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Cytosolic Phospholipase A2 Protein as a
Novel Therapeutic Target for Spinal

Cord Injury

Nai-Kui Liu, MD, PhD,1 Ling-Xiao Deng, MD,1 Yi Ping Zhang, MD,2

Qing-Bo Lu, BA,1 Xiao-Fei Wang, PhD,1 Jian-Guo Hu, PhD,1 Eddie Oakes, BS,1

Joseph V. Bonventre, MD, PhD,3 Christopher B. Shields, MD,2 and

Xiao-Ming Xu, MD, PhD1

Objective: The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important
isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury
(SCI).
Methods: A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to
test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tis-
sue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice.
Results: SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons
and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated
kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal
death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, block-
ing cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor defi-
cits, and reduced cell loss and tissue damage after SCI.
Interpretation: cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such
could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of func-
tion after SCI.
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Traumatic spinal cord injury (SCI) leads to neurologi-

cal deficits and motor and sensory dysfunctions. In

the United States alone, there were approximately

270,000 people living with SCI in 2012, and an addi-

tional 12,000 new SCI cases occur every year, most of

them younger than 30 years (https://www.nscisc.uab.

edu).1 To date, there is no effective pharmacological

treatment for SCI.2 SCI is caused by mechanical damage

that triggers cellular events culminating in the secondary

injury phase, which provides an important therapeutic

window for neuroprotective strategies to improve recov-

ery of function after SCI. Previous studies indicate that

multiple injury mechanisms, including inflammation,

oxidative stress, and glutamate excitotoxicity,3–6 are

involved in the secondary injury process after initial

trauma, but exact mechanisms remain to be fully

elucidated.

Several lines of evidence suggest that phospholipase

A2 (PLA2) may play a key role in mediating multiple

injury insults, as mentioned above, after SCI.7–11 PLA2 is

a diverse family of enzymes that hydrolyze the acyl bond

at the sn-2 position of glycerophospholipids to produce

free fatty acids and lysophospholipids.8,12,13 These prod-

ucts are precursors of bioactive eicosanoids and platelet
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activating factor, which are well-known mediators of

inflammation and tissue damage implicated in pathologi-

cal states of several acute and chronic neurological disor-

ders.8,12–14 Our previous study showed that PLA2

activity and expression increased after SCI in rats.15

Injections of exogenous PLA2 or melittin, a potent acti-

vator of endogenous PLA2, into the normal spinal cord

resulted in inflammation and tissue damage.15 Adminis-

tration of annexin A1, a nonselective inhibitor of PLA2,

inhibited SCI-induced inflammation and reduced tissue

damage after SCI.16 These findings suggest that PLA2

may be a potential therapeutic target for SCI.

PLA2 can be broadly classified into 3 major catego-

ries: secretory PLA2 (sPLA2), cytosolic PLA2 (cPLA2),

and Ca21-independent PLA2 (iPLA2).8 Among them,

cPLA2 is considered to be the most important PLA2 iso-

form, because it has been implicated as an effector in

receptor-mediated release of arachidonic acid (AA) and

exhibits strong preference for deacylation of AA over

other fatty acids.13,17 However, the role of cPLA2 in the

pathogenesis of SCI has not yet been fully understood,

and is even controversial.15,18 Here, we report that SCI

significantly induced cPLA2 activation and expression.

Blocking cPLA2 pharmacologically and genetically ame-

liorated motor deficits, and reduced cell loss and tissue

damage after SCI in mice. Thus, cPLA2 may represent a

therapeutic target for treatment after traumatic SCI.

Materials and Methods

All of the chemicals used in this study were from Sigma (St

Louis, MO), except for those specifically indicated. Antibodies

used in this study were from Cell Signaling Technology (Bos-

ton, MA), except for those specifically indicated.

Mice and Rats
Female C57BL/6 mice (12 weeks, 18–24g) were purchased

from Jackson Laboratories (Bar Harbor, ME). Breeding pairs of

male and female heterozygous (cPLA21/2) mice were kindly

provided by Dr J. Bonventre (Harvard Medical School). The

breeding was carried out at Indiana University School of Medi-

cine Laboratory Animal Resource Center. Female cPLA2
2/2

mice and wild-type (WT) littermates (12 weeks, 18–24g) gener-

ated from heterozygous breeding pairs were used in this study.

The genotypes of the yielded litters were determined by poly-

merase chain reaction (PCR). All mice were on a C57/BL6

background.19,20 Female Sprague–Dawley rats (210–230g) were

purchased from Harlan (Indianapolis, IN). Female animals are

routinely used in SCI studies, because female animals allow for

easier manual expression of bladders after SCI, less urinary tract

infection, and less mortality.21–24 In addition, there are reports

showing that no significant differences were detected in histo-

logical and behavioral outcomes between male and female ani-

mals after SCI.25,26 The animals were maintained on a 12/12-

hour light/dark cycle with food and water freely available. All

surgical interventions, treatments, and postoperative animal care

were performed in accordance with the Guide for the Care and

Use of Laboratory Animals (National Research Council) and

the Guidelines of the Institutional Animal Care and Use Com-

mittee of the Indiana University School of Medicine.

Contusive Spinal Cord Injury and Treatment
A contusive SCI in mice was performed at the T10 level using

an Infinite Horizon Impactor (Infinite Horizons, Lexington,

KY) at an impact force of 60 kdyne as described.27 The rats

underwent a T10 contusive spinal cord injury using a New

York University Impactor (10g, 12.5mm) as was described pre-

viously.16,28 After injury, the muscles and skin were closed in

layers, and animals were placed in a temperature- and

humidity-controlled chamber overnight. Manual bladder expres-

sion was carried out at least 33 daily until reflex bladder emp-

tying was established. Control animals received laminectomy

only. At 30 minutes after contusion injury, mice were treated

with arachidonyl trifluoromethyl ketone (AACOCF3; Cayman

Chemicals, Ann Arbor, MI), delivered intravenously (50ll of

4mM), followed by intraperitoneal injections of the compound

(200ll of 4mM) every other day up to 2 weeks postinjury. The

dose and treatment regimen were selected based on our pilot

study and a previous published report.29 Another group of SCI

animals received vehicle injections.

