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Abstract

Eight novel 2-(2, 6-dioxopiperidin-3-yl)phthalimidine EM-12 dithiocarbamates 9 and 10, N-

substituted 3-(phthalimidin-2-yl)-2, 6-dioxopiperidines 11–14 and 3-substituted 2, 6-

dioxopiperidines 16 and 18 were synthesized as tumor necrosis factor-α (TNF-β) synthesis 

inhibitors. Synthesis involved utilization of a novel condensation approach, a one-pot reaction 

involving addition, iminium rearrangement and elimination, to generate the phthalimidine ring 

required for the creation of compounds 9–14. Agents were, thereafter, quantitatively assessed for 

their ability to suppress the synthesis on TNF-β in a lipopolysaccharide (LPS)-challenged mouse 

macrophage-like cellular screen, utilizing cultured RAW 264.7 cells. Whereas compounds 9, 14 
and 16 exhibited potent TNF-α lowering activity, reducing TNF-α by up to 48% at 30 μM, 

compounds 12, 17 and 18 presented moderate TNF-α inhibitory action. The TNF-α lowering 

properties of these analogues proved more potent than that of revlimid (3) and thalidomide (1). In 

particular, N-dithiophthalimidomethyl-3-(phthalimidin-2-yl)-2, 6-dioxopiperidine 14 not only 

possessed the greatest potency of the analogues to reduce TNF-α synthesis, but achieved this with 

minor cellular toxicity at 30 μM. The pharmacological focus of the presented compounds is 

towards the development of well-tolerated agents to ameliorate the neuroinflammation that is 

commonly associated with neurodegenerative disorders, epitomized by Alzheimer’s disease and 

Parkinson’s disease.
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1. Introduction

Inflammation of the central nervous system, neuroinflammation, is now recognized as a key 

feature of all neurodegenerative disorders that, with the progressively aging population, are 

becoming increasingly prominent.1 Alzheimer’s disease (AD) and Parkinson’s disease (PD) 

are prime examples of debilitating disorders that impact over 5 million and one million 

Americans, respectively. Neuroinflammation incorporates a wide spectrum of complex 

cellular responses that often contribute to the pathogenesis and can ultimately drive the 

progression of a neurological disorder.2a–c The normal adult brain possesses low or 

undetectable levels of peripheral inflammatory cell subtypes. In the mature brain a primary 

intrinsic immune-competent cell type is the microglial cell. In the normal, inactivated state 

microglial cells display a ramified morphology.2c However, during either chronic or acute 

neuroinflammation, microglia activation rapidly occurs that results in an alteration in 

morphology and a subsequent release of many inflammatory mediators.2a–c Key amongst 

these is the pro-inflammatory cytokine, tumor necrosis-alpha (TNF-α), a potent activator of 

the immune system that can induce immune cell activation leading to the rapid recruitment 

of neighboring resting microglia or astrocytes within the adjacent brain 

microenvironment.2b,c

Pharmacological interventions that are able to reset the fine and often lost balance between 

resting and activated glial cells could be of significant clinical benefit.2c TNF-α protein is a 

key candidate therapeutic target as - based on data from many clinical, cell biology and 

animal studies - abnormal regulation of this protein is strongly associated with an 

unregulated glial cell activity and resulting neuroinflammation.2b The identification of novel 

agents which can restore the normal function of activated CNS glial cells by means of 

reducing the pro-inflammatory effects of TNF-α protein within brain represent a viable 

mechanism of action for the management of clinical disease.2c

Thalidomide (1) (Figure 1) is effective in alleviating erythema nodosum leprosum associated 

with leprosy and aphthous ulcers in AIDS patients.3a–d Although the mechanism via which 

this drug ameliorates these inflammatory diseases remains to be fully elucidated, 

thalidomide is known to induce a wide range of immunomodulatory actions. Amongst this 

diversity of activities is a TNF-α lowering action, mediated by destabilizing TNF-α mRNA 

levels at the level of its 3′-untranslated region to reduce the rate of synthesis of TNF-α 
protein.4a,b As the close thalidomide analogue, lenalidomide (revlimid (3) (Figure 1)), 

likewise possesses TNF-α action,3c,d the backbone holds promise as a multi-template for 

development of biologically active compounds. In addition, as thalidomide (1) displays a 

moderate degree of lipophilicity (C log D value −0.83)6a that allows it access to the brain, 

analogues bearing equivalent physicochemical properties may provide promise in the 

treatment of neurodegenerative diseases exacerbated by neuroinflammation. Additionally, as 

the TNF-α activity of 1 is not particularly potent, requiring administration of high doses that 

are often both sedative and associated with adverse effects,5 the synthesis of novel and more 

effective TNF-α lowering agents is a worthy goal. In this regard, several N-substituted 3-

(phthalimidin-2-yl)-2, 6-dioxopiperidines and 3-substituted 2, 6-dioxopiperidines are 

described that demonstrate promising anti-TNF-α potency.
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2. Results and discussion

2.1. Chemistry

Prior studies have identified a number of thalidomide analogues with improved TNF-α 
lowering properties in models of cellular and CNS neuroinflammation. In this regard, 

compounds in Figure 1 have demonstrated encouraging results regarding anti-TNF-α 
potency associated with tolerable cellular toxicity.6a–d

