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ABSTRACT 
 
 
 

Julia M. Hum 
 
 

SIGNALING MECHANISMS THAT SUPPRESS THE ANABOLIC RESPONSE 

OF OSTEOBLASTS AND OSTEOCYTES TO FLUID SHEAR STRESS 

  

 Bone is a dynamic organ that responds to its external environment. Cell 

signaling cascades are initiated within bone cells when changes in mechanical 

loading occur.  To describe these molecular signaling networks that sense a 

mechanical signal and convert it into a transcriptional response, we proposed the 

mechanosome model.  “GO” and “STOP” mechansomes contain an adhesion-

associated protein and a nucleocytoplasmic shuttling transcription factor.  “GO” 

mechanosomes functions to promote the anabolic response of bone to 

mechanical loading, while “STOP” mechanosomes function to suppress the 

anabolic response of bone to mechanical loading.  While much work has been 

done to describe the molecular mechanisms that enhance the anabolic response 

of bone to loading, less is known about the signaling mechanisms that suppress 

bone’s response to loading.  We studied two adhesion-associated proteins, Src 

and Pyk2, which may function as “STOP” mechanosomes.  Src kinase is 

involved in a number of signaling pathways that respond to changes in external 

loads on bone.  An inhibition of Src causes an increase in the expression of the 

anabolic bone gene osteocalcin.  Additionally, mechanical stimulation of 
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osteoblasts and osteocytes by fluid shear stress further enhanced expression of 

osteocalcin when Src activity was inhibited.  Importantly, fluid shear stress 

stimulated an increase in nuclear Src activation and activity.  The mechanism by 

which Src participates in attenuating anabolic gene transcription remains 

unknown.  The studies described here suggest Src and Pyk2 increase their 

association in response to fluid shear stress.  Pyk2, a protein-tyrosine kinase, 

exhibits nucleocytoplasmic shuttling, increased association with methyl-CpG-

binding protein 2 (MBD2), and suppression of osteopontin expression in 

response to fluid shear stress.  MBD2, known to be involved in DNA methylation 

and interpretation of DNA methylation patterns, may aid in fluid shear stress-

induced suppression of anabolic bone genes.  We conclude that both Src and 

Pyk2 play a role in regulating bone mass, possibly through a complex with 

MBD2, and function to limit the anabolic response of bone cells to fluid shear 

stress through the suppression of anabolic bone gene expression.  Taken 

together, these data support the hypothesis that “STOP” mechanosomes exist 

and their activity is simulated in response to fluid shear stress. 

 

Fredrick M. Pavalko, Ph.D., Chair 
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Chapter I 

INTRODUCTION 

 

Mechanical Regulation of Bone 

 

Bone Development  

 The skeleton serves to protect, support, and act as a reservoir for 

metabolic activity.  It must be rigid enough to protect the vital organs of the body, 

lightweight to support mobility, yet also capable of adapting to its external 

environment (Ehrlich and Lanyon, 2002).  Bone is a highly specialized form of 

connective tissue and a dynamic organ which develops through two different 

types of formation, intramembranous and endochondral (Miller et al., 2007).  

Intramembranous bone formation is direct bone synthesis mediated by the inner 

periosteal osteogeneic layer.  Endochondral bone formation results in indirect 

synthesis of bone from a cartilage scaffold and is responsible for the 

development of long bones in the longitudinal direction.  Bone development 

begins with a phase called modeling, a metabolic activity involving the deposition 

of mineralized tissue where a cartilage equivalent existed (Raisz, 1999).  During 

modeling, endochondral bone formation systematically replaces cartilage with 

bone. Remodeling follows the modeling phase, while remodeling begins in early 

fetal development, it is the primary metabolic activity occurring in a fully formed 

skeleton.  In general, bone remodeling is a finely tuned cellular process that 

involves the concerted efforts of osteoblasts, which secrete bone matrix, and 
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osteoclasts, which resorbs the bone matrix.  If the balance of bone remodeling is 

slightly shifted it can lead to a metabolic diseases such as osteoporosis or 

osteopetrosis (Boyce et al., 1992).   

 More specifically, remodeling is a highly regulated, multi-step process 

initiated by the interactions of cells from the hematopoietic osteoclastic and 

mesenchymal osteoblastic lineages (Miller et al., 2007).  Remodeling begins 

when these two types of precursor cells interact, causing the formation of large 

multinucleated osteoclasts.  Osteoclasts function to resorb bone by attaching 

directly to the surface of bone and secreting enzymes and hydrogen ions to 

degrade the bone matrix.  Osteoclasts form resorption pits on the surface of 

bone, subsequently increasing the local calcium concentration and signaling the 

reversal stage.  During the reversal stage mononuclear cells release growth 

factors and deposit proteoglycans on the surface of bone.  Bone is formed during 

the final formation stage, in which osteoblasts line the resorption pit and deposit 

a mineralizable matrix.  During the formation phase some osteoblasts become 

entombed in the new bone matrix and mature into osteocytes.  Osteocytes 

account for 90-96% of mature bone tissue and are responsible for the 

maintaining the bone matrix (Schaffler and Kennedy, 2012).  Each osteocyte 

resides in a lacuna within the bone matrix, and extends processes through the 

canaliculi to connect with processes from adjacent osteocytes.  This creates a 

large osteocyte communication network, made up of osteocytic processes within 

the bone matrix.  In summary, while the skeleton may appear to be a rigid 
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structure, the bone tissue comprising our skeletal system undergoes dynamic 

remodeling which can be initiated in different ways.  

 

Regulation of bone formation and remodeling 

 Two of the main mechanisms by which new bone formation occurs, 

include hormonal regulation and mechanical loading (Miller et al., 2007; Sheffield 

et al., 1987).  Both vitamin D and parathyroid hormone (PTH) function to regulate 

calcium and have a major effect on bone remodeling (Blair et al., 2002; Suda et 

al., 2003).  In general, vitamin D serves to reduce bone formation, while PTH 

serves to promote bone formation.  Briefly, vitamin D regulates phosphorous and 

calcium transport and promotes osteoclast differentiation (Bikle, 2012).  Both 

vitamin D and PTH increase osteoclast formation indirectly through increased 

production of the receptor activator of NF-ĸB ligand (RANKL) in osteoblasts.  

Osteoclast differentiation and maturation occur when RANKL binds to RANK 

receptors on the surface of osteoclast precursors (Blair et al., 2002; O'Brien et 

al., 1999; Suda et al., 2003).  When serum calcium levels are low PTH is 

secreted and activates both osteoclast and osteoblast differentiation (Blair et al., 

2002).   

 In contrast to their effects on osteoclasts, vitamin D and PTH oppose each 

other’s effects on osteoblast differentiation.  PTH promotes osteoblast survival in 

vitro and increases osteoblast differentiation by activating the Runx2 transcription 

factor (Jilka et al., 1999; Krishnan et al., 2003; Merciris et al., 2007; 

Selvamurugan et al., 2000).  Runx2 was the first osteoblast specific transcription 
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factor identified (Ducy et al., 1997; Otto et al., 1997) and is considered the 

“master” regulator for bone formation (Ducy et al., 2000; Franceschi, 1999; 

Komori et al., 1997).  Overall PTH functions to increase bone formation by 

osteoblasts and mineral degradation by osteoclasts (Blair et al., 2002).  

Alternatively, vitamin D functions to inhibit osteoblast differentiation by negatively 

regulating Runx2 and type-I collagen, but is required for bone degradation and 

mineralization (Blair et al., 2002; Ducy et al., 1997; Suda et al., 2003).  Hormonal 

signals target all three kinds of bone cells to cause changes in gene transcription, 

resulting in either enhanced or reduced bone formation via the remodeling 

process.   

 Mechanical loading of the skeleton also induces bone formation, through 

the regulation of the bone remodeling process.  It has long been established that 

bone responds to changes in its external environment and new bone formation 

occurs in response to mechanical loading (Goodship et al., 1979; Lanyon, 1984; 

Lanyon and Rubin, 1984; Wolff, 1892).  Reducing mechanical load, for instance 

during space flight or prolonged bed rest, causes bone loss (Collet et al., 1997; 

Vogel and Whittle, 1976).  Bone responds differently to the magnitude and rate of 

strain.  High strain changing at fast rates induces more bone formation than low 

strain or slow rate of strain (Honda et al., 2001; Mosley and Lanyon, 1998; 

O'Connor et al., 1982; Rubin et al., 1987).  This finding explains why high impact 

exercises result in more bone formation than low impact activities (Nordstrom et 

al., 1998a; Nordstrom et al., 1998b).  Additionally, bones have a greater 

osteogenic response to repetitive bouts of mechanical loading with rest periods 
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than persistent loading cycles (Robling et al., 2000).  The external environment of 

bone has a major impact on its architecture.  The following sections will explain 

the structure of bone, its biomechanical properties, and the major signaling 

cascades that mediate the response to mechanical loading. 

 

Structural and Mechanical Properties of Bone 

 In order for the skeleton to carryout its primary functions it must maintain 

an architecture that is both strong and lightweight.  Bone accomplishes this 

structural feat by being curved, allowing bones to withstand remarkable amounts 

of strain, but remain lightweight (Turner and Burr, 1993).  Throughout its 

development and growth, bone is adapting its shape to the external demands 

placed on the skeleton (Balling et al., 1992).  As previously described, bone 

modeling and remodeling allow for maintenance of its unique architecture, as 

well as adapt to its external environment (Robling et al., 2002).   

 The two main types of bone, cortical and trabecular, play distinctly 

different structural and functional roles.  Cortical bone is made up of a network of 

highly organized, densely packed collagen fibrils forming concentric lamellae 

(Marks and Hermey, 1996).  Within cortical bone Haversian canals form channels 

that contain the bone’s supply of blood vessels and nerves.  Functionally, cortical 

bone provides strength, protection, and mechanical support.  Cortical bone is 

found primarily in the long bones of the skeleton, for instance the arms and legs.  

In contrast, trabecular bone is loosely organized and composed of a porous 

matrix, allowing it to be adaptable and serve its metabolic functions primarily at 
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the ends of bone.  Wolff first observed that trabecular bone was present at the 

sites of maximum stress on bones, while areas of minor stress lacked trabecular 

bone (Wolff, 1892).  Frost elaborated further on Wolff’s observation in his 

description of the mechanostat theory (Frost, 1987).  Frost’s theory states that an 

ideal strain range exists for bone.  When increased strain is experienced by an 

area of bone it responds by depositing new bone matrix in an effort to lower the 

amount of strain.  Likewise, if the strain experienced by bone is below the ideal 

range, bone will be resorbed in an effort to revert back to the preferred range.  

 Over the years research has focused on explaining the molecular 

mechanisms that bone uses to respond to its external environment.  Studies 

have measured the amount of strain on bone in vivo and methods have been 

developed to investigate the effects of mechanical loading on bone (Hert et al., 

1971; O'Connor et al., 1982).  These findings lead to the expansion of the field of 

bone cell mechanotransduction. 

 

Bone Cell Mechanotransduction 

 Mechanotransduction is the conversion of mechanical signals into cellular 

biochemical responses (French, 1992).  Examples of mechanotransduction in the 

human body include, the role of blood flow in vascular tone (Davies, 1995), hair 

cells’ ability to detect and amplify sound (LeMasurier and Gillespie, 2005), and 

bone responding to changes in its external environment through remodeling 

(Turner and Pavalko, 1998).  The external environment of bone produces tension 

and compression forces, causing bones to bend, resulting in fluctuating interstitial 
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fluid pressure throughout the lacuno-canalicular system.  Changes in interstitial 

fluid shear stress are seen across the surface of osteoblasts and osteocytes.  

Mathematical models have estimated the physiologic range of fluid shear stress 

within the lacunae and canalicular spaces to be between 8 – 30 dynes/cm2 

(Weinbaum et al., 1994).  To further investigate mechanotransduction in bone 

cells numerous models have been designed to mimic a mechanical stimulus on 

bone cells, including hydrostatic pressure (Burger et al., 1992; Ozawa et al., 

1990; Shelton and el Haj, 1992), substrate distension (Meikle et al., 1984; Murray 

and Rushton, 1990; Somjen et al., 1980) or bending (Bottlang et al., 1997; 

Pitsillides et al., 1995), and fluid shear stress (Dewey, 1984; Frangos et al., 1985; 

Sakai et al., 1999).  While all of the aforementioned models have significantly 

contributed to our understanding of mechanotransduction, bone cells appear to 

be more responsive to fluid shear stress models than strain models (Owan et al., 

1997; Smalt et al., 1997).  Further discussion of fluid shear stress models will 

occur in a subsequent section. 

 Both osteoblasts and osteocytes are exposed to changes in interstitial 

fluid flow (Hillsley and Frangos, 1994; Turner and Pavalko, 1998).  However, the 

osteocyte is thought to be the primary bone cell responsible for responding to 

mechanical loads.  Known as the “great communicator” osteocytes detect strain 

from within their lacunae entombed in bone matrix (Bonewald, 2011; Cowin, 

1998).  A communication network is set up among osteocytes throughout the 

bone matrix by their processes.  The processes of osteocytes transmit 

mechanical signals through their network via gap junction linkages (Cheng et al., 
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2001a; Cheng et al., 2001b; Jiang and Cheng, 2001).  Osteocytes’ role in 

mechanical loading was highlighted in a seminal study in which osteocytes were 

targeted for ablation leading to defective mechanotransduction in mice (Tatsumi 

et al., 2007).  One key difference between the response of osteocytes and 

osteoblasts to mechanical loading is the secretion of sclerostin.  A protein 

product of the SOST gene, sclerostin is only secreted by osteocytes and is a 

powerful inhibitor of bone formation (Brunkow et al., 2001).  SOST null mice 

exhibit increased bone formation and strength (Li et al., 2008).  In response to 

mechanical loading, osteocytes reduce sclerostin secretion, whereas the 

secretion is increased under reduced loading (Robling et al., 2008).  Thus it 

appears that sclerostin secretion is a central mechanism by which osteocytes 

control local osteogeneis.  Mice, rats, and nonhuman primates treated with a 

sclerostin-neutralizing antibody demonstrated increased anabolic bone formation 

(Li et al., 2009; Li et al., 2010; Ominsky et al., 2011; Ominsky et al., 2010).  

Sclerostin, a suppressor of anabolic bone formation, is proving to be a promising 

target for pharmacological intervention.  This type of osteogenic suppression is 

the focus of this dissertation project.   

 Besides the secretion of sclerostin, osteocytes and osteoblasts otherwise 

respond to mechanical loading by initiating similar signaling cascades.  Many 

complex signaling cascades work in concert to ensure bone responds properly to 

its external environment.  The main signaling cascades utilized by osteoblasts 

and osteocytes to respond to changes in their external environment include 

calcium, prostaglandins, MAPK, Wnt, growth factors, PTH, TNFα, and focal 
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adhesion (FA) integrin-mediated signaling cascades (Liedert et al., 2006; 

Thompson et al., 2012).  In general, most of these pathways lead to in changes 

in bone cell proliferation, differentiation, metabolic activity, and survival. 