Western Blotting
Western blot analysis was performed as described previously

with minor modification.16,28 For cPLA2 expression, primary

antibodies included mouse monoclonal anti-cPLA2 antibody

(1:100; Santa Cruz Biotechnology, Santa Cruz, CA), polyclonal

rabbit anti–phospho(p)-cPLA2 antibody (1:500), and mouse

anti–b-tubulin antibody (1:1,000; Sigma). For active caspase-3

and poly(adenosine diphosphate ribose) polymerase (PARP)

expression, primary antibodies included rabbit anti–caspase-3

antibody (cleaved, 1:1,000), rabbit anti–PARP-1 (cleaved,

1:500), and mouse anti–b-tubulin antibody (1:1,000; Sigma).

For extracellular signal-regulated kinase (ERK) expression, pri-

mary antibodies included polyclonal rabbit anti-ERK1/2 anti-

body (1:1,000) and monoclonal mouse anti–p-ERK1/2

antibody (1:2,000). Secondary Alexa Fluor 680 goat antimouse

(1:10,000; Invitrogen, Grand Island, NY) and IRDye 800 goat

antirabbit (1:5,000; Rockland, Gilbertsville, PA) antibodies

were used. The Western blot was imaged and quantified using

a Li-Cor Odyssey Infrared Imaging system (LI-COR Bioscien-

ces, Lincoln, NE) according to the manufacturer’s instruction.

Immunohistochemistry
Immunohistochemistry followed procedures described previ-

ously.15 One set of the sections was incubated with primary

polyclonal rabbit anti–p-cPLA2 antibody (1:100) overnight at

4�C. On the second day, the sections were incubated with sec-

ondary biotinylated goat antirabbit immunoglobulin G anti-

body (1:400; Vector Laboratories, Burlingame, CA) for 1 hour

at room temperature. Primary antibody omission controls were
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used to further confirm the specificity of the immunohisto-

chemical labeling.

Immunofluorescence Double Labeling
This method has been described in our previous publication.15

Briefly, a mixture of rabbit polyclonal anti–phospho(p)-cPLA2

(1:100) and mouse anti-NeuN (1:100; Chemicon, Temecula,

CA), anti–SMI-31 (1:2,000; Sigma), and anti-CC1 (APC-7,

1;100; Calbiochem, San Diego, CA) antibodies were used to

examine colocalization of p-cPLA2 in neurons, axons, and oli-

godendrocytes, respectively. For colocalization of p-cPLA2 and

p-ERK1/2, polyclonal anti–p-cPLA2 antibody (1:100) and

monoclonal mouse anti–p-ERK1/2 antibody (1:400) were used.

On the following day, the sections were incubated with

fluorescein-conjugated goat antirabbit (1:100; ICN Biochemi-

cals, Aurora, OH) and rhodamine-conjugated goat antimouse

(1:100; ICN Biochemicals) antibodies. Primary antibody omis-

sion controls and cPLA2 knockout (KO) spinal cord sections

were used to further confirm the specificity of the immunofluo-

rescence double labeling, and secondary antibody omission con-

trols were used to determine the degree of autofluorescence.

Single-labeling controls were also used to assess any bleed-

through. Images were acquired using an FluoView 500 Confo-

cal Laser Scanning Microscope (Olympus America, Melville,

NY) with a sequential scanning mode to minimize crosstalk

among channels in multicolor images.

Intraspinal Injection of U0126
The bilateral microinjections (2 injections/side, 1ll/injection,

total 5 4ll) of vehicle (20% dimethylsulfoxide) or U0126

(0.5lg/ll) from Phoenix Pharmaceuticals (Burlingame, CA)

were made into the spinal cord at 0.6mm from the midline

and at a depth of 1.5mm from the dorsal cord surface on both

sides using a glass micropipette attached to a pneumatic pico-

pump (World Precision Instruments, Sarasota, FL). There was a

2mm distance between the 2 injections on each side.

Reverse Transcription PCR
Reverse transcription PCR (RT-PCR) was performed with the

Access RT-PCR system (Promega, Madison, WI) according to

the manufacturer’s instructions. Sense primer 50-AAG GCC

AAG TGA CAC CAG CC-30 and antisense primer 50-GAA

ACA GAG CAA CGA GAT GGG-30 were used to yield a

452–base pair cPLA2 product. Primers for cyclophilin were

used for control.

Spinal Cord Neuronal Culture, Cell Treatment,
and Viability Assessment
Cells were obtained from embryonic day 14 rat spinal cords by

gentle trituration according to our previously described proto-

col.15,16 Under this culture condition, a purity of >85% spinal

cord neuronal population was obtained at the seventh day in

vitro. Cultures were then treated with the designated concentra-

tion of ceramide-1-phosphate (C-1-P), A23187, and/or

AACOCF3 for the designated time. The cultures were main-

tained for an additional 24 hours, and the culture medium of

each well was removed for lactate dehydrogenase release assay

using a CytoTox 96 Non-Radioactive Cytotoxicity Assay kit

(Promega). In a subset of cultures, spinal cord neurons were

treated using terminal deoxynucleotide transferase–mediated

deoxyuridine triphosphate nick-end labeling (TUNEL) and

immunofluorescent double labeling as well as Western blot.

TUNEL Assay
Apoptotic spinal cord neurons were detected by TUNEL and

the immunostaining of the neuronal marker neurofilament pro-

tein (NFP) using an in situ cell death detection kit (TMR red;

Roche Applied Science, Mannheim, Germany), according to

the manufacturer’s instructions. Primary rabbit polyclonal NFP

antibody (1:400; Sigma) and secondary fluorescein-conjugated

goat antirabbit antibody (1:100; ICN Biochemicals) were used.

Behavioral Assessments
All behavioral tests were blindly performed. The Basso Mouse

Scale (BMS) locomotor test was performed weekly up to 6

weeks post-SCI by 2 observers lacking knowledge of the experi-

mental groups according to a method published previously.30

Briefly, mice were placed in an open field (diameter 5 42in)

and observed for 4 minutes by 2 trained observers. The scores

were on a scale of 0 to 9 (9 5 normal locomotion;

0 5 complete hind limb paralysis), which is based on hind limb

movements made in an open field including hind limb joint

movement, weight support, plantar stepping, coordination, paw

position, and trunk and tail control.

