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Highlights 

 Identifying patients with social determinants of health needs is challenging.

 A majority of patients need services to address social determinants of health.

 Measuring service need from structured data is insufficient.

 Unstructured data are necessary to give a complete picture of patient need.

ABSTRACT 

Introduction: Increasingly, health care providers are adopting population health management 

approaches that address the social determinants of health (SDH). However, effectively 
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identifying patients needing services that address a SDH in primary care settings is challenging. 

The purpose of the current study is to explore how various data sources can identify adult 

primary care patients that are in need of services that address SDH.   

Methods: A cross-sectional study described patients in need of SDH services offered by a 

safety-net hospital’s federally qualified health center clinics. SDH services of social work, 

behavioral health, nutrition counseling, respiratory therapy, financial planning, medical-legal 

partnership assistance, patient navigation, and pharmacist consultation were offered on a co-

located basis and were identified using structured billing and scheduling data, and unstructured 

electronic health record data. We report the prevalence of the eight different SDH service needs 

and the patient characteristics associated with service need.  Moreover, characteristics of patients 

with SDH services need documented in structured data sources were compared with those 

documented by unstructured data sources.  

Results: More than half (53%) of patients needed SDH services. Those in need of such services 

tended to be female, older, more medically complex, and higher utilizers of services. Structured 

and unstructured data sources exhibited poor agreement on patient SDH services need. Patients 

with SDH services need documented by unstructured data tended to be more complex. 

Discussion: The need for SDH services among a safety-net population is high. Identifying 

patients in need of such services requires multiple data sources with structured and unstructured 

data. 
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1. INTRODUCTION 

Recent changes to reimbursement policies in the United States (US) have actively incentivized 

preventative care, cost control, accountability for health, and a renewed focus on the quality of 

care (1). In response, (US) providers have been adopting population health management 

approaches (2) that address the underlying behavioral, social, contextual, and environmental 

drivers of health status and health care utilization (3). These factors, typically referred to as 

social determinants of health (SDH) (4, 5), have typically been outside the scope of medical 

practice (6). Nonetheless, health care organizations are increasingly offering the services of 

social workers (7), patient navigators (8), legal experts (9), behavioral health (10) and other 

professionals that directly address SDH to improve health and reduce costs in the population for 

which they care.  

A key goal of successful population health management programs involves identifying patients 

at risk for developing poor outcomes due to SDH factors. As such, health care organizations’ 

care delivery processes can benefit by better identifying patients in need of services that may 

address underlying SDH issues (11). However, identifying such patients is challenging, 

particularly in the primary care setting. Documentation of both the need for, and actual delivery 

of, services that address SDH issues tends to occur within electronic health records (EHR) 

infrequently; and when it does, it is captured in a non-standard format (12).  Moreover, services 

that address a SDH are often not associated with any billing or diagnosis codes further limiting 

routine, structured collection in EHRs and other administrative systems (13). To overcome this 

limitation, institutions have implemented patient surveys to collect SDH factors (14-16) but these 

data, even when computerized, may not be interoperable with other information systems (17) or 



their use may be viewed by patients as controversial or stigmatizing (16). In general, most 

providers do not have access to comprehensive information about patients’ SDH services need 

(18, 19).   

The purpose of the current study is to explore how effectively various data sources support 

identifying adult primary care patients that need services that address SDH.  Specifically, we 

examine the separate and joint contributions of structured and unstructured data in identifying 

patients’ needs for SDH services. In addition, we characterized the patients in need for SDH 

services and how patient characteristics differed according to SDH services need determined by 

structured and unstructured data sources.  

2. METHODS  

This cross-sectional study described patients in need of SDH services offered by a safety-net 

hospital’s federally qualified health center (FQHC) clinics. SDH services offered on a co-located 

basis were identified using structured billing and scheduling data, and unstructured EHR data. 