 A rapid increase in intracellular calcium (Ca2+) is one of the first cellular 

responses to fluid shear stress (el Haj et al., 1999).  Ca2+ channels on the 

plasma membrane are mechanosenstive and open in response to fluid shear 

stress (Iqbal and Zaidi, 2005).  A change in the plasma membrane’s potential is 

triggered by the increased Ca2+, which causes the voltage-sensitive Ca2+ 

channels to open, further increasing intracellular Ca2+ (el Haj et al., 1999).  

Subsequently, the cell releases adenosine triphosphate (ATP), which acts in an 

autocrine/paracrine fashion, binding to the purigenic P2X receptors to cause 

further extracelluar Ca2+ entry into the cell (Li et al., 2005).  Additionally, 

phospholipase C is activated and cleavage of phosphoinositol-4,5-bisphosphate 

into diacyglycerol and inositol trisphosphate (IP3) results from ATP binding to 

P2Y receptors (Genetos et al., 2005).  Intracellular stores of Ca2+ are then 

released when IP3 then binds to its receptor on the endoplasmic reticulum 

 Prostaglandin release is a rapid and continuous occurrence throughout 

the duration of fluid shear stress exposure (Bakker et al., 2001).  As intracellular 

Ca2+ levels increase, PKC is activated and induces phospholipase A2 to cleave 

arachidonic acid from the plasma membrane (Kudo and Murakami, 2002; 

Murakami and Kudo, 2002).  Arachidonic acid is converted into prostaglandin-G2 

(PGH2) and H2 by the rate limiting enzyme cyclooxygenase 2 (Cox-2) 

(Herschman, 1994).  Next, PGH2 is converted into various eicosanoids including 
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prostaglandin E2 (PGE2) and PGI2 (Dubois et al., 1998).  When prostaglandins 

are secreted from a bone cell they are capable of autocrine and paracrine 

signaling.  The significance of prostaglandins on bone was demonstrated when 

treatment with PGE2 stimulated osteoblast differentiation (Zhang et al., 2002), 

bone formation (Jee et al., 1985; Jorgensen et al., 1988), and increased release 

of the important growth factor, insulin-like growth factor 1 (McCarthy et al., 1991; 

Zaman et al., 1997).  Additionally, the importance of Cox-2 was demonstrated by 

showing that load-induced bone-formation was blocked by an inhibitor, NS-398 

(Forwood, 1996).  In response to fluid shear stress, an increase in Cox-2 

expression is recognized as an indication of the anabolic response of bone cells 

(Pavalko et al., 1998b). 

 Downstream of Ca2+ increase and prostaglandin release, fluid shear stress 

results in the activation MAPK signaling cascade, which functions to increase 

bone cell proliferation and survival (Liedert et al., 2006).  Periods of fluid shear 

stress result in the activation of the extracellular signal-related kinase (ERK), 

p38, mitogen activated protein kinases (MAPKs), and c-jun N-terminal kinase 

(JNK) (Liedert et al., 2006; Martineau and Gardiner, 2001).  All of these signaling 

molecules target the upregulation of c-fos and c-jun expression, the two 

components of the activator protein-1 (AP1) transcription factor.  AP1 can bind to 

the promoter region of many mechanoresponsive genes, affecting their 

transcription in response to mechanical loading (Franceschi, 2003).  Shear stress 

response element (SSRE) is another significant transcription factor-binding site 

activated in response to mechanical loading (Nomura and Takano-Yamamoto, 
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2000).  A SSRE was found in several genes including the aforementioned COX-

2.  In MC3T3 osteoblastic cells exposure to fluid shear stress induces an 

increase in Cox-2 expression, mediated by AP-1, CCAAT/enhancer-binding 

protein β, and cAMP-response element-binding protein (CREB) (Ogasawara et 

al., 2001).  

Mechanical stimulation leads to increased activity of the canonical Wnt 

signaling pathway.  During active signaling, a Wnt family member (Wnt 3, 5, or 7) 

bind co-receptors Frizzled and low-density lipoprotein receptor-related protein 5/6 

(LRP5/6), causing the accumulation of β-catenin (Lin and Hankenson, 2011; 

Monroe et al., 2012).  The central signaling protein of the Wnt signaling pathway, 

β-catenin, translocates to the nucleus and associates with the transcription factor 

LEF1 to activate transcription of target genes.  When Wnt is unbound to its co-

receptors, β-catenin’s accumulation is prevented by glycogen synthase kinase-

3’s phosphorylation, targeting β-catenin for degradation.  Fluid shear stress 

induces β-catenin nuclear translocation in osteoblasts and osteocytes (Case et 

al., 2008; Kamel et al., 2010; Norvell et al., 2004).  In the bone field, intense 

research interest has surrounded the canonical Wnt signaling pathway due to 

recent major advances.  Mutations in the LRP5 receptor result in dramatic 

changes in bone mass.  Activating mutations in LRP5 cause high bone mass 

phenotype (Boyden et al., 2002; Little et al., 2002; Qiu et al., 2007), while 

inactivating mutations cause a low bone mass phenotype (Gong et al., 2001; Qiu 

et al., 2007).  Furthermore, β-catenin is a central signaling component in bone 

differentiation, formation, and maintenance.  A conditional β-catenin knockout in 
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mesenchymal progenitor cells caused disrupted chondrocyte formation and 

limited osteoblast differentiation (Day et al., 2005).  Mice expressing an 

osteoblast-specific β-catenin mutation had an osteopenic phenotype and an 

abundance of osteoclasts (Holmen et al., 2005).  β-catenin’s ability to serve as 

an important component within fluid shear stress-induced mechansomes will be 

discussed in a later section. 

Upregulation of growth factors including insulin-like growth factor (IGF) I 

and II, transforming growth factor (TGF) β1, vascular endothelial growth factor, 

and bone morphogenetic protein (BMP) 2 and 4 occurs in response to 

mechanical stimulation (Franceschi and Xiao, 2003; Papachroni et al., 2009).  

These growth factors act through autocrine and paracrine mechanisms, via their 

tyrosine and serine/threonine kinase receptors, and activate PI3K, MAPK, and 

SMAD signaling cascades (Farhadieh et al., 2004; Hughes-Fulford, 2004; Mikuni-

Takagaki, 1999).  For example, the induction of the BMP-2 pathway increases 

the expression of the three most pivotal osteogenic transcription factors Runx2, 

osterix, and Dlx5 (Lee et al., 2003). 

Additionally, PTH signaling is also stimulated in response to mechanical 

loading.  PTH signals in bone cells through the G protein-coupled receptor 

(GPCR) at the plasma membrane, inducing the activation of adenylate cyclase.  

Consequently protein kinase A phosphorylates the CREB transcription factor, 

which binds to the Cox-2 promoter (Ogasawara et al., 2001).  Many of the 

signaling pathways reviewed here lead to increased bone cell proliferation and 

differentiation.  However, it has been estimated that more than 70% of 
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osteoblasts at sites of bone formation undergo apoptosis (Jilka et al., 1998).  

Therefore, it has been proposed that inhibiting osteoblast apoptosis pathways 

might be an important mechanism by which new bone formation could be 

increased. 

Osteoblasts treated with tumor necrosis factor-alpha (TNFα), an 

apoptosis-inducing agent, and exposed to fluid shear stress experienced less 

apoptosis than the static control osteoblasts treated with TNFα (Pavalko et al., 

2003a).  This study demonstrated that phosphorylation and activation of the pro-

survival protein Akt was increased in response to fluid shear stress.  Next, Akt 

inactivates proteases that initiate the apoptotic pathway.  In addition, Akt 

phosphorylates the inhibitor of kappa B (IκB), promoting its degradation and 

permitting the nuclear translocation of nuclear factor-κB (NF-κB) (Chen and 

Goeddel, 2002).  NF-κB is a transcription factor that controls the expression of 

many pro-survival genes.  Additionally, fluid shear stress causes a reduction in 

the amount of TNFα receptor at the plasma membrane and decreased TNFα-

induced interleukin 8 promoter activity (Wang et al., 2011).  Fluid shear stress 

causes bone cells to be less apoptotic, and seemingly promote a larger 

osteoblast population capable of producing more bone.  In summary, in response 

to fluid shear stress, many signaling cascades are initiated that result in changes 

in gene transcription and ultimately effect the bone remodeling process.  While 

many of the pathways involved in bone cells’ response to fluid shear stress have 

been elucidated, some molecular details from each signaling cascade are 

unknown.  For example, it is not known whether a molecule or protein complex 
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functions to directly convert the mechanical signal into a change in gene 

transcription. The following section will review the mechanosome hypothesis and 

the signaling molecules that may function within them.  

 

 

Signaling Through Focal Adhesions 

 

The Mechanosome Model 

 We have proposed the mechanosome model to describe how mechanical 

stimuli sensed at the plasma membrane, result in changes in gene transcription 

(Bidwell and Pavalko, 2010; Bidwell and Pavalko, 2011; Pavalko et al., 2003b).  

A mechanosome consists of an adhesion-associated protein and a 

nucleocytoplasmic shuttling transcription factor.  There are two forms of 

mechanosomes, a “GO” mechanosome and a “STOP” mechanosome.  A “GO” 

mechanosome functions to promote the anabolic response of bone to 

mechanical loading, while a “STOP” mechanosome functions to suppress the 

anabolic response of bone to loading (Figure 1).  β-cateinin and Lef1 are an 

example of a “GO” mechanosome.  In response to fluid shear stress β-catenin 

moves away from its structural role at the plasma membrane and translocates to 

the nucleus to bind the transcription factor, lef1, to change gene transcription 

(Norvell et al., 2004; Yang et al., 2010).  Nuclear matrix protein 4 (NMP4) and 

130 kD Crk-associated substrate (p130Cas) function as a “STOP” mechanosome 

(Childress et al., 2010).  NMP4 is a nucleocytoplasmic shuttling protein that 
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inhibits bone anabolism through its function as a trans-acting protein and can 

antagonize β-catenin/Lef1 “GO” mechanosome launching (Hino et al., 2007; 

Morinobu et al., 2005; Robling et al., 2009; Thunyakitpisal et al., 2001; Yang et 

al., 2010).  Another component of this “STOP” mechanosome, p130Cas, is an 

adhesion-associated protein known to be mechanosensor (Geiger, 2006; 

Sawada et al., 2006).  Additionally, the Pilz group has recently described a 

mechanosome made up of protein kinase G, Src and Src homology 2 domain-

containing tyrosine phosphatase 1 and 2 (Rangaswami et al., 2010).  The 

subsequent sections will review one of the launching sites of mechanosomes, 

focal adhesions and some key molecules that may function as part of a 

mechanosome. 
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Figure 1. The Mechanosome Hypothesis 

 

The “GO” and “STOP” mechanosome model in response to OFSS. 
Mechanosomes form in three basic steps in response to OFSS. First, OFSS 

induces the activation of an adhesion-associated protein found sites of adhesion 

near the plasma membrane.  Second, a mechanosome is formed when it 

complexes with a transcription factor.  Finally, the mechanosome either promotes 

(“GO”) or suppresses (“STOP”) gene transcription.  Modified figure from Bidwell 

and Pavalko, 2011. 
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Focal Adhesions 

 One of the two components of a mechanosome is an adhesion-associated 

protein.  In bone cells, numerous adhesion-associated proteins are found on the 

cytoplasmic side of focal adhesions (FA’s).  First described as small extended 

regions of the ventral plasma membrane, FA’s tightly join cells to the substrate 

(Abercrombie and Dunn, 1975; Abercrombie et al., 1971; Izzard and Lochner, 

1976; Izzard and Lochner, 1980).  FA’s have two distinct roles, to function in the 

detection of mechanical signals and structurally link the extracellular matrix 

contact (ECM) to the cytoskeleton (Abercrombie and Dunn, 1975; Burridge and 

Chrzanowska-Wodnicka, 1996; Geiger and Bershadsky, 2001; Geiger and 

Bershadsky, 2002).  FA’s are formed in clusters at the cell periphery and 

composed primarily of ECM-binding integrins, but also contain bundles of actin 

stress fibers, structural proteins and cytoplasmic associated signaling proteins 

(Hynes, 1992).  Integrins are large, heterodimeric transmembrane proteins 

composed of varying α and β subunits and classified into families by their β 

subunit (Hynes, 1992).  Integrins bind the ECM through their large extracellular 

domain, while most of the small intracellular domains bind FA associated 

proteins (Liu et al., 2000).  Integrins are uniquely suited to play a structural and 

signaling role in bone cells.  It was demonstrated, using RGD peptides to disturb 

integrin-ECM interactions, that integrins play a significant signaling role in 

osteoblasts in response to oscillatory fluid shear stress (OFSS) (Ponik and 

Pavalko, 2004). 



	
  

18 

	
  

 Disruption of integrin-ECM interactions caused Cox-2 protein levels and 

PGE2 secretion to decrease in response to OFSS.  Since integrins do not contain 

any intrinsic kinase activity they rely on other signaling molecules, including 

adhesion-associated proteins, to convey mechanical signals to the nucleus 

(Alahari et al., 2002; Burridge and Chrzanowska-Wodnicka, 1996).  While 

integrins are the main protein in the FA site, other membrane proteins localize to 

FA’s including glycosaminoglycan receptors (Bono et al., 2001; Borowsky and 

Hynes, 1998), dystroglycans (Belkin and Smalheiser, 1996), proteoglycans 

(Woods and Couchman, 1994; Zimmermann and David, 1999), and signaling 

molecules (Myohanen et al., 1993; Tang et al., 1998; Wei et al., 1999).  The type 

of integrins found in FA’s is determined by the ECM to which the cell is adhered 

(Dejana et al., 1988; Fath et al., 1989).  FA formation requires the 

transmembrane domain of integrin, but the α and β subunits of the cytoplasmic 

domains of integrins are also functionally important.  While the β subunit of the 

cytoplasmic domain targets integrins to FA sites (Geiger et al., 1992; LaFlamme 

et al., 1992), the α subunit of the cytoplasmic domain can prevent the association 

of FA’s (Briesewitz et al., 1993).  Ligand binding induces a conformational 

change in the cytoplasmic tails allowing the β cytoplasmic subunit to bind other 

FA associated proteins.  The cytoplasmic portion of integrins are involved in an 

array of functions. There functions can be classified into three categories: 

signaling proteins, actin-binding proteins, and proteins of other functions (Liu et 

al., 2000).  The importance of the α and β subunits was revealed in a study 

where point mutations were introduced in integrins that lead to the disruption of 
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cytoplasmic integrin tail mediated signaling (Hughes et al., 1996).  After the 

cytoplasmic integrin tails undergo a conformational change they are free to either 

bind directly or indirectly with FA associated proteins.  Proteins that can bind FA 

are grouped into the following categories: tyrosoine kinases, serine/threonine 

kinases, cytoskeletal proteins, modulators of small GTPases, tyrosine 

phosphatases, and other enzymes (Zamir and Geiger, 2001).  We have outlined 

how FA’s are structurally capable of supporting the association of cells to the 

ECM, next we will discuss the signaling capacity of FA’s.    