N-substituted thalidomide derivatives have been reported with potent antitumor activities.7 

Indeed, several N-alkylated thalidomide analogues have been screened in cell culture and 

then further evaluated in animals, in which a higher antitumor activity than that of 

thalidomide was observed.8a–f In general, when a sulfur atom was introduced into the 

thalidomide pharmacophore, a more potent antitumor activity was detected.9 Up to now the 

biological properties of N-dithiocarbamate substituted 3-(phthalimidin-2-yl)-2, 6-

dioxopiperidines have not been reported. Based on our unpublished observations and a 

structural analysis of specific known compounds possessing TNF-α inhibitory activity, we 

generated two novel N-dithiocarbamate substituted 3-(phthalimidin-2-yl)-2, 6-

dioxopiperidines, 9 and 10, as likely TNF-α inhibitors (Scheme 1).

Compounds 11–14 were synthesized as shown in Scheme 1. The rationale underpinning the 

conception of these agents is based on green chemistry,10 whereby two potentially active 

agents may, under appropriate conditions, derive from a single compound; thereby providing 

a form of ‘medicinal economy’. Specifically, under physiological conditions, the use of a 

methylene linkage to connect two nitrogen atoms, as in 11–14, may permit the occurrence of 

simple metabolism to allow generation of the corresponding 2-(2, 6-dioxopiperidin-3-

yl)phthalimidine EM-12 (2) (Figure 1), glutarimide, dithioglutarimide, phthalimide or 

dithiophthalimide. Importantly, these latter agents all possess a degree of TNF-α lowering 

potency.6a Previously, we and others have demonstrated that 2-(2, 6-dioxopiperidin-3-

yl)phthalimidine EM-12 (2) generates TNF-α inhibitory activity with a low cellular 

toxicity6c,e and that dithiophthalimide is likewise active and well tolerated.6a As illustrated 

in Table 1, compound 14, containing such a methylene linkage that simultaneously connects 

the 2-(2, 6-dioxopiperidin-3-yl)phthalimidine EM-12 and dithiophthalimide moieties, 

proved to be the most potent TNF-α lowering candidate amongst the eleven analyzed 

compounds.

For the syntheses of compounds 9–14, we adopted our own novel condensation approach to 

allow formation of the phthalimidine ring. This one-pot reaction involved addition, 

rearrangement and elimination. A potential mechanism underpinning this is shown in Figure 

2. The process proved to be simple and the product yield was good (ranging from 52% to 

89%), thereby providing a shortcut for synthesis of 2-(2, 6-dioxopiperidin-3-

yl)phthalimidine EM-12 analogues. In chemistry more generally, such dehydration spanning 

a nitrogen atom to form a lactam is, likewise, interesting and has not previously been 

reported. By contrast, previously published synthetic routes to yield EM-12 are greater than 

a single step, as is evident from the work of Luzzio and colleagues6f where synthesis was 

achieved in 6 steps in a yield of 25%. Other reports describe the use of a radical inducing 

reagent or UV light. In our one pot reaction, however, synthesis is undertaken at room 
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temperature and a yield up to 80% is achievable, even if undertaken in neutral or weakly 

basic reaction mediums.

Consequent to the introduction of hetero-atoms, such as sulfur and nitrogen, into 

thalidomide that provided significant TNF-α inhibitory activity, we designed compound 16, 

in which the 1, 3-carbonyl groups of thalidomide are replaced by sulfonyl groups, and 

compounds 17a and 18, in which the 1, 3–dioxo and 1-oxo of thalidomide were substituted 

by imino groups, respectively (Scheme 2, Figure 3).

For the synthesis of 17a, as illustrated in Figure 3, the principal product is 17.6c This can be 

attributed to the presence of a 1, 3-H transfer, as depicted in Figure 3, under the reaction 

conditions indicated. Two primary amino groups may prove more advantageous to support 

the intramolecular elimination of ammonia. The condensation of reactants 3-

iminoisoindolinone and 15 normally afforded product 18, which has been confirmed by two 

correlative peaks of 3′-H/1-C and 3;-H/3-C in the (1H-detected) heteronuclear multiple-

bond correlation (HMBC) spectrum. Syntheses of compounds 19 and 20 proved 

straightforward using the methods defined in Scheme 2, and the yield of 20 proved to be 

high (93%).

2.2. TNF-α inhibitory activity

Inhibition of LPS-induced TNF-α production in RAW 264.7 cells, cell viability and 

computed lipophilicity (C log D value) of assessed compounds 9–14, 16–20 are shown in 

Table 1. The biological activities of the above analogues were compared to those of revlimid 

(3). In addition to thalidomide (1), 3 is a credible TNF-α inhibitor,11a,b and is both approved 

for and effective in the for treatment of multiple myeloma and specific myelodysplastic 

syndromes.12a–f Herein, compounds 9, 12, 14 and 16–18 possessed more potent TNF-α 
inhibitory activity than that of revlimid (3) as well as thalidomide (1) in our assay model, 

which has now been extensively characterized.6c Indeed, compounds 9, 14 and 16 not only 

showed the most potency as TNF-α inhibitors amongst all eleven assayed compounds 

(contrasting markedly with revlimid (3)) but appeared well tolerated, albeit 14 was 

associated with a mild decline in cell viability at 30 μM. Parenthetically, the TNF-α activity 

of compound 17, whose chemistry is reported for the first time herein, compares favorably 

to that reported by Tweedie et al.,6c (agent A10), demonstrating the consistency of the assay 

across time.