We report the prevalence of different SDH service needs and the patient characteristics 

associated with need. Next, we compared the characteristics of patients with SDH services need 

documented by structured data sources with those documented by unstructured data sources.  

2.1 Sample & Setting 

We identified needs for services addressing SDH in a sample of 73,085 adult (>18 years) patients 

seeking care from Eskenazi Health between April 2012 and July 2016. Eskenazi Health is the 

Indianapolis, IN metropolitan area public safety-net provider with a 315-bed hospital and 10 

FQHC sites. Eskenazi Health offered SDH services on a co-located basis at the primary care sites 



during the study period, i.e. Eskenazi Health was not relying on referrals to external providers 

and agencies for these services. All patients had at least one outpatient encounter during the 

study period. 

2.2 Data 

Information reflected multiple information systems linked through common patient identifiers. 

The primary data sources were Eskenazi Health’s home grown EHR and the local community 

health information exchange (HIE). We also accessed appointment data from four different 

outpatient registration and scheduling systems. 

2.3 Measuring the need for SDH services 

SDH services of interest were: social work, behavioral health, nutrition counseling, respiratory 

therapy, financial planning, medical-legal partnership assistance, patient navigation, and 

pharmacist consultation. Realizing that patients’ need for services can be met or unmet, we 

operationalized need broadly as any documentation that a health care professional judged that 

any of the aforementioned services were appropriate, recommended, or potentially beneficial to 

the patient. Therefore, we considered any received services as indicative of need as well as 

scheduled appointments regardless of whether they were kept or not. Need for each SDH service 

was operationalized as binary yes or no variables. 

The eight SDH services had different workflows and documentation processes, which required 

searching multiple information sources to identify patients in need of services. First, we 

examined registration and scheduling systems for any patient appointments for nutritional 

counseling, behavioral health, respiratory therapy services, patient navigation, and financial 



counseling. The appointment data reflected all kept, canceled, and “no show” visits. Second, we 

queried diagnosis and billing codes from the EHR and the HIE for ICD-9, ICD-10, and CPT 

procedure codes associated with behavioral health, nutritionist, respiratory therapy, and 

pharmacist consultation. Third, we reviewed the EHR’s unstructured data (i.e. orders and notes) 

for additional documentation of SDH services need. We searched provider orders for all eight of 

SDH services using keywords informed by a review of the literature and professional society’s 

documentation recommendations (see Appendix for sources and a tabular list of SDH by data 

source). Additionally, because the EHR progress notes contained a specific section for social 

worker documentation, we used natural language processing to identify instances of social 

worker contact with patients (see Appendix). We excluded any notes associated with inpatient 

admission periods and limited the notes to only those signed by social workers practicing in the 

outpatient setting. For each service, the source of documented need could be structured (i.e. 

billing and appointments), unstructured (i.e. orders and notes), or documented by both. 

Additionally, we created a summary variable of any documented need based on the presence of 

need for any of the eight SDH services. 

2.4 Additional measures 

The EHR and HIE data provided patient demographics such as age, race/ethnicity, and gender. 

We also created binary indicators for the 20 most common chronic conditions (20) and tobacco 

use (21), as well calculated the Charlson comorbidity index using diagnosis codes (22). We also 

counted each patient’s total number of emergency department encounters, primary care visits, 

and hospitalizations during the entire study period. For the secondary analysis of patients with 

SDH services need (see below), we limited the above measures to the data available prior to the 



earliest date of documented need. This alternative method of measurement enabled comparisons 

of prior patient history between the different sources of information (i.e. structured and 

unstructured) available at the time of SDH services need documentation. 

2.5 Analyses 

We described the sources of information on SDH services, prevalence of need, and patient 

characteristics using frequencies and means. We compared patient characteristics in need of 

SDH services to those without an identified need using X2 and t-tests. To assess the level of 

agreement between structured and unstructured information sources, we calculated kappa 

coefficients for documented need of any service by individual SDH services.  