 

Cell Signaling through Focal Adhesions 

 As briefly mentioned above, one of the roles of FA’s is to participate in cell 

signaling cascades.  FA’s serve to induce signaling cascades and amplify growth 

factor signals.  Furthermore, FA’s have demonstrated the ability to signal through 

growth factor receptors and affect ion channel activation (Miyamoto et al., 1995; 

Moro et al., 1998).  Studies have shown that FA’s and ECM proteins both 

reorganize in response to fluid shear stress (Davies et al., 1994; Pavalko et al., 

1998a).  Many signaling molecules associate with FA’s and are responsible for 

activating downstream signaling cascades.  Signaling proteins including p130Cas 

(Nojima et al., 1995; Polte and Hanks, 1995; Vuori and Ruoslahti, 1995), integrin 

linked kinase (ILK) (Li et al., 1999; Tu et al., 1999), paxillin (Burridge et al., 1992), 

zyxin (Reinhard et al., 1995), phosphoinosotide-3 kinase (PI-3K) (Chen and 

Guan, 1994), focal adhesion kinase (FAK) (Hanks et al., 1992; Schaller et al., 

1992), and Src (Nigg et al., 1982; Rohrschneider, 1980) localized to FA’s. 
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 FAK is a widely studied adhesion-associated protein found FA.  A non-

receptor tyrosine kinase, FAK, is the principal kinase in FA’s and responds to the 

clustering of integrins or adhesion (Burridge et al., 1992; Guan and Shalloway, 

1992; Kornberg et al., 1992; Lipfert et al., 1992).  Additionally, our group and 

others have also shown that FAK is activated in response to mechanical stimuli 

or fluid shear stress (Ishida et al., 1996; Li et al., 1997; Takai et al., 2006; Young 

et al., 2009).  Upon activation FAK autophosphorylates at tyrosine 397 (Calalb et 

al., 1995), exposing binding sites for Src and Fyn, which in turn phosphorylate 

additional sites on FAK and result in increased FAK activity (Schaller et al., 

1994a; Xing et al., 1994).  Additionally, the activation of FAK also exposes 

binding sites for PI3-K, paxillin, talin, and p130Cas.  FAK’s activation and 

association with these signaling molecules initiates the PI3-K pathway, ERK-

pathway, and the c-Jun NH2-terminal kinase (JNK)-pathways (Schaller et al., 

1992).  Therefore FAK, through its association with other signaling molecules, 

has an effect on cell cycle progression, early-gene expression, and apoptosis 

(Clark and Brugge, 1995; Schwartz et al., 1995).  Moreover, Src can 

phosphorylate FAK at Y576 and Y577, leading to increased FAK activity 

(Schlaepfer and Hunter, 1996).  We have reported FAK to be crucial for OFSS-

induced mechanotransduction in osteoblasts (Young et al., 2009).  Osteoblasts 

lacking FAK fail to show either early (5-30 minutes) or mid-late responses (2-24 

hours) to mechanical stimulation.  Two less understood signaling components of 

FA signaling in response to fluid shear stress are proline-rich tyrosine kinase 2 

(Pyk2) and Src. 
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 Proline-rich tyrosine kinase 2 

 Pyk2 is a closely related family member to FAK, sharing approximatly 45% 

sequence identity (Herzog et al., 1996; Inazawa et al., 1996).  Both FAK and 

Pyk2 contain an N-terminal 4.1, ezrin, radixin, moesin (FERM) domain, three 

proline-rich regions, a kinase domain, and a C-terminal focal adhesion targeting  

(FAT) domain (Figure 2) (Ceccarelli et al., 2006; Hayashi et al., 2002; 

Hiregowdara et al., 1997; Schaller et al., 1992; Schlaepfer et al., 1999).  While 

structurally similar, there are important differences between FAK and Pyk2.  FAK 

is widely expressed across many cell types, while Pyk2 is highly expressed 

primarily in brain cells, fibroblasts, platelets, and bone cells.  Interestingly, FAK 

null cells overexpress Pyk2 in what appears to be a compensatory mechanism 

(Lim et al., 2008b; Sieg et al., 1998; Weis et al., 2008).  FAK is principally 

activated through its interaction with integrins at sites of FA, but Pyk2 can also be 

activated through increases in intracellular calcium (Astier et al., 1997; Avraham 

et al., 2000; Lev et al., 1995; Tokiwa et al., 1996).  Finally, the intracellular 

distribution of Pyk2 differs from FAK.  While both are found to associate with 

integrins at sites of FA, Pyk2 is more evenly distributed throughout the cell and 

often found to be concentrated in the perinuclear region (Klingbeil et al., 2001; 

Schaller and Sasaki, 1997).  Pyk2, similar to FAK, is autophosphorylated at 

Y402, which leads to association with Src and focal adhesions (Figure 2).  Unlike 

FAK, Pyk2 can interact with and phosphorylate paxillin, a focal adhesion-

associated protein (Hiregowdara et al., 1997; Schlaepfer et al., 1999). 
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Figure 2. Pyk2’s Binding Domains and Important Phosphorylation Sites 

 

 
Pyk2 contains three distinct domains that meditate protein-protein 
interactions.  Pyk2’s FERM domain contains both a nuclear export sequence 

(NES) and a nuclear localization sequence (NLS).  Pyk2’s activation depends on 

autophosphorylation at tyrosine 402 (Y402), which then allows Src to bind Pyk2 

via its SH2 domain.  The kinase domain of Pyk2 has a second NES and two 

tyrosine sites for Pyk2’s inactivation (Y579, Y580).  Three proline rich (PR) 

regions span Pyk2.  PR2 and PR3 mediated the assocation of Pyk2 with 

p130Cas, while the focal adhesion targeting (FAT) domain mediates the 

interaction of paxillin, Hic-5, and MBD2 with Pyk2. 
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 In bone, Pyk2 is involved in remodeling (Avraham et al., 2000; Boutahar et 

al., 2004; Gil-Henn et al., 2007; Guignandon et al., 2006; Hall et al., 2011). 

Global Pyk2 knockout mice exhibit a phenotype charaterzied by elevated bone 

mass (Gil-Henn et al., 2007; Okigaki et al., 2003).  There is a controversy in the 

bone field as to the reasons for the high bone mass phenotype.  One report 

indicates the phenotype results from defective osteoclast function implicating 

Pyk2’s role in osteoclast driven bone resorption (Gil-Henn et al., 2007), while 

another contends it is a result of increased osteoblast differentiation (Buckbinder 

et al., 2007).  As previously reviewed, Pyk2’s more well-known family member, 

FAK, serves as an important positive regulator of mechanical stimuli in 

osteoblasts (Young et al., 2009).  Pyk2’s role in mediating the response of bone 

cells to mechanotransduction is less well known, but is suggested to be different 

than FAK’s (Young et al., 2011). Additionally, reciprocal phosphorylations occur, 

with Src phosphorylating both FAK and Pyk2, while FAK and Pyk2 also associate 

and phosphorylate Src (Calalb et al., 1995; Frame et al., 2002; Schaller et al., 

1994a; Xing et al., 1994).  Unknown is whether Src is dependent on FAK and/or 

Pyk2 to transmit intracellular signals in response to mechanical loading.  While 

FAK and Pyk2 are in prime position to relay signals from the external enviroment 

to bone cells, recent studies have proposed a role for FAK and Pyk2 in the 

nucleus.  For example, it was reported that FAK and Pyk2 may play a direct role 

in regulating gene transcription in muscle and nerve cells, respectivley (Luo et 

al., 2009; Mei and Xiong, 2010).  Methyl-CpG binding domain protein 2 (MBD2) 

was found to associate with FAK through the N-terminal region of MBD2 and the 
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C-terminal focal adhesion-targeting domain of FAK (Luo et al., 2009; Mei and 

Xiong, 2010).  Their interaction promotes regulation of myogenin expression and 

differentiation in muscle cells (Luo et al., 2009; Mei and Xiong, 2010).  These 

reports suggest MBD2 binds either FAK or Pyk2 in the nucleus to effect target 

gene transcription, indicating that MBD2 might be a component of a 

mechanosome containing Pyk2 and/or Src kinase.  MBD2 is a family member of 

the methyl CpG-binding domain containing proteins, which functions to suppress 

gene transcription (Wade, 2001).  MBD2 aids in repressing transcription within 

the methyl-CpG binding protein, MBD1) MeCP1 complex (Bird and Wolffe, 1999; 

Leonhardt and Cardoso, 2000).  MBD2 interacts with heterochromatin by its 

association with methylated DNA at CpG islands. MBD2 then recruits silencing 

complexes and histone deacetylases (HDAC), resulting in condensed 

heterochromatin (Bird and Wolffe, 1999; Boeke et al., 2000; Hendrich and Bird, 

1998; Ng et al., 1999).  Undetermined is the interaction of Pyk2 or Src with MBD2 

in response to fluid shear stress and the target genes of such a mechanosome. 

  

Src Kinase  

 As briefly described above, Src is involved in integrin-mediated signaling, 

but it also participates in numerous signaling cascades and cellular functions 

including growth, movement, differentiation and cell adhesion (Brown and 

Cooper, 1996; Thomas and Brugge, 1997).  A broad range of substrates have 

been shown to be tyrosine phosphorylated by Src, including platelet-derived 

growth factor, epidermal growth factor, macrophage colony stimulating factor 1, 
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FAK, Pyk2, and vinculin (Hunter and Cooper, 1985; Parsons and Parsons, 1997).  

Src is broadly expressed in many different cell types and it is localized to different 

subcellular domains.  A member of the Src family of nonreceptor tyrosine 

kinases, Src is one of nine family members including Fyn, Yes, Frk, Blk, Fgr, 

Hck, Lck, and Lyn (Parsons and Parsons, 2004).  The Src family kinases share 

similar structural features that include Src homology (SH) domains (Boggon and 

Eck, 2004).  Specifically, Src kinase is made up for four different SH domains 

(Figure 3).  Src is localized to the plasma membrane where it participates in the 

integrin-mediated signaling response via an N-terminal myristoylation site 

(Boggon and Eck, 2004; Resh, 1994).  Src switches between a myristoylated and 

nonmyristolated form through the use of a hydrophobic pocket in the SH1 kinase 

domain (Cowan-Jacob et al., 2005).  Additionally, the SH4 domain of Src is 

required for membrane attachment. Src’s SH3 and SH2 domains are responsible 

for mediating intramolecular and intermolecular binding partners that regulate 

both Src kinase activity and signaling cascades (Figure 3) (Koch et al., 1991; 

Pawson, 1988; Pawson and Gish, 1992).  The SH3 domain binds many FA-

associated proteins including integrins (Arias-Salgado et al., 2003), paxillin 

(Weng et al., 1993), and p130Cas (Nojima et al., 1995).  The SH2 domain is 

highly conserved and mediates many protein-protein interactions including FAK 

and Pyk2 (Pawson and Nash, 2003; Schaller et al., 1994b).  The SH1 domain is 

the cataylictic or kinase domain within Src.  To control the specific binding of 

Src’s numerous partners Src has two distinct conformations.  For full catalytic 

activity of Src, autophosphorylation occurs at tyrosine 418 (Y418) within the  
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Figure 3. Src’s Binding Domains and Important Phosphorylation Sites 

 

Src mediates many of its protein-protein interactions via SH domains.  Src 

contains an N-terminal myristolation sites for anchoring itself in plasma 

membrane.  The SH3 and SH2 domains mediate the binding of FA-associated 

proteins, including p130Cas, integrins, vinculin, Pyk2, and FAK.  The SH1 

domain, also known as the kinase domain, contains Src’s phosphorylation site 

(Y418) for activation within the activation loop.  A C-terminal inhibition site is 

found at tyrosine 527. 
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activation loop of the SH1 domain (Smart et al., 1981).  In an active confirmation, 

the SH2 and SH3 domains are readily accessible for substrate binding.  When 

Src is in an inactive state the autoinhibitor phosphorylation site (Y527) in the C-

terminal tail is phosphorylated (Cooper et al., 1986) and the SH2, SH3, and SH1 

domains bind to one another to form an autoinhibited conformation (Sicheri and 

Kuriyan, 1997; Williams et al., 1997; Xu et al., 1997).  C-terminal Src kinase 

(Nada et al., 1991) and CSK-homologous kinase (Davidson et al., 1997; 

Hamaguchi et al., 1996) usually carry out the inactivating phosphorylation at 

Y527.  Alternatively, protein tyrosine phosphatases including SH2 domain-

containing protein tyrosine phosphatases 1 and 2 (SHP1, SHP2) are capable of 

activating Src by dephosphorylating Y527 (Chiang and Sefton, 2001; 

Rangaswami et al., 2010). 

 In bone Src helps maintain the balance of normal bone remodeling.  Mice 

lacking Src exhibit an osteopetrotic phenotype (Soriano et al., 1991).  More 

specifically, Src null mice exhibit incisor eruption failure, thickened growth plate, 

perseverance of the endochondral primary spongiosa, reduced bone marrow 

tissue, and overall small size (Soriano et al., 1991).  The high bone mass 

phenotype of Src null mice is caused by malfunctioning osteoclasts and 

osteoblasts.  Src null mice display increased numbers of inactive osteoclasts.  

These osteoclasts lack a ruffled border; therefore they cannot attach to the 

surface of bone and promote bone resorption (Boyce et al., 1992; Horne et al., 

1992; Lowe et al., 1993).  Osteoblasts lacking Src contribute to the high bone 

mass phenotype by overexpressing Runx2, alkaline phosphatase, PTH/PTHrP, 
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and osteocalcin (Marzia et al., 2000).  Finally, as the Src null mice age their bone 

mass continues to increase.  Therefore, a loss of Src activity causes an increase 

in bone mass (Amling et al., 2000).  Recent studies of Src inhibitors have lead to 

clinical trials exploring their use for treating low bone mass (Hannon et al., 2010; 

Missbach et al., 1999), however it is imperative to understand the implications of 

Src inhibition on bone remodeling in response to mechanical loading. 

 Fluid shear stress causes an increase in Src activation in osteoblasts and 

osteocytes, as well as endothelial cells and colon cancer cells (Jalali et al., 1998; 

Okuda et al., 1999; Plotkin and Bellido, 2001; Rangaswami et al., 2010; 

Rangaswami et al., 2012; Takahashi and Berk, 1996; Thamilselvan et al., 2004).  

Due to its location and numerous binding partners, Src is in prime positioned to 

propagate cellular signals in bone cells after exposure to fluid shear stress.  The 

Pilz group has described a new pathway of Src activation in response to 

unidirectional fluid flow, in which a NO/cGMP/PKGII/SHP-1 pathway leads to Src 

activation via association with integrins (Rangaswami et al., 2010).   

 

 

In Vitro Methods to Assess Signaling in Response to Fluid Shear Stress	
  

 

Bone Cell Culture Models 

Commonly, researchers have isolated primary cells to study the cellular 

properties and signaling cascades of osteoblasts.  A traditional source of primary 

osteoblasts is isolated from the calvaria of newborn mice.  Mouse calvarial 
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osteoblasts (MCOB) exhibit high alkaline phosphatase expression and increase 

its activity in response to treatment with ascorbic acid and β-glycerophosphate 

(Lynch et al., 1995).  Additionally, MCOB’s respond to calcitonin and mineralize 

in culture (Binderman et al., 1974).  While MCOB’s are a phenotypically ideal 

model, primary osteoblasts can be difficult to work with in culture and their 

proliferative capacity is limited.  

