncorrected p-value; T -T statistic 

  

DX 
Group 

Gene variant 
cluster-level peak level 

Talairach 
coordinates 

Brain 
Region 

(Brodmann 
Area, BA)  

DEM 

pFWE-
corr 

qFDR-
corr kE puncorr T puncorr 

ABCA7 
rs3752246 <0.0001 <0.0001 924757 <0.0001 9.72 <0.0001 -11 -23 63 

L medial 
frontal 

gyrus (BA6) 

EPHA1 
rs11771145 

0.04 0.051 13081 0.001 3.86 <0.0001 -52 -28 61 
L 

postcentral 
gyrus (BA2) 

0.007 0.017 1889 <0.0001 4.01 <0.0001 52 -30 59 
R 

postcentral 
gyrus (BA2) 

SLC24A4/RIN3 
rs10498633 0.007 0.012 18621 <0.0001 3.78 <0.0001 -14 1 46 

L cingulate 
gyrus 

(BA24) 
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Table 14. FDG FWE and/or FDR significant clusters 

Family-wise error (FWE) and False Discovery Rate (FDR) corrected 

cluster-level analyses and within-cluster peak effects for genetic variants 

identified in the exploratory FDG PET analyses   

Dx 
Group 

Gene variant 
Cluster Peak Effect 

Talairach 
coordinates 

Brain Region 
(Brodmann 
Area, BA) 

POOLED 
SAMPLE 

pFWE-
corr 

qFDR-
corr kE puncorr T puncorr 

CLU 
rs1113600 

<0.0001 <0.0001 5979 <0.0001 4.02 <0.0001 -48 -4 -32 
L inferior 

temporal gyrus 
(BA20) 

0.027 0.025 1493 <0.0001 4.01 <0.0001 64 -18 8 
R transverse 

temporal gyrus 
(BA42) 

EPHA1 
rs11771145 0.049 0.102 1314 0.0001 3.8 <0.0001 -14 -50 60 

L superior 
parietal lobule 

(BA7) 
MS4A6A 
rs610932 0.001 0.001 2723 <0.0001 4.28 <0.0001 40 -14 42 

R precentral 
gyrus (BA4) 

PTK2B 
rs28834970 0.002 0.003 2426 <0.0001 3.96 <0.0001 -2 -74 -2 

L lingual gyrus 
(BA18) 

NC 

CELF1 
rs10838725 

0.004 0.004 1960 <0.0001 4.19 <0.0001 20 -66 44 
R precuneus 

(BA7) 

<0.0001 <0.0001 2718 <0.0001 3.88 <0.0001 0 52 -12 
L medial frontal 
gyrus (BA10) 

0.017 0.012 1514 <0.0001 3.5 <0.0001 32 -38 -4 
R sub-gyral, 

hippocampus 
CR1 

rs12034383 <0.0001 <0.0001 37014 <0.0001 4.98 <0.0001 18 -36 30 
R cingulate 

gyrus (BA31) 
DSG2 

rs8093731 0.017 0.008 1515 <0.0001 4.15 <0.0001 6 -4 50 R medial frontal 
gyrus (BA6) 

PTK2B 
rs28834970 

<0.0001 <0.0001 6279 <0.0001 4.24 <0.0001 44 -22 6 
L superior 

temproral gyrus 
(BA13) 

<0.0001 <0.0001 6722 <0.0001 3.98 <0.0001 -42 -36 12 
L superior 

temproral gyrus 
(BA41) 

SLC24A4/RIN3 
rs10498633 

<0.0001 <0.0001 20054 <0.0001 4.38 <0.0001 22 -4 -30 
R 

parahippocampal 
gyrus (BA36) 

0.007 0.004 1767 <0.001 3.71 <0.0001 -22 -8 -30 
L 

parahippocampal 
gyrus(BA36) 

DEM NME8 
rs2718058 <0.001 <0.001 3551 <0.001 4.52 <0.0001 -14 -88 30 L cuneus (BA19) 

 
NC – Cognitively normal; DEM - Dementia; pFWE-corr - Family Wise 

Error-corrected p-value; qFDR-corr - False Discovery Rate-corrected q-value; 

kE - cluster size; puncorr: - uncorrected p-value; T -T statistic  
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APOE4 showed the expected negative association with GMD in the NC 

and MCI group (Figure 8 top). In the symptomatic MCI group, I saw a strong 

hippocampo-centric pattern, indicating that MCI carriers had greater hippocampal 

loss of GMD compared to MCI noncarriers. In the dementia group, I found the 

opposite association. APOE4-negative dementia subjects had greater cortical 

loss of GMD than APOE4-positive subjects, indicative of greater cortical 

neurodegeneration. APOE4 was associated with widespread hypometabolism in 

the MCI group (Figure 8 bottom). APOE4 showed a much less pronounced 

effect in the dementia stage indicating that both carriers and noncarriers 

experienced significant, widespread hypometabolic changes.  
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Figure 8. APOE4 effect 

APOE4 Effect on brain atrophy (top) and hypometabolism (bottom). 

Results are displayed using p < 0.01 (uncorrected) and cluster size (k) of 50 

voxels. 
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MRI Analyses 

Pooled sample: 

In the pooled sample the stepwise linear regression model achieved an 

R2=0.4, p<0.0001. SLC24A4/RIN3 rs10498633 was the only variant that was 

significantly associated with mean medial temporal lobe thickness in the pooled 

sample (χ2=11.8, p=0.003). ABCA7 rs3752246 and FERMT2 rs17125944 were 

retained in the regression output based on the selection criteria but were not 

statistically significant. See Figure 9 for the exploratory visualization of these 

associations and Table 13 for FWE- and FDR-corrected cluster-level results and 

within-cluster peak effects for genetic variants identified in the models.    

Analyses within diagnostic groups: 

I found neither significant nor trend level associations in the NC group. In the 

MCI group the model achieved an R2=0.26. SLC24A4/RIN3 rs10498633 

(χ2=11.3, p=0.004) and ZCWPW1 rs1476679 (χ2=7.3, p=0.026) reached 

significance. CELF1 rs10838725 (χ2=5.2, p=0.073) was trending. In the dementia 

group the model achieved an R2=0.19, p<0.0001. ABCA7 rs3752246 (χ2=8.5, 

p=0.014), EPHA1 rs11771145 (χ2=11.6, p=0.003) and INPP5D rs35349669 

(χ2=6.4, p=0.042) were significantly associated with mean medial temporal lobe 

thickness. SLC24A4/RIN3 rs10498633 (χ2=5.4, p= 0.068) was trending. See 

Figure 9 for the exploratory pattern of these associations.  

 Next, I repeated the pooled sample analyses introducing interaction terms 

between the genetic variants retained in the models and diagnosis. The following 

variants showed significant interaction effect with diagnosis - EPHA1 rs11771145 
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(F=3.2, p=0.01) and SLC24A4/RIN3 (F=2.7, p=0.03). Please note that the R 

statistical analyses and the analyses in imaging space might differ as in the R 

statistics model I use a circumscribed ROI – in the case of MRI the medial 

temporal region while the whole brain exploratory results show the effect of the 

variant across the brain.  
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Figure 9. MRI SPM results 

Regression selected genes associated with MRI measured GMD. Results are 

displayed at significance threshold of uncorrected p < 0.01 and minimum cluster 

size (k) of 50 voxels. 
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FDG PET Analyses 

Pooled sample: 

  In the pooled sample, the stepwise linear regression model achieved an 

R2=0.13, p<0.0001. EPHA1 rs11767557 showed significant associations with 

brain metabolism (χ2=6.3, p=0.042). PTK2B rs28834970 (χ2=5.6, p=0.059), 

MS4A6A rs610932 (χ2=5.5, p=0.065) and SLC24A4/RIN3 rs10498533 (χ2=4.6, 

p=0.098) showed trend level associations. CLU rs11136000 and EPHA1 

rs11771145 were included in the model based on the selection criteria but were 

not statistically significant.  