The C log D values of our analogues, interestingly, ranged from lipophilic (9: +1.39) to 

water-soluble (16: −1.75) (Table 1), suggesting that their potency as TNF-α inhibitors 

related more to their structural configuration rather than to a physicochemical characteristic, 

such as lipophilicity, that would be predicted to augment cellular uptake. Clearly, structural 

configuration together with physicochemical properties impact the ability of a compound to 

suitably orientate, dock and then appropriately interact with a required target, such as one 

regulating TNF-α protein synthesis, and are thereby fundamental to its TNF-α lowering 

effects. However, regulation of TNF-α synthesis by thalidomide (1) and analogues is not 

mediated via a classical receptor or enzyme-based interaction for which structure-activity 
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relations are generally available but, instead, appears to involve complex post-transcriptional 

regulatory actions mediated at the level of the 3′-UTR of TNF-α mRNA.4a,b

In general, mRNAs are amenable to several forms of post-transcriptional regulation, which 

include pre-mRNA splicing and maturation (3′polyadenylation and 5′ capping), mRNA 

nuclear export to the cytoplasm, appropriate sub-cytoplasmic localization, stabilization and 

translation.13a–c Two major kinds of trans acting factors that recognize specific cis elements 

(RNA sequences) within the target mRNA are involved in the regulation of these steps, 

RNA-binding proteins (RBPs) and microRNAs. For TNF-α gene expression, the role of 

RBPs has been widely explored, whereas the part of microRNAs remains to be more fully 

characterized.13c,d For inflammatory cytokines like TNF-α, in particular, but also for IL-2, 

IL-6 and interferon-γ, synthesis is tightly regulated at the level of mRNA stability, thereby 

permitting rapid responses to external stimuli, as occurs for LPS. The presence of adenylate-

uridylate-rich elements (AREs) within the 3′-UTR of TNF-α mRNA plays a primary role in 

post-transcriptional repression, targeting it for rapid degradation or inhibition of 

translation.13a,b p38 MAPK has been implicated as a major signaling cascade facilitating the 

stability of TNF-α via its 3′-UTR ARE cis elements, which have been shown to be mediated 

through interactions with RBPs.13a–d In particular, proteins such as HuR, whose 

translocation to the cytoplasm is potently induced by oxidative stress and other aberrant 

stimuli,13c have been associated with promoting transcript stabilization. Upon export to the 

cytoplasm, HuR binds and stabilizes ARE-containing transcripts and conveys them to 

translational machinery. Conversely, RNA-binding proteins such as tristetraprolin (TTP) and 

related proteins (e.g., butyrate response factor 1 and 2) have a major regulatory role in 

accelerating the degradation of bound mRNAs, albeit the precise mechanisms accounting for 

this degradation are incompletely understood but they include the action of several cellular 

structures known to breakdown labile mRNAs, the proteasome, exosome and RNA 

processing-body.13a–c

It widely accepted that LPS challenge of RAW 264.7 cells extends the half-life of TNF-α 
mRNA, allowing release of its translational repression. By contrast, administration of 

thalidomide (1) induces an increase in translational blockade and a shortening of the TNF-α 
mRNA half-life from 30 min to 17 min.4a,14a,b Although yet to be elucidated, interactions 

between thalidomide analogs and the binding of HUR as well as TTP related RBPs with 3′-

UTR cis elements likely underpins alterations in the rate of TNF-α synthesis. In this regard, 

small chemical inhibitors that disrupt HuR:ARE binding have been described.14c,d As yet, 

insufficient compounds have been assessed to provide structure-activity relations, but such a 

target, or a strengthening of TTP:ARE binding, represents a potential means via which 

thalidomide analogs may effectively regulate TNF-α protein levels.

These same properties of thalidomide analogues may or may not be vital for 

pharmacological interactions with other targets, such as nitric oxide,15a,b known to be 

regulated by thalidomide (1) and are a focus of current studies. In the event that the 

inhibitory activity of designed compounds proves ideal, in part or in whole, it not only 

provides a basis to manipulate TNF-α levels to define its pharmacological role in health and 

disease, but also affords structural information to allow investigation of the target and its 

regulatory elements.
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In this regard, these TNF-α lowering data are sufficiently promising to indicate that further 

study of the pharmacology and biology of these agents is warranted in models of 

neurodegenerative diseases where a component of the disease pathology is associated with 

neuroinflammation.

3. Conclusion

Novel 2-(2, 6-dioxopiperidin-3-yl)phthalimidine EM-12 dithiocarbamates 9 and 10, N-

substituted 3-(phthalimidin-2-yl)-2, 6-dioxopiperidines 11–14 and 3-substituted 2, 6-

dioxopiperidines 16 and 18 were designed, prepared and assessed for TNF-α lowering 

activity. Synthesis involved a novel condensation approach for the generation of analogues 

of 2-(2, 6-dioxopiperidin-3-yl)phthalimidine EM-12 (2). In addition to N-substituted 3-

(phthalimidin-2-yl)-2, 6-dioxopiperidines 14 and 9, 3-(o-benzenedisulfonimid-2-yl)-2, 6-

dioxopiperidine 16 proved to be a potent anti-TNF-α candidate agent. These novel 

compounds thereby provide potential promise as immunomodulatory drugs candidates 

whose biological and pharmacological actions warrant further assessment in animal models 

of inflammatory disorders. Particularly relevant would be a neuroinflammatory focus, as 

invariably occurs in neurodegenerative conditions, exemplified by Alzheimer’s disease and 

Parkinson’s disease.