 To overcome some of the limitations of MCOB, several types of bone cell 

lines have been developed to investigate bone cell physiology.  In establishing 

bone cell lines researchers wanted to develop models that mimicked important 

characteristics of primary osteoblasts and osteocytes.  For immortalized 

osteoblastic cell lines some of the sought after hallmarks included alkaline 

phosphatase activity, mineralization, expression of collagen type 1, production of 

collagenase, release of prostaglandins, responsive to parathyroid hormone and 

prostaglandin E2, and expression of the receptors for of 1,25(OH)-vitamin D3, 

parathyroid hormone and epidermal growth factor.  The cell line MC3T3 is a 

commonly used osteoblastic cell line originally derived from the calvaria of 

newborn mice (Sudo et al., 1983).  These cells can differentiate into osteoblasts 

and osteocytes, can deposit mineral into bone matrix, and express high amounts 

of alkaline phosphatase (Sudo et al., 1983).  

 The murine long bone osteocyte Y4 (MLO-Y4) was derived from a single 

colony isolation, derived from long bone mice expressing SV40 T Large antigen, 

driven by the osteocalcin promoter (Kato et al., 1997).  MLO-Y4 osteocytes 

exhibit osteocyte-like dendritic morphology, expression of connexin 43, and 
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secretion of osteocalcin.  Establishing immortalized osteoblast and osteocytes 

cells lines was an important step to enable in vitro investigations into the 

signaling mechanisms induced by fluid shear stress.  Only recently has 

successful isolation of primary osteocytes from the long bones been described 

(Stern et al., 2012).   

 

Models of Fluid Flow 

 In vivo models of mechanical loading and unloading of bone have been 

developed to study broad changes in bone in architecture, as well as, alterations 

in the microarchitecture.  Two common models include ulnar loading (Torrance et 

al., 1994) and hindlimb suspension (Morey, 1979).  To investigate changes in cell 

signaling networks in response to mechanical loading in vitro models of fluid 

shear stress have been designed.  On a cellular level, osteoblasts and 

osteocytes experience mechanical loading via pressure changes in interstitial 

fluid flow (Hillsley and Frangos, 1994).  Therefore, researchers have designed 

numerous methods for replicating the interstitial fluid shear stress experienced by 

osteoblasts and osteocytes.  

 A model of unidirectional fluid flow in a parallel plate flow chamber was 

first described by Frangoe and colleagues to study the metabolic response of 

endothelial cells to steady and pulsatile shear stresses (Frangos et al., 1988).  

The unidirectional model of fluid shear stress was used by many researchers in 

the bone field until oscillatory fluid flow models were developed, and thought to 

be more physiologically similar to the flow pattern of interstitial fluid.  Our group 
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demonstrated unidirectional and oscillatory fluid flow profiles produce different 

responses from osteoblasts and osteocytes (Ponik et al., 2007).  Oscillatory fluid 

flow is produced within parallel plate flow chambers that house a glass slide on 

which bone cells are plated.  Hard-walled tubing connects the parallel plate flow 

chamber to the oscillatory pump, which controls the adjustable flow rate (0-25 

dynes/cm2) of media across the surface of the bone cells.  The main advantage 

of using of an oscillatory pump to induce fluid shear stress is the controllable and 

uniform flow pattern that it produces across bone cells.  Three prominent 

disadvantages are the limited length (< 12 hours), non-repetitive nature of flow 

exposure and the dissimilar set-up for static samples. 

 A newer method for inducing fluid shear stress across the surface of bone 

cells uses an orbital shaking platform. Use of an orbital shaking platform 

overcomes some of the significant limitations in the experimental design of the 

parallel plate flow chamber model (Inoue et al., 2004; Kido et al., 2009; Sakai et 

al., 1999; Young et al., 2011).  Two of the major advantages of using an orbital 

shaking platform include the opportunity for long (> 24 hours) and/or intermittent 

periods of fluid flow and easier collection of static samples for analysis.  Inducing 

fluid flow via an orbital shaking platform rotating at ~200 rpm produces 

approximately 1.5-2.5 Pa (~15-25 dynes/cm2) of shear stress force at the outer 

radius of the dish.  Shear stresses toward the center of the dish are lower in 

magnitude. (Sakai et al., 1999).  While still a new method to the field of bone 

biology, the orbital shaking platform has been used in a number of studies.  

Interleukin-11 expression during osteoblast differentiation was successfully 
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examined in response to mechanical stimulation via orbital platform shaking 

(Kido et al., 2009; Sakai et al., 1999).  Additionally, orbital shaking platform 

induced fluid shear stress led to increased FosB/ΔFosB expression in 

osteoblasts (Inoue et al., 2004).  Finally, osteoblasts respond similarly to fluid 

shear stress induced by either the oscillatory pump or the orbital platform shaker 

(Young et al., 2011).  In summary, while the oscillatory pump produces oscillatory 

fluid flow and the orbital shaking platform generates dynamic fluid flow, both 

produce physiologically relevant fluid shear rates. 

 

Live Cell Imaging 

 The field of microscopy encountered a revolutionary change with the 

cloning of green florescent protein (GFP) from the jellyfish, Aequorea Victoria.  

GFP was discovered by Shimomura and collogues who noted that “a protein 

giving solutions that look slightly greenish in sunlight through only yellowish 

under tungsten lights, and exhibiting a very bright, greenish fluorescence in the 

ultraviolet of a Mineralite” (Shimomura et al., 1962).  This description of GFP is 

still correct; it is in the green portion of the visible spectrum.  The jellyfish GFP’s 

main excitation peak is at a wavelength of 395 nanometers, with a minor peak at 

475 nanometers, and emission peak at 509 nanometers (Johnson et al., 1962).  

GFP is composed of 238 amino acids and consists of eleven β-sheets with six 

alpha helices and contains a covalently bonded chromophore buried in the center 

of the cylinder (Morise et al., 1974; Prendergast and Mann, 1978).  In research, 

GFP has been used as a tracer of cell lineage, a reporter of gene expression, 
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and protein tag to monitor localization in living cells (Chalfie and Kain, 2006).  

The jellyfish GFP was limited by low brightness, complicated photoisomerization, 

near UV excitation, a substantial delay between protein synthesis and fluorescent 

development.  Mutagenesis has allowed researchers to expand the spectral 

characteristics of GFP by shifting the excitation and emission wavelengths.  The 

engineering of the jellyfish GFP, along with cloning and optimization of similar 

proteins from a variety of marine organisms, have yielded a whole spectrum of 

fluorescent proteins (FP) allowing researchers to monitor biological events. 

 The field of Förster Resonance Energy Transfer (FRET) microscopy has 

benefitted tremendously from genetically encoded FPs.  FRET is named for the 

German scientist, Theodor Förster, who first provided a quantitative 

understanding of the process (Förster, 1948).  FRET is a distance dependent 

process by which energy is directly transferred from a donor fluorophore to a 

nearby acceptor via near-field electromagnetic dipole interactions.  When FRET 

occurs the donor’s emission signal is quenched.  For efficient transfer of energy 

from donor to acceptor there are three essential requirements (Förster, 1965; 

Stryer, 1978).  First, the donor and acceptor probes must be in close proximity.  

FRET can only take place over a distance of less than 10 nanometers, making it 

a highly sensitive technique for investigating biological activities.  Second, the 

donor and acceptor dipole-dipole alignment must be favorable. Third, there must 

be significant overlap between the donor emission and acceptor excitation 

spectra.  Spectral overlap leads to spectral bleedthrough, a pitfall that must be 

corrected when detecting FRET signals.  There are two components to spectral 
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bleedthrough.  The first is the direct excitation of the acceptor at the wavelength 

used to excite the donor (acceptor cross talk).  The second is the donor emission 

that is detected in the acceptor (FRET) channel (Day and Davidson, 2012).  

When the three requirements for FRET are fulfilled quantification of FRET signals 

can offer Ångstrom level measurements of the distance between the donor and 

acceptor fluorophores within living cells. 

 There are a number of different ways of measuring FRET signals.  The 

most common methods for assessing FRET are spectral bleed-through 

correction, spectral imaging, acceptor photobleaching, and fluorescent lifetimes 

(Day and Davidson, 2012).  Spectral bleedthrough correction is a general 

computer algorithm-based method that can be applied to any type of microscopy.  

Spectral imaging of FRET signals entails acquiring a wide range of emission 

wavelengths to produce a lambda stack which allows for analysis of spectral 

characteristics of the fluorescent signal of each pixel (Dickinson et al., 2001; 

Zimmermann et al., 2003).  Spectral imaging of FRET is a specific type of 

microscopy that spectral bleedthrough correction can be applied to.  A major 

advantage of spectral imaging is that it is acquired more quickly than other 

methods.  Acceptor photobleaching measures the quenched donor population 

first, and then the acceptor fluorophores are deliberately photobleached, 

eliminating them from participating in the FRET process (Bastiaens et al., 1996; 

Day et al., 2001; Kenworthy, 2001).  Removing the acceptor fluorophore causes 

the donor molecule to dequench, increasing the fluorescence emission from the 

donor.  Importantly, after photobleaching the acceptor is not susceptible to 



	
  

35 

	
  

spectral bleed-through due to the elimination of the acceptor’s participation in the 

FRET process.  Since photobleaching is not reversible it is an approach that 

limits the possibility for dynamic FRET measurements.  Lastly, measuring the 

changes in donor fluorescent lifetimes is another method for measuring FRET 

(Periasamy and Clegg, 2009).  Fluorescent lifetime is the average time a 

molecule spends in the excited-state before relaxing down to the ground state.  It 

is a fundamental property of a fluorophore and range between one to ten 

nanoseconds.  When measuring donor fluorescent lifetimes, spatial distribution of 

the lifetimes can be mapped using Fluorescence Lifetime Imaging Microscopy 

(FLIM).  A major advantage to this method is that lifetime measurements are 

independent of deviations in the probe concentration and excitation intensity.  

 FLIM can be analyzed by two different approaches, time domain and 

frequency domain (Clegg, 2010).  A pulsed-light source is used to excite a 

fluorophore in the time domain method and then the emission photons are 

collected at various time points.  This information is used to produce a 

fluorescence decay profile that estimates the fluorescent lifetime.  The frequency 

domain method uses a high frequency modulated light source to excite the 

fluorophores.  Depending on the lifetime of the fluorophores, a modulation 

frequency is chosen often between 20-140 megahertz.  Changes in the phase 

and amplitude of the emission signal are compared to the excitation source to 

extract the fluorophore’s fluorescence lifetime.  A major advantage to using FLIM 

to assess FRET is that the measurements are made in the donor channel, which 

is usually unaffected by spectral bleed-through.  FLIM is suitable for visualizing 
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probes that indicate changes such as ion concentration, post-translational 

modifications or pH.  Fluorescent lifetime are sensitive to their environment and 

would not be appropriate for fixed specimens.  Rapid changes in FRET signals 

(less than a minute) may be missed by the time it takes to acquire fluorescent 

lifetimes. 

  Experimentally, there are two forms of FRET, intermolecular and 

intramolecular.  Intermolecular FRET occurs between independent donor 

fluorophore and acceptor molecule (Figure 4).  For example, intermolecular 

FRET could occur between two different proteins, one labeled with a donor 

fluorophore and one with an acceptor.  Intramolecular FRET occurs between a 

donor fluorophore and acceptor on the same molecule.  Commonly, biosensors 

are examples of intramolecular FRET.  A biosensor usually contains a donor and 

acceptor fluorophore, along with a phosphorylation substrate used to monitor 

dynamic changes in kinase activity.  For instance, a conformational change 

within the molecule could cause the fluorophores to move away from one 

another, diminishing a FRET event.  The first biosensor was the cyclic AMP 

(cAMP) biosensor, which was a genetically encoded sensor of activities mediated 

by cAMP (Adams et al., 1991). Interesting, the first version of the cAMP 

biosensor contained organic dyes, rather than fluorophores, which were attached 

to the catalytic and regulatory subunits of cAMP (Adams et al., 1991).  Other 

examples of FRET biosensors used by investigators include GTPases 

(Nakamura et al., 2005), second messengers (Herbst et al., 2009), protein 

kinases (Herbst et al., 2009), and membrane receptors (Lohse et al., 2007).   
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Figure 4. Intermolecular and Intramolecular FRET 

 

Schematic examples of intermolecular and intramolecular FRET.  (A) 

Example of intermolecular FRET.  The donor (blue) fluorophore is fused with a 

protein (orange) that finds a binding partner in a different protein (red) that is 

fused to an acceptor fluorophore (green).  When the two proteins (orange and 

red) are bound, a FRET event occurs between the two fluorophores resulting in 

quenched emission of the donor.  (B) Example of intramolecular FRET.  The 

donor (blue) fluorophore and acceptor fluorophore (green) are on the same 

molecule, usually connected through a short amino acid linker.  Figure is adapted 

from Hum, et al., 2012. 
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Interestingly many FRET biosensors have been developed to monitor enzymatic 

modifications, such as protein ubiquitination (Perroy et al., 2004), acetylataion 

(Sasaki et al., 2009), O-glycosylation (Carrillo et al., 2006), histone methylation 

(Lin et al., 2004), and phosphorylation/dephosphorylation (Newman and Zhang, 

2008; Ni et al., 2006).  Kinase activation/activity is a heavily utilized category of 

FRET biosensors (Ni et al., 2006; Zhang and Allen, 2007).  Recently, a RhoA 

biosensor was utilized to monitor RhoA activation in osteoblasts in response to 1 

hour of fluid shear stress (Hamamura et al., 2012).  A Src biosensor was capable 

of detecting an increase in Src activity in response to mechanical stimulation in 

endothelial cells (Wang et al., 2005).  A combination of Src and FAK biosensors 

were used to demonstrate that Src activity decreases and FAK activity increases 

during differentiation of human mesenchymal stem cells (Liao et al., 2012).  The 

field of signal transduction requires tools for tracking the dynamic nature of 

signaling molecules.  FRET biosensors can serve this need and are an exciting 

tool that permits monitoring molecules with great spatiotemporal resolution in 

their native cellular environment. 
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Thesis Hypothesis and Specific Aims 

 Based on the research findings summarized above and the current lack of 

understanding of the molecular mechanisms that curb the response of bone to 

mechanical loading, the following central hypothesis was formulated: “STOP” 

mechanosomes exist to actively suppress the anabolic response of osteoblasts 

and osteocytes to fluid shear stress.  This hypothesis was tested by examining 

two specific aims: 1) Determine Src’s ability to function as a “STOP” 

mechanosome in osteoblasts and osteocytes and 2) Characterize the role of 

Pyk2 in response to fluid shear stress in osteoblasts and osteocytes. 
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Chapter II 

 

MATERIALS AND METHODS 

 

Cell Culture Conditions.  MC3T3 osteoblasts, mouse calvarial osteoblasts 

(MCOB), and Pyk2 -/- osteoblasts were cultured in minimal essential media alpha 

(MEM-α, Gibco, Life Technologies, Carlsbad, CA) containing 10% fetal calf 

serum (FCS) and 1% penicillin/streptomycin (Gibco, Life Technologies, Grand 

Island, NY).  MLO-Y4 osteocytes were cultured on collagen-coated plates (rat tail 

collagen type I, BD Biosciences, San Jose, CA) in MEM-α (Gibco, Life 

Technologies, Carlsbad, CA) supplemented with 5% FCS, 5% fetal bovine serum 

(FBS) and 1% penicillin/streptomycin (Gibco, Life Technologies, Grand Island, 

NY). Cells were maintained in 5% CO2 at 37° C during experiments and imaging.  