Footprint analysis was used to examine the stepping pat-

terns of the mice. The animals’ hind paws were inked with blue

dye, and the animals were required to traverse a narrow runway

(100 3 4 3 4cm) lined with white paper. Only mice with fre-

quently or consistently plantar stepping were tested (BMS

score� 5 for both hind limbs). Three separate traverses of the

track (trials) were recorded per testing session. A minimum of

5 consecutive footprints were assessed to determine values for

the trial, and the 3 trials were averaged to obtain the values for

each parameter assessed per session. Six parameters including

toe spread, paw length, paw rotation, stride length, stride

width, and intermediary toes were analyzed.

Beam walking31 was evaluated in mice that showed fre-

quent or consistent plantar stepping using a graded series of

rough metal beams (24cm long) of various widths: 0.4, 0.8, 1.2,

1.6, and 2.0cm. The narrowest beam each mouse could traverse

was recorded, along with the number of errors across 4 trials.

Hind paw and whole body falls were both counted as errors. If

an animal could not maintain placement of its hind paws on the

beam, or if the animal was dragging its hindquarters across the

beam, this was considered failing the task, and no score was

recorded for the animal. The scoring was based on beam size

and the number of errors.31 Data for this test were obtained by

taking the average of 4 trials per beam per animal.

Histological Assessments
Spinal cord segments containing the epicenter were isolated

from each animal, embedded, and cut into 25lm-thick serial
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sections (250lm apart and spanning the entire rostrocaudal

extent of the lesion). One set of the sections was stained for

myelin with Luxol fast blue, and the other was counterstained

with cresyl violet–eosin. The lesion and spared white matter

area of the injured cord were visualized, outlined, and quanti-

fied using an Olympus BX60 microscope equipped with a Neu-

rolucida system (MicroBrightField, Colchester, VT). An

unbiased estimation of the percentage of spared tissue and

lesion volume were calculated using the Cavalieri method.16

Measurement of Na1, K1-Adenosine
Triphosphatase Activity
Membrane-bound Na1, K1-adenosine triphosphatase (ATPase)

was isolated as described previously with minor modifica-

tion.32,33 Spinal cord tissue was homogenized in ice-cold isola-

tion buffer (30mM histidine, 0.32M sucrose, and 1mM

ethylenediaminetetraacetic acid [EDTA], pH 7.4). The homog-

enates were centrifuged at 1,000 3 g for 20 minutes at 4�C.

The pellet was discarded, and the supernatant was centrifuged

at 14,000 3 g for 60 minutes at 4�C. The pellet was resus-

pended in isolation buffer and stored at 280�C. The enzyme

activity was assayed by the method previously described.34

Briefly, the Na1, K1-ATPase activity was assayed in an incuba-

tion medium consisting of 30mM histidine, 130mM NaCl,

20mM KCl, 5mM MgCl2, and 6.5lg membrane protein with

or without 1mM ouabain. Inorganic phosphate was measured

by the method of Fiske and Subbarow.34

Tissue of Prostaglandin E2 Determination
Tissue levels of prostaglandin E2 (PGE2) in the spinal cord were

assayed using enzyme immunoassay (EIA; Prostaglandin E2 EIA

kit; Cayman Chemical). Spinal cord segments containing the epi-

center were removed and were homogenized in ice-cold lysis

buffer (0.1M phosphate, pH 7.4, 1mM EDTA, 10lM indo-

methacin; Cayman Chemical) using a tube pestle. Acetone was

added (2 3 sample volume), and samples were centrifuged at

1,500 3 g for 10 minutes. The supernatants were then stored at

280�C, and assay followed the manufacturer’s instructions.

Myeloperoxidase Activity Assay
Myeloperoxidase (MPO) activity, an indicator of polymorphonu-

clear leukocyte accumulation, was performed as previously

described.16 Briefly, the injured spinal cord segment (10mm) was

removed and homogenized. The supernatant, after centrifugation

at 14,000 3 g for 25 minutes, was assayed for MPO activity.

PLA2 Activity Assay
A 10mm spinal cord segment containing the injury epicenter

was dissected after intracardial perfusion of the mice with 10ml

of saline under anesthesia. The cord segment was homogenized

in 0.4ml of 50mM hydroxyethylpiperazine ethanesulfonic acid

(HEPES), pH 7.4, containing 1mM EDTA and centrifuged at

10,000 3 g for 15 minutes at 4�C. Supernatant was removed,

and PLA2 activity was measured in the presence and absence of

calcium according to the protocol in the PLA2 Assay Kits with

minor modification (Cayman Chemical Company). Briefly,

Total PLA2 activity was measured by incubating the samples

with a substrate, arachidonoyl thio-PC, for 1 hour at room

temperature in the assay buffer. The reactions were stopped by

dithiobis nitrobenzoic acid (DTNB)/ethyleneglycoltetraacetic

acid (EGTA) for 5 minutes, and the absorbances were deter-

mined at 405nm using a VICTOR3 V 1420 Multilabel Coun-

ter (PerkinElmer Wallac Oy, Turku, Finland). To detect the

activity of iPLA2, the assay buffer was modified to Ca21-free

buffer (4mM EGTA, 160mM HEPES, pH 7.4, 300mM NaCl,

8mM Triton X-100, 60% glycerol, 2mg/ml of bovine serum

albumin) as described previously.35 The iPLA2 activity was

assayed by incubating the samples with the substrate, arachido-

noyl thio-PC, for 1 hour at room temperature in the modified

Ca21-free buffer. The reaction was stopped by addition of

DTNB/EGTA for 5 minutes, and the absorbance was deter-

mined at 405nm using the PerkinElmer VICTOR3 V 1420

Multilabel Counter. Activity of Ca12-dependent PLA2 5 total

PLA2 activity 2 iPLA2 activity. Because C57BL/6 mice have a

naturally occurring null mutation of the major form of

sPLA2,36 Ca12-dependent PLA2 activity reflects cPLA2 activity.

Statistical Analysis
All statistical analyses were performed using Prism software

(version 6.00; GraphPad, La Jolla, CA) except for number of

neurons. All data are presented as mean 6 standard error of the

mean values, and were analyzed by Student t tests or analysis of

variance (ANOVA; 1-way, 2-way, or repeated measures as

appropriate) followed by post hoc Dunnett or Tukey multiple

comparison test. For the number of neurons, nonparametric

repeated measures ANOVA was performed using SAS software

(SAS Institute, Cary, NC), where the ranks of the outcome

variable were used as the dependent variable, with group (WT

and cPLA2 KO) and location as independent variables, includ-

ing interaction. Potential correlation was adjusted for measure-

ments obtained from the same animals. Bonferroni adjustment

was used in post hoc analysis comparing WT to cPLA2 KO

within each specific location. A p value of <0.05 was consid-

ered statistically significant.