See Figure 10 for the exploratory visualization of these associations and 

Table 14 for FWE- and FDR-corrected cluster-level results and within-cluster 

peak effects for genetic variants identified in the models.    

Analyses within diagnostic groups: 

  In the NC group the stepwise linear regression model achieved an 

R2=0.14, p<0.0001. SLC24A4/RIN3 rs10498533 (χ2=6.3, p=0.043), NME8 

rs2718058 (χ2=6.0, p=0.049) and CD2AP rs9349407 (χ2=6.1, p=0.048) showed 

significant associations, while DSG2 rs8093731 (χ2=3.4, p=0.064), CR1 

rs12034383 (χ2=4.9 p=0.087), and CELF1 rs10838725 (χ2=5.386, p=0.068) were 

trending. CLU rs9331949 and PTK2B rs28834970 were included in the model 

based on the selection criteria but were not statistically significant. In the MCI 

group, the stepwise linear regression model achieved an R2=0.09, p<0.0001.  

CLU rs9331949 was trending (χ2=3.4, p=0.065) while MS4A6A rs610932 was 

included based on the selection criteria but was not statistically significant. In the 
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dementia stage the model achieved an R2=0.07, p=0.034. SORL1 rs11218343 

showed trend level significance (χ2=3.5, p=0.063) while NME8 rs2718058 and 

CD2AP rs9349407 were included based on the selection criteria but were not 

statistically significant. See Figure 10 for the exploratory visualization of these 

associations.  

 Next, I repeated the pooled sample analyses introducing interaction terms 

between the genetic variants retained in the models and diagnosis. The following 

variants showed significant interaction effect with diagnosis - CD2AP rs9349407 

(F=2.4, p=0.04), CLU rs9331949 (F=3.5 p=0.03) and NME8 rs2718058 (F=3.1, 

p=0.01). CR1 rs12034383 (F=2.3, p=0.06) and SORL1 rs11218343 (F=2.9 

p=0.06) showed trend level interactions. Please note that the R statistical 

analyses and the analyses in imaging  space might differ as in the R statistics 

model I use a circumscribed ROI – in the case of FDG PET the posterior 

cingulate region while the whole brain exploratory results show the effect of the 

variant across the brain.    
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Figure 10. FDG SPM results 

Regression selected genes associated with FDG PET measured brain 

metabolism. Results are displayed at significance threshold of uncorrected p < 

0.01 and minimum cluster size (k) of 50 voxels. 
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3.4. Discussion: 

 To my knowledge, this is the first comprehensive analysis of the effect of 

the top 20 AD risk variants on MTL GMD and PCC brain metabolism. In the MRI 

analyses, I found no genetic influences on GMD in NC. In the MCI stage, 

SLC24A4/RIN3 rs10498633 and ZCWPW1 rs1476679 showed significant effects 

while in the dementia stage ABCA7 rs3752246, EPHA1 rs11771145 and INPP5D 

rs35349669 were significantly associated with GMD. In the FDG PET analyses, 

the only significant associations were seen in the NC control group for 

SLC24A4/RIN3 rs10498533, NME8 rs2718058 and CD2AP rs9349407. The 

reported associations of ABCA7, ZCWPW1, and INPP5D with GMD, and CD2AP 

with PCC brain metabolism are novel.   

Many of the variants displayed stage-specific associations, which is likely 

due to the nature of AD pathological biomarker changes from the 

presymptomatic stage to dementia.  These stage-specific associations are in 

agreement with the biomarker progression as proposed by Jack et al.114 . Jack’s 

biomarker progression model postulates that neurodegenerative changes begin 

in the late asymptomatic stages as NC individuals start to transition to MCI 114 

and that FDG PET abnormalities precede brain atrophy 114. Both 

neurodegenerative biomarkers become progressively more abnormal over the 

course of the disease. My findings agree with this model.  The results indicate 

neither significant nor trend level associations with GMD in the NC group, but 

significant associations were detected in the MCI and dementia stages. I also 

see a modality effect progression that fits with the Jack model. SLC24A4/RIN3 
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shows significant association with brain metabolism in the presymptomatic 

stages and associations with GMD in the MCI group.   

 Recent analyses on the top 20 AD genes and brain amyloidosis revealed 

that, after APOE4, ABCA7 had the strongest effect on brain amyloidosis, with the 

effect being most pronounced in the MCI stage 153. In the present study, I 

observe a strong association of ABCA7 with GMD in the dementia group. These 

associations also seem to follow the biomarker progression, as Aβ deposition 

begins in the presymptomatic to early MCI phase and global decreases in GMD 

begins in late MCI to dementia phase. Associations of ABCA7 with brain atrophy 

129 and amyloidosis 139-141 have been previously reported.  

In a similar manner, my previous work showed that EPHA1’s strongest 

effect on brain amyloidosis is in the prodromal phase 153. In the present study, 

the MRI results show a significant association with GMD in the dementia stages 

only.  To date, two additional studies have described EPHA1 associations with 

brain atrophy 154,155 and one  also detected an association with brain metabolism 

as I did here 154.    

 Next, I found it pertinent to briefly review the literature on the function and 

central nervous system associations for each of the genes in the models.  

 

ABCA7 

 ATP-Binding Cassette Sub-Family A Member 7 (ABCA7) encodes a 2,146 

amino acid member of the ABC transporter family comprised of proteins involved 

in lipid transport 156.  ABCA7 is highly expressed in the central nervous system 
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and in microglia 157. Loss of function of endogenous ABCA7 increases β-

secretase cleavage of APP to Aβ in brain lysates and in murine models 158. 15 

ABCA7 loci were recently evaluated for associations with cerebrospinal fluid Aβ 

and tau levels, brain atrophy, and brain hypometabolism.  Several ABCA7 

variants had significant associations with amyloid deposition, though an 

association with brain atrophy was not reported there 159. However, another 

group has previously found such an association in a different independent 

imaging genetic cohort 129. Additionally, one rare missense mutation variant of 

ABCA7, rs7297358, was found to be protective for AD 160.  

 

CD2AP 

 The CD2 associated protein gene (CD2AP) encodes a 639 amino acid 

scaffolding protein that is named by its association with the T-cell and natural 

killer cell adhesion molecule cluster of differentiation 2 (CD2). CD2AP is a 

cytokinetic regulator that might be influencing neuronal survival by reducing the 

potency of glial cell derived neurotrophic factor 161. In cell culture, CD2AP 

suppression results in lower levels of APP, less Aβ release, and a lower 

Aβ42/Aβ40 ratio while having little to no effect on Aβ deposition 162. CD2AP 

knockdown significantly increases Aβ protein levels while APP remained at a 

similar level to the wild-type 163. Recent research in CD2AP knockout mice shows 

that CD2AP’s association with LOAD risk may be at least in part due to an effect 

on the cerebrovascular unit 164. To my knowledge, there are no reported imaging 

associations of CD2AP to date. 
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EPHA1 

EPH Receptor A1 (EPHA1) belongs to the EPH family of receptor tyrosine 

kinases. EPHA1 codes for a 976 amino acid protein with a single kinase domain 

165. EPHA1 is highly expressed in cerebral cortex and hippocampus 

(http://www.proteinatlas.org/ENSG00000146904-EPHA1/tissue) and plays a 

crucial role in cortical and axonal development 166,167. EPHA1 directs contact-

dependent bidirectional signaling by binding the membrane-bound ephrin-A 

family of ligands 168,169. As already discussed, EPHA1 has been previously 

associated with brain atrophy and brain metabolism 154,155. 

 

INPP5D 

 Inositol Polyphosphate-5-Phosphatase D (INPP5D) encodes a 1,888 

amino acid protein that plays a role in a number of inflammatory pathways and in 

regulation, of cytokine signaling 170,171. INPP5E, a closely related gene to 

INPP5D, is a crucial regulator of autophagy 172. Autophagy has been shown in 

many instances to be dysregulated in AD 173-175. INPP5D may also play a role in 

suppression of cytokine release from microglia or astrocytes 176. INPP5D has 

been significantly associated with several central nervous system pathologies, 

including macroscopic and microscopic infarcts, Lewy bodies, and hippocampal 

sclerosis 177.            
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NME8 

NME Family Member 8 (NME8) encodes a 588 amino acid protein kinase. 