 

Fluid Flow Conditions.  Two methods were used to induce fluid shear stress 

over the surface of cells.  An oscillatory pump connected to parallel plate flow 

chambers via hard–walled tubing was used to induce a shear rate of 10 

dynes/cm2 across the surface of cells plated on glass slides.  Additionally, a 

reservoir was created for the movement of fluid and 5% CO2 exchange using 

hard-walled tubing attached to the outlet of the parallel plate.  Static controls 

were incubated in the same volume of media.  Prior to exposure to fluid flow, 

cells were serum starved (MEM-α, 0.5% FCS) overnight.  During fluid flow 
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experiments the parallel plate flow chambers and attached hard-walled tubing 

were placed in an incubator set to 37°C and 5% CO2. 

 Similarly, an orbital shaking platform was used to induce fluid flow over the 

surface of MC3T3 osteoblasts and MLO-Y4 osteocytes.  Cells plated in 6 well 

culture dishes were placed on an orbital shaking platform within an tissue culture 

incubator set to 37°C and 5% CO2.  Prior to experimentation, cells were grown 

overnight in low-serum α-MEM media supplemented with 0.5% FCS and 

antibiotics. Cells were subjected to fluid flow generated by 1 mL of media on an 

orbital platform shaker rotating at a speed of ~200 rpm (2Hz) producing a 

estimated shear rate of ~10-25 dynes/cm2 while inside a tissue culture incubator 

(Inoue et al., 2004; Kido et al., 2009; Sakai et al., 1999; Young et al., 2011).   

 

Src Inhibitor. MC3T3 osteoblasts and MLO-Y4 osteocytes were treated with Src 

Inhibitor 1 (Santa Cruz Biotechnology, Santa Cruz, CA) (10µM) for 1 hour before 

experiments were conducted. Control samples were treated with equal volume of 

DMSO.  

 

Western Blotting Analysis. Cells exposed to static or flow conditions were 

harvested directly into SDS sample buffer and protein concentrations were 

determined using amino black method (Sheffield et al., 1987).  Equal amounts of 

protein were loaded onto SDS-PAGE gels for separation and transferred to 

nitrocellulose.  The subsequent primary and secondary antibodies were used: 

phospho-Src (Y418) (Cell Signaling, Boston, MA), total Src (Cell Signaling, 
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Boston, MA), γ-tubulin (Sigma-Aldrich, St. Louis, MO), lamin B (Santa Cruz, 

Santa Cruz, CA), HRP conjugated goat anti-rabbit and HRP conjugated goat 

anti-mouse (Jackson Immunoresearch, West Grove, PA).  The secondary 

antibody signals were detected using a Luminescent Image Analyzer LAS-3000 

system (Fujifilm Life Science, Stamford, CT). Densitometry was quantified using 

Image J software (NIH). 

 

RNA Extraction, cDNA Synthesis and quantitative real-time PCR (qRT-PCR) 

Analysis.  RNA was harvested from cultured MC3T3 osteoblasts and MLO-Y4 

osteocytes in Trizol (Invitrogen, Carlsbad, CA).  RNA was extracted with 

chloroform and precipitated with isopropanol.  M-MLV reverse transcriptase 

(Promega, Madison, WI) was used to perform first strand cDNA synthesis. 

GAPDH (Mm99999915_g1), osteopontin (Mm00436767_m1), and RPLP2 

(Mm03059047_gH) real-time PCR primers were obtained (Applied Biosystems, 

Grand Island, NY). Custom designed primer/probes were prepared for 

osteocalcin. (forward) 5(-CTGACAAAGCCTTCATGTCCAA-)3 (probe) 5(-

AGGAGGGCAATAAGGTAGT-)3 and (reverse) 5(-

GGTAGCGCCGGAGTCTGTT-)3.  TaqMan Universal PCR Master Mix (Applied 

Biosystems, Grand Island, NY) was used for amplification in a Mastercycler ep 

realplex2 real-time PCR system (Eppendorf, Westbury, NY).  The reaction 

conditions were as follows: 2 minutes at 50°C; 10 minutes at 95°C; 40 cycles of 

15 seconds at 95°C and 1 minute at 60°C.  The ΔΔCT method was used to 
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evaluate gene expression between samples. RPLP2 and GAPDH were used as 

a loading control genes. 

Immunofluorescence. Images for all experiments were captured using a Nikon 

inverted immunofluorescence microscope equipped with a CCD camera.  MLO-

Y4 osteocytes cells were plated onto coverslips and placed into 6 well culture 

dishes.  Cells were serum starved for 24 hrs (0.5% FCS), subjected to static 

conditions and fixed immediately or fixed after 20 minutes of OFSS (via orbital 

shaking platform) with 4% paraformaldehyde solution and permeablilized with 

0.2% triton after rising with Tris-buffered saline (TBS).  Coverslips were treated 

with normal donkey serum for 30 minutes at 37°C to block non-specific antibody 

binding.  The following primary and secondary antibodies were used: Src and Src 

Y418 (Cell Signaling, Boston, MA) followed by FITC-conjugated donkey anti-

rabbit (Jackson Immunoresearch, West Grove, PA).  Texas-Red phalloidin and 

DAPI (Molecular Probes, Eugene, OR) were used for visualizing F-actin and the 

nucleus, respectively. 

 MCOB were plated on glass coverslips, ~2.0 x105 cells per slide (~1.1 

x105 cells/ cm2), following 24 hrs of serum starvation (0.5% FCS), cells subjected 

to static culture conditions were fixed immediately (static) or fixed after OFSS (30 

minutes, 1 hour, or 1 hour plus 1 hour) (via oscillatory pump) with 4% 

paraformaldehyde solution and processed for immunofluorescence by 

permeabilization with 0.2% triton followed by rinsing in Tris-buffered saline (TBS). 

Slides were then treated with 1% BSA solution in TBS for 30 minutes at 37°C to 

block non-specific antibody binding. The following primary and secondary 
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antibodies were used: Pyk2 (BD Biosciences, San Jose, CA), DAPI (Molecular 

Probes, Eugene, OR), and FITC-conjugated donkey anti-rabbit (Jackson 

Immunoresearch, West Grove, PA). 

 

DNA Plasmids. The Src biosensor and Src mutant biosensor were generously 

obtained from Dr. Yingxiao Wang (Wang et al., 2005).  

 

FRET Microscopy. One day prior to imaging, MLO-Y4 cells were electroporated 

(150V, 9ms) with either the Src biosensor or the Src mutant biosensor (10µg).  

Cells were plated into 35mm glass bottom dishes (MatTech, Ashland, MA) and 

maintained in phenol-free, MEM-α media supplemented with 0.5% FCS and 

antibiotics.  The following day, FRET microscopy was performed using an ISS 

ALBA FastFLIM system (ISS Inc., Champagne, IL) coupled to an Olympus IX71 

microscope equipped with a 60 X / 1.2 NA water-immersion objective lens.  A 

5mW 448 nm diode laser was modulated by the FastFLIM module of the ALBA 

system at a fundamental frequency of 20 MHz with up to six sinusoidal 

harmonics.  The modulated 5mW 448 nm laser was used to excite the donor 

fluorophore of either the Src biosensor or Src mutant biosensor. The frequency 

domain FLIM method was used to obtain fluorescent lifetime(s) based on 

emission signal changes in the phase and amplitude compared to the excitation 

source. The phasor plots, lifetime maps and intensity images were analyzed 

using ISS VistaVision software (ISS Inc., Champagne, IL).  Lifetime maps were 

generated using a two-component fit for the calculation of the donor lifetime.  The 
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phasor plots display the modulation and phase characteristics of the emission 

signal for every pixel in an image, generating a visual determination of the 

lifetime (Jameson et al., 1984; Redford and Clegg, 2005).  Lifetime data from 

MLO-Y4 cells were extracted from three different regions of interest (ROI): 

plasma membrane, cytoplasm and nucleus. Bodipy C12 (Invitrogen Corp., Grand 

Island, NY) (0.01mg/mL) was used to stain the plasma membrane and outline the 

nucleus.   

 

Nuclear Fractionation.  Cells subjected to either static or OFSS treatment in 6 

well dishes were washed with phosphate buffered saline, harvested in ice-cold 

hypotonic buffer (10mM HEPES, 10mM KCL, 1.5mM MgCl2, 1mM DTT and 

protease inhibitors), passed through a 22-gauge needle five times and were 

centrifuged for 10 minutes at 13,000 rpm. The cytosolic fraction was saved while 

the nuclear fraction pellet was resuspended in buffer C (10mM HEPES, 0.42 M 

NaCl, 25% Glycerol, 1.5mM MgCl2, 0.5mD EDTA, ddH2O and protease 

inhibitors) placed on ice and vortexed for 15 seconds every 10 minutes for an 

hour to swell nuclear proteins out the nuclei.  Finally the samples were 

centrifuged at 4°C for 15 minutes at 14,000 rpm. The clear supernatant was 

collected and prepared for western blot analysis.  

 

Immunoprecipitation.  For detecting protein-protein interactions in vivo co-

immunoprecipitation was performed in MC3T3 osteoblasts and MLO-Y4 

osteocytes.  Immunoprecipitation was performed using Src protein, Src (Y416), 
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MBD2, normal rabbit serum, or normal mouse serum.  Immunoprecipitation 

buffer contained 1% Triton-X-100, 145 mM NaCl, 10mM Tric-Cl, pH 7.4, 5mM 

EDTA, 2mM EGTA, and 1mM PMSF.  Immune complexes were captured using 

Protein A sepharose beads (Sigma-Aldrich, Saint Louis, MO) conjugated to either 

goat-anti rabbit or goat-anti mouse antibody (Jackson Immunoresearch 

Laboratories, West Grove, PA). 

 

Statistical Analysis.  Statistical significance was assessed by either a two-tailed 

t-test or a two-way analysis of variance (ANOVA) with a p-value of p<0.05 or less 

interpreted as statistically significant. 
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Chapter III 

Nuclear Src Activity Functions to Suppress the Anabolic Response 

Osteoblasts and Osteocytes to Fluid Shear Stress 

ABSTRACT 

  Global deletion of Src kinase from mice results in increased bone mass.  

We tested the novel hypothesis that Src plays a previously unrecognized role in 

bone formation by regulating gene expression in osteoblasts and osteocytes, 

particularly in response to mechanical loading.  Inhibition of Src activity using a 

pharmacologic inhibitor in MC3T3 osteoblasts and MLO-Y4 osteocytes led to an 

increase in expression of the anabolic bone gene osteocalcin.  Mechanical 

stimulation of MC3T3 osteoblasts and MLO-Y4 osteocytes by fluid shear stress 

further enhanced expression of osteocalcin when Src activity was inhibited.  

Importantly, using a Src biosensor and nuclear fractionation, we report for the first 

time that Src activity in the nucleus increased in response to fluid shear stress.  

This study supports the idea that Src plays a nuclear role, suppressing expression 

of osteocalcin via a previously unrecognized function that limits the anabolic 

response of osteoblasts and osteocytes to fluid shear stress. 
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INTRODUCTION 

 

 Global disruption of Src, a 60 kDa non-receptor tyrosine kinase, resulted 

in a mouse with a high bone mass phenotype, demonstrating the importance of 

Src in bone remodeling (Soriano et al., 1991).  The function of both osteoclasts 

and osteoblasts is altered in Src-/- mice (Marzia et al., 2000; Soriano et al., 

1991).  Osteoclast numbers are increased at the bone surface, but lack a ruffled 

border and are inactive (Boyce et al., 1992; Horne et al., 1992; Lowe et al., 

1993). Accelerated osteoblastogenesis was observed in the Src-null mice, 

suggesting Src activity plays a suppressive role in osteoblast differentiation 

(Amling et al., 2000; Marzia et al., 2000).  These findings led to studies focused 

on producing a Src inhibitor to treat osteoporosis (Hannon et al., 2010; Hannon 

et al., 2012; Id Boufker et al., 2010; Missbach et al., 1999).  

 If Src functions to balance bone mass by suppressing anabolic bone genes, it is 

also likely to affect the response of bone to mechanical loading.  In the healthy 

mammalian skeleton, this process is mediated by osteocytes and osteoblasts that 

coordinate an appropriate response to mechanical loading resulting in localized 

net bone gain or loss depending on the type of load experienced at specific sites 

(Miller et al., 2007; Nicolella et al., 2008; Robling, 2009).  Osteocytes and 

osteoblasts sense and react to mechanical loads generated by the fluid flow 

through the canalicular system within bone (Buss et al., 1986; Montgomery et al., 

1988; Resh, 1994).  In vitro, osteoblasts and osteocytes respond to mechanical 

load simulated via the application of oscillatory fluid shear stress (OFSS).  Fluid 
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shear stress causes distortions of the membranes of osteoblasts and osteocytes 

resulting in the enhanced expression of genes associated with osteoblast activity, 

up regulating cell proliferation and increasing the release of paracrine factors 

required for bones to elicit an anabolic response (Knothe Tate et al., 1998; Smalt 

et al., 1997; Turner and Pavalko, 1998).  Src also becomes activated in response 

to OFSS in osteoblasts and osteocytes (Plotkin et al., 2005; Rangaswami et al., 

2010; Rangaswami et al., 2012).  The Pilz group recently suggested that Src 

plays an integral role in relaying mechanical messages in osteoblasts via NO-

cGMP-PKG signaling resulting in a proliferative response (Rangaswami et al., 

2010).  Additionally, this group described the convergence of PKG and FAK on 

the Src/Akt/β-catenin signaling pathway during osteoblast mechanotransduction 

(Rangaswami et al., 2012).  While Src is activated in osteoblasts and osteocytes 

in response to OFSS, the impact of Src activation on gene transcription under 

conditions of OFSS is unclear. 
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RESULTS  

 

Src kinase represses osteocalcin in static and OFSS conditions  

 To evaluate the role of Src in basal expression of osteogenic genes in 

MC3T3 osteoblasts and MLO-Y4 osteocytes we treated cells with a 

pharmacologic inhibitor of Src activity (Src inhibitor-1, SI1). We first confirmed 

that SI1 effectively inhibited Src activity by showing that SI1 inhibited fluid flow-

induced Akt phosphorylation (Figure 5).   To assess OFSS-induced changes in 

gene expression we utilized real-time quantitative PCR (qRT-PCR) analysis of 

mRNA (primers listed in Table 2).  Osteocalcin expression significantly increased 

in both MC3T3 osteoblasts and MLO-Y4 osteocytes treated with SI1. (Figure 6).  