4. Experimentals

4.1. Chemistry

Melting points (uncorrected) were measured with a Fisher-Johns apparatus. 1H NMR, 

and 13C NMR were recorded on a Bruker (Bellevica, MA) AC-300 spectrometer. MS (m/z) 

data were measured on an Agilent 5973 GC-MS (CI). Elemental analyses were performed 

by Atlantic Microlab, Inc. (Norcross, GA). All reactions involving non-aqueous solutions 

were performed under an inert atmosphere.

4.1.1. 1-Hydroxymethyl-3-(tert-butoxycarbonylamino)-2, 6-dioxopiperidine (5)
—A mixture of 3-(tert-butoxycarbonylamino)-2, 6-dioxopiperidine 4 (7.10 g, 31.1 mmol) 

and formaldehyde (37% solution in water, 37.2 ml) was refluxed under an atmosphere of 

nitrogen for 0.5 h. After cooling, isolated precipitate was recrystallized with acetone to 

afford product 5 (5.85 g, 72.9 %) as white crystals: mp 216.5–217.5 °C; 1H NMR (DMSO-

d6) δ 7.20 (d, J = 6.0 Hz, 1H, NH), 6.04 (t, J = 10.5 Hz, 1H, OH), 5.05–4.92 (m, 2H, 

CH2OH), 4.38–4.22 (m, 1H, C3-H), 2.89–2.59 (m, 2H), 1.99–1.83 (m, 2H) and 1.41 (s, 9H, 

CH3) ppm; 13C NMR (DMSO-d6) δ 172.1, 171.9, 155.8, 78.5, 62.7, 51.3, 31.6, 28.5 and 

23.6 ppm; MS (CI/CH4), m/z 257 (M-1).

4.1.2. 1-Chloromethyl-3-(tert-butoxycarbonylamino)-2, 6-dioxopiperidine (6)—
Thionyl chloride (7.35 g, 61.8 mmole) was dropwise added to a solution of compound 5 
(5.83 g, 22.6 mmole) in DMF (17 mL) at 0 °C. The mixture was reacted for 1 h maintained 

at the same temperature. Thereafter, it was poured onto ice (60 g). Precipitate was isolated 

and was washed with ice water to pH 7 ca. The crude product was recrystallized with 

acetone to afford 6 (5.7 g, 90.5 %) as a white solid: mp 134.0–135.0 °C; 1H NMR (DMSO-

d6) δ 7.31 (d, J = 6.1 Hz, 1H, NH), 5.49 (s, 2H, CH2Cl), 4.58–4.30 (m, 1H, C3-H), 3.08–
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2.67 (m, 2H), 2.10–1.87 (m, 2H) and 1.48 (s, 9H, CH3) ppm; 13C NMR (DMSO-d6) δ 
171.5, 171.1, 155.8, 78.7, 51.3, 48.5, 31.4, 28.5 and 23.3 ppm; MS (CI/CH4), m/z 276 (M+).

4.1.3. 3-Amino-1-chloromethyl-2, 6-dioxopiperidine trifluoroacetate (7)—
Trifluoroacetic acid (28.4 mL) was dropwise added into a solution of compound 6 (4.0 g, 

14.5 mmol) in dichloromethane (274 mL) at room temperature. The mixture was reacted for 

22.5 h under an atmosphere of nitrogen at the same temperature. Thereafter, it was 

concentrated and precipitated with ether. Isolated solid was dried overnight to afford product 

7 (4.05 g, 96.2 %) as a purplish salt; 1H NMR (DMSO-d6) δ 8.80 (s, 3H, NH3
+), 5.56 and 

5.50 (AB system, J = 9.2 Hz, 2H, CH2Cl), 4.51–4.28 (m, 1H, C3-H), 3.01–2.71 (m, 2H) and 

2.31–1.90 (m, 2H) ppm; 13C NMR (DMSO-d6) δ 170.2, 169.2, 159.0, 158.5, 49.9, 48.1, 

30.6 and 21.3 ppm; MS (CI/CH4), m/z 288 (M-2).

4.1.4. 2-(1-Chloromethyl-2, 6-dioxopiperidin-3-yl)phthalimidine (8)—A mixture of 

phthaldialdehyde (2.74 g, 20.4 mmol) and compound 7 (5.94 g, 20.4 mmol) in THF (1.7 L) 

was stirred under an atmosphere of nitrogen at room temperature for 71 h. Thereafter, 

solvent was removed, and the crude product was purified with chromatography on silica gel 

(CH3CN/CH2Cl2 = 1/4) to afford product 8 (3.1 g, 51.7 %) as a white solid: mp 180.5–

181.0 °C; 1H NMR (CDCl3) δ 7.94–7.43 (m, 4H, Ar-H), 5.59 and 5.51 (AB system, J = 8.1 

Hz, 2H, CH2Cl), 5.30–5.19 (m, 1H, C3′-H), 4.50 and 4.36 (AB system, J = 16.5 Hz, 2H, 

C3-H), 3.15–2.85 (m, 2H) and 2.46–2.13 (m, 2H) ppm; 13C NMR (CDCl3) δ 169.4, 169.3, 

168.6, 141.4, 132.1, 131.3, 128.3, 124.2, 122.9, 52.5, 47.2, 47.1, 31.9 and 22.3 ppm; MS 

(CI/CH4), m/z 294 (M+2). Anal. Calcd for C14H13ClN2O3: C, 57.44; H, 4.48; N, 9.57. 