Until recently NME8 was associated with non-neurologic diseases such as 

primary ciliary dyskinesia 178 and osteoarthritis 179,180. In a recent ADNI study, 

however, NME8 rs2718058 was shown to have a neuroprotective effect against 

hippocampal atrophy and brain hypometabolism 181.  

 

SLC24A4/RIN3 

 Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger) Member 

4 (SLC24A4)/Ras and Rab Interactor 3 (RIN3) are indicated in AD together 

because the candidate polymorphism lies between both genes on chromosome 

14q32.12. SLC24A4 encodes a 622 amino acid potassium-dependent sodium-

calcium exchanger 182. SLC24A4 appears to take part in lipid metabolism 183. 

SLC24A4 CpG methylation sites were also associated with Aβ burden and tau 

pathology 184.   In a recent study, SLC24A4 knockout mice showed brain glucose 

hypometabolism 185. Interestingly, I found a similar effect in NC.  

RIN3 encodes a 985 amino acid guanine exchange factor for RAB5B and 

RAB31 and plays an important role in the transport of early endosomes 186,187. In 

a transgenic model, a mutation in APP was shown to contribute to early 

endosomal abnormalities and enlargement, which leads to loss of cholinergic 

neurons 188. RAB GTPase expression is increased in MCI subjects and in aging 

brains 189. RIN3 also interacts with BIN1, which has recently been linked to tau 
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pathology 190.  To my knowledge there are no reported imaging associations of 

RIN3 to date.  

 

ZCWPW1 

Zinc Finger CW-Type and PWWP Domain Containing 1 (ZCWPW1) codes 

for a 648 amino acid protein that has recently been identified as a risk variant for 

late-onset AD 191. Zinc fingers including ZCWPW1 are crucial components of 

epigenetic regulation 192-194. To my knowledge, there are no reported imaging 

associations of ZCWPW1 to date. 

The APOE4 effect on cortical gray matter density warrants some 

discussion. Structurally, I found the expected negative association of APOE4 with 

gray matter density in NC and MCI with a strong predilection for the medial 

temporal lobe. In the dementia group, however, APOE4-negative individuals 

showed more profound atrophy than APOE4 carriers with a broad neocortical 

distribution. Given that a far greater proportion of APOE4 negative dementia 

subjects were amyloid negative (94% vs. 28% of the amyloid positive dementia 

subjects, p<0.0001) one could safely conclude that the profound cognitive 

decline of many of these subjects is due to other neurodegenerative diseases. 

Thus, the finding greater atrophy in APOE4 noncarrier dementia subjects in 

extra-hippocampal locations is not surprising. 
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3.5. Strengths and Limitations: 

Several strengths and limitations of my work are worth noting. The major 

strength of my study is the multivariable approach.  This allows for more accurate 

modeling of the associations with AD biomarkers as they exist in vivo. Using 

ADNI is another strength as the ADNI protocol includes a rigorous clinical, 

biomarker, and genetic characterization for all enrolled subjects. By standardizing 

their data collection and processing strategies ADNI minimizes between-site 

variations as much as possible. ADNI is a multisite study modeled by clinical 

trials. As such, ADNI uses more stringent inclusion and exclusion criteria typical 

of clinical trial methodology. Hence all observations made here need to be further 

replicated in the general population. Another limitation is that the study design is 

a cross-sectional analysis. From the data alone it is not possible to reliably draw 

conclusions about changes in metabolism or atrophy over time.  I do, however, 

intend to address this in future studies by taking a longitudinal approach to my 

work. Despite this limitation, this study has identified several key genes they may 

exert their effect in specific stages, which need to be examined in future 

research.  

 

3.6. Conclusions: 

In conclusion, I found several AD risks and protective loci that may play a 

key role in GMD and brain metabolism.  I also noted stage-specific associations 

for certain variants, which may follow a specific progression of AD biomarkers 
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throughout the disease.  Importantly, many of these stage associations take 

place in the context of the proposed biomarker timeline.  
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Chapter 4. Association of the top 20 Alzheimer’s disease risk genes with 

[18F]Flortaucipir PET 

4.1. Introduction: 

An estimated 5.8 million people in the United States currently living with 

Alzheimer’s disease (AD) 2.  In contrast to the dominantly inherited mutations 

attributed to familial early-onset AD, which are seen in amyloid precursor protein 

(APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes, sporadic AD 

arises from a variety of risk factors both genetic and environmental 68-70.   

Understanding the complex network of genetic risk factors contributing to 

sporadic AD has been challenging.  For a long time, the only risk gene 

associated with sporadic AD was the apolipoprotein E (APOE) gene. APOE has 

a dose-dependent risk, where one copy of the e4 allele triples AD risk while two 

copies increase risk by as much as 15-fold. Although this variant confers a large 

amount of risk, current estimations cite APOE e4 (APOE4) as accounting for less 

than half of the total genetic hazard 73,195.  

To explain the remaining genetic component, large-scale genome-wide 

association studies (GWAS) and meta-analysis of GWAS have identified risk 

variants near 20 genes involved in pathways such as cholesterol metabolism, 

immune response and endocytosis 78-80,196-198.  Though each of these variants 

contributes to a relatively small amount of the overall risk, inheriting multiple risk 

alleles may result in summation and a greater overall risk profile.  Though 

function is known for many of the genes, a small number have no certain 
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function, and even fewer are understood as they relate to dysfunction seen 

during the progression of Alzheimer’s.  

Through the use of imaging genetics, I previously associated the top AD 

GWAS-identified variants with amyloidosis, brain metabolism and atrophy 113,199. 

In addition to using a polygenic model to find variant associations with AD-

specific disease biomarkers or endophenotypes, I found stage-dependent 

associations with FERMT2 (amyloid positron emission tomography, PET), 

EPHA1 and SLC24A4/RIN3 (MRI) and CD2AP, CLU and NME8 (FDG PET) in 

each of the three diagnostic groups, cognitively normal (CN), mild cognitive 

impairment (MCI) and AD dementia (DEM) subjects, indicating that the genetic 

impact on AD evolves as the disease progresses. This strategy was particularly 

important to better understanding genotype-endophenotype interactions in AD, 

which follows a known pathophysiologic progression consisting of early amyloid 

deposition followed many years later by the accumulation of tau and finally 

neuronal degeneration 26.   

The addition of tau PET neuroimaging to ADNI protocol affords the 

opportunity to conduct a comprehensive polygenic analysis of the associations of 

GWAS-validated AD risk variants with cortical tau burden, which was measured 

via [18F]Flortaucipir PET. The goal of this study was to establish the relative 

genetic contribution to tau burden using stepwise multivariable regression as I 

have done previously for brain amyloidosis and neurodegeneration 113,199.  
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4.2. Methods: 

Participants 

Data used in the preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).  

ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of 

MCI and early AD. For up-to-date information, see www.adni-info.org. 

 The clinical description of the ADNI cohort has been previously published 

85,200,201.  Diagnosis of AD was based on the National Institute of Neurological 

and Communicative Disorders and Stroke and the Alzheimer’s Disease and 

Related Disorders Association criteria 33,34,202. Individuals with AD dementia were 

required to have Mini-Mental State Examination (MMSE) 86 scores between 20 

and 26 and a Clinical Dementia Rating (CDR) score of 0.5 to 1 at baseline 87. 

Qualifying individuals with MCI had memory concerns but no significant 

functional impairment, scored between 24 and 30 on the MMSE, had a global 

CDR score of 0.5, had a CDR memory score of 0.5 or greater, and had objective 

memory impairment on the Wechsler Memory Scale–Logical Memory II test 203. 