As a secondary analysis, we compared the characteristics of patients with SDH services need 

documented by structured and unstructured data. In a multinomial probit model, we examined 

the patient factors associated with having SDH service need documented by unstructured data, 

and by both structured and unstructured data, in comparison to need documented by structured 

data only. A best fitting model was identified using a backward elimination approach using the 

Bayesian Information Criterion with regression coefficients expressed as marginal effects. 

3.1 RESULTS 

Overall, 53% of patients (n=38,563) were in need of at least one SDH service during the study 

period (Table 1). Patients identified needing SDH services tended to be female, older, more 

medically complex, and higher utilizers of services. Specifically, the prevalence of nearly all 

chronic conditions examined was higher among those documented to be in need of services that 

addressed a SDH. For example, diagnoses of hypertension (53% vs. 35%), diabetes (32% vs. 



14%), and depression (31% vs. 12%) were significantly higher in the in patients in need of SDH 

services (all p<0.05). In addition, the patients with documented SDH services need also more 

often had a history of substance abuse (20% vs. 14%; p<0.0001) and tobacco usage (29% vs. 

20%; p<0.0001). 

Patients in need of social determinants of health services were identified from both structured 

and unstructured data (Table 2). Agreement on patients’ need for SDH services between 

structured and unstructured data tended to be low. The overall prevalence of any SDH services 

need based on structured data only was 33% compared to 42% for unstructured data only (kappa 

= 0.35).  The most commonly identified SDH service was nutritional counseling service (35%) 

followed by behavioral health (21%), and social work (13%). All other social services were less 

prevalent. For the individual services that address SDH, the estimated prevalence of patient need 

was also highly variable between structured and unstructured data. For example, social work, 

medical-legal partnership, and pharmacist consultation were completely undocumented in 

structured data. For services documented by both structured and unstructured data, the agreement 

on individual patient need was generally very low.  

The association between patient characteristics and the type of data documenting SDH service 

need (i.e. structured or unstructured) was determined in a multinomial probit model (Table 3). 

Patients with SDH services need identified only through unstructured data sources (Column A) 

differed significantly from patients with SDH services need identified only in structured data (the 

reference group). For example, patients with SDH services need documented by unstructured 

data tended to be more complex according to Charlson scores (marginal effect = 1.50; 

95%CI=0.52, 2.49) than patients whose SDH service needs were documented by structured data. 



In addition, patients with SDH services need documented by unstructured data only were 

associated with substance use (marginal effect = 2.92; 95%CI= 0.87, 4.98), tobacco use (3.36; 

95%CI=1.65, 4.88), and the behavioral health conditions of depression (marginal effect = 8.70; 

95%CI=7.17, 10.22) and schizophrenia (marginal effect = 7.42; 95%CI=2.82, 11.04). High 

prevalence chronic conditions of asthma and diabetes were negatively associated with SDH 

services need documented by unstructured data only. Moreover, the number of outpatient 

encounters was negatively associated with SDH service need being documented by unstructured 

data only (marginal effect = -0.78; 95% confidence interval (CI) = -0.85, -0.44). Stated 

alternatively, the more frequently a patient had outpatient encounters, the more likely structured 

data documenting that patient’s SDH services need was present. 

The multinomial probit model also described the association between patient characteristics and 

SDH services need documented by both structured and unstructured data (Table 3 column B) in 

comparison to patients with SDH services need identified only in structured data (the reference 

group). Several of these associations were in opposite directions than the association observed 

for patients with SDH services need identified only through unstructured data sources. For 

example, asthma (marginal effect = 6.89; 95%CI=4.33, 9.44) and diabetes (marginal effect = 

9.82; 95%CI=8.05, 11.80) were both positively associated with patients’ SDH services need 

being documented by both structured and unstructured data. Also, histories of substance abuse 

(marginal effect = -7.93; 95%CI=-10.18, -5.68) and tobacco use (marginal effect = -3.37; 95%CI 

= -5.11, -1.62) were negatively associated with having both structured and unstructured 

documentation of SDH services need compared to only structured documentation. Again, the 

more health care encounters observed, including outpatient visits and hospitalizations, the more 

likely the patient’s SDH service need would be documented by structured data. 