Results

cPLA2 Activation in the Injured Spinal Cord
following SCI
Mouse SCI models are being increasingly used because

transgenic and KO mice are available for the study of

cellular mechanisms. We found that cPLA2 expression in

mice significantly increased after SCI, peaked at 7 days

post-SCI, and remained highly expressed at 14 days (Fig

1). This profile of cPLA2 expression is consistent with

our previous observation in rats.15 Because cPLA2 activa-

tion requires phosphorylation of cPLA2 by MAPK,17 we

also examined p-cPLA2 as an indicator of cPLA2 activa-

tion. The p-cPLA2 expression was also significantly

increased after SCI, with a similar expression profile to

that of cPLA2. The expression of specific p-cPLA2 (ie,

ratio of p-cPLA2/cPLA2) was also significantly increased
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at as early as 1 day and reached the highest at 14 days

after SCI. Immunohistochemistry further revealed that

the expression of p-cPLA2 increased as early as 8 hours

post-SCI. Extensive p-cPLA2 expression was found in

axons, particularly in those that underwent degeneration

(see Fig 1E, right column, white matter) and in neurons

and glial cells (see Fig 1E, left column, gray matter)

between 1 and 7 days post-SCI. The p-cPLA2 expression

was found not only in regions close to the injury

(1.5mm) but also in areas distant from it (5mm). Immu-

nofluorescence double labeling further confirmed that p-

cPLA2 was expressed in neurons, swollen axons, and oli-

godendrocytes (Fig 2). The c-PLA2 expression and activa-

tion in mice was also confirmed in rats by

immunohistochemistry (data not shown), protein,15 and

mRNA (Fig 3) analyses.

ERK1/2 Signaling Pathway Mediates
SCI-Induced cPLA2 Phosphorylation In Vivo
To assess the mechanism of cPLA2 activation, we asked

whether ERK1/2 signaling pathway plays a role in mediating

cPLA2 phosphorylation. Our results showed colocalization

of p-cPLA2 and p-ERK1/2 in neurons, degenerated axons,

and glial cells at 24 hours after SCI (Fig 4). In sham-

operated controls, p-ERK1/2 immunoreactivity (IR) at a

very low level was observed in morphologically characteristic

neurons; however, no p-cPLA2 IR was detected in these

neurons or any other cells. Two-way ANOVA analysis

showed that there were statistically significant effects of treat-

ment group (F2,18 5 137.6, p< 0.0001), ERK1/2

(F1,18 5 83.38, p< 0.0001), and the interaction of treatment

group and ERK1/2 (F2,18 5 11.86, p 5 0.0005). Western

blot analysis revealed that expressions of p-p44 (p-ERK1)

and p-p42 (p-ERK2) were increased by 581.11% and

514.92%, respectively (p< 0.01) at 24 hours after SCI.

Importantly, the increased expression of p-p44 and p-p42

were reversed by 59.82% (p< 0.01) and 41.61% (p< 0.05),

respectively, by U0126, an ERK1/2 inhibitor. In the same

animal model, SCI increased p-cPLA2 expression by

298.85% (p< 0.01). Interestingly, administration of the

ERK1/2 inhibitor U0126 inhibited p-cPLA2 expression by

42.84% (p< 0.01).

FIGURE 1: Cytosolic phospholipase A2 (cPLA2) activation following spinal cord injury. (A) Representative time courses of phos-
phorylated cPLA2 (p-cPLA2), cPLA2, and b-tubulin expression. (B) Compiled results in a bar graph for the ratio of p-cPLA2/b-
tubulin expression. (C) Compiled results in a bar graph for the ratio of cPLA2/b-tubulin expression. (D) Compiled results in a
bar graph for the ratio of p-cPLA2/cPLA2 expression. **p < 0.01 versus sham (1-way analysis of variance, Dunnett post hoc test,
n 5 6 mice/group). Error bars represent mean 6 standard error of the mean. (E) Immunohistochemistry of mouse spinal cord
sections at 1.5 and 5mm caudal to the injury epicenter shows increased p-cPLA2 expression in neurons (arrows), axons (open
arrows), and glial cells (arrowheads). GM 5 gray matter; KO 5 knockout; WM 5 white matter. Bars 5 40lm.
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Activation of cPLA2 Induces Spinal Cord
Neuronal Death In Vitro
Because we observed that cPLA2 activation was induced

following SCI, the next question would be: could cPLA2

activation induce spinal cord neuronal death? To address

this issue, we first examined the effects of C-1-P and

A23187 on spinal cord neuronal death in vitro. C-1-P is

a direct activator of cPLA2 through interaction with the

CaLB/C2 domain.37 The calcium ionophore A23187 is

an indirect activator of cPLA2 through elevations of

intracellular free calcium.38 Our results showed that both

C-1-P and A23187 induced cultured spinal neuronal

death in a dose-dependent manner (Fig 5). Importantly,

such C-1-P– or A23187-induced neuronal death could

be significantly reversed by AACOCF3, a cPLA2 inhibi-

tor. TUNEL staining revealed that C-1-P–induced spinal

cord neuronal death took the form of apoptosis. Western

blot analysis further confirmed that C-1-P–induced death

of spinal cord neurons expressed apoptotic markers active

caspase-3 (p< 0.05) and active PARP-1 (p< 0.01).