The controls had MMSE scores between 24 and 30, had a global CDR score of 0 

and did not meet criteria for MCI and AD. Individuals were excluded if they 

refused or were unable to undergo MRI, had other neurologic disorders, active 

depression, a history of psychiatric diagnosis, a history of alcohol or other 
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substance dependence within the past 2 years, had less than 6 years of 

education, or were not fluent in English or Spanish. The full list of inclusion and 

exclusion criteria are listed in the online ADNI protocol 

(http://adni.loni.usc.edu/wp-

content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf). Written 

informed consent was obtained from all participants. Only de-identified data were 

used in these analyses. 

I included all ADNI subjects with available genetic data and 

[18F]Flortaucipir scans. This resulted in a sample containing 135 CN, 98 MCI and 

43 DEM subjects.    

Gene Variant Selection and Imputation 

Participants were genotyped using either the Illumina Human610-Quad 

BeadChip (ADNI 1) or Illumina HumanOmniExpress BeadChip (ADNI GO/2) 

arrays and intensity data was processed using GenomeStudio v2009.1 according 

to Illumina Inc. protocols.  

Similar to my previous studies, I narrowed my focus to variants in the top 

20 well-established AD risk genes identified and validated in the largest AD 

GWAS to date. I also included all other variants contained within these genes 

that have previously been associated with brain amyloidosis. The full list, which 

contained a total of 36 variants, can be seen in Table 8. 

Missing genotypes (Table 9) were imputed using MACH and minimac, 

relying on the 1000 Genomes project data as a reference panel. Posterior 
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probabilities of the imputed genotypes for each individual were determined in 

minimac, where I used a threshold of r2=0.30 to accept the imputed genotype.   

For the nine genes containing more than one SNP, I performed linkage 

disequilibrium analysis (LD), followed by Cohen κ statistics to guard against 

collinearity bias (Table 10 and Figure 7). In situations where variants had 

significant overlap (high LD and high κ), I retained the variant with the least 

amount of missing data. 27 variants were included in the final regression models 

including multiple variants from the ABCA7, BIN1, CLU, CR1, EPHA1 and 

SORL1 genes that were not in LD. 

Genotypes were coded by the copy number of the minor alleles (0/1/2 

copies), however, when minor allele homozygote frequency was less than 2% 

the genotype was collapsed into the presence or absence of minor allele (coded 

as 1 and 0, resp.). This was the case for five of the variants; ABCA7 rs3764650, 

CASS4 rs7274581, CLU rs9331949, DSG2 rs8093731, FERMT2 rs17125944, 

and SORL1 rs11218343. 

[18F]Flortaucipir PET Data Acquisition Protocol and Analyses 

Standardized [18F]Flortaucipir acquisition and preprocessing protocols can 

be found at www.adni-info.org. In the main analysis, I downloaded the ADNI UC 

Berkeley [18F]Flortaucipir partial volume corrected (PVC) standardized uptake 

value ratio (SUVR) Freesurfer 6.0 defined regions from ADNI’s website 

(http://adni.loni.usc.edu), where the processing methods for UC Berkeley can 

also be found. I computed a size-weighted Alzheimer’s-specific meta-ROI using 

the a priori regions defined by Jack et al. in 2016, which contains entorhinal, 
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amygdala, parahippocampal, fusiform, inferior temporal, and middle temporal 

regions 204,205. The meta-ROI was then intensity-normalized to the inferior 

cerebellar grey-matter reference region (defined by UC Berkeley using the SUIT 

template) 206.  Meta-ROI SUVRs were then matched to subject genotype data. 

Statistical Analysis 

Clinical, demographic, and biomarker values of interest (age, sex, 

educational level, APOE e4 genotype, MMSE, [18F]Florbetapir mean cortical 

SUVR and [18F]Flortaucipir meta-ROI SUVR) for each diagnostic group (CN, MCI 

and DEM) were compared using ANOVA or χ2 tests with 2-sided p-values as 

appropriate. Variant association with [18F]Flortaucipir meta-ROI SUVR was 

determined using multivariable stepwise linear regression models in SAS 9.4, 

with all 27 AD risk variants, first in the pooled sample and then in each diagnostic 

category using [18F]Flortaucipir meta-ROI SUVR as the outcome measure. All 

regression models included age, sex, and APOE e4 genotype as covariates, 

while the pooled sample also controlled for diagnosis. Model selection was based 

on the Akaike information criterion (AIC) critical p-value threshold of 0.157 152. I 

also provide false discovery rate (FDR)-corrected p-values for each variant 

retained to protect against type I errors. 

Analysis in Imaging Space 

  Next, I visualized the selected variant spatial effects in SPM12. 

Preprocessed [18F]Flortaucipir scans were downloaded from ADNI, where PET 

frames were coregistered, averaged, image and voxel size were standardized 

and smoothed to a uniform resolution. Using SPM12, each subject’s pre-
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processed [18F]Flortaucipir scan was then coregistered to that subject’s closest-

visit MRI, normalized into MNI space and intensity normalized to the cerebellar 

crus to generate SUVR images. To visualize the spatial distribution of the genetic 

associations, I reproduced the regression models using voxelwise regression in 

SPM12, limited to those which survived AIC thresholding. As with the regression 

modeling in SAS, I covaried for age, sex, and APOE e4 genotype, including 

diagnosis as a covariate in the pooled sample. Due to the exploratory nature of 

these secondary results, I employed a less stringent voxelwise threshold of 

uncorrected p < 0.01 with a minimum cluster size (k) of 50 voxels. Following this I 

displayed familywise error (FWE)- and false discover rate (FDR)-corrected 

cluster-level and within-cluster peak effects for each variant.   

 

4.3. Results: 

 Group comparisons of demographic, biomarker and carrier distribution of 

variants retained in the regression models are seen in Tables 15 and 16. The 

sample included 135 CN, 98 MCI and 43 DEM subjects who had available 

GWAS and [18F]Flortaucipir data.  There were no significant differences in age 

between groups (p=0.078). There were, however, significantly more male 

participants in the MCI than in the other groups (p=0.041). DEM subjects had 

significantly less education and more APOE4 carriers than the other two groups 

(p=0.015 and p=0.003). I also observed the expected differences in MMSE, 

[18F]Flortaucipir SUVR and [18F]Florbetapir SUVR across diagnostic groups 

(p<0.001 for all). There were no significant diagnostic group differences in minor 
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allele distribution for any of the gene variants selected in the regression models 

except for SLC24A4/RIN3 rs10498633, which had significantly more 

homozygous carriers in the MCI group (p=0.030). APOE4 showed significant 

association with tau in the pooled, CN and MCI sample while only minimally so in 

the DEM group (Figure 11). 

 Investigating for demographic differences between risk gene dosages, I 

observed no significant differences in age, sex, education or APOE4 carrier 

percentage by minor allele distribution among the variants retained in the 

regression. All the models were corrected for age, gender and APOE4. 
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Table 15. Demographic and biomarker data for each diagnostic group 

This table shows a demographic, neuropsychological and imaging 

measure comparison across each of the diagnostic groups, using ANOVA and 

chi-square p-values where necessary.   

 

  

Variables CN 
(N=135) 

MCI 
(N=98) 

DEM 
(N=43) p-value 

Age, mean years (SD) 77.7 (6.7) 79.1 (7.1) 80.3 (8.1) 0.078 
Sex, % male 50.4 66.3 51.2 0.041 

Education, mean years 
(SD) 16.9 (2.4) 16.2 (3.1) 15.6 (2.6) 0.015 

APOE4 carrier, % Yes 30.4 38.8 51.2 0.003 
MMSE, mean (SD) 29.0 (1.3) 27.5 (2.3) 21.2 (5.3) <0.001 

Meta-ROI Flortaucipir 
SUVR (SD) 

1.50 
(0.22) 1.61 (0.29) 2.32 (1.02) <0.001 

Whole Cerebral Cortical 
Florbetapir SUVR (SD) 

1.13 
(0.18) 1.18 (0.26) 1.37 (0.21) <0.001 
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Table 16. Minor allele distribution for variants retained in the regression models  

This table shows the percentage of subjects who had each copy number 

for the genes retained in any of the four regression models.  I display by 

diagnostic group. 