Found: C, 57.37; H, 4.46; N, 9.17.

4.1.5. [3-(1-Oxo-1, 3-dihydro-1H-isoindol-2-yl)-2, 6-dioxopiperidin-1-yl]methyl 
cyclohexyldithiocarbamate (9)—A mixture of compound 8 (37.0 mg, 0.126 mmol), 

carbon disulfide (19.2 mg, 0.252 mmol) and cyclohexylamine (25.1 mg, 0.253 mmol) in 

acetonitrile (7 mL) was reacted for 42.5 h under an atmosphere of nitrogen at room 

temperature. After removing solvent, the residues were separated with chromatography on 

silica gel (MeOH/CH2Cl2 = 1/20) to afford product 9 (36.0 mg, 66.7%) as a yellow crystals: 

mp 128.0–129.0 °C; 1H NMR (CDCl3) δ 8.75 (s, 1H, NH), 7.95–7.38 (m, 4H, Ar-H), 5.31–

5.01 (m, 3H, C3′-H and CH2S), 4.49–4.25 (m, 2H, C3-H) and 3.14–1.05 (m, 15H, C5,4-H 

and cyclohex-H) ppm; 13C NMR (CDCl3) δ 191.2, 171.3, 170.2, 169.3, 141.3, 132.1, 131.3, 

128.3, 124.2, 122.9, 55.8, 52.6, 47.4, 43.3, 31.8, 31.4, 25.3, 24.7 and 22.3 ppm; MS (CI/

CH4), m/z 432 (MH+). Anal. Calcd for C21H25N3O3S2: C, 58.44; H, 5.84; N, 9.74. Found: 

C, 58.05; H, 5.88; N, 9.47.

4.1.6. [3-(1-Oxo-1, 3-dihydro-1H-isoindol-2-yl)-2, 6-dioxopiperidin-1-yl]methyl 
piperidin-1-carbodithioate (10)—A mixture of compound 8 (33.0 mg, 0.113 mmol), 

carbon disulfide (17.2 mg, 0.226 mmol) and piperidine (19.2 mg, 0.225 mmol) in 

acetonitrile (6 mL) was reacted for 46.0 h under an atmosphere of nitrogen at room 

temperature. After removing solvent, the residues were separated with chromatography on 

silica gel (MeOH/CH2Cl2 = 1/15) to afford product 10 (33.5 mg, 71.0 %) as a white powder: 

mp 180.0–181.5 °C; 1H NMR (CDCl3) δ 7.90–7.41 (m, 4H, Ar-H), 5.79 and 5.68 (AB 
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system, J = 14.5 Hz, 2H, CH2S), 5.29–5.18 (m, 1H, C3′-H), 4.49 and 4.30 (AB system, J = 

16.5 Hz, 2H, C3-H), 4.24 (s, br, 2H, pip-C2,6-H), 3.81 (s, br, 2H, pip-C2,6-H), 3.09–2.81 

(m, 2H), 2.41–2.11 (m, 2H) and 1.79–1.54 (m, 6H, pip-C3,4,5-H) ppm; 13C NMR (CDCl3) 

δ 192.7, 170.3, 169.2, 141.4, 131.9, 131.4, 128.1, 124.0, 122.8, 52.4, 51.6, 47.1, 46.4, 32.0, 

25.8, 24.1 and 22.5 ppm; MS (CI/CH4), m/z 258 (M-159). Anal. Calcd for C20H23N3O3S2: 

C, 57.53; H, 5.55; N, 10.06. Found: C, 57.80; H, 5.38; N, 9.95.

4.1.7. N-(1, 3-dioxopiperidin-2-yl)methyl-3-(1-oxo-1, 3-dihydro-1H-isoindol-2-
yl)-2, 6-dioxopiperidine (11)—A mixture of glutarimide (36.0 mg, 0.318 mmol) and 

potassium hydroxide (42 mg, 0.750 mmol) in acetonitrile (42 mL) was stirred for an hour at 

room temperature. Thereafter, compound 8 (93.0 mg, 0.318 mmol) was added to the reaction 

system and stirred for a further 17 h under an atmosphere of nitrogen at the same 

temperature. After removing solvent, the residues were separated with chromatography on 

silica gel (CH3CN/CH2Cl2 = 1/3) to afford product 11 (68.0 mg, 57.9 %) as a white solid: 

mp 216.5–217.0 °C; 1H NMR (CDCl3) δ 7.88 (d, J = 9.0 Hz, 1H, C7-H), 7.57 (d, J = 8.5 

Hz, 1H, C4-H), 7.46 (t, J = 9.0 Hz, 2H, C5,6-H), 5.85 (s, 2H, CH2N2), 5.19–5.10 (m, 1H, 

C3′-H), 4.52 and 4.35 (AB system, J = 16.5 Hz, 2H, C3-H), 3.08–1.81 (m, 10H, C5′,4′-H 

and glu-H) ppm; 13C NMR (CDCl3) δ 171.9, 170.3, 169.4, 169.3, 141.6, 132.0, 131.7, 

128.2, 124.1, 123.0, 52.8, 47.4, 45.0, 32.9, 32.2, 22.8 and 17.0 ppm; MS (CI/CH4), m/z 300 

(M-69). Anal. Calcd for C19H19N3O5H2O: C, 58.91; H, 5.46; N, 10.85. Found: C, 59.17; H, 

5.38; N, 10.61.