Most importantly, OFSS further enhanced the express of osteocalcin in both 

MC3T3 osteoblasts and MLO-Y4 osteocytes treated with SI1 compared to static 

controls treated with carrier (DMSO) only (2.7 and 3.4 fold change, respectively; 

Figure 7).   

 

Activated Src (Y418) accumulates in perinuclear and nuclear regions in 

response to OFSS  

 To determine whether Src may affect OFSS-induced transcription via an 

increase in tyrosine kinase activity in the nucleus, we first examined the total 

cellular distribution of Src in MLO-Y4 osteocytes in response to OFSS.  

Immunofluorescence microscopy indicated a shift in the distribution of both total 

Src and activated Src (as assessed by phosphorylation at tyrosine residue Y418) 
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following 20 minutes of exposure to OFSS.   Using an antibody that recognizes 

only activated Src phosphorylated at tyrosine 416 (Y418) we found that activated 

Src accumulated in the perinuclear/nuclear area of MLO-Y4 osteocytes after 

exposure to OFSS (Figure 8A, white arrows highlight areas of FA).  Total Src 

protein also increased modestly in the perinuclear/nuclear regions after OFSS, 

but was not as pronounced as that of the activated (Y418) Src (compare Figures 

8A and 8B).  This suggests that Src activation by phosphorylation at Y418 may 

be required for Src to accumulate in this region of the cell. 
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Figure 5. Treatment with Src inhibitor 1 Prevents Src Activity in 

Response of OFSS 

 

 

 

 

 

 

 

 

One hour of Src inhibitor 1 (SI1) treatment prevents Src kinase activity.  
MC3T3 osteoblasts and MLO-Y4 osteocytes were plated at a density of 1.0  x 

105 into 6 well dishes and serum starved in MEM-α (5% FBS) overnight.  Cells 

were treated with 10µM SI1 for 1 hour prior to 1 hour of OFSS. Western blot 

analysis of phosphorylated-Akt (Ser308), Total Akt, and γ-tubulin under static and 

OFSS conditions (1 hour).  
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Figure 6. Osteocalcin Expression in MC3T3 Osteoblasts and MLO-Y4 

Osteocytes Treated with SI1  

 

Inhibiting Src kinase activity causes an increase in basal levels of 
osteocalcin expression.  MC3T3 osteoblast and MLO-Y4 osteocytes were 

plated in 6 well dishes and treated with either control (DMSO) or SI1 (10µM) for 

one hour.  SI1 treatment significantly increases the expression of osteocalcin in 

MC3T3 osteoblasts and MLO-Y4 osteocytes.  *Represents a statically significant 

increase compared to static control (*p<0.05).  Error bars represent standard 

error.  An n > 3 was used and experiments were performed in triplicate. 
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Figure 7. OFSS-induced Osteocalcin Expression in MC3T3 Osteoblasts 

and MLO-Y4 Osteocytes Treated with SI1  

 

OFSS further enhanced the expression of osteocalcin in both MC3T3 
osteoblasts and MLO-Y4 osteocytes compared to static controls. MC3T3 

osteoblasts and MLO-Y4 osteocytes were treated with either control (DMSO) or 

SI1 (10µM) for 1 hour prior to exposure to either static of OFSS conditions. 

(p<0.05). *Represents a statically significant increase compared to static control 

(*p<0.05). #Represents a statically significant difference between treatment 

groups (#p<0.05) Error bars represent standard error.  An n > 3 was used and 

experiments were performed in triplicate. 
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Figure 8. Activated and Total Src Localization in MLO-Y4 Osteocytes 

Under Static or OFSS Conditions 
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OFSS induces accumulation of Src at perinuclear/nuclear regions in MLO-
Y4 osteocytes.  (A) Immunofluorescence microscopy of MLO-Y4 osteocytes 

subjected to static culture conditions or OFSS for 20 minutes.  Slides were fixed 

immediately and processed for immunofluorescence using antibodies against 

activated Src (Y418 followed by FITC-conjugated secondary antibodies).  F-actin 

was visualized using Texas-Red Phalloidin and the nucleus was visualized using 

DAPI. White arrows indicate focal adhesions, highlights Src’s increased 

activation at the plasma membrane in response to OFSS.  Scale bars=25µm (B) 

Immunofluorescence microscopy of MLO-Y4 osteocytes subjected to static 

culture conditions or OFSS for 20 minutes.  Slides were fixed immediately and 

processed for immunofluorescence using antibodies against total Src followed by 

FITC-conjugated secondary antibodies.  F-actin was visualized using Texas-Red 

Phalloidin and the nucleus was visualized using DAPI.  Scale bars=25µm 
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Nuclear Src activity increases in response to OFSS  

 To directly examine changes in the sub-cellular distribution of Src tyrosine 

kinase activity in MLO-Y4 osteocytes in response to OFSS we utilized a Src 

biosensor to measure Src activity by FRET microscopy.  The changing FRET 

signal from the Src biosensor probe was detected using fluorescent lifetime 

imaging microscopy (FLIM), which measures the shortened donor lifetime that 

results from FRET.  This approach allows us to map with pixel level resolution 

the sub-cellular locations of changing Src protein activity.  The Src biosensor 

used here is in a closed conformation under conditions of low endogenous Src 

activity, resulting in high FRET efficiency and a shortened donor lifetime. Upon 

phosphorylation of the substrate peptide by endogenous Src, the substrate binds 

to the phosphopeptide-binding pocket of the SH2 domain, resulting in a more 

open conformation and diminished FRET leading to an increased donor lifetime 

(Figure 9).  Thus, an increase in Src biosensor lifetime indicates an increase in 

Src kinase activity.   

 The phasor plot analysis comparing the total population of Src biosensor 

in MLO-Y4 cells prior to or following exposure to OFSS clearly showed a shift 

towards longer lifetimes of the Src biosensor, indicating a global increase in Src 

activity throughout MLO-Y4 cells in response to OFSS (Figure 10).  Following 

exposure to 5 minutes of OFSS, lifetimes of the Src biosensor donor fluorophore 

were determined for three distinct sub-cellular compartments (regions of interest, 

ROI) – the membrane, cytoplasm and nucleus - at 10, 15 and 20 minutes post-

OFSS using FLIM analysis.  Prior to OFSS, Src activity in the nucleus was  
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Figure 9. Diagram of the Src Biosensor 

 

The Src biosensor is capable of detecting changes in endogenous Src 
kinase activity.  (A) The structure of the Src biosensor.  The Src biosensor is 

made up of a donor fluorophore (ECFP) fused to the Src Homology 2 (SH2) of 

cytosolic Src (c-Src).  A short amino acid linker connects ECFP and SH2 to the 

acceptor fluorophore (YPet) and c-Src substrate that can be phosphorylated by 

endogenous Src.  Two mutants of the Src biosensor were generated to cause the 

Src biosensor to remain in a closed confirmation.  The R175 site within the SH2 

domain was mutated, as well as, the two key phosphorylation sites within the 

p130Cas substrate.  (B) The Src biosensor is in a closed conformation under 

conditions of low endogenous Src activity, resulting in high FRET efficiency and a 

shortened donor lifetime. Upon phosphorylation of the substrate peptide by 

endogenous Src, the substrate binds to the phosphopeptide-binding pocket of 

the SH2 domain, resulting in a more open conformation and diminished FRET 

leading to an increased donor lifetime.  This is a dynamic and reversible process.  

Figure was adapted from Wang et al., 2005 (Hum et al., 2012). 
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Figure 10. Phasor Plot of the Src Biosensor’s Donor Lifetime in MLO-Y4 

Osteocytes Under Static and OFSS Conditions 

 
A global increase in Src activity occurs in response to OFSS.  Phasor plot 

overlay of static Src biosensor lifetime and 20 minutes post-OFSS Src biosensor 

lifetime.  The phasor plot analysis displays a shift towards longer lifetimes of the 

Src biosensor, indicating an increase in Src activity throughout MLO-Y4 cells in 

response to OFSS. 
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significantly lower than at either the membrane or in the cytoplasm (Figure 11).  

Most importantly, significant increase in nuclear Src activity was seen at each 

time point measured following OFSS and increased steadily during the 20 min 

post-OFSS period (Figure 12).  Prior to OFSS, the average lifetime of the Src 

biosensor in the nucleus was 1.69 + 0.01 nanoseconds. At 10, 15 and 20 

minutes post-OFSS nuclear Src biosensor lifetimes significantly increased 

compared to static (1.80 + 0.01, 1.90 + 0.02, and 1.95 + 0.02 nanoseconds, 

respectively) (Figure 12).  Lifetime maps of the nucleus under static and post-

OFSS conditions illustrate the increase in Src activity in response to OFSS 

(Figure 13).  In contrast, Src activity at the membrane and in the cytoplasm 

peaked at 10 and 15 minutes post-OFSS, respectively, and then decreased at 20 

minutes post-OFSS (Figure 11). 

 In sharp contrast, there was no change in the fluorescent lifetime of a 

mutant Src biosensor (Y662F Y664F) following 5 minutes of OFSS (Figure 14).  

The mutation of the tyrosine residues in the p130Cas substrate blocks Src 

tyrosine kinase activation of the biosensor, and also changes its confirmation, 

resulting in higher basal lifetimes compared to the Src biosensor (Figure 15). 
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Figure 11. Subcellular Measurements of the Src Biosensor’s Donor 

Lifetimes in MLO-Y4 Osteocytes in Response to OFSS 

 

 

 

 

 

 

 

 

 

 

In response to OFSS the subcellular regions of Src activity change.  MLO-

Y4 osteocytes expressing the Src biosensor were exposed to 5 minutes of 

OFSS.  Images were taken 10, 15, and 20 minutes post-OFSS.  A distinct pattern 

of Src activity develops in the three regions of interest (ROI) examined: plasma 

membrane, cytoplasm, and nucleus.  The plasma membrane displays a  

significantly longer lifetime 10 minutes after exposure to OFSS compared to the 

other ROI (*p<0.05).  Fifteen minutes after OFSS the cytoplasm displays the 

longest lifetimes.  Lifetimes in the nucleus are significantly longer 20 minutes 

after exposure to OFSS (*p<0.05).  Graph represents n=3 in which the average 

lifetime of each ROI (30) at each time point analyzed. Error bars represent 

standard error. 
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Figure 12. Lifetimes of Src Biosensor in the Nucleus of MLO-Y4 

Osteocytes in Response to OFSS 

 

Src activity increases in the nucleus in response to OFSS.  A significant 

increase in nuclear Src activity was seen at each time point measured following 

OFSS.  Graph represents an N=3, with the average of 30 ROI’s examined at 

each time point.  Error bars represent standard error.  *p<0.05 versus the static 

control, #p<0.05 versus other OFSS time points examined 
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Figure 13. Lifetime Maps of the Src Biosensor Under Static or OFSS 

Conditions 

 

Nuclear Src activity increases in response to OFSS.  Lifetime maps of two 

MLO-Y4 osteocytes under both static and 20 minutes post-OFSS conditions.  

Areas of short donor lifetimes are indicated by cooler colors, while longer donor 

lifetimes are indicated by warmer colors. 
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Figure 14.  Phasor Plot of the Mutant Src Biosensor 

 

OFSS does not change the lifetime of the mutant Src biosensor.  MLO-Y4 

osteocyte cells expressing the mutant Src biosensor we analyzed under static 

conditions and then exposed to 5 minutes of OFSS.  Next, lifetime images were 

taken at 10, 15, and 20 minutes post-OFSS.  The phasor plot above was 

generated from the overlaid phasor plots of the same static and 20 minutes post-

OFSS MLO-Y4 osteocyte. 
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Figure 15.  Lifetime Maps of the Mutant Src Biosensor Under Static or OFSS 

Conditions 

  

 

OFSS does not induce a change in the mutant Src biosensor’s lifetimes in 
the nucleus.  Mutant Src biosensor lifetimes in MLO-Y4 osteocytes were 

analyzed under static conditions and after exposure to 5 minutes of OFSS.  In 

nucleus, no change in lifetime occurs in the mutant Src biosensor.  Areas of short 

donor lifetimes are indicated by cooler colors, while longer donor lifetimes are 

indicated by warmer colors. 
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Src activation increases in the nucleus in response to OFSS  

 To validate the observation of increased Src activity in the nucleus of 

MLO-Y4 cells in response to OFSS; nuclear fractionation followed by Western 

blot analysis was performed. MLO-Y4 osteocytes were exposed to either static 

conditions (control) or 5 minutes of OFSS.  The control cells or OFSS cells were 

collected 10 minutes-post-OSS.  Src activation, as measured by phosphorylation 

at Y418, was performed by Western blot.  In response to 5 minutes of OFSS 

activated Src in the nucleus was increased at 10 minutes post-OFSS compared 

to static conditions (Figure 16). 
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Figure 16.  Nuclear Fractionation of MLO-Y4 Osteocytes  

  

Nuclear Src activation increases in response to OFSS.  (A) Western blot 

analysis of nuclear fractionation blotted for Src activation (Y418), total Src and 

lamin B in MLO-Y4 osteocytes exposed to 5 minutes of OFSS or static culture 

conditions. (B) Graph represents quantification of Src activation (Y418)/total Src in 

nuclear fractions. Error bars represent standard error. Statistically significant 

difference between static and 10 minutes post-OFSS (*p<0.05). An n > 3 was 

used, experiments were performed in triplicate. 
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DISCUSSION 

 

 The goal of this study was to investigate a potential role for Src tyrosine 

kinase in transcriptional regulation of anabolic gene expression in MC3T3 

osteoblasts and MLO-Y4 osteocytes, principally in response to OFSS.  

Expression of osteocalcin, a marker of bone formation in vivo, was increased 

when Src activity was inhibited in MC3T3 osteoblasts and MLO-Y4 osteocytes.  

Furthermore, we show for the first time that the increase in osteocalcin 

expression normally induced by OFSS was further enhanced in MC3T3 

osteoblasts and MLO-Y4 osteocytes when Src activity was inhibited by treated 

with SI1 compared to control cells in which Src activity was not inhibited.  We 

used a Src biosensor to demonstrate an increase in Src activity in the nucleus of 

MLO-Y4 osteocytes in response to OFSS that was further confirmed using 

nuclear fractionation. Together these results support the novel concept that Src 

plays a role in bone remodeling by functioning to curb the anabolic response of 

MC3T3 osteoblasts and MLO-Y4 osteocytes to OFSS via a mechanism that 

involves a mechanically-induced increase in nuclear Src activity.  

 Inhibition of Src caused an increase in osteocalcin mRNA in MC3T3 

osteoblasts not subjected to fluid flow, while a flow-induced increase in 

osteocalcin mRNA normally induced by mechanical stimulation was further 

enhanced by Src inhibition compared to control cells (Figure 7).  Interestingly, in 

MLO-Y4 osteocytes Src inhibition under static conditions fails to increase 

osteocalcin expression.  Only after exposure to OFSS, does Src inhibition lead to 
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an increase in osteocalcin expression (Figure 7).  Thus, our results suggest Src 

normally functions to attenuate osteocalcin expression under conditions of both 

static culture and OFSS.  Osteocalcin is an important protein associated with 

bone formation and its levels in serum directly correlate with measurements of 

bone mineral density (Delmas et al., 1990; Wolf, 1996).  Osteocalcin expression 

is increased in response mechanical loading in both in vivo and in vitro models 

(Kannus et al., 1996; Raab-Cullen et al., 1994).  Here we suggest, for the first 

time, that Src activity affects the expression of osteocalcin in both static and 

OFSS conditions.  