 

Variables CN 
(N=135) 

MCI 
(N=98) 

DEM 
(N=43) 

p-
value 

ABCA7 rs3752246 %0/1/2 68/30/2 76/22/2 70/28/2 0.747 
BIN1 rs744373 %0/1/2 50/39/10

✟
 42/46/12 58/37/5 0.361 

CLU rs11136000 %0/1/2 27/59/13
✟
 38/45/17 40/44/16 0.201 

CLU rs9331949 %0/1* 93/7 96/4 98/2 0.336 
EPHA1 rs11771145 %0/1/2 48/39/13 45/43/12 33/54/14

✟
 0.463 

PICALM rs3851179 %0/1/2 40/45/15 55/38/7 40/51/9 0.100 
SLC24A4/RIN3 rs10498633 

%0/1/2 64/33/2
✟
 67/22/10

✟
 63/35/2 0.030 

ZCWPW1 rs1476679 %0/1/2 47/44/10
✟
 48/41/11 70/28/2 0.078 

 
★
Collapsed because minor allele homozygote frequency was <2%  

✟
Does not add up to 100% due to rounding 
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Figure 11.  Association of the APOE e4 allele with tau deposition 

 

APOE e4 Association with [18F]Flortaucipir PET 
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Pooled Sample 

 In the pooled sample, the stepwise regression model achieved an R2 

value of 0.3294 (Table 17).  ABCA7 3752246 (coefficient=0.093, SE=0.055, p-

value=0.0907) and CLU rs9331949 (coefficient=0.200, SE=0.120, p-

value=0.0987) were associated with tau at a trend level. An exploratory analysis 

into the patterns of association can be seen in Figure 12 while the cluster-level 

and within-cluster peak effects can be seen in Table 18.  
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Table 17. Regression Selected Variants in a Pooled Sample 

The selected genes under the AIC threshold of 0.157.  In addition to 

reporting model parameters, I show [18F]Flortaucipir meta-ROI SUVR by copy 

number of risk alleles 

 

 
  

Pooled Sample, Model R2 = 0.3294 

Covariates 
Selected 

Parameter 
Estimate 

Standard 
Error 

p-
value/FD

R-
correcte
d p-value 

[18F]Flort
aucipir 

SUVR by 
risk 

allele 

[18F]Flo
rtaucipi

r p-
value 

ABCA7 
rs3752246 0.093 0.055 0.0907/0.

0987 
1.64/1.71/

2.13 0.096 

CLU rs9331949 0.200 0.120 0.0987/0.
0987 1.66/1.77 0.472 
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Figure 12. Stepwise regression selected genes in a pooled sample (all diagnosis 

groups) 

SPM visualization of association patterns for regression selected genes. 

Due to the exploratory nature of this analysis, the p-value was set at an 

uncorrected p<0.01 and minimum cluster size of 50  
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Table 18. Cluster and within-cluster peak level effects for each diagnostic group 

This table shows FWE- and FDR-corrected cluster and peak-level values for variants which had at least one cluster 

FWE- or FDR-corrected p<0.05 (determined in SPM). 

 Cluster Level Peak Level 

Gene Variant 
FWE-

Corrected 
p-value 

FDR-
Corrected 

q-value 

Cluster 
Size, 

Voxels 
Uncorrected 

p-value T-value Uncorrected 
p-value 

Peak 
Talairach 

Coordinates 
x/y/z 

Brain Region 

Pooled Group 

ABCA7 
rs3752246 

0.001 0.004 3759 <0.001 4.75 <0.001 -50/-54/46 Left angular gyrus (BA39) 

0.001 0.004 3540 <0.001 4.57 <0.001 54/-42/50 Right supramarginal 
gyrus (BA40) 

0.010 0.029 2504 <0.001 4.27 <0.001 -44/16/48 
Left premotor cortex 

(BA6) 

CLU rs9331949 0.031 0.063 1973 0.001 3.67 <0.001 -36/6/-24 
Left temporopolar cortex 

(BA38) 
Cognitively Normal Group 
no clusters surviving correction 
Mild Cognitive Impairment Group 

CLU rs9331949 0.038 0.295 1334 0.001 4.49 <0.001 -40/-90/16 Left associative visual 
cortex (BA19) 

PICALM 
rs3851179 

0.001 0.001 2669 <0.001 4.36 <0.001 -46/-4/-26 
Left temporopolar cortex 

(BA38) 

<0.001 0.001 8748 <0.001 4.01 <0.001 32/16/-34 Right temporopolar cortex 
(BA38) 

0.043 0.033 1303 0.001 3.59 <0.001 46/4/22 
Right pars opercularis 

(BA44) 

SLC24A4/RIN3 
rs10498633 

0.039 0.052 1329 0.001 3.98 <0.001 -62/-32/-2 
Left middle temporal 

gyrus (BA21) 

0.002 0.006 2222 <0.001 3.77 <0.001 30/-28/-22 Right fusiform gyrus 
(BA37) 

Dementia Group 
ZCWPW1 
rs1476679 

<0.001 0.282 12855 <0.001 4.44 <0.001 -16/8/-20 Left orbitofrontal cortex 
(BA11) 
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CN Sample 

 In the sample of CN subjects, the regression model achieved an R2 of 

0.1314 (Table 19). CLU rs9331949 (coefficient=0.200, SE=0.071, p-

value=0.0934) was associated with tau burden at a trend-level. Visualization of 

the patterns of association and the cluster and peak effects can be seen in 

Figure 13 and Table 18, respectively.  
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Table 19. Regression Selected Variants in a CN Sample 

The selected genes under the AIC threshold of 0.157.  In addition to 

reporting model parameters, I show [18F]Flortaucipir meta-ROI SUVR by copy 

number of risk alleles 

 
 
  

CN Sample, Model R2 = 0.1314 

Covariates 
Selected 

Parameter 
Estimate 

Standard 
Error 

p-
value/F

DR-
correcte

d p-
value 

[18F]Flort
aucipir 

SUVR by 
risk allele 

[18F]Flo
rtaucip

ir p-
value 

CLU 
rs9331949 

0.200 0.071 
0.0934/0

.0934 
1.50/1.63 0.076 
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Figure 13. Stepwise regression selected genes in the CN group 

SPM visualization of association patterns for regression selected genes. 

Due to the exploratory nature of this analysis, the p-value was set at an 

uncorrected p<0.01 and minimum cluster size of 50  
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MCI Sample 

 In the MCI sample, the regression model achieved an R2 of 0.2651 (Table 

20). BIN1 rs744373 (coefficient=0.086, SE=0.041, p-value=0.0366) was 

significantly associated with the Alzheimer’s specific tau deposition, while CLU 

rs11136000 (coefficient=-0.071, SE=0.038, p-value=0.0647), EPHA1 rs11771145 

(coefficient=0.069, SE=0.041, p-value=0.0946), PICALM rs3851179 

(coefficient=-0.079, SE=0.046, p-value=0.0853) and SLC24A4/RIN3 rs10498633 

(coefficient=-0.069, SE=0.040, p-value=0.0872) were associated at a trend level.  