Inhibition of cPLA2 Reduces SCI-Induced Tissue
Damage and Improves Behavioral Recovery
To further assess whether activation of cPLA2 is sufficient

to mediate the secondary SCI, we tested whether block-

ing cPLA2 activation with the cPLA2 inhibitor

AACOCF3 would reduce injury-induced increases in

eicosanoids (downstream metabolites of cPLA2), inflam-

mation, and tissue damage and in turn enhance recovery

after a contusive SCI in mice. AACOCF3 is a potent

and selective inhibitor of cPLA2. This inhibitor shows

slow tight binding to cPLA2 in the presence of Ca21 and

forms a covalent bond with a serine residue in the active

site of the enzyme.39,40 This inhibitor is about 500-fold

more potent at inhibiting cPLA2 than sPLA2
39 and may

also be a weak inhibitor of iPLA2.41–43 AACOCF3 was

delivered intravenously (50ll of 4mM) at 30 minutes in

C57BL/6 mice after the injury followed by intraperito-

neal injections of the compound (200ll of 4mM) every

other day up to 2 weeks postinjury. Certain mouse

strains, such as C57BL/6, 129/Sv, and B10.rIII, have a

naturally occurring null mutation of the major form of

sPLA2.36 Therefore, C57BL/6 mice in this study were

deficient in sPLA2. To confirm cPLA2 inhibition in

AACOCF3-treated mice, we measured PLA2 activity and

its metabolite PGE2 at 24 hours after SCI. Our results

showed that AACOCF3 treatment significantly reduced

cPLA2 activity and PGE2 production by 42.9%

(p< 0.01) and 35.1% (p< 0.01) after SCI (Fig 6). How-

ever, SCI-induced iPLA2 activation was not affected sig-

nificantly by AACOCF3 (p> 0.05). AACOCF3

FIGURE 2: Cellular localization of phosphorylated cytosolic
phospholipase A2 (p-cPLA2) expression in the mouse spinal
cord after spinal cord injury (SCI). (A–C) p-cPLA2 immunore-
activity (IR) was localized in neurons indicated by NeuN IR
(arrows). (D–F) p-cPLA2 IR was localized in a subpopulation
of axons that show morphologically degenerating changes
such as swelling (arrows). Axons were SMI-31 immunoreac-
tive. (G–I) p-cPLA2 IR was localized in oligodendrocytes indi-
cated by CC1 IR (arrows). (J–L) In spinal cord sections of
cPLA2 knockout (KO) mice after SCI, p-cPLA2 IR was not
observed, confirming the specificity of p-cPLA2 antibody (J).
Bars 5 20lm.

FIGURE 3: Expression of cytosolic phospholipase A2 (cPLA2)
mRNA in the rat injured spinal cord at 7 days after spinal
cord injury (SCI). Reverse transcription polymerase chain
reaction was performed using specific primers designed for
rat cPLA2 and cyclophilin. Bar graph indicates the mean-
6 standard error of the mean; n 5 6 mice/group, **p < 0.01
versus sham-operated group (Student t test).
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administration also restored Na1, K1-ATPase activity (a

marker for membrane integrity or damage) by 38.1%

(p< 0.05), and reduced SCI-induced MPO activity (a

marker for neutrophil infiltration) by 67.1% (p< 0.01).

To determine whether inhibition of cPLA2 pro-

motes functional recovery, an array of behavior tests were

performed on consecutive days following SCI to evaluate

motor and sensorimotor functions. There were statisti-

cally significant effects of treatment group (F2,21 5 40.17,

p< 0.0001), test day (F7,147 5 53.32, p< 0.0001), and

the interaction of treatment group and test day

(F14,147 5 15.93, p< 0.0001; repeated measures

ANOVA) for BMS for open field locomotion.

AACOCF3 treatments significantly improved BMS

scores for up to 6 weeks (Fig 7; p< 0.05–0.01).

Repeated measures ANOVA also revealed that there were

statistically significant effects of AACOCF3 treatment

(F2,21 5 30.19, p< 0.0001) for beam walking scores at 4

and 6 weeks post-SCI. Footprint analysis showed that

administration of AACOCF3 significantly improved the

stride length (p< 0.05), paw rotation angle (p< 0.01),

and intermediary toes (p< 0.01) at 5 weeks post-SCI.

Because we showed that administration of

AACOCF3 significantly improved behavioral recovery

after SCI, we next examined whether such a treatment

also would result in tissue protection in vivo. To ensure

that the entire rostrocaudal expansion of the lesion was

examined, a 1.2cm-long cord segment was serially sec-

tioned. Measurements of percentage total lesion volume,

lesion area, and white matter sparing area were made

from cresyl violet–stained and eosin-stained transverse

sections spanning the entire lesion. Comparison of the

lesion area at the injury epicenter demonstrated that

AACOCF3 treatments resulted in a significant reduction

of lesion area by 28.1% (see Fig 7; p< 0.05). Such

reduction in lesion area was accompanied by a corre-

sponding increase in the area of white matter sparing by

47.8% (p< 0.05) at 6 weeks post-SCI. In addition,

Luxol fast blue staining showed that the AACOCF3

treatment resulted in a corresponding increase in myelin

sparing by 35.5% (p< 0.01). Finally, stereological assess-

ments of the lesion volume showed that AACOCF3

FIGURE 4.

FIGURE 4: Extracellular signal-regulated kinase (ERK) 1/2
signaling pathway mediates cytosolic phospholipase A2

(cPLA2) phosphorylation induced by spinal cord injury (SCI).
(A–L) Colocalization of phosphorylated cPLA2 (p-cPLA2) and
phospho-ERK1/2 (p-ERK1/2) at 24 hours after SCI. (A–C) In a
longitudinal section of the gray matter, neurons were posi-
tive for p-cPLA2 (A, arrows) and p-ERK1/2 (B, arrows). Coex-
istence of p-cPLA2 and p-ERK1/2 were in the same cells (C,
arrows). (D–F) In a longitudinal section of the white matter,
p-cPLA2 was colocalized with p-ERK1/2 in degenerated
axons that showed beaded morphology (arrows). (G–L) In a
cross section of the spinal cord, colocalization of p-cPLA2

and p-ERK1/2 was found mainly in axons undergoing degen-
eration (G–I, arrows) and in glial cells morphologically char-
acteristic of oligodendrocytes (J–L, arrows). (M–O) In sham-
operated controls, p-ERK1/2 immunoreactivity (IR) was
observed at a very low level (N, arrows); however, no p-
cPLA2 IR was detected in these cells (M, arrows).
Bars 5 40lm. (P) Representative photos and statistical com-
parison after normalization to ERK1/2. SCI induced p-ERK1/
2 expression, which was reversed by U0126, a selective
ERK1/2 inhibitor. *p < 0.05, **p < 0.01 versus sham;
#p < 0.05, ##p < 0.01 versus vehicle-treated SCI (2-way anal-
ysis of variance, Tukey post hoc test); n 5 4 mice/group;
error bars represent mean 6 standard error of the mean
(SEM). (Q) Representative photos and statistical comparison
after normalization to cPLA2. SCI induced p-cPLA2 expres-
sion, which was reversed by U0126, an ERK1/2 inhibitor.
*p < 0.05, **p < 0.01 versus sham; ##p < 0.01 versus vehicle-
treated SCI (1-way ANOVA, Tukey post hoc test); n 5 4
mice/group; error bars represent mean 6 SEM.
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treatment resulted in a significant reduction in the per-

centage total lesion volume by 34.3% (p< 0.01).