 Taken together our immunolocalization, FRET microscopy and nuclear 

fractionation studies suggest that exposure of MLO-Y4 cells to OFSS results in 

an increase in the amount of activated Src (Y418 phosphorylation) in the 

perinuclear/nuclear regions and an increase in Src tyrosine kinase activity in the 

nucleus in response to OFSS.  A subtle increase in total Src in the 

perinulear/nuclear region was seen in response to OFSS. In contrast, a more 

pronounced increase in activated Src (Y418) was seen in the perinuclear and/or 

nuclear regions of MLO-Y4 osteocytes (Figure 8) suggesting that the population 

of Src that accumulates in this region is activated (as assessed by Y418 

phosphorylation).  Our nuclear fractionation and FRET data directly demonstrate 

that Src tyrosine kinase activity increased in the nucleus in response to OFSS.  

This novel result suggests a previously unrecognized role for Src tyrosine kinase 

activity in regulating the transcriptional response of MLO-Y4 osteocytes to OFSS.  

There is not a widely accepted mechanism to explain how Src translocates into 
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the nucleus, however myrstoylation has been suggested to function in regulating 

transport of Src to the nucleus (David-Pfeuty et al., 1993).  Additionally, 

myristoylation is one of the ways in which Src maintains its distribution at the 

plasma membrane where it can participate in integrin-mediated signaling 

responses to mechanical loading (Resh, 1994).  A hydrophobic pocket is 

predicted to exist in the SH-1 kinase domain of Src, enabling Src to switch 

between its myristoylated and nonmyristolated forms (Cowan-Jacob et al., 2005).  

An increase in nuclear Src activation (Y418) was reported in breast cancer tissue 

samples and correlated with improved patient outcome (Campbell et al., 2008).   

 We have characterized the formation and function of load-induced multi-

protein complexes termed “mechanosomes” that mediate mechanotransduction 

in bone cells (Bidwell and Pavalko, 2010; Bidwell and Pavalko, 2011; Pavalko et 

al., 2003b).  We propose the existence of mechanosomes that either promote 

(“GO”) or attenuate (“STOP”) load-induced bone formation.  β-catenin/Lef1 is an 

example of a “GO” mechanosome, while NMP4/p130Cas functions as a “STOP” 

mechanosome (Childress et al., 2010; Jackson et al., 2005; Robinson et al., 

2006; Tamamura et al., 2005; Yang et al., 2010).  The Pilz group has described a 

mechanosome made up of protein kinase G, Src and Src homology 2 domain-

containing tyrosine phosphatase 1 and 2 (Rangaswami et al., 2010).  Our results 

extend these findings to suggest that OFSS enhances the activity of a Src-

containing “STOP” mechanosome to attenuate the anabolic response of 

osteoblasts and osteocytes to loading. “STOP” mechanosomes function to 

prevent the overreaction of “GO” mechanosomes to OFSS, preventing the 
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overexpression of anabolic bone genes.  For instance, OFSS-induces an 

increase in osteocalcin expression in both MC3T3 osteoblasts and MLO-Y4 

osteocytes, which we propose is limited by the activity of a Src-containing 

“STOP” mechanosome.  When Src activity is inhibited under OFSS conditions, 

the expression of osteocalcin is further enhanced due to the absence of activity 

from a Src-containing “STOP” mechanosome that functions to attenuate the 

expression of anabolic bone genes.  Under static conditions inhibiting the activity 

of Src causes a modest increase in osteocalcin expression.  This suggests that a 

Src-containing “STOP” mechanosome may have a role in attenuating the 

transcription of anabolic bone genes under static conditions as well. 

 We suggest that increased Src tyrosine kinase activity in the nucleus in 

response to mechanical loading may serve as transient “off switch” to attenuate 

the anabolic response of bone to mechanical loading.  Once activated by 

mechanical stimulation, Src may further increase its activity in the nucleus and 

participate in a mechanism to prevent an over-reaction to physical stimulation.  

Clinical trials are underway testing the effectiveness of Src inhibitors on 

suppressing bone resorption by osteoclasts.  Our results suggest the possibility 

that load-bearing exercise could enhance the efficacy of Src inhibitors in patients 

treated with Src inhibitor.  Further studies will be needed to determine the 

detailed molecular mechanism(s) by which Src activation and activity in the 

nucleus regulates gene expression. It is noteworthy however that a previous 

report suggested that Src might be capable of regulating methyl-CpG-binding 

domain protein 2 (MBD2) mediated expression of the myogen promoter during 
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skeletal muscle differentiation (Luo et al., 2009).  Src may also function as a 

“STOP” mechanosome by targeting the activity of activator protein 1 (AP1) 

transcription factor to suppress anabolic bone gene transcription.  The C-terminal 

region of Src can negatively regulate AP1 activity.  AP1 is a heterodimer 

comprised of two transcription factors, c-fos and c-jun.  Src can bind and 

phosphorylate c-Jun at Y26 and Y170 resulting in the ubiquitination of c-Jun and 

decreased AP1 activity (Zhu et al., 2006).  Since osteocalcin contains an AP1 

binding site in its promoter region, this may serve as a mechanism by which Src 

activity could regulate anabolic bone gene transcription (Lian et al., 1989). 

 Using FRET microscopy with FLIM analysis to investigate endogenous 

Src tyrosine kinase activity permits the mapping the sub-cellular locations of 

changing Src activity in living cells.  FLIM analysis does not require corrections 

for spectral-bleed through, which is necessary for other FRET-based imaging 

approaches. The Src biosensor used here is in a closed conformation under 

conditions of low endogenous Src activity, resulting in high FRET and shortened 

donor lifetimes. Upon phosphorylation of the substrate peptide by endogenous 

Src, the substrate binds to the phosphopeptide-binding pocket of the SH2 

domain, resulting in an open conformation and diminished FRET leading to an 

increased donor lifetime. Through the use of a Src biosensor we observed that 

mechanical stimulation by fluid flow increases Src activity in the nucleus of MLO-

Y4 osteocytes 20 minutes after exposure to a brief (5 min) bout of OFSS.  This 

approach confirmed that OFSS initially (10 min post-OFSS) has the greatest 

impact on activity of Src that is localized at the membrane (where integrins detect 
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OFSS stimulation).  Subsequently, OFSS-induced Src activity was highest in the 

cytoplasm (15 min) and by 20 min the greatest increase in Src activity was seen 

in the nucleus.  There is some concern when examining a substrate 

phosphorylated by Src that related kinases such as Yes, Abl, Jak2 or the Ser/Thr 

kinase ERK1 might also produce a change in lifetime of the Src biosensor. A 

previous reported on the specificity of this Src biosensor found a change of less 

than 2% in emission ratio in the Src biosensor by Yes, Abl, Jak2 or Ser/Thr 

kinase ERK1 (Wang et al., 2005).  Additionally, the mutant Src biosensor does 

not respond to endogenous Src activity and remains in a closed conformation.  

Recently, using Src and FAK biosensors, Src activity was reported to decrease 

and FAK activity to increase during differentiation from human mesenchymal 

stem cells to osteoblasts (Liao et al., 2012).  Our study is the first to report spatial 

and temporal changes, via FLIM analysis, in Src activity in MLO-Y4 osteocytes in 

response to OFSS. 

 In conclusion we suggest Src may play a significant functional role in 

attenuating the transcription of anabolic bone genes, such as osteocalcin, in 

response to OFSS.  This effect is evident in vitro under basal (static) conditions, 

as well as, following exposure to mechanical loading (OFSS).  In vivo, load-

bearing exercise promotes skeletal health by adjusting bone remodeling and 

bone mass.  An underappreciated aspect of load-induced bone formation may be 

the existence of negative feedback signals mediated by Src within osteocyte 

directed skeletal mechanotransduction pathways that may limit the beneficial 

bone forming effects of exercise.  Pharmacological interventions that inhibit Src 
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activity could disable those negative feedback signals and dynamically enhance 

skeletal health.  Among the questions raised by this study is the precise 

molecular mechanism(s) through which Src activity is increased in the nucleus in 

response to OFSS and how it aids in repressing transcription.  Future studies will 

need to define how Src participates in attenuating anabolic bone gene 

expression by identifying Src binding partners in the nucleus that have the 

capacity to directly alter transcription and the epigenome. 
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Chapter IV 

 

Pyk2 May Function as a “STOP” Mechanosome By Interacting with MBD2 

in Osteoblasts and Osteocytes 

 

ABSTRACT 

 Pyk2 plays an important role in bone remodeling.  Pyk2 null mice exhibit 

increased bone mass, due to compromised osteoclast function.  Undefined is 

Pyk2’s role in mediating mechanotransduction in bone cells.  We tested the 

hypothesis that Pyk2 suppresses anabolic targets of OFSS-induced 

mechanotransduction in osteoblasts and osteocytes.  In this study we sought to 

determine Pyk2’s localization, effect on the abundance of proteins and transcripts 

associated with anabolic signaling, and association with other signaling 

molecules under static and OFSS conditions.  We found Pyk2 suppressed 

OFSS-induced Cox-2 protein expression and osteopontin gene expression, and 

displayed nucleocytoplasmic shuttling.  These observations of Pyk2’s effect on 

protein and gene expression and localization are consistent with the phenomena 

we have proposed of mechanosomes.  To determine whether Pyk2 may form a 

complex similar to a mechanosome, co-immunoprecipitation experiments 

examined Pyk2’s association with MBD2 under static and OFSS conditions.  A 

constitutive interaction between Pyk2 and MBD2 was observed and was not 

OFSS dependent.  However, when examining the activated form of Pyk2 (Y402), 

OFSS induced an increase in the association of Pyk2 and MBD2.  Additionally, 
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the association between activated Src (Y418) and Pyk2 (Y402) increases in 

response to OFSS.  In summary, we found that in response to OFSS Pyk2 is 

capable of nucleocytoplasmic shuttling, increased association with MBD2 and 

suppression of Cox-2 protein expression and osteopontin expression, thus 

meeting the criteria of functioning as a “STOP” mechanosome. 
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INTRODUCTION 

 

 Bone tissue adapts to changes in mechanical loading from the external 

environment by modeling and remodeling.  This is an example of 

mechanotransduction, a process by which a mechanical signal is detected and 

converted into biochemical and transcriptional responses inside the cell (French, 

1992).  On the cellular level in bone mechanical loading causes changes in 

interstitial fluid flow that is detected by osteoblasts and osteocytes.  Focal 

adhesions (FA) play an important role in mechanotransduction and are thought to 

serve as mechanosensors of osteoblasts and osteocytes (Geiger and 

Bershadsky, 2001; Thompson et al., 2012).  FA are mainly composed of 

structural proteins such as integrins, vinculin, α-actinin, and actin filaments and 

adhesion-associated signaling proteins like FAK, Pyk2, and Src (Geiger and 

Bershadsky, 2001).  Focal adhesions are ideal launching sites for either “GO” or 

“STOP” mechanosomes, in response to changes in fluid shear stress.  

Mechanosomes are made up of an adhesion-associated protein and a 

transcription factor and either serve to promote the anabolic response of bone to 

mechanical loading (“GO”) or suppress its response to mechanical loading 

(“STOP”) (Bidwell and Pavalko, 2010; Bidwell and Pavalko, 2011; Pavalko et al., 

2003b).  Much work has been done to describe protein complexes like β-

catenin/Lef1 that function as a “GO” mechanosome, however few complexes 

have been described to function as a “STOP” mechanosome.  Pharmacological 
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manipulation of “STOP” mechanosomes may prove to be a novel therapeutical 

target.  

 FAK is a non-receptor tyrosine kinase found at sites of focal adhesions.  

By associating with the integrins of FA, FAK becomes activated by 

autophosphorylation at tyrosine 397 (Calalb et al., 1995).  We have previously 

reported FAK to be important in mediating the mechanotransduction signal in 

osteoblasts exposed to OFSS (Young et al., 2009).  In response to OFSS 

osteoblasts lacking FAK fail to appropriately increase protein levels of Cox-2, c-

Fos, and osteopontin.  Furthermore, OFSS-induced IkB-β and IkB-α degradation 

and NF-kB nuclear translocation was impaired in FAK -/- osteoblasts (Young et 

al., 2010).   

 Pyk2 is another member of the FAK family of non-receptor tyrosine 

kinases and is found to associate with focal adhesions.  FAK and Pyk2 are 

closely related in structure, sharing ~45% homology (Herzog et al., 1996; 

Inazawa et al., 1996).  Pyk2 is highly expressed in osteoclasts and its role within 

osteoclast function is more clearly defined than in osteoblasts and osteocytes.  

Mice lacking Pyk2 exhibit mild osteopetrosis and impairment of osteoclast 

function (Gil-Henn et al., 2007; Okigaki et al., 2003).  More specifically, 

osteoclasts lacking Pyk2 fail to form a functional sealing zone causing impaired 

bone resorption. Pyk2’s signaling capacity in osteoblasts or osteocytes, 

particularly in response to OFSS, has not been described.  
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RESULTS  

 

 OFSS-induced Cox-2 protein expression is enhanced in Pyk2 -/- 

osteoblasts 

 Wild-type MCOB and Pyk2 -/- osteoblasts were subjected to either static 

or 1 hour of OFSS.  OFSS induces a significant 1.8 fold increase in Cox-2 

expression in wild-type MCOB’s (Figure 17).  In the absence of Pyk2, the OFSS 

induced increase of Cox-2 is significantly higher than static Pyk2 -/- osteoblasts 

and elevated compared to the Cox-2 protein levels of wild-type MCOB in 

exposed to OFSS (Figure 17).  OFSS does not induce any changes in the protein 

levels Pyk2 in either the wild-type MCOB or Pyk2 -/- osteoblasts (Figure 17).  

 

Basal osteopontin expression is elevated in Pyk2 -/- osteoblasts and 

further enhanced in response to OFSS in Pyk2 -/- osteoblasts 

 To determine if Pyk2 -/- might play a role in regulating changes of gene 

transcription in response to OFSS, relative expression of mRNA was examined.  