CLU rs9331949 (coefficient=0.202, SE=0.134, p-value=0.1386) was included in 

the model by meeting the AIC model selection threshold. Visualization of the 

patterns of association and the cluster and peak effects can be seen in Figure 14 

and Table 18, respectively. 
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Table 20. Regression Selected Variants in an MCI Sample 

The selected genes under the AIC threshold of 0.157.  In addition to 

reporting model parameters, I show [18F]Flortaucipir meta-ROI SUVR by copy 

number of risk alleles 

 
  

MCI Sample, Model R2 = 0.2651 

Covariates 
Selected 

Parameter 
Estimate 

Stand
ard 

Error 

p-
value/F

DR-
correcte

d p-
value 

[18F]Flor
taucipir 
SUVR 
by risk 
allele 

[18F]Fl
ortau
cipir 

p-
value 

BIN1 rs744373 0.086 0.041 
0.0366/0

.1135 
1.55/1.6
6/1.61 

0.225 

CLU 
rs11136000 

-0.071 0.038 
0.0647/0

.1135 
1.66/1.6
1/1.48 

0.116 

CLU rs9331949 0.202 0.134 
0.1386/0

.1386 
1.60/1.8

1 
0.149 

EPHA1 
rs11771145 

0.069 0.041 
0.0946/0

.1135 
1.56/1.6
5/1.64 

0.339 

PICALM 
rs3851179 

-0.079 0.046 
0.0853/0

.1135 
1.66/1.5
3/1.63 

0.114 

SLC24A4/RIN3 
rs10498633 

-0.069 0.040 
0.0872/0

.1135 
1.65/1.5
2/1.53 

0.123 
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Figure 14. Stepwise regression selected genes in the MCI group 

SPM visualization of association patterns for regression selected genes. 

Due to the exploratory nature of this analysis, the p-value was set at an 

uncorrected p<0.01 and minimum cluster size of 50  
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DEM Sample 

 In DEM subjects, the regression model achieved an R2 of 0.2545 (Table 

21). ZCWPW1 rs1476679 (coefficient=0.518, SE=0.274, p-value=0.0665) was 

associated to tau deposition at a tend level. Exploratory visualization of the 

patterns of association, as well as cluster and peak effects, can be seen in 

Figure 15 and Table 18, respectively. 
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Table 21. Regression Selected Variants in a DEM Sample 

The selected genes under the AIC threshold of 0.157.  In addition to 

reporting model parameters, I show [18F]Flortaucipir meta-ROI SUVR by copy 

number of risk alleles 

 

DEM Sample, Model R2 = 0.2545 

Covariates 
Selected 

Parameter 
Estimate 

Standard 
Error 

p-
value/F

DR-
correcte

d p-
value 

[18F]Flort
aucipir 

SUVR by 
risk 

allele 

[18F]Flo
rtaucip

ir p-
value 

ZCWPW1 
rs1476679 

0.518 0.274 
0.0665/0

.0665 
2.28/2.06

/6.81 
<0.001 
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Figure 15. Stepwise regression selected genes in the DEM group 

SPM visualization of association patterns for regression selected genes. 

Due to the exploratory nature of this analysis, the p-value was set at a lenient 

uncorrected p<0.01 and minimum cluster size of 50  
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4.4. Discussion: 

 To my knowledge, this is the first comprehensive analysis of the 

association of the top 20 AD risk variants with tau burden. This work highlights 

the importance of modeling genetic associations in AD, as well as other complex 

diseases, in a polygenic fashion. I replicated associations to tau previously 

reported for ABCA7, BIN1, CLU, EPHA1, PICALM, and SLC24A4/RIN3, 

meanwhile identifying novel associations for ZCWPW1 140,181,184,207-217.  Like with 

my previous work 113,199, I also visualized the spatial associations using voxelwise 

regression maps and the table of FWE- or FDR- surviving clusters (Figures 12, 

13, 14, 15 and Table 18).  

 In total, I found 7 of the top 20 genes indicated in LOAD to have an 

association with tau burden.  To better understand the potential role each gene 

may play in tau pathology, I have listed a brief literature review that includes 

probable functions as well as a previous association to tau (if applicable) and any 

associations to amyloidosis or neurodegeneration from the earlier publications 

using a similar technique and sample. 

 

ABCA7 

 ATP-binding cassette subfamily A member 7 (ABCA7) encodes a 2,146 

amino acid member of the ABC transporter family comprised of proteins involved 

in lipid transport and plays a role in macrophage-mediated phagocytosis 156,218-

221. ABCA7 expression is associated with tangle density 184. In my earlier work, 

ABCA7 rs3752246 was associated with amyloidosis early in the disease course 
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(i.e., in CN and MCI) and with atrophy in the later disease stages (i.e. DEM) 

113,199.  Here, ABCA7 association to the AD meta-ROI was found only in the 

pooled sample.  

 

BIN1 

 Bridging integrator 1 (BIN1) encodes a 593 amino acid protein that may be 

involved with endocytosis of synaptic vesicles and trafficking as well as control of 

amyloid production 222.  Additionally, the gene product of BIN1 has been shown 

to directly interact with tau and further impact phosphorylation of tau 207. BIN1 

was recently associated with increased binding of [18F]Flortaucipir 208.  I failed to 

find BIN1 associations with amyloidosis or atrophy/hypometabolism in my prior 

work 113,199. Here I found significant BIN1 associations with tau in the MCI 

sample.  

 

CLU 

 Clusterin (CLU) encodes a 449 amino acid chaperone protein implicated 

in aggregation prevention of several proteins as well as in the regulation of cell 

proliferation 223-225. In regards to tau, carrying the rs11136000 minor allele was 

associated with CSF tau levels in AD patients and intracellular CLU was found to 

interact with tau in cell culture 210.  I previously found an association of the CLU 

rs9331949 variant with amyloidosis in DEM and hypometabolism in the CN and 

MCI 113,199. CLU rs11136000 was associated with amyloidosis and 

hypometabolism in the pooled sample.  I found an association of the rs9331949 
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variant with tau SUVR in the pooled, CN and MCI sample, while the rs11136000 

variant was associated at a trend level in the MCI sample. 

 

EPHA1 

 EPH receptor A1 (EPHA1) is a 976 amino acid receptor tyrosine kinase 

protein that binds ephrin-A ligands participating in intercellular signaling upstream 

of angiogenesis and regulation of cell proliferation 226-228, and as has recently 

been published, the Drosophila ortholog Eph was identified as a tau toxicity 

modulator 209. I previously found an association of EPHA1 rs11771145 to 

amyloidosis in a pooled, MCI, and DEM sample, to atrophy in a DEM sample and 

hypometabolism in a pooled sample 113,199.  I also found an association of 

another EPHA1 variant, rs11767557, to hypometabolism in a pooled sample 

113,199. I found that rs11771145 was associated with meta-ROI tau deposition in 

an MCI sample.   

 

PICALM 

 Phosphatidylinositol binding clathrin assembly protein (PICALM) encodes 

a 652 amino acid assembly protein which plays an essential role in clathrin-

mediated endocytosis and specifically in the clearance of autophagy substrates 

like tau and amyloid precursor protein C-terminal fragment 217,229,230. PICALM 

overexpression significantly increased tau accumulation measured in cell culture 

as well as in an in vivo zebrafish model 217.  PICALM was associated with 
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amyloidosis in a CN sample in my earlier work 113,199. I found that PICALM was 

associated with tau burden in an MCI sample at a trend level (p=0.0853). 

 

SLC24A4/RIN3 

 Solute carrier family 24 member 4 (SLC24A4) encodes a 622 amino acid 

protein involved in potassium-dependent sodium and calcium exchanger 231, 

while the other gene located near the risk loci, Ras and rab interactor 3 (RIN3), 

encodes a 985 amino acid protein involved in guanine nucleotide exchange with 

small GTPases 187,232. Additionally, peripheral hypomethylation of RIN3 is 

associated with tangle pathology 214. I previously found that SLC24A4/RIN3 

rs10498633 was associated with atrophy in a pooled, MCI and DEM sample, as 

well as with hypometabolism in a pooled and CN sample 113,199.  It seems that 

this variant is associated with tau and neurodegeneration to some degree 

through the entire cognitive spectrum, a fact that may indicate a gene of relative 

importance.  I found that rs10498633 was associated with tau in the MCI sample.  

 

ZCWPW1 

 Zinc finger CW-type and PPWP domain containing 1 (ZCWPW1) encodes 

a 648 amino acid protein with a potential role in epigenetic regulation 192,233. I 

previously found that ZCWPW1 rs1476679 was associated with amyloidosis in a 

pooled and DEM sample, as well as with atrophy in an MCI sample 113,199.   Here, 

I found a novel association of rs1476679 with AD meta-ROI tau SUVR in the 

DEM sample.   
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4.5. Strengths and limitations: 

This study has several strengths and limitations of which merit discussion. 