Genetic Ablation of cPLA2 Reduces Cell Loss
and Tissue Damage, and Improves Behavioral
Recovery after SCI
To definitively determine the role of cPLA2 following

SCI, we used cPLA2
2/2 mice and compared them with

WT littermates (cPLA2
1/1). All mice were on a C57/

BL6 background and deficient in sPLA2.19 cPLA2
2/2

mice develop normally, gain weight at a rate equal to

that of WT animals, and have a lifespan of >1 year.19,20

We found that at 24 hours after SCI, there was a marked

loss of ventral horn neurons at and near the site of injury

in the WT littermates (Fig 8). In contrast, in cPLA2 KO

mice, the SCI-induced neuronal loss was significantly

reduced at 24 hours postinjury. To test further whether

cPLA2 ablation resulted in neuroprotection against cell

FIGURE 5: Effects of cytosolic phospholipase A2 (cPLA2) activation on spinal cord neuronal death in vitro. (A) Cultured spinal
cord neurons were treated with the designated concentrations of ceramide-1-phosphate (C-1-P) or A23187 for 24 hours. Lac-
tate dehydrogenase (LDH) release assay revealed that both cPLA2 activators, C-1-P and A23187, induced cultured spinal cord
neuronal death in a dose-dependent manner. **p < 0.01, ##p < 0.01 versus the vehicle control, 1-way analysis of variance
(ANOVA), Tukey post hoc test; n 5 8. Data are shown as the mean 6 standard error of the mean (SEM) from 3 independent
experiments. (B) Importantly, neuronal death induced by C-1-P (2lM) or A23187 (5lM) was significantly reversed by AACOCF3
(15lM), a cPLA2 inhibitor. AACOCF3 was added 30 minutes before C-1-P or A23187, and the culture medium of each well was
removed at 24 hours after the activator treatment for LDH release assay. **p < 0.01 versus the vehicle control, ##p < 0.01 ver-
sus the C-1-P or A23187 group, 2-way ANOVA, Tukey post hoc test, n 5 8. Data are shown as the mean 6 SEM from 3 inde-
pendent experiments. (C–J) Administration of C-1-P (2.5lM) for 2.5 hours in vitro induced massive neuronal apoptosis (G–J) as
compared to the vehicle controls (C–F). Apoptotic cells were identified by both Hoechst and triphosphate nick-end labeling
(TUNEL) staining (arrows) and normal neurons were identified by staining for neurofilament protein (NFP) and Hoechst (arrow-
heads). Bar 5 30lm. (K, L) C-1-P (2.5lM) for 2.5 hours also induced significant increase in the expression of active caspase-3 (K)
and poly(adenosine diphosphate ribose) polymerase 1 (PARP-1) (L), two important components in the apoptotic pathway.
*p < 0.05, **p < 0.01 versus the vehicle control (Student t test); n 5 6. Data are shown as the mean 6 SEM from 3 independent
experiments.
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death, particularly apoptosis, we examined the expression

of active caspase-3, an enzyme known to be expressed

following SCI and to be critically involved in the execu-

tion of the mammalian apoptotic cell death program.44

Western blot analysis revealed that SCI induced a signifi-

cant increase of active caspase-3 expression (p< 0.01) in

the WT littermates, which was significantly reduced by

67.1% (p< 0.01) in cPLA2 KO mice.

We also used an array of behavior tests to assess

outcomes in cPLA2 KO mice and their WT littermates

after SCI. The BMS locomotor scores were significantly

improved in the cPLA2 KO mice (p< 0.05–0.01) for up

to 6 weeks as compared to their WT littermates (Fig 9).

The beam walking scores were also significantly

improved in the cPLA2 KO mice (p< 0.05–0.01) at 4

and 6 weeks post-SCI as compared to their WT litter-

mates. Footprint analysis showed that the toe spread

(p< 0.05), stride width (p< 0.05), and base of support

(p< 0.05) were all significantly improved in the cPLA2

KO mice at 5 weeks post-SCI as compared to their WT

littermates.

Histological analysis further revealed that there was

a significant reduction of lesion area by 25.6%

(p< 0.01) in the cPLA2 KO mice compared to their WT

littermates (see Fig 9). Such reduction in lesion area was

accompanied by a corresponding increase in the area of

white matter sparing by 56.2% (p< 0.01) in the cPLA2

KO mice. Luxol fast blue staining also showed that there

was a corresponding increase in myelin sparing by 33.2%

(p< 0.01) in the cPLA2 KO mice. Stereological assess-

ments showed that there was a significant reduction in

the percentage total lesion volume by 31.1% (p< 0.01)

in the cPLA2 KO mice. Thus, genetic ablation of cPLA2

not only confirmed the previous observation of pharma-

cological inhibition of cPLA2 by AACOCF3, but also

clearly indicated that cPLA2 could be an attractive target

for intervention following SCI.

Discussion

The goal of this study was to determine whether target-

ing cPLA2 could be an effective strategy for functional

repair after SCI. Our study showed that SCI induced an

elevation of cPLA2 expression and activation. The ele-

vated cPLA2 was localized mainly in neurons and oligo-

dendrocytes. We also showed that the SCI-induced

cPLA2 activation is mediated, at least in part, by ERK

signal, revealing a molecular mechanism of cPLA2 activa-

tion. In vitro studies demonstrated that cPLA2 activation

induced cultured spinal cord neuronal death. Most

importantly, both pharmacological blockade and genetic

deletion of cPLA2 significantly reduced inflammation,

cell death, and tissue damage, as well as improved behav-

ioral recovery after SCI. These findings collectively sug-

gest that modulation of cPLA2 could represent a new

therapeutic strategy for treatment of SCI.