Under static conditions, Pyk2 -/- osteoblasts expressed significantly higher levels 

of osteopontin (Figure 18).  Both wild-type MCOB and Pyk2 -/- osteoblasts were 

exposed to either static or OFSS conditions.  Using either method of inducing 

OFSS (OFSS pump or orbital shaking platform), Pyk2 -/- osteoblasts expressed 

enhanced levels of osteopontin expression compared to wild-type MCOB’s in 

response to OFSS (Figure 18). 
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Figure 17. Cox-2 Protein Expression in Wild-type MCOB and Pyk2 -/- 

Osteoblasts Under Static and OFSS Conditions 

 

 

 

Cox-2 protein expression is enhanced in Pyk2 -/- osteoblasts.  Wild-type 

MCOB and Pyk2 -/- osteoblasts were exposed to either static of one hour of 

OFSS. Representative of immunoblots for Cox-2, GAPDH, and Pyk2 show a 

OFSS-induced increase in Cox-2 protein expression.  OFSS does not cause a 

change in the loading control, GAPDH.  Confirmation of Pyk2 knockout is seen in 

bottom immunoblot.  Graph represents the densitometry units of Cox-2, 

normalized to GAPDH.  In wild-type MCOB, OFSS results in a 1.8 fold change in 

Cox-2 protein expression.  Pyk2 -/- osteoblasts have elevated levels of Cox-2 

protein under static conditions, and after OFSS the level of Cox-2 protein 

expression is highest compared to all other groups (static control, wild-type 

MCOB static control, and wild-type MCOB OFSS). Error bars represent standard 

error. *p<0.05 vs. static control; #p<0.05 vs. wild-type MCOB. N=3 in three 

separate trials. 
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 Figure 18. Osteopontin Expression in Wild-type MCOB and Pyk2 -/- 

Osteoblasts Under Static and OFSS Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

Osteopontin expression is elevated in Pyk2 -/- osteoblasts under static 
conditions and further enhanced after exposed to OFSS.  Wild-type MCOB 

and Pyk2 -/- osteoblasts were exposed to either static or 1 hour of OFSS 

conditions, using either an OFSS pump or orbital shaking platform.  Static Pyk2   

-/- osteoblasts expressed significantly higher levels of osteopontin compared to 

static wild-type MCOBs.  In response to OFSS, using either method, the absence 

of Pyk2 further enhances the OFSS-induced osteopontin expression. Error bars 

represent standard error.  *p<0.05 vs. static control, #p<0.05 vs wild-type MCOB. 

N=3 in three separate trials. 
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Pyk2 accumulates in the nucleus in response to OFSS 

 After observing OFSS-induced changes in anabolic gene transcription in 

the absence of Pyk2 we next monitored the distribution of Pyk2 after periods of 

OFSS.  Immunofluorescent microscopy was used to examine the cellular 

distribution of Pyk2 in MCOB’s that were exposed to either static conditions or 

OFSS (30 minutes, 1 hour, or 1 hour + 1 hour of rest).  Static MCOBs displayed a 

relatively even distribution of Pyk2 throughout the cells, with a subtle 

concentration of Pyk2 in the perinuclear/nuclear region (Figure 19).  In response 

to 30 minutes of OFSS, Pyk2 preferentially accumulates in the nucleus of 

MCOB’s (Figure 19).  After exposure to an hour of OFSS, the accumulation of 

Pyk2 in the nucleus is less robust than at the 30 minute OFSS time point (Figure 

19).  In response to 1 hour of OFSS and 1 hour of rest, Pyk2’s absence in the 

nucleus is even further enhanced compared to static.  This suggests that Pyk2 is 

capable of shuttling between the cytoplasm and the nucleus in response to 

OFSS (Figure 19). 

 

Pyk2 and MBD2 complex under basal conditions and increase their 

association in response to OFSS 

 To further determine if Pyk2 plays a nuclear role in the regulation of 

anabolic bone genes, we examined its association with MBD2.  We performed a 

co-immunoprecipation assay to examine the possibility of a Pyk2 complex with 

MBD2.  Western blot antibodies to either Pyk2 or MBD2 were used to detect 

immunoprecipitated proteins.  In static osteoblast lysates, endogenous Pyk2  
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Figure 19. Immunofluorescence of Pyk2’s Localization in MCOB Under 

Static and OFSS Conditions  

 

 

 

OFSS-induces Pyk2 nucelocytoplasmic shuttling. Immunofluorescence 

microscopy of MCOB’s subjected to either static culture conditions or OFSS (30 

minutes, 1 hour, or 1 hour + 1 hour of rest).  Slides were fixed immediately and 

processed for immunofluorescence using antibodies against Pyk2, followed by 

FITC-conjugated secondary antibodies.  The nucleus was visualized using DAPI. 

Scale bars = 100µm 
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forms a complex with MBD2 (Figure 20).  A complex of Pyk2/MBD2 was detected 

using antibodies to either Pyk2 or MBD2.  Next, we compared the association of 

Pyk2/MBD2 under static and OFSS conditions using antibodies for the activated 

form of Pyk2 (Y402).  In response to 20 minutes of OFSS MBD increases its 

interaction with the activated Pyk2 (Y402) (Figure 21).  Additionally, OFSS-

induced an association of Pyk2 (Y402) and Src (Y418) (Figure 21). 
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Figure 20. Co-immunoprecipitation Between MBD2 and Pyk2 in MLO-Y4 

Osteocytes 

 

 

 

A complex between MBD2 and Pyk2 forms under static conditions in MLO-
Y4 osteocytes.  Co-immunoprecipitation between MBD2 and Pyk2 was 

performed from MLO-Y4 osteocytes harvested under static conditions.  MBD2 

was not associated with Pyk2 when control normal mouse Ig was used in the 

immunoprecipitation.  Anti-MBD2 antibody was used to probe the blot.   
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Figure 21. Co-immunoprecipitation Between MBD2 and Pyk2 (Y402) and 

Src (Y418) and Pyk2 (Y402) in MLO-Y4 osteocytes. 

 

 

OFSS-induces the association of MBD2 and Pyk2 (Y402) and Src (Y418) and 
Pyk2 (Y402) in MLO-Y4 osteocytes.  Co-immunoprecipitation was performed in 

MLO-Y4 osteocytes harvested under static (S) or OFSS (F) conditions.  Normal 

rat serum (NRS), MBD2, and Src (Y418) were the antibodies used for the 

immunoprecipitation.  Anti-Pyk2 (Y402) specific antibody was used to probe the 

blot. 
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DISCUSSION 

 

 In this study the potential for Pyk2 to function as a “STOP” mechanosome 

was examined.  In the absence of Pyk2, Cox-2 and osteopontin expression are 

modestly increased.  OFSS, induced by either oscillatory pump or orbital shaking 

platform, further enhanced Cox-2 and osteopontin expression in Pyk2 null 

osteoblasts. Therefore, Pyk2 functions to suppress the expression of the 

anabolic bone gene osteopontin and protein expression of Cox-2 under static 

and OFSS conditions.  To further evaluate the potential “STOP” mechanosome 

properties of Pyk2, immunofluorescence was used to visualize the localization of 

Pyk2 under static and OFSS conditions.  MCOB under static conditions displayed 

a fairly even distribution of Pyk2, with a subtle concentration of Pyk2 in the 

perinuclear/nuclear region (Figure 19).  Pyk2 appeared to be capable of shuttling 

in and out of the nucleus in response to OFSS, as seen by an accumulation of 

Pyk2 in the nucleus (after 30 minutes of OFSS) and later an absence in the 

nucleus (1 hour of OFSS and 1 hour of rest). An OFSS-induced 

nucleocytoplasmic shuttling mechanism of Pyk2 has yet to be described, but 

other studies in fibroblasts have observed Pyk2’s nucleocytoplasmic shuttling 

behavior in response to membrane depolarization (Faure et al., 2007; Faure et 

al., 2013).  The nucleocytoplasmic shuttling of Pyk2 is possible through the 

nuclear localization sequence (NLS) and the nuclear export sequence (NES) that 

are both located in the FERM domain (Figure 2) (Lim et al., 2008a; Lim et al., 

2010; Ossovskaya et al., 2008).  While more work will need to be done to define 
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the molecular mechanism(s) that cause OFSS-induced nucleocytoplasmic 

shuttling of Pyk2, this behavior is a hallmark characteristic of a mechanosome. 

 If Pyk2 is to function as a mechanosome it must also complex with a 

transcription factor and bind to target gene(s) to alter transcription.  Pyk2 null 

osteoblasts exhibit increased levels of the protein Cox-2, as well as increased 

expression of osteopontin under basal conditions.  OFSS-induced increases in 

Cox-2 and osteopontin were further enhanced in the absence of Pyk2.  These 

changes in Cox-2 protein expression and osteopontin transcription might be 

mediated by the OFSS-induced increased in the association of Pyk2 and MBD2.  

In MLO-Y4 osteocytes a basal interaction between Pyk2 and MBD2 was 

observed.  When examining the activated form of Pyk2 (Y402), an increase in its 

association with MDB occurs in response to 20 minutes of OFSS.  While not a 

transcription factor, MBD2 is a member of the methyl CpG-binding protein family 

and functions to repress transcription (Boeke et al., 2000; Hendrich and Bird, 

1998; Ng et al., 1999).  Specifically, MBD2 and methyl CpG binding protein 2 

(MeCP2) bind heterochromatin through their interaction with methylated DNA at 

CpG islands.  The complex then translates the DNA methylation signal into 

transcriptional repression by recruiting histone deacetylases and other silencing 

complexes to sustain a heterochromatic state (Bird and Wolffe, 1999; Leonhardt 

and Cardoso, 2000).  In muscles cells the interaction of FAK and MBD2 in the 

nucleus has been observed during differentiation, leading to the disruption of the 

repression complex and increased expression of myogenin (Luo et al., 2009).  

Similarly, in response to membrane depolarization Pyk2 binds MBD2 in the 
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nucleus of nerve cells, but the functional outcome of this observation has yet to 

be explained (Faure et al., 2007).  Alternatively, in fibroblasts, a nuclear 

accumulation of Pyk2 was accompanied by an accumulation of Hic-5 (Aoto et al., 

2002).  Pyk2 and Hic-5 are both found at FA sites and in the nucleus.  Hic-5 can 

bind the FAT domain of Pyk2 (Figure 2).  Hic-5 is both an adhesion-associated 

protein and co-activator of nuclear receptors.  Finally, Hic-5, along with Pyk2, 

shuttle away from sites of FA in response to cyclic strain in osteoblasts 

(Guignandon et al., 2006). 

 In summary, this study supports the hypothesis that Pyk2 may function as 

part of a “STOP” mechanosome.  Pyk2 represses the expression of anabolic 

protein and gene expression under basal conditions, as well as, in response to 

OFSS.  Typical of proposed mechanosome behavior, OFSS-induced 

nucleocytoplsmic shuttling of Pyk2.  While a complex of Pyk2 and MBD2 exists 

under static conditions, OFSS enhances their association.  A Pyk2/MBD2 

“STOP” mechanosome may repress the transcription of anabolic bone genes 

through MBD2’s transcriptional repression capabilities.  Future studies will need 

to examine the specificity of a Pyk2/MBD2 “STOP” mechanosome gene target(s) 

and explain mechanistically how transcription is repressed. 
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CONCLUSIONS AND PERSPECTIVES 

 

 The aim of this thesis study was to better understand the signaling 

mechanisms that osteoblasts and osteocytes use to suppress the anabolic 

response of bone to mechanical loading.  The roles of Src and Pyk2 were 

examined due to their shared knockout phenotype, increased bone mass.  I 

investigated the capacity of Src and Pyk2, two adhesion-associated proteins, to 

function as “STOP” mechanosomes in osteoblasts and osteocytes.  After initially 

finding that inhibiting Src activity caused an increase in osteocalcin expression, 

which was further enhanced in response to OFSS, Src’s pattern of activity in 

response to OFSS was examined.  OFSS-induced a pattern of increased Src 

activity that started at the plasma membrane and propagated to the nucleus.  A 

novel observation in bone cells; Src has not previously been reported to function 

in the nucleus in response to OFSS.  In further experimentation, it was confirmed 

by nuclear fractionation that OFSS-induced an increase in Src activation.  Prior to 

the initiation of this project, it was thought that Src’s role in response to OFSS 

was limited to its location at sites of FA.  Previously, it was shown that OFSS-

induces an increase in Src activation, as observed from whole cell lysates, and 

serves to propagate signaling pathways.  Through the use of a pharmacological 

inhibitor of Src activity, a biosensor for Src, and traditional molecular biology 

techniques I discovered that in response to OFSS Src’s role extends beyond its 

functions at the plasma membrane.  These data suggest, for the first time, Src 

may participate in a “STOP” mechanosome aiding in the attenuation of 
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expression of osteocalcin, an anabolic bone gene (Figure 22).  Further studies 

will examine the mechanisms by which Src suppresses gene transcription in 

response to OFSS. 

 Next, the potential of Pyk2 to function as part of a “STOP” mechanosome 

was examined.  The absence of Pyk2 caused modest increases in Cox-2 protein 

expression and osteopontin expression.  The first indication that Pyk2 might 

function as a “STOP” mechanosome was demonstrated when OFSS-induced 

enhanced expression of Cox-2 and osteopontin expression in Pyk2 null 

osteoblasts.  OFSS-induces Pyk2 nucleocytoplasmic shuttling, suggesting Pyk2 

localizes like a “STOP” mechanosome.  Further, these data indicate MBD2 

associates with Pyk2 under static conditions, but more importantly OFSS-induces 

an increase in Pyk2 and MBD2 association.  MBD2 could serve as the 

mechanism by which a Pyk2-contining “STOP” mechanosome functions to 

suppress gene transcription (Figure 22).  Since activated Src increases its 

association with activated Pyk2 in response to OFSS, future studies will need to 

examine the possibility of a Src/Pyk2/MBD2 “STOP” mechanosome. 

 In conclusion, this work supports the hypothesis that “STOP” 

mechanosomes exist to suppress the anabolic response of osteoblasts and 

osteocytes to fluid shear stress.  OFSS-induces Src and Pyk2 activation and 

subsequent suppression of anabolic protein and gene expression.  In response 

to OFSS, Src may increase its activity in the nucleus and suppress gene 

transcription by association with a repression complex.  OFSS-induces the 

nucleocytoplasmic shuttling which leads to an increased association with MBD2  
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Figure 22. Summary Figure  

 

“GO” and “STOP” Mechanosomes Relay OFSS-induced Signals That 
Result in Changes in Gene Transcription.  The findings in this dissertation 

support the proposed “STOP” mechanosome model.  Specifically, OFSS-induced 

the nuclear activity of Src and Pyk2, resulting in the suppression of anabolic bone 

genes.  The discovery of two new “STOP” mechanosomes complements findings 

of the “GO” mechanosome, β-catenin and Lef1.  A dotted line was used for the 

Src mechanosome because it is unknown whether it translocates to the nucleus 

or if a nuclear form of Src carries out gene suppression. 



	
  

93 

	
  

and repression of the anabolic bone gene, osteocalcin.  Taken together these 

data support the mechanosome hypothesis, and indicate that “STOP” 

mechansomes are triggered for activation in response to OFSS and actively 

suppress anabolic bone genes. 

 Future studies will be necessary to further describe how “STOP” 

mechanosomes function to balance the response of “GO” mechanosomes to 

mechanical loading.  Specifically, it will be important to describe the 

mechanism(s) by which “STOP” mechanosomes participate in repressing 

anabolic bone gene transcription.  Therapeutically manipulating “STOP” 

mechanosomes to inhibit negative feedback signals could enhance bone mass.  

Pharmacologically targeting “STOP” mechanosomes could provide increased 

sensitivity and magnitude of the anabolic response of bone to loading, which 

would be particularly important for patients with decreased mobility and/or 

muscle strength. 
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