4.1.8. N-(1, 3-dithioxopiperidin-2-yl)methyl-3-(1-oxo-1, 3-dihydro-1H-isoindol-2-
yl)-2, 6-dioxopiperidine (12)—A mixture of dithioglutarimide (46.2 mg, 0.318 mmol), 

potassium hydroxide (42 mg, 0.750 mmol) and compound 8 (93.0 mg, 0.318 mmol) in 

acetonitrile (42 mL) was stirred for 16 h under an atmosphere of nitrogen at room 

temperature. After removing solvent, the residues were separated with chromatography on 

silica gel (CH3CN/CH2Cl2 = 1/3) to afford product 12 (33.0 mg, 25.8 %) as a yellow solid: 

mp 218.0–220.0 °C; 1H NMR (CDCl3) δ 7.91–7.43 (m, 4H, Ar-H), 5.22–5.12 (m, 1H, C3′-

H), 5.07 and 4.94 (AB system, J = 10.1 Hz, 2H, CH2N2), 4.50 and 4.39 (AB system, J = 

16.5 Hz, 2H, C3-H), 3.09–1.89 (m, 10H, C5′,4′-H and thioglu-H) ppm; 13C NMR (CDCl3) 

δ 201.7, 170.9, 169.8, 169.5, 141.6, 132.2, 131.6, 128.4, 124.4, 123.1, 53.1, 48.1, 43.6, 37.6, 

32.0, 22.6 and 21.2 ppm; MS (CI/CH4), m/z 404 (M+3). Anal. Calcd for 

C19H19N3O3S2H2O: C, 54.40; H, 5.04; N, 10.01. Found: 54.08; H, 4.42; N, 9.48.

4.1.9. N-Phthalimidomethyl-3-(1-oxo-1, 3-dihydro-1H-isoindol-2-yl)-2, 6-
dioxopiperidine (13)—A mixture of phthalimide (46.8 mg, 0.318 mmol) and potassium 

hydroxide (42 mg, 0.750 mmol) in acetonitrile (42 mL) was stirred for an hour at room 

temperature. Thereafter, compound 8 (93.0 mg, 0.318 mmol) was added to the reaction 

system and stirred for another 17 h under an atmosphere of nitrogen at the same 

temperature. After removing solvent, the residues were separated with chromatography on 

silica gel (CH3CN/CH2Cl2 = 1/3) to afford product 13 (67.0 mg, 52.2 %) as a white solid: 

mp 209.5–210.5 °C; 1H NMR (CDCl3) δ 7.95–7.40 (m, 8H, Ar-H), 5.83 and 5.72 (AB 

system, J = 13.5 Hz, 2H, CH2N2), 5.39–5.23 (m, 1H, C3′-H), 4.54 and 4.34 (AB system, J = 

16.6 Hz, 2H, C3-H), 3.10–2.82 (m, 2H) and 2.46–2.11 (m, 2H) ppm; 13C NMR (CDCl3) δ 
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170.3, 169.6, 169.3, 167.0, 141.7, 134.3, 132.0, 131.7, 131.6, 128.2, 124.2, 123.6, 123.0, 

52.5, 47.1, 43.6, 32.1 and 22.7 ppm; MS (CI/CH4), m/z 390 (M-13). Anal. Calcd for 

C22H17N3O5: C, 65.50; H, 4.25; N, 10.42. Found: C, 65.32; H, 4.12; N, 10.21.

4.1.10. N-Dithiophthalimidomethyl-3-(1-oxo-1, 3-dihydro-1H-isoindol-2-yl)-2, 6-
dioxopiperidine (14)—A mixture of dithiophthalimide (57.0 mg, 0.318 mmol) and 

potassium hydroxide (42 mg, 0.750 mmol) in acetonitrile (42 mL) was stirred for an hour at 

room temperature. Thereafter, compound 8 (93.0 mg, 0.318 mmol) was added to the reaction 

system and stirred for another 17 h under an atmosphere of nitrogen at the same 

temperature. After removing solvent, the residues were separated with chromatography on 

silica gel (CH3CN/CH2Cl2 = 1/3) to afford product 14 (17.0 mg, 12.3 %) as a yellow 

gum. 1H NMR (CDCl3) δ 7.98–7.39 (m, 8H, Ar-H), 6.47 (s, 2H, CH2N2), 5.31–5.19 (m, 

1H, C3′-H), 4.49 and 4.32 (AB system, J = 16.3 Hz, 2H, C3-H), 3.09–2.79 (m, 2H) and 

2.49–2.07 (m, 2H) ppm; 13C NMR (CDCl3) δ 197.0, 170.4, 169.3, 169.1, 141.5, 134.8, 

