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Madan Gopal Kundu

ADVANCED MODELING OF LONGITUDINAL SPECTROSCOPY DATA

Magnetic resonance (MR) spectroscopy is a neuroimaging technique. It is widely used

to quantify the concentration of important metabolites in a brain tissue. Imbalance in

concentration of brain metabolites has been found to be associated with development of

neurological impairment. There has been an increasing trend of using MR spectroscopy

as a diagnosis tool for neurological disorders. We established statistical methodology to

analyze data obtained from the MR spectroscopy in the context of the HIV associated neu-

rological disorder. First, we have developed novel methodology to study the association

of marker of neurological disorder with brain MR spectrum and its evolution over time.

This setting fits in the framework of scalar-on-function regression model with individual

spectrum as the functional predictor. We have extended one of the existing cross-sectional

scalar-on-function regression techniques for longitudinal set-up. Advantages of the pro-

posed method include: 1) ability to model flexible time-varying associations between the

scalar response and the functional predictor and (2) ability to incorporate prior information.

In the second part of my research, I studied the influence of the clinical and demo-

graphic factors on the progression of the brain metabolites over time. To understand the

influence of these factors in a fully non-parametric way, we proposed LongCART algorithm

to construct a regression tree with the longitudinal data. Such a regression tree identifies

smaller subpopulations (characterized by the baseline factors) with differential longitudinal

profiles and hence helps us to identify the influence of the baseline factors. Advantages of

the LongCART algorithm include: (1) maintaining type-I error while determining the best
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split, (2) substantially reducing computation time and (3) applicability in the mistimed

observation setting.

Finally, I carried out an in-depth analysis of longitudinal changes in the brain metabolite

concentrations in three brain regions, namely, white matter, gray matter and basal ganglia

in chronically infected HIV patients enrolled in the HIV Neuroimaging Consortium study.

We studied the influence of important baseline factors (clinical and demographic) on the

longitudinal brain metabolite profiles using the LongCART algorithm in order to identify

subgroups of patients at higher risk of neurological impairment.

Jaroslaw Harezlak, Ph.D., Chair
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2.8 Estimates of the regression function (with 95% point-wise confidence band)

for the analysis described in Section 2.8 . . . . . . . . . . . . . . . . . . 40

3.1 Sample longitudinal tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 True tree structure for the simulation described in Section 3.6.2 . . . . . 71

3.3 Longitudinal regression tree results for progression of concentration of

choline as discussed in Section 3.7 . . . . . . . . . . . . . . . . . . . . . 76

xiv



4.1 Influence of baseline factors in longitudinal progression of Cr in white mat-

ter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Influence of baseline factors in longitudinal progression of NAA in white

matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Influence of baseline factors in longitudinal progression of Cho in white

matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Influence of baseline factors in longitudinal progression of Cr in basal gan-

glia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Influence of baseline factors in longitudinal progression of MI in basal gan-

glia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Influence of baseline factors in longitudinal progression of Cr in gray matter 94

4.7 Influence of baseline factors in longitudinal progression of NAA in gray

matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 Influence of baseline factors in longitudinal progression of Cho in gray

matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Influence of baseline factors in longitudinal progression of MI in gray mat-

ter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Influence of baseline factors in longitudinal progression of Glx in gray mat-

ter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xv



Chapter 1

Motivation and Objective

The biological basis for several psychiatric disorders are not yet fully understood. The recent

advancement in neuroimaging techniques has allowed to relate development of psychiatric

disorders to brain mechanisms (Dager et al., 2008). For past two decades, researchers

have started to use magnetic resonance imaging (MRI) techniques, e.g., magnetic resonance

spectroscopy (MRS), as a diagnostic tool for various psychiatric disorders (Hasler et al.,

2010; Horská et al., 2013; Lagopoulos, 2007; O’Neill et al., 2013; Wang et al., 2006). In

general, development of a psychiatric disorder is seen as a result of abundance or reduction

in certain metabolites in brain. Each of these metabolites contributes to the MR spectrum.