One of the main strengths lies in the rigorous clinical, biomarker, and genetic 

characterization of all individuals enrolled in ADNI. ADNI uses standardized 

subject assessment, data collection and quality control practices as well as an 

imaging normalization to bring images from different scanner types and locations 

to their closest alignment. Another strength of ADNI is that it is a well-

characterized cohort. A major limitation of the study is that I report only cross-

sectional analyses, making it difficult to determine with absolute certainty that 

specific genetic variants exert stage-specific effects. However, leveraging the full 

dementia continuum, I suggest that there are differential early and late genetic 

influences on cortical tau burden. Another limitation of the work is the sample 

size, which was not large enough to visualize spatial associations in more than 

an exploratory fashion. I also believe the small sample size prevented finding 

more significant genes than BIN1. As more subjects in ADNI are scanned with 

[18F]Flortaucipir and more genotyping data is made available, the growing sample 

size should allow for more stringent thresholding and more power to detect 

significant associations of the variants with tau. Finally, ADNI is a research cohort 

that is not entirely representative of the general population, thus, the continuation 

of this study will aim to validate my findings in a large, independent, longitudinal 

cohort. 
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4.6. Conclusions: 

 Using a multivariable regression modeling technique across the cognitive 

continuum, I found associations of 7 of the top 20 AD risk genes to tau deposition 

in an AD-specific meta-ROI.  Furthermore, using voxelwise regression, I found 

spatial association patterns, which should warrant more consideration as the 

sample size is increased in future iterations of this analysis.  
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Chapter 5. Summary and Future Directions 

 Studying Alzheimer’s disease in vivo requires reliable and accessible 

disease biomarkers. Here, I report several studies that utilize neuroimaging 

features as biomarkers to better understand the driving factors of the 

heterogeneity seen in clinically diagnosed Alzheimer’s age of disease onset, 

biomarker abnormalities and genetic risk.  I first analyzed the impact of amyloid 

burden and age of cognitive symptom onset on neurodegeneration and tau 

burden relative to cognitively normal subjects. I then utilized an imaging genetics 

approach, looking at gene variant associations with both neurodegeneration and 

tau burden.  

5.1. Neurodegenerative Changes in Early & Late-Onset Cognitive 

Impairment with and without Brain Amyloidosis: 

Summary 

Chapter 2 is a neuroimaging study that aimed to determine the extent of 

tau and neurodegenerative pathophysiology measured with tau PET 

([18F]Flortaucipir), FDG PET and MRI in early-onset (EO) and late-onset (LO) 

ADNI cohorts stratified by amyloid positivity. To control for disease severity, I 

also stratified by clinical diagnosis, resulting in eight cognitively impaired groups 

and one amyloid negative CN group which was directly compared against all 

groups; EOADMCI, EOADDEM, EOnonADMCI, EOnonADDEM, LOADMCI, LOADDEM, 

LOnonADMCI and LOnonADDEM.  I included additional analyses comparing the LO 

and EO groups to either the older or younger half of the CN group, respectively. 

Voxelwise regression maps were made, comparing each group to CN subjects 
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and for all three modalities. Additionally, interpretation of voxelwise maps 

comparing groups of unequal sample sizes can be misleading. I, therefore, 

derived β-coefficient maps, which display effect sizes in each comparison. 

Compared to EOADMCI, LOADMCI had significantly fewer years of 

education, while both EOAD groups had a significantly higher percentage of 

APOE e4 homozygotes compared to LOAD subjects. Across the three 

modalities, all AD groups show large clusters of neurodegeneration and tau, 

though the MCI groups show less than DEM. The DEM groups largely show 

significance across the brain.  This, in particular, underscores the importance of 

the coefficient maps, as both EO groups had much larger effect sizes than their 

diagnostic LO counterparts across the three modalities.   

The EOnonADMCI group had a higher proportion of APOE e4 carriers 

compared to the LOnonADMCI group.  While I failed to find significant 

neurodegeneration in EOnonADMCI, I observed significant hypometabolism in 

EOnonADDEM.  The lack of findings, particularly in the EOnonADDEM subjects may 

be because this group is largely heterogeneous. 

LOnonAD, on the other hand, showed significant atrophy and 

hypometabolism across temporal and frontal lobes, a pattern of 

neurodegeneration seen in both primary age-related tauopathy (PART) and 

hippocampal sclerosis with TAR-DNA binding protein 43 (TDP-43) inclusions 

(HS-TDP-43) 95,96. However, due to the lack of findings on the tau scans, I 

believe the most likely etiology of the LOnonAD subjects to be limbic-

predominant age-related TDP-43 encephalopathy (LATE) 97. 
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Future Directions 

 To further the work presented here, I would first begin with the inclusion of 

longitudinal imaging biomarkers.  I believe this would greatly inform the study, 

filling gaps where I may now only speculate on what the biological process is.  

For example, the EOnonAD subjects who show no tau or neurodegeneration 

may still show an increased rate of tau accumulation and/or neurodegeneration 

compared to CN and LOnonAD subjects.  Beyond that, the pattern of deposition 

or neurodegeneration seen in LOnonAD’s may provide the information needed to 

understand more about the potential etiology of these subjects.   

 In addition to longitudinal imaging, a more complete cognitive assessment 

of the nonAD subjects would be helpful.  Prospective studies focused on the 

nonAD subjects should include cross sectional and longitudinal batteries that 

may help to identify specific etiologies based on varying affected domains.   

I believe adding a post-mortem validation for each of the LOnonAD (really 

all of the nonAD) subjects would be valuable.  I would expect both nonAD groups 

to be heterogeneous, though I have specifically identified TDP-43 pathology as a 

potential driver of the signal seen in LOnonAD.  TDP-43 is often found to have an 

age-related association; therefore, it would be hard to speculate whether or not 

this would be expected to be found in EOnonAD subjects as well.  

 The addition of other biomarkers to this analysis may also prove useful in 

ascertaining the nature of the nonAD etiology.  The most obvious additions are 

plasma, and CSF markers of AD pathophysiology and neuronal damage, such as 
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Aβ, tau, neurofilament light chain, various metabolomic and lipidomic measures 

and measures of inflammation. Imaging markers of neuroinflammation or 

immune response are still in their relative infancy and currently are not even well 

understood.  However, should one become available, it may be prudent to 

include. Beyond molecular imaging there are more complex MR sequences that 

would give information on white matter tract changes (diffusion imaging) and/or 

functional changes (functional MRI). 

 Finally, I believe future studies should include a genetic component, an 

intentionally vague suggestion because the genetic risk of sporadic EOAD is 

essentially unknown at this point.  There are some who believe that there may 

not be much of a difference between the variant risk in EO vs LOAD, as the 

underlying pathology remains largely the same.  I would argue that I am unsure 

even to what degree genetics plays in EOAD, be it more or less of a driving 

factor than in LOAD.  I believe the differences in disease severity, in progression 

and most of all, in onset, are all factors that likely have a genetic component to 

them, which I believe crucial to not only understanding EOAD, but LOAD.  To do 

this, I would start with GWAS to identify new hits that may explain some of the 

variability between EO and LOAD.  I believe it would also be important to repeat 

a similar imaging genetics study presented in chapters 3 and 4 to measure 

relative variant contributions to amyloid, tau and neurodegeneration.  
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5.2. The effect of the top 20 Alzheimer’s disease risk genes on gray matter 

density and FDG PET brain metabolism: 

Summary 

Chapter 3 explored the genetic risk alleles associated with imaging 

measures of neurodegeneration (FDG PET and MRI).  I included risk variants 

identified in genome-wide association studies (GWAS) and meta-analysis of 

GWAS as significantly associated with AD, as well as variants near those found 

through GWAS that have previously been associated with brain amyloidosis 78-

80,196-198.   