 

4. DISCUSSION 

A US, urban safety-net population demonstrated a frequent need for the types of services that 

address SDH services need. The high prevalence of need indicates health care providers should 

develop strategies to support the demand for SDH services. At the same time, health care 

providers must also be attentive to the documentation, storage, and retrieval of information about 

SDH services delivered within their organization. Even within an integrated delivery system with 

a long history of EHR usage and HIE participation, identifying SDH services need required 

multiple information sources with both structured and unstructured data.  

We estimated that more than half of the population needed SDH services. To the best of our 

knowledge, ours was the first attempt to quantify the need for SDH services in US primary care, 

although others have documented a similarly high prevalence of SDH associated risk factors (15, 

23). This consistency suggests that the need for SDH services in the US is likely high - 

particularly for those providers caring for vulnerable patient populations. Problematically, 

physicians and medical care providers are not trained nor equipped to deliver such services (24), 

and widespread dissemination of the SDH paradigm arrived later in the US than in other parts of 

the world (25). As a further complication, structural barriers exist in the US as health care, public 

health, and social services providers operate as independent systems comprised of varying mixes 

of public, non-profit, and for-profit organizations each with different financing mechanisms, 

different goals, and no overarching coordination.  



In light of the high prevalence of need for SDH services coupled with the trend towards greater 

accountability for population health, it is incumbent upon health care organizations in the US to 

create the infrastructure to make such services accessible. In the current study, SDH services 

were offered directly by the health care organization under the FQHC model; other health care 

organizations seeking to address patients’ SDH could follow a similar approach by either 

expanding care team members with skills in addressing SDH (26) or co-locating services (11). 

Direct service offering has the benefits of facilitating patient access (27) and improved 

coordination (28). Also, the shift to value-based payment models in the US may make it 

financially feasible for health care organizations to offer such (predominately) preventative and 

health management services in expectation of avoiding downstream patient costs (29, 30). An 

alternative approach to addressing patients’ SDH services need is through referral partnerships 

with community and social service organizations (31), such as required by the Patient Center 

Medical Home model (32). Even though the evidence on long-term patient health improvement 

is limited (33), external community and social service organizations remain an avenue for 

providers to improve health behaviors and address social needs. Additionally, addressing the 

differential funding streams between health care and social service is a challenge, but it is not 

insurmountable (11). 

Second, these findings highlight the importance of unstructured data in health care organizational 

activities and population health services research. Several previous studies have demonstrated 

the value of unstructured data in such diverse settings as genetics research (34), identifying 

dialysis patients (35), attribution of diabetes patients (36) and risk prediction (37). Likewise, as 

these findings indicate, unstructured data are necessary to sufficiently document the services 

delivered by providers. The estimated prevalence of SDH need in this population was more than 



1 in 2, however, if we used only structured data the estimate would have been 1 in 3. 

Organizations relying solely on structured data, e.g. procedures codes and appointments, will 

likely underestimate needed services that directly address SDH. Such underestimation could be 

problematic for health care administrators’ resource allocation and operations planning, but 

undercounting patients in need is not the sole issue. Importantly, our findings suggest that 

unstructured data was associated with identifying the more complex and potentially more 

difficult patients, e.g. those with more comorbidities, mental health comorbidities, substance 

abuse, and potentially less ongoing primary care. Survey research suggests that patient 

complexity is associated with increased SDH service use (38) and unstructured data may be the 

means for providers to systematically identify the patients that have greater need for, or that 

would benefit more from SDH services.  