Therefore, the changes in concentration of metabolites corresponding to development or

progression of psychiatric disorders should be reflected in the observed MR spectrum. This

justifies the use of MRS to study psychiatric disorders.

1.1 Magnetic resonance spectroscopy

Magnetic resonance spectroscopy (MRS) is one of the several modalities of neuroimaging.

The other well known modalities of neuroimaging includes computerized tomography (CT),

magnetic resonance imaging (MRI), functional MRI (fMRI) and diffusion tensor imaging

(DTI). In general, neuroimaging is the process of producing images of structure or activity

of the brain or other parts of nervous system. It produces potentially useful clinical tools

for structural and functional assessment of psychiatric disorders such as dementia (Malhi

and Lagopoulos, 2008).
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MRS looks at the chemical composition of the tissue of interest and displays it in a spec-

trum. MR spectra may be obtained from different nuclei e.g., Protons (1H), phosphorus

(31P ), fluorine (19F ), carbon (13C) and sodium (23Na). Protons (1H) are the most used

nuclei for clinical applications in the human brain mainly because of its high sensitivity and

abundance. Proton MRS is also known as H-MRS.

The MRS technique (or MRI technique in general) is developed based on following prin-

ciple: when an atom is placed in an external magnetic field, the spin frequency (also known

as resonance) of its nuclei are changed and aligned with the direction of magnetic field.

In MRS technique, an in-vivo tissue is first placed in big magnetic field and then radio-

frequency (RF) waves are turned on and off systematically to yield pulses of energy. This

pulse of energy is then captured through a detector coil outside the tissue that can be mea-

sured. The pulse of energy received in the detector coil is generally in the form of oscillating

sinusoidal curve in time domain and then it is Fourier transformed in frequency domain. A

Fourier transformed function is represented by the set of amplitudes corresponding to the

set of frequencies. An MR spectrum is obtained by plotting the amplitude (y-axis) against

the frequency of nucleus in ppm (x-axis) which looks like curve with sharp bumps. A spec-

trum from a tissue is displayed in Figure 1.1. More detailed information about spectroscopy

is available in many literature including Malhi and Lagopoulos (2008) and Bertholdo et al.

(2013).

MRS produces spectrum that contains information about concentration of metabolites

those are present in tissue. We can obtain the information about the concentration of several

metabolites present in the tissue via some dedicated software such as LCModel (Provencher,

2005). Traditionally MRS has been used as a diagnostic tool in the biochemical characteri-
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Figure 1.1: An MR spectrum from basal ganglia region of brain.

zation of pathophysiological processes predominantly in the brain such as tumors, abscesses

and stroke. However, more recently the researchers have been increasingly applying MRS

successfully to several psychiatric disorders.

1.2 External information about observed spectra

A tissue contains a number of metabolites such as Creatine (Cr), Glutamate (Glu), Glu-

cose (Glc), Glycerophosphocholine (GPC), myo-Inositol (mI), N-Acetylaspartate (NAA),

N-Acetylaspartylglutamate (NAAG), scyllo-Inositol (Scyllo) and Taurine (Tau). These

metabolites are generated as a bi-product of metabolism in tissue. Each of these metabo-

lites produces a unique spectrum. In other words, two metabolites do not produce spectra

of same shape. Spectra associated with some of the metabolites are displayed in Figure

1.2. An observed spectrum from a tissue is mixture of spectra from all of these metabolites

present in that tissue, plus spectrum of water and some random noise. The relative contri-

bution of spectrum of individual metabolites on observed spectrum from a particular tissue

3
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Figure 1.2: MR spectra of the 9 pure metabolite profiles.

depends on its relative concentration in that tissue. A metabolite with greater relative

concentration in a tissue is more likely to influence the observed spectrum.

By comparing the two plots in Figure 1.1 and 1.2, we can verify that the observed spectra

have their peaks at the locations where at least one of the metabolites has its peak. Since an

observed spectrum is mixture of pure metabolites’ spectra, we can expect that the observed

spectra to lie near a functional subspace spanned by the spectra of pure metabolites. Hence,

we can utilize the spatial information about the spectra of pure metabolites as

external information. This information has been employed in the estimation process in

Chapter 2 as discussed in Section 2.5.2.