Following the reduction of variants after linkage disequilibrium analysis, all 

remaining 27 were included in multiple linear regression models with the variants 

included as predictors and either posterior cingulate cortex (PCC) SUVR (FDG) 

or gray-matter density (GMD) (MRI).  Four models were run in each modality to 

tease apart the potential changing gene effects across the cognitive continuum 

(Pooled, NC, MCI and DEM models). The variants selected in the regression 

models were replicated using voxelwise regression to display patterns of 

association. 

In the MRI analyses, I found SLC24A4/RIN3 rs10498633 was significantly 

associated with GMD but found no associations in the NC group. However, both 

SLC24A4/RIN3 rs10498633 and ZCWPW1 rs1476679 were significantly 

associated with GMD, while CELF1 rs10838725 was trending in the MCI group. 

ABCA7 rs3752246, EPHA1 rs11771145 and INPP5D rs35349669 were 
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significantly associated with GMD in the DEM sample, while SLC24A4/RIN3 

rs10498633 showed a trend-level association. 

In the FDG PET analyses, EPHA1 rs11767557 was significantly associated 

with hypometabolism in the pooled sample, while MS4A6A rs610932, PTK2B 

rs28834970 and SLC24A4/RIN3 rs10498633 were associated at a trend-level. In 

the NC control group, CD2AP rs9349407, NME8 rs2718058 and SLC24A4/RIN3 

rs10498533 were significantly associated with hypometabolism in PCC. Also in the 

NC group, CELF1 rs10838725, CR1 rs12034383 and DSG2 rs8093731 had 

trending significance. In the MCI and DEM cohort, only CLU rs9331949 and 

SORL1 rs11218343, respectively, showed trend-level associations.  

Several variants show diagnosis-specific associations, which often 

followed the hypothetic biomarker progression proposed by Jack et al.114. In this 

model, neurodegeneration follows the buildup of amyloid and tau protein and 

begins in the late asymptomatic stages between NC and MCI 114. A fitting 

example of this is seen in the ABCA7 and EPHA1 genes.  Both genes were 

significantly associated with brain amyloidosis in my previous work, with their 

largest effect in the MCI cohort 153. Here, I found that both ABCA7 and EPHA1 

associated with neurodegeneration in the DEM group, which follows the 

biomarker progression curve. 

The reported associations of ABCA7, INPP5D and ZCWPW1 to GMD, and 

of CD2AP to brain metabolism are novel.     
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5.3. Association of the top 20 Alzheimer’s disease risk genes with 

[18F]Flortaucipir PET: 

Summary  

 Chapter 4, like in the previous chapter, utilizes an imaging genetics 

approach to study associations of the top 20 AD risk genes, this time with 

[18F]Flortaucipir PET.  As with before, genes were included in a multiple 

regression analysis as predictors while [18F]Flortaucipir PET meta-ROI SUVR 

was used as an outcome. 

 The meta-ROI used was an a priori AD-specific region determined by 

Clifford Jack and included the size-weighted Freesurfer regions corresponding to 

entorhinal, amygdala, parahippocampal, fusiform, inferior temporal, and middle 

temporal ROIs 204,205.  Final regression outputs were reproduced in imaging 

space to visualize spatial patterns of gene variant associations. 

 I found there were significantly more male participants in the MCI group 

than in either CN or DEM and that DEM subjects had significantly less education 

than the other two groups. I also found that among all variants retained in the 

models, only SLC24A4/RIN3 was significantly different in allele distribution 

among diagnostic groups, having more homozygous minor allele carriers in the 

MCI group. APOE4 showed significant association with tau in the pooled, CN and 

MCI sample while only minimally so in the DEM group, even though there were 

significantly more homozygous carriers of the e4 allele in the DEM group. 
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 Results from the regression analysis showed trend-level associations to 

tau for both ABCA7 rs3752246 and CLU rs9331949 in the pooled sample, as well 

as CLU rs9331949 in the CN sample.  In the MCI group, BIN1 rs744373 was 

significantly associated, while CLU rs11136000, EPHA1 rs11771145, PICALM 

rs3851179 and SLC24A4/RIN3 rs10498633 were associated at a trend-level to 

tau.  In the DEM sample, only a single variant was selected, ZCWPW1 

rs1476679, which was associated with tau at a trend-level.  As with my previous 

work, I also visualized associations using voxelwise regression maps in SPM 

113,199. 

 Despite no genes surviving FDR-correction (likely due to the smaller 

sample size), I was able to reproduce the associations to tau previously reported 

for ABCA7, BIN1, CLU, EPHA1, PICALM, and SLC24A4/RIN3 140,181,184,207-217. 

The association of ZCWPW1 to tau pathology has not been reported previously.  

In total, I found 7 of the top 20 genes indicated in LOAD to have an association 

with tau burden. 

Future Directions for both 5.2. and 5.3. 

 Given the opportunity to further expand on this work I would first and 

foremost repeat the analysis using longitudinal imaging biomarkers.  As 

mentioned previously, GMD does correlate with atrophy but the two are not 

synonymous.  Measuring atrophy, instead, I believe would give more power to 

the study.  The same can be true as well with both PET modalities i.e. measuring 

a decrease in brain metabolism and an increase in tau burden vs. at a single time 

point relative to a mean.   
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 Specific to the imaging analysis of [18F]Flortaucipir PET, I would 

dramatically increase the sample size to more closely match that of the MRI and 

FDG PET analysis.  This, of course, would largely get rid of any spurious 

associations and would hopefully result in more variants surviving multiple 

comparisons correction.   

 Additionally, I would include more variants in future analyses that have 

been identified since the inception of these studies.  The current analysis is 

based on the GWAS and meta-analysis of GWAS from papers published in the 

early 2010s, which are nearly a decade old.  Recently, there have been several 

massive GWAS/GWAX studies published which identify 13 new risk loci, not to 

mention slightly older GWAS which have occurred between 2013 and now 234-236.  

Inclusion of these as well as other genome-wide-significant loci would enrich the 

results and perhaps explain even more of the variance. 

 Finally, I believe it is necessary to continue this analysis across a variety 

of other races and ethnicities.  We know that there are disparities in disease 

prevalence and severity across these groups for a variety of reasons, not the 

least of which is genetic 237-240. Future studies should first include multiple GWAS 

of each homogenous population.  This, of course, has been difficult in the past.  

The results of these various GWAS would likely output several novel loci 

(possibly explaining some of the variability across race and ethnicity) as well as 

several overlapping loci (highlighting SNPs whose functions are central to the 

disease process). In line with this as well, is the sex-specific AD disparity, as we 

know women have a much greater risk.  I believe GWAS hits would potentially be 
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able to explain this.  Whether entirely new loci would appear or whether it would 

be the same loci with much greater effect sizes is unknown.  The presented 

imaging genetics approach may be an effective route to parsing sex-specific 

differences for the currently known genome-wide significant loci and at the very 

least, in highlighting the variable effect size differences in genetic associations 

between male and female patients.   

5.4. Conclusion: 

 The above work highlights the versatility of neuroimaging biomarkers to 

study the pathophysiology variations of clinically diagnosed AD and genetics of 

AD.  Here, I studied tau and neurodegeneration in subjects divided by age of 

onset and amyloidosis.  In amyloid positive subjects, earlier age of onset meant 

greater tau burden and neurodegeneration than their late-onset counterparts.  

For amyloid negative subjects, however, only the late-onset group displayed any 

significant neurodegeneration, which was in a non-Alzheimer’s pattern and was 

suggestive of TDP-43 with hippocampal sclerosis.  Using a neuroimaging 

genetics approach, I found variants of the top 20 Alzheimer’s genes associated 

with FDG and [18F]Flortaucipir PET SUVR and MRI measures of medial temporal 

lobe thickness.  Beyond replicating associations seen previously for many of the 

variants I found novel variant associations for all three modalities. Taken 

together, these results have 1) highlighted just how much age of onset impacts 

the progression of AD and indicated several groups which warrant future study 

and 2) identified several gene variants which may potentially garner further 

attention as drug targets or warrant further study on their own   
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