While valuable, unstructured data are complex, difficult to extract, and variable across health IT 

systems (39). This work, then, joins a growing chorus of research calling for more flexible, 

effective and efficient tools and methods for extracting and standardizing unstructured data in the 

social, behavioral, and contextual domains (11, 17, 40). In primary care settings, such increased 

data accessibility could facilitate utilization risk prediction, point-of-care decision support, or 

automated referrals to services (41, 42). For health care organizations, better information on 

SDH needs could be leveraged to identify the appropriate social services organizations necessary 

to deliver patient centered services. For policymakers, aggregating such information would 

support policy evaluation, help assess health equity, and support identifying population’s 

underlying health needs. Moreover, as researchers, policy makers, and technology experts 

consider data collection methods and data standards around SDH, the role of documenting SDH 

service delivery cannot be ignored. Understanding the importance of SDH in patient risk and 



compliance are critical, but the better capture and standardization of SDH services will support 

effective referrals to a wide range of services in support of population health and prepare health 

care organizations for the day when more non-clinical services become reimbursable (42). The 

low capture rates for many types of SDH services across both structured and unstructured data 

suggests that we are only beginning to understand the demand for specific SDH services. Better 

characterization of this demand will come with more complete and accurate structured and 

unstructured data capture. 

4.2 Limitations 

The generalizability of these findings may be limited in terms of patient population and 

differences in documentation practices across providers. Additionally, several of SDH services 

included in this study were not offered over the course of the entire study period. Importantly, 

our primary outcome of SDH services need only reflects a partial list of all the potential SDH 

issues that influence patient health (e.g. government policies and environmental conditions); 

moreover, our measure was not assessed against a gold standard. We did not assess the quality of 

either the structured or unstructured data, which can be highly variable. Further, we only 

examined data sources currently used in the FQHC’s clinical care setting. Information systems 

such as environmental monitoring, census data, educational information systems, and other 

public health information systems are critically important to understanding SDH, but were not 

considered in the current analysis. Lastly, we only assessed SDH services need; patients referred 

to services may have refused the referral or opted not to keep the appointment.  

5. CONCLUSION 



The need for SDH services among safety-net populations is high. Identifying patients in need of 

such services requires multiple data sources with structured and unstructured data. Health care 

organizations preparing for population health activities and payment reform need to identify 

approaches for both ensuring patient access to SDH services as well as documenting SDH 

services delivery. 
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Summary Table 

 A majority of patients may be in need of the services that address the social determinants 

of health. As a result, health care organizations will need to create the infrastructure to 

make such services accessible to patients. 

 Measuring service need from structured data is insufficient; unstructured data are 

necessary to give a complete picture of patient need.  
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Table 1. Comparison of an adult safety-net primary care population with and without a documented need for social 

determinants of health (SDH) services, 2012-2016. 