1.3 Objectives

In this dissertation, we have proposed statistical methods to analyze the data we get from

MRS in the context of neurocognitive impairment. Psychiatric disorders are often quantified

by some disease marker. Throughout this work, we have considered only continuous and

4



scalar disease marker. For example, often the degree of neuro-psychological impairment is

measured by global deficit score (GDS) which is scalar and continuous. We are interested

in studying a) the progression of psychiatric disorders using entire spectra obtained via

MRS and b) the progression of brain metabolites. We are interested in addressing following

relevant questions:

Question 1. How does an MR spectrum from brain tissue influence some scalar disease

marker longitudinally? Here we have considered entire observed spectrum as our

predictor.

Question 2. Is there any baseline factor that influence the longitudinal change of a given

metabolite?

The first two objectives (Objective 1 and 2) of this research were formulated to answer

these questions. Finally, in objective 3, we we have analyzed the metabolite concentra-

tion data in depth from HIV Neuroimaging Consortium (HIVNC) study using the method

developed under Objective 3. These objectives are briefly described below and have been

detailed in Chapters 2 - 4.

1.3.1 Objective 1: Longitudinal functional regression with structured penalties

Under this objective, we proposed a methodology that enables us to answer the Question

1. In practice, researchers first extract the concentration of the individual metabolites from

the observed spectra using dedicated software programs such as LCModel (Provencher,

2005). Then they model some disease marker using the concentration of these metabolites

using standard approaches for univariate and multivariate analyses. There are two major

problems with this approach: (1) We loose information when we use only concentrations

instead of entire spectrum, and (2) The process of extracting concentration of metabolites

from spectra is not completely accurate.

5



Our goal is to use entire MR spectrum to model disease marker. Here response is dis-

ease marker which is scalar and continuous. But our predictor is MR spectrum which is

a function. This is a scenario where we are interested in modeling a scalar continuous re-

sponse using predictor function. We cannot apply simple regression technique here; rather,

we have to consider functional linear modeling (fLM) that connects a scalar response to a

predictor function. Moreover, we had access to data on observed MR spectra and a disease

marker, both observed longitudinally. Hence, we are interested in fLM in longitudinal set-

ting. Although fLM have recently been well studied in cross-sectional settings, extensions

to longitudinally-collected functions have not received much attention. We have proposed

LongPEER method to model scalar outcomes with predictor function via fLM in longitudi-

nal setting. The proposed method is well-suited for the situation where external information

is available about the predictor function and can efficiently use that information during es-

timation. For MR spectra, the external information comes in form of spatial information

about pure metabolite spectra as discussed in Section 1.2. The work under this objective

is described in Chapter 2.

1.3.2 Objective 2: Construction of regression tree with longitudinal data

Under this objective, we considered both the response and predictor variables as scalar.

Here, we seek answer for Question 2: Is there any factor that influence the longitudinal

profile of individual metabolite concentrations? Our goal is to analyze the information on

the concentration of several metabolites obtained via LCModel. Usually, the change over

time is studied via either mixed effects model or marginal models. In practice longitudi-

nal profile of concentrations of metabolites may be influenced by the some demographic

and clinical factors such as age, gender, duration of highly active antiretroviral therapy

6



(HAART), CD4 count. In order to understand the influence of different clinical and demo-

graphic variables at baseline on the progression of concentration of a specific metabolites in

fully non-parametric way, we considered constructing regression tree with longitudinal data.

The major problem with constructing regression tree is the controlling for type I error.