SCI significantly induced cPLA2 activation, which

was observed as early as 8 hours postinjury and peaked

at 7 days postinjury. The activated cPLA2 was mainly

localized in neurons and oligodendrocytes. The expres-

sion of cPLA2 mRNA was increased in the injured cord,

which correlated well with increased expression of cPLA2

protein. Several earlier investigators found that AA and

eicosanoids, metabolites of cPLA2, increased within 30

minutes after SCI.45,46 Others reported that increased

eicosanoids were persistent at least for 3 days (the longest

time point studied) after SCI.47 Furthermore, Demediuk

et al reported that induced concentrations of free fatty

acid quickly increased after SCI, peaked at 3 days, and

remained significantly high at 7 days after SCI.48 The

induction profiles of these PLA2 metabolites are similar

to that of cPLA2 after SCI in the present study. These

results indicate that a prolonged effect of cPLA2 exists

after SCI, which suggests that there may be a unique

FIGURE 6: Pharmacological blockade of cytosolic phospholi-
pase A2 (cPLA2) with AACOCF3 reduced cPLA2 activity,
membrane injury, and inflammation induced by spinal cord
injury (SCI). (A–C) AACOCF3 significantly inhibited an
increase of cPLA2 (A) and total PLA2 (C) activities induced
by SCI at 24 hours postinjury. However, AACOCF3 did not
significantly affect SCI-induced Ca21-independent PLA2

(iPLA2) activity (B). (D) AACOCF3 also inhibited an increase
of prostaglandin E2 (PGE2), a downstream metabolite of
PLA2, induced by SCI at 24 hours postinjury. (E) AACOCF3
also reversed the decrease of Na1, K1-adenosine triphos-
phatase (ATPase) activity at 24 hours after SCI. (F)
AACOCF3 resulted in a decrease of myeloperoxidase (MPO)
activity at 24 hours postinjury. *p < 0.05, **p < 0.01 versus
sham; #p < 0.05, ##p < 0.01 versus vehicle-treated SCI (1-
way analysis of variance, Tukey post hoc test); error bars
represent mean 6 standard error of the mean.
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therapeutic window for intervention. The finding that

cPLA2 was mainly localized in neurons and oligodendro-

cytes is particularly interesting, because these 2 cell types

not only play important roles in normal central nervous

system (CNS) function but also are the most vulnerable

cell types to injuries as compared to other CNS cell types

such as astrocytes and microglia.49

Although cPLA2 activation and expression were sig-

nificantly increased after SCI, the mechanism(s) by which

they were increased remains to be determined. Our in

FIGURE 7: Pharmacological blockade of cytosolic phospholipase A2 (cPLA2) with AACOCF3 reduced tissue damage and
improved behavioral recovery after spinal cord injury (SCI). (A–F) Representative sections show the lesion epicenter stained
with cresyl violet and eosin (A–C) or with Luxol fast blue (D–F). AACOCF3 treatment significantly reduced lesion area by 28.1%
(A–C, G, *p < 0.05), increased white matter (WM) sparing by 47.8% (A–C, H, *p < 0.05), enhanced myelin sparing by 35.5%
(D–F, I, **p < 0.01), and reduced lesion volume by 34.4% (A–C, J, **p < 0.01). Bar 5 300lm. (G–J) Student t test. (K) Administra-
tion of AACOCF3 significantly improved Basso Mouse Scale (BMS) locomotor scores up to 6 weeks post-SCI in C57BL/6 mice.
*p < 0.05, **p < 0.01 versus vehicle-treated SCI; ##p < 0.01 versus vehicle- and AACOCF3-treated groups; repeated measures
ANOVA, Tukey post hoc test. (L) AACOCF3 significantly increased beam walking score at 4 and 6 weeks postinjury. ##p < 0.01
versus sham; **p < 0.01 versus vehicle-treated SCI; repeated measures ANOVA, Tukey post hoc test). (M–O) AACOCF3 also sig-
nificantly increased stride lengths (M), decreased paw rotation angles (N), and increased intermediary toes (O) in the foot print
analysis at 5 weeks postinjury as compared to the vehicle-treated SCI. #p < 0.05, ##p < 0.01 versus sham; *p < 0.05, **p < 0.01
versus vehicle-treated SCI (1-way ANOVA, Tukey post hoc test). In G–O, n 5 8 mice/group; error bars represent mean 6 stan-
dard error of the mean.
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vivo experiments revealed that ERK1/2 signaling pathway

mediated SCI-induced cPLA2 activation. Our previous in

vitro experiments7 also showed that ERK1/2 signaling

pathway mediated cPLA2 phosphorylation, induced by

glutamate and H2O2, two important injury mediators of

secondary SCI5. We and others have reported that cPLA2

is induced by several toxic factors that are generated in

the injured cord, including inflammatory cytokines,8,17

free radicals,7–9,11 and excitatory amino acids.7,8,10

Therefore, cPLA2 may serve as a central or convergence

molecule that mediates multiple key mechanisms of sec-

ondary injury, making it an attractive therapeutic target

to improve tissue protection and function recovery.

Our results clearly demonstrated that cPLA2 activa-

tion induced spinal cord neuronal death. This was in

agreement with our previous finding that cPLA2 activa-

tion mediated cultured spinal cord neuronal death

induced by glutamate and H2O2.7 Apoptosis has been

considered a key mechanism of cell death following

SCI.49,50 Caspase-3 plays a central role in the execution

phase of apoptosis and is responsible for the cleavage of

proteins such as the nuclear enzyme PARP. Our results

showed that cPLA2 activation induced the expression of

active caspase-3 and PARP-1. TUNEL staining further

confirmed that cPLA2 activation induced neuronal apo-

ptosis, which was supported by cPLA2-mediated neural

apoptosis induced by Ab.51 These results suggest that

cPLA2 activation induced neuronal death through apo-

ptosis, at least in part.