133.5, 132.0, 131.6, 128.2, 124.2, 123.6, 123.0, 52.5, 49.1, 47.1, 32.2 and 22.7 ppm; MS 

(CI/CH4), m/z 383 (M-52). Anal. Calcd for C22H17N3O3S21/3 H2O: C, 59.87; H, 4.03; N, 

9.52. Found: C, 59.91; H, 3.71; N, 9.17.

4.1.11. 3-(o-Benzenedisulfonimid-2-yl)-2, 6-dioxopiperidine (16)—A mixture of 1, 

2-benzenedisulfonyl dichloride (1.00 g, 3.63 mmol), 3-amino-2, 6-dioxopiperidine 

trifluoroacetate 15 (0.88 g, 3.63 mmol) and triethylamine (1.10 g, 10.87 mmol) in anhydrous 

THF (100 mL) was first reacted for 1.5 h at room temperature under an atmosphere of 

nitrogen, and, thereafter, it was refluxed for 24 h under an atmosphere of nitrogen. 

Following cooling, a grey crude product was filtered. This was recrystallized from hot 

acetone to provide product 16 (0.77 g, 64.2 %) as a purplish powder: mp 253 °C (dec.); 1H 

NMR (DMSO-d6) δ 11.08 (s, 1H, NH), 8.40–8.01 (m, 4H, Ar-H), 5.51–5.40 (m, 1H, C3′-

H), 2.96–2.51 (m, 2H) and 2.50–2.30 (m, 2H) ppm; 13C NMR (DMSO-d6) δ 172.5, 169.1, 

137.4, 135.8, 122.3, 59.0, 31.5 and 24.7 ppm; MS (CI/CH4), m/z 331 (MH+). Anal. Calcd 

for C11H10N2O6S2: C, 39.99; H, 3.05; N, 8.48. Found: C, 40.57; H, 3.22; N, 8.21.

4.1.12. 3-(1, 3-Diimino-1, 3-dihydro-2H-isoindol-1N-yl)-2, 6-dioxopiperidine (17)
—A mixture of 1, 3-diiminoisoindoline (0.50 g, 3.44 mmol), 3-amino-2, 6-dioxopiperidine 

trifluoroacetate 15 (0.83 g, 3.43 mmol) and triethylamine (0.95 g, 9.39 mmol) in THF (200 

mL) was refluxed for 98 h under an atmosphere of nitrogen. After cooling, a grey crude 

product was filtered. This was recrystallized from hot acetone to afford product 17 (0.67 g, 

76.1 %) as a gray powder: mp 246 °C (dec.); 1H NMR (DMSO-d6) δ 10.72 (s, 1H, CONH), 

8.51 and 8.39 (sh, 2H, CCNH and C=NH), 7.90–7.50 (m, 4H, Ar-H), 5.01 (t, J = 5.5 Hz, 1H, 

C3′-H), 2.61 (m, 2-H) and 2.04 (m, 2-H) ppm; 13C NMR (DMSO-d6) δ 173.8, 173.5, 170.6, 

168.5, 139.8, 136.1, 131.1, 130.3, 121.5, 121.0, 59.2, 30.3 and 26.3 ppm; MS (CI/CH4), m/z 

257 (MH+). Anal. Calcd for C13H12N4O2: C, 60.93; H, 4.72; N, 21.86. Found: C, 60.89; H, 

4.82; N, 21.58.

4.1.13. 3-(1-Oxo-3-imino-1, 3-dihydro-2H-isoindol-2-yl)-2, 6-dioxopiperidine 
(18)—A mixture of 3-iminoisoindolinone (0.50 g, 3.42 mmol), 3-amino-2, 6-

dioxopiperidine trifluoroacetate 15 (0.83 g, 3.43 mmol) and triethylamine (0.94 g, 9.29 
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mmol) in THF (200 mL) was refluxed for 72 h under an atmosphere of nitrogen. After 

removing solvent, crude product was recrystallized from hot acetone to afford product 18 
(0.38 g, 43.2 %) as a white powder: mp 267 °C (dec.); 1H NMR (DMSO-d6) δ 11.15, 10.90 

(2s, 2H, 2NH), 7.88–7.68 (m, 4H, Ar-H), 4.46 (t, J = 7.6 Hz, 1H, C3′-H), 2.71–2.59 (m, 2H) 

and 2.22–2.08 (m, 2H) ppm; 13C NMR (DMSO-d6) δ 173.4, 172.0, 169.2, 152.5, 136.6, 

133.9, 132.5, 131.5, 123.1, 122.3, 59.5, 30.4 and 26.1 ppm; MS (CI/CH4), m/z 257 (M+). 

Anal. Calcd for C13H11N3O3: C, 60.70; H, 4.31; N, 16.33. Found: C, 60.67; H, 4.38; N, 

16.20.