This is because typically, in construction of regression tree, the best split is determined

by statistical testing at each cut-off point of all the candidate clinical and demographic

variables. We call this as a naive approach. This naive approach requires large number

of statistical tests. Let’s assume that we have S partitioning variables as XG1
1 , · · · , XGS

S

with cut-off points as G1, · · · , GS , respectively. In that case, total number of tests would

be
∑S

s=1 (Gs − 1). We have proposed LongCART algorithm for construction of regression

tree that involves only single test for each partitioning variable. We call these tests as test

for parameter instability. Hence, with S partitioning variables, we need to perform only S

tests for parameter instability. The number of tests with the proposed approach would be

much smaller than
∑S

s=1 (Gs − 1) in presence of continuous partitioning variables and/or

categorical partitioning variables with greater than two categories. Consequently, it would

be much easier to control type I error for S tests with some adjustment for multiplicity

compared to
∑S

s=1 (Gs − 1) number of tests. Further, the proposed LongCART algorithm

is faster than the naive approach and can be extended in more complicated situation. The

work under this objective is described in Chapter 3.
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1.3.3 Objective 3: Identifying factors influencing longitudinal changes of brain

metabolites in HIV-infected subjects enrolled in HIVNC study

We have considered MRS assessments from 243 HIV patients on antiretroviral regimen

enrolled in HIV Neuroimaging Consortium (HIVNC) study. HIVNC was formed to examine

pattern or extent of brain injury in chronically infected patients on antiretroviral (ARV)

treatment. We have studied the influence of different demographic and clinical factors on the

longitudinal change of brain metabolite concentrations using the methods developed under

Objective 2. Baseline was determined as the date of enrollment and only the observations

within 3 years from baselines were included. The individuals included in the study had

at least one post-baseline measurement within 3 years. Five metabolites were considered:

creatine (Cr), N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), and glutamate

and glutamine (Glx) in the basal ganglia, frontal white matter, and mid-frontal cortex.

1.4 MRS data for the application of proposed methods

Our work is motivated by HIV Neuroimaging Consortium (HIVNC) study where magnetic

resonance (MR) spectra have been collected longitudinally from late stage HIV patients

(Harezlak et al., 2011). The study cohort was comprised of chronically HIV-infected pa-

tients enrolled in a longitudinal study of HIV associated brain injury at the following sites:

University of California (San Diego), University of California (Los Angeles), Harbor-UCLA,

Stanford University, University of Colorado, University of Pittsburgh, and Rochester Uni-

versity. Details of the inclusion and exclusion criteria and MRS for this cohort have been

described elsewhere (Harezlak et al., 2011). The methods developed under Objectives 1

and 2 have been illustrated in this data. The metabolite concentration data collected from

this study have been analyzed in depth to study the influence of baseline factors on the

longitudinal change of brain metabolites under Objective 3.
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Chapter 2

Longitudinal functional regression model with structured penalties

The term functional data analysis (FDA) was first introduced by Ramsay and Dalzell (1991)

in the statistical literature. FDA goes one big step further from multivariate data analysis.

In multivariate data analysis, we concerned with data in the form of random vectors, whereas

in FDA we analyze functions, such as curves, shapes and images (Müller, 2005). FDA is

becoming increasingly common than ever before due to technological advancements and

increased availability of storage of large datasets, even in longitudinal setting. One of the

various interesting aspect of FDA is the extension of the notion of linear model towards

functional context. We can incorporate function in linear model in following ways (Müller,

2005; Ramsay and Silverman, 1997)

1. The dependent or response variable is scalar, but the predictor is function

2. The dependent or response variable is function, but the predictor(s) is (are) scalar

3. Both the dependent and predictor variables are function

Our interest is in the first one that relates scalar response to a predictor function. Through-

out this dissertation, by functional linear model (fLM), we refer only to the models con-

necting scalar continuous response with a predictor function. In the cross-sectional setting,

there have been many proposed methods to fit fLM. One of the approach is “Partially em-

pirical eigenvectors for regression” (PEER) that allows to exploit the external information

about the predictor function (Randolph et al., 2012). In this chapter, we have extended

this approach to longitudinal setting.
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2.1 Functional data

Functional data is represented by set of measurements obtained via observing the value of

a function at several sampling points in its domain. Let W (s) be any function in domain

Ω. Suppose we have observed W (s) at the discretized sampling points s1 < · · · < sp

and measurements are denoted by w1, · · · , wp. Then w ≡ {w1, · · · , wp} will be considered

as functional data representing the function W (·). The functional data (i.e. observed

data at discretized samping point from a function) might seem as multivariate data, but

there are important distinction. First, functional data should be thought of as sequence of

observations from a single entities, rather than merely a sequence of individual observations.