A significant finding of this study is that pharmaco-

logical blockade of cPLA2 with AACOCF3 inhibited

inflammation and membrane injury, reduced tissue dam-

age, and improved behavioral recovery in C57BL/6 mice

after SCI. Notably, the cPLA2 inhibitor was administered

after trauma. Our results showed a long beneficial effect

of targeting cPLA2 on anatomical and functional recov-

eries. In agreement with our observation, several studies

have reported a detrimental effect of cPLA2 in other

FIGURE 8: Cytosolic phospholipase A2 (cPLA2) ablation reduces neuronal loss induced by spinal cord injury (SCI) at 24 hours
postinjury. (A–E) SCI induced a marked loss of ventral horn neurons (NeuN immunoreactivity) at and near the site of injury in a
wild-type (WT) control mouse. (F-J) In contrast, numerous neurons survived the same injury at these regions such as at 0.8mm
rostral (G) and caudal (I) to the injury epicenter (arrows). (K) Statistical analysis showed that significantly more neurons survived
in the ventral gray matter of the cPLA2 knockout (KO) mice at distances 0.4 to 1.2mm rostral and caudal to the injury as com-
pared to their WT littermates; n 5 6 mice/group. *p < 0.05, **p < 0.01 versus WT (nonparametric repeated measures analysis of
variance, Bonferroni post hoc test). (L) Expression of active caspase-3 expression at 24 hours after SCI. In cPLA2 KO mice, SCI-
induced active caspase-3 expression was significantly reduced (p < 0.01), as compared to the WT group. Upper panel shows
representative photograph of active caspase-3 expression; lower panel shows compilation of results in a bar graph; n 5 6 mice/
group. Data are shown as the mean 6 standard error of the mean.
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CNS diseases such as ischemia,20,52 experimental autoim-

mune encephalomyelitis,29,53 and Alzheimer disease.54 In

contrast, there is a recent report showing that activation

of cPLA2 is beneficial. In that study, both BALB/c mice

treated with AX059, a cPLA2 inhibitor, and cPLA2-null

BALB/c mice displayed greater neuronal and myelin loss

after SCI.18 The contrary results between this mouse

strain and others remain unclear, and they may be related

to different mouse backgrounds (C57BL/6 vs BALB/c)

and inhibitors (AACOCF3 vs AX059) that were used. It

has been reported that different strains of mice display

distinctly different responses to trauma injury, including

inflammation, histology, and behavioral recovery.30,55–57

For example, post-traumatic inflammation was markedly

reduced in BALB/c mice compared with C57BL/6

mice.55 After SCI, a densely packed cellular matrix fills

necrotic cavities. The magnitude of this response was

greatest for C57BL/6 mice and least for BALB/c mice.55

Kipnis and colleagues also showed that BALB/c mice

exhibited a T-cell–dependent neuroprotective response,

whereas trauma- or glutamate-mediated neuronal cell loss

was enhanced in C57BL/6 mice.57 These results suggest

that genetic differences may confer different responses to

traumatic injury, which may modify the secondary injury

processes after SCI. Thus, the contrary results from

C57BL/6 and BALB/c mice may be related to genetic

differences including sPLA2.

We previously demonstrated increased sPLA2

expression following SCI.9 Injection of sPLA2 into the

normal spinal cord resulted in tissue damage, demyelin-

ation, and behavioral impairment in vivo.15 Importantly,

administration of a sPLA2 inhibitor GK511 in BALB/c

mice reduced tissue damage and improved behavioral

recovery after SCI.18 In the current study, sPLA2 action

FIGURE 9: Cytosolic phospholipase A2 (cPLA2) ablation protects against tissue damage induced by spinal cord injury (SCI) and
improves behavioral recovery in vivo. (A, B) Representative sections show the lesion epicenter stained with cresyl violet and
eosin. (C, D) Representative sections show the lesion epicenter stained with Luxol fast blue. Bars 5 300lm. (E–H) Bar graphs
show that cPLA2 ablation reduced tissue damage (E), enhanced white matter (WM) sparing (F), increased myelin sparing (G),
and reduced lesion volume (H) as compared to the wild-type controls. *p < 0.05, **p < 0.01 versus wild-type group, Student t
test, n 5 6 mice/group. Data are shown as the mean 6 standard error of the mean (SEM). (I–M) Behavioral outcomes in wild-
type and cPLA2 knockout (KO) mice after SCI. (I) Basso Mouse Scale (BMS) locomotor scores were significantly improved up to
6 weeks post-SCI in cPLA2 KO mice as compared to the wild-type controls (*p < 0.05, **p < 0.01, Student t test). (J) Beam walk-
ing scores were significantly increased at 4 and 6 weeks postinjury in cPLA2 KO mice as compared to the wild-type controls
(*p < 0.05). (K–M) Toe spread (K), stride width (L), and base of support (M) in the foot print analysis were also significantly
increased at 5 weeks postinjury as compared to the wild-type controls. *p < 0.05 versus the wild-type group (Student t test);
n 5 6 mice/group. Data are shown as the mean 6 SEM.
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was excluded in both sham and SCI groups, because

C57BL/6 mice have a naturally occurring null mutation

of sPLA2.36 iPLA2 is generally considered to be a house-

keeping enzyme for the maintenance of membrane phos-

pholipids.8 Lopez-Vales et al reported that iPLA2 was

upregulated after SCI and was expressed mainly in oligo-

dendrocytes.18 Using FKGK11, a potent and highly

selective iPLA2 inhibitor in BALB/c mice with SCI, they

further showed that iPLA2 appeared to play a minor det-

rimental role in SCI.18 Although AACOCF3 has been

reported to be a weak inhibitor of iPLA2,41–43 our results

showed that there was no significant difference of iPLA2

activity between the SCI and AACOCF3-treated groups.

These results suggest that AACOCF3 exerts neuroprotec-

tion mainly via inhibition of cPLA2.

A definitive finding of the present study is that

genetic deletion of cPLA2 resulted in neuroprotection

and behavioral recovery following SCI. Genetic deletion

of cPLA2 also inhibited the expression of active caspase-

3 after SCI, suggesting that cPLA2 activation mediates

neural apoptosis. Our observation is supported by sev-

eral other reports that cPLA2
2/2 mice show protection

in ischemic brain damage, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine neurotoxicity, and neurodegenera-

tion.20,54,58 cPLA2
2/2 mice also show significant reduc-

tions in AA release and eicosanoid production in

response to a variety of stimuli.19,20 cPLA2 may con-

tribute to injury by a direct effect on cell membranes

and/or indirectly through generation of its metabolites,

which are inflammatory and vasoconstrictive media-

tors.8,59 Our results suggest that cPLA2 contributes to

the pathogenesis of SCI and that targeting cPLA2 could

be an effective therapeutic strategy for intervention after

SCI.
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