4.1.14. 3-(4-Aza-1, 3-dioxo-1, 3-dihydro-2H-isoindol-2-yl)-2, 6-dioxopiperidine 
(19)—A mixture of 2, 3-pyridinedicarboxylic anhydride (1.0 g, 6.71 mmol) and 3-amino-2, 

6-dioxopiperidine trifluoroacetate 15 (1.63 g, 6.73 mmol) in acetic acid (51 mL) was 

refluxed under an atmosphere of nitrogen for 7.5 h. After removing solvent, crude product 

was recrystallized from acetone to afford product 19 (0.18 g, 10.3 %) as white needle 

crystals: mp 266.0–267.5 °C; 1H NMR (CDCl3) δ 8.95 (s, br, 1H, C5-H), 8.13 (d, J = 9.3 

Hz, 1H, C7-H), 8.00 (s, 1H, NH), 7.61 (s, br, 1H, C6-H), 5.11–4.91 (m, 1H, C3′-H), 2.99–

2.65 (m, 3H) and 2.21–2.09 (m, 1H) ppm; 13C NMR (CDCl3) δ 170.2, 167.2, 165.2, 165.0, 

155.7, 151.3, 131.6, 127.7, 127.2, 49.6, 31.3 and 22.5 ppm; MS (CI/CH4), m/z 259 (M+). 

Anal. Calcd for C12H9N3O4: C, 55.60; H, 3.50; N, 16.21. Found: C, 55.03; H, 3.62; N, 

15.74.

4.1.15. 3-(5-Aza-1, 3-dioxo-1, 3-dihydro-2H-isoindol-2-yl)-2, 6-dioxopiperidine 
(20)—A mixture of 3, 4-pyridinedicarboxylic anhydride (1.0 g, 6.71 mmol) and 3-amino-2, 

6-dioxopiperidine trifluoroacetate 15 (1.63 g, 6.73 mmol) in acetic acid (51 mL) was 

refluxed under an atmosphere of nitrogen for 6.5 h. After removing solvent, crude product 

was recrystallized from acetone to afford product 20 (1.62 g, 93.1 %) as white crystals: mp 

234.0–235.5 °C; 1H NMR (DMSO-d6) δ 11.18 (s, 1H, NH), 9.29–9.10 (m, 2H, C4-H, C6-

H), 7.99 (d, J = 7.8 Hz, 1H, C7-H), 5.31–5.15 (m, 1H, C3′-H), 3.05–2.39 (m, 3H) and 2.19–

2.02 (m, 1H) ppm; 13C NMR (DMSO-d6) δ 173.0, 169.9, 166.8, 166.4, 156.7, 144.7, 139.1, 

125.7, 117.5, 49.6, 31.2 and 22.1 ppm; MS (CI/CH4), m/z 259 (M+). Anal. Calcd for 

C12H9N3O4: C, 55.60; H, 3.50; N, 16.21. Found: C, 55.65; H, 3.56; N, 15.99.

4.2. Biological assay

RAW 264.7 cells were cultured and treated with thalidomide analogues and LPS as has been 

previously described.6c In a manner similar to its use herein in cell culture, LPS has been 

found to elevate TNF-α levels in animals – both systemically as well as within the brain, and 

to be associated with neurodegenerative disease onset.16a,b The CellTiter 96 Aqueous One 

Solution Cell Proliferation Assay (Promega, Madison, WI) is a commercially used assay that 

is widely used to quantitatively determine cell proliferation, and this assay was utilized in 

our studies in line with the manufacturer’s guidelines. Changes in cellular health status can 

be determined by use of indirect measures related to the formation of a colored tetrazolium 

dye product that can be measured spectrophotometrically at 490 nm. An increase in 

absorbance at 490 nm is indicative of an increase in cell numbers and thus cell proliferation; 

and a decrease in absorbance is indicative of cell death. Data are expressed as a percentage 

change in Optical Densities (O.D.) compared to the appropriate control values. TNF-α 
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protein levels were measured in culture media by use of an ELISA specific for mouse TNF-

α protein (BioLegend MAX™ Mouse TNF-α ELISA Kit, BioLegend, San Diego, CA) and 

are expressed as a percentage change from the appropriate control.
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Figure 1. 
Known thalidomide, EM-12, revlimid and sulfur containing analogues possessing TNF-α 
action
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Figure 2. 
Possible Mechanism Forming Intermediate 8
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Figure 3. 
Possible Mechanism Forming Compound 17

Luo et al. Page 15

Bioorg Med Chem. Author manuscript; available in PMC 2016 December 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
Reagents and conditions: (i) Formaldehyde (37% solution in water), N2, reflux, 0.5 h; (ii) 

thionyl chloride, DMF, 0 °C, 1 h; (iii) trifluoroacetic acid, CH2Cl2, N2, rt, 22.5 h; (iv) 

phthaldialdehyde, THF, N2, rt, 71 h; (v) carbon disulfide, cyclohexylamine (for 9), 

piperidine (for 10), CH3CN, N2, rt, 42 to 46 h; (vi) glutarimide (for 11), dithioglutarimide 

(for 12), KOH, CH3CN, N2, rt, 16 to 18 h; (vii) phthalimide (for 13), dithiophthalimide (for 

14), KOH, CH3CN, N2,rt, 18 h.
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Scheme 2. 
Reagents and conditions: (i) 1,2-Benzenedisulfonyl dichloride, Et3N, THF, N2, reflux, 24 h; 

(ii) 1,3-diiminoisoindoline, Et3N, THF, N2, reflux, 98 h; (iii) 3-iminoisoindolinone, Et3N, 

THF, N2, reflux, 72 h; (iv) 2,3-pyridinedicarboxylic anhydride, AcOH, N2, reflux, 7.5 h; (v) 

3,4-pyridinedicarboxylic anhydride, AcOH, N2, reflux, 6.5 h.
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