Second, the order of the observation in the functional data is important. According to

Müller (2005), functional data is multivariate data with an ordering on the dimensions.

Third, a multivariate data represents the data which are in finite dimension, but functional

data represents a function which is infinite dimensional. Finally and most importantly, the

term functional in reference to functional data refers to the intrinsic structure of the data.

Multivariate data lacks such kind of intrinsic structure (Ramsay and Silverman, 1997). We

cite here two examples of functional data.

Example 1. Suppose we have measurement of height of an individual at 10 different ages.

Then these measurements can be treated as functional data because these measure-

ments along with the age of measurements represents the function height(age).

Example 2. The output of MRS from a tissue is represented by the measurements on am-

plitude at several frequency levels. The set of measurements on amplitude along with

the frequency level should be considered as functional data because these observations

are sampled from the function W (s), where s denotes the frequency and W (s) denotes

the amplitude at frequency s.
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2.2 Functional linear model

The cross-sectional fLM with scalar response y and predictor function W (·) can be stated

as follows (see e.g., Yao and Müller, 2010)

yi = β +

∫
Ω
Wi(s)γ(s)ds+ εi (2.2.1)

where i is the index for subject, β is the usual intercept term that adjusts for the origin of

the y, Ω denotes the domain of the predictor functions W (s), s ∈ Ω, and γ(s) is a square

integrable function that models the linear relationship between the predictor function and

scalar response. In addition, εi ∼ N(0, σ2
ε ). Here,

∫
ΩWi(s)γ(s)ds is the subject specific

functional effect. The regression function, γ(s), can be thought of as the weighting function

that weights information within the Wi(s) across the values of s (Ramsay and Silverman,

1997). We assume that γ(·) ∈ L2(Ω).

As there is no unique γ(·) that solves the equation (2.2.1), additional regularization or

constraint is required. Typically, some form of smoothness is imposed on γ(·), one approach

being to expand both regression function γ(·) and predictor function W (·) in terms of a set

of spline basis functions such as B-splines and then obtain the regularized estimate of γ(·)

(Ramsay and Silverman, 1997). Another approach is to express the regression function γ(·)

in terms of the orthonormal eigenfunctions of covariance of W (·) using Karhunen-Loève (K-

L) basis expansion (see e.g., Müller, 2005). A third approach is to combine the above two

approaches, known as penalized functional regression (PFR) approach (Goldsmith et al.,

2011). In PFR approach, a spline basis is used to represent the regression function and a

basis of eigenfunctions from the set of predictors is used to represent each W (·). Another

approach is to use wavelet basis, instead of eigenfunctions, to represent the predictor func-
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tions (Morris and Carroll, 2006). Here, we have adopted “Partially empirical eigenvectors

for regression” (PEER) approach by Randolph et al. (2012) which does not begin by ex-

plicitly projecting onto a pre-specified basis of functions. Instead, the estimate is obtained

by projecting onto a space determined jointly by the covariance function of W (·) and the

decomposition-based penalty. Decomposition-based penalty provides a mean to incorporate

external information into the estimation process and this is discussed in Section 2.5.2.

2.3 PEER estimation in fLM

PEER approach exploits the familiar framework of penalized least-squares regression by

imposing a scientifically-informed quadratic penalty term into the estimation process. The

resulting estimate is a function that is represented by a set of “partially empirical” eigenvec-

tors that arise from a joint eigen-basis decomposition of the discretized predictor functions

and the penalty term; see (Randolph et al., 2012).