 
 Total In need of at least 1 

SDH service 

No SDH service needs p 

 n=73,085 n= 38,563 n= 34,522   

 %    

Age (mean, sd) 44.6 (15.4) 45.5 (14.7) 43.6 (16.1) <0.0001 

Male gender 34.6 31.4 38.1 <0.0001 

Race / ethnicity     

White, non-Hispanic 25.8 28.6 22.7 <0.0001 

African American, non-Hispanic 40.1 40.6 39.6 0.007 

Hispanic 18.5 18.3 18.7 0.165 

Other 5.4 4.9 5.9 <0.0001 

Diagnoses     

Hypertension 44.6 53.2 35.0 <0.0001 

Congestive heart failure 5.2 6.5 3.8 <0.0001 

Coronary artery disease 7.5 9.1 5.8 <0.0001 

Cardiac arrhythmias 8.6 10.0 7.1 <0.0001 

Hyperlipidemia  21.5 27.0 15.3 <0.0001 

Stroke 4.1 5.0 3.2 <0.0001 

Arthritis 10.9 13.4 8.1 <0.0001 

Asthma 9.0 12.0 5.7 <0.0001 

Cancer 8.7 9.5 7.8 <0.0001 

COPD 11.0 14.4 7.2 <0.0001 

Depression 22.0 30.7 12.2 <0.0001 

Diabetes 23.4 32.0 13.7 <0.0001 

Hepatitis 4.3 5.1 3.5 <0.0001 

HIV 1.0 0.9 1.1 0.0282 

Schizophrenia 3.5 4.3 2.6 <0.0001 

Substance abuse 17.3 20.3 13.8 <0.0001 

Charlson index score (mean, sd) 0.8 (1.3) 1.1 (1.4) 0.6 (1.1) <0.0001 

Tobacco use 24.5 28.8 19.6 <0.0001 

Hospitalizations (mean, sd) 1.4 (5.2) 34.1 (30.7) 1.0 (2.9) <0.0001 

ED visits (mean, sd) 7.9 (20.9) 9.3 (24.5) 6.4 (15.7) <0.0001 

Outpatient (mean, sd) 28.2 (28.7) 1.6 (6.5) 21.5 (24.7) <0.0001 

 



Table 2. Prevalence of the need for social determinants of health services (SDH) in an adult safety-net primary care 

population, by source of information, 2012-2016. 
     

Service Documented 

Need 

Structured 

data only 

Unstructured data 

only 

Kappa 

Any SDH service 52.8 33.2 41.8 0.35 

Social work 12.5 0.0 12.5 --1 

Behavioral health 20.5 6.8 16.7 0.17 

Nutritional counseling 35.1 24.2 26.6 0.49 

Respiratory therapy 4.6 3.0 3.3 0.53 

Financial counseling 6.2 5.1 1.2 0.01 

Medical-legal partnership 0.5 0.0 0.5 -- 

Patient navigation 0.5 0.5 0.0 -- 

Pharmacist consultation 0.2 0.0 0.2 -- 

1Kappa could not be calculated 

 

 

 

 

  



 

Table 3. Association between adult patient characteristics and social determinants of health (SDH) service need 

documented by unstructured data only, and both structured and unstructured data, compared to structured data 

sources only. 

 (A)  (B)  

 SDH services need documented by 

unstructured data only 

compared to structured data sources 

 SDH services need documented by 

structured & unstructured data  

compared to structured data sources  

 

 Marginal effect (95% CI) p Marginal effect (95% CI) p 

 n= 14,287  n= 16,235  

Age 0.07 (0.02, 0.11) 0.003 0.14 (0.09, 0.18) <0.001 

Male -0.50 (-1.73, 0.72) 0.420 -6.63 (-7.93, -5.33) <0.001 

Diagnoses     

Hyperlipidemia 0.75 (-0.96, 2.45) 0.393 3.03 (1.26, 4.79) 0.001 

Arthritis 4.21 (1.70, 6.72) <0.001 0.41 (-2.21, 3.03) 0.761 

Asthma -5.90 (-8.40, -3.40) <0.001 6.89 (4.33, 9.44) <0.001 

Depression 8.70 (7.17, 10.22) <0.001 3.37 (1.72, 5.01) <0.001 

Diabetes -11.6 (-13.44, -9.76) <0.001 9.92 (8.05, 11.80) <0.001 

HIV -4.56 (-11.44, 2.33) 0.195 -4.94 (-12.11, 2.23) 0.177 

Schizophrenia 7.43 (3.82, 11.04) <0.001 2.73 (-1.23, 6.69) 0.176 

Substance abuse 2.92 (0.87, 4.98) 0.005 -7.93 (-10.18, -5.68) <0.001 

Charlson index 1.50 (0.52, 2.49) 0.003 1.75 (0.72, 2.77) 0.001 

Tobacco use 3.26 (1.65, 4.88) <0.001 -3.37 (-5.11, -1.62) <0.001 

Hospitalizations 0.12 (-0.31, 0.55) 0.590 -1.42 (-1.94, -0.90) <0.001 

Outpatient visits -0.78 (-0.85, -0.71) <0.001 -0.50 (-0.57, -0.44) <0.001 

1Compared to structure data sources only 

 

 

 