Let consider Ω = [0, 1], a closed interval in R and let W (·) denotes a random function in

L2(Ω). Consider W (·) as a predictor function of interest and Wi(·) is the predictor function

associated with the ith subject (i = 1, . . . , N). Technically, we can observe an idealized pre-

dictor function only at finite sampling points. We will assume that each observed predictor

function is sampled equally at p sampling points, s1, . . . , sp ∈ [0, 1], with sampling that is

appropriately regular and dense enough to capture informative spatial structure, as seen,

for instance, in the MRS data in Section 1.1. Let wi := [wi(s1), · · · , wi(sp)]> be the p × 1

vector of values sampled from the realized function Wi(·). Clearly, as explained in Section

2.1, wi is functional data because it represents the function Wi(·). The observed data are of

the form {yi;wi}, where yi is a scalar outcome, and wi is the vector of values sampled from

the realized predictor function from ith subject. When s1, · · · sp are equi-spaced, (2.2.1) can
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be approximated as

y = β +Wγ + ε.

where, y = [y1, · · · , yN ]>, W = [w>1 , · · · , w>N ]>, and γ = [γ(s1), . . . , γ(sp)]
>. One of the

major advantage of PEER approach is its ability to incorporate external information about

predictor function W (·). This is done via using decomposition-based penalty as discussed

below.

2.3.1 Decomposition-based penalty

Suppose we have prior information available that W (·) ∈ Q where Q ⊂ L2(Ω). Further,

assume that Q is the space spanned by the basis functions q1(·), · · · qj(·), · · · , qJ(·). For

example, in Section 1.2, we have seen that the spectra of pure metabolites provide external

information about observed MR spectra meaning that we expect observed MR spectra to

lie on or near the subspace spanned by the spectra of these pure metabolites. Hence, when

our predictor function, W (·), is observed MR spectrum, one can determine Q considering

each qj(·) as spectrum of individual pure metabolites.

The prior information that W (·) ∈ Q may be implemented by encouraging the estimate

to be on or near a subspace, Q. In PEER approach, this is done via use of decomposition-

based penalty. Assuming that W (·) and qj(·)’s are observed only at p sampling points,

we represent Q by the range of a p × J matrix Q whose columns are q1, . . . , qJ . Here

qj is the vector of the observations obtained from qj(·) at the p sampling points. Then

decomposition-based penalty can be defined as (Randolph et al., 2012)

LQ = α0PQ + α1(I − PQ) (2.3.1)
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for some scalars α0 and α1. PQ = QQ+ is the orthogonal projection onto the Range(Q),

where Q+ is Moore-Penrose inverse of Q.

The purpose of the decomposition-based penalty is to encourage the estimate of regression

function to be on or near the space Q. To see how LQ works, let γ̃ be any estimate of γ.

When γ̃ ∈ Sp(Q), we have LQγ̃ = α0γ̃, but when γ̃ /∈ Sp(Q), we have LQγ̃ = α1γ̃. The

condition α1 > α0 imposes more penalty for γ̃ /∈ PQ compared to when γ̃ ∈ PQ. The

weights α1 and α0 determine the relative strength of emphasizing Q in the estimation

process. Note, in particular, that taking α1 = α0 results in a ridge estimate and that LQ is

invertible, provided α1 and α0 are non-zero.

2.3.2 Estimation

Let L be any penalty matrix to be used for estimation of γ = [γ(s1), · · · , γ(sp)]
>. It could

be either decomposition-based penalty or some non-informative penalty such as, smoothness

penalty or ridge penalty. The estimate of β and γ are obtained minimizing

(y − β −Wγ)>(y − β −Wγ) + λ2(Lγ)>(Lγ) (2.3.2)

where λ2 is the tuning parameter. A generalized ridge estimate of γ based on minimizing

the above expression is obtained as (see e.g., Ruppert et al., 2003, p. 66)

γ̂ = [W>W + λ2L>L]−1W>y

Randolph et al. (2012) also shown that the above estimate of γ can be expressed as the

generalized singular vectors determined by the generalized singular vector decomposition

(e.g. see Paige and Saunders, 1981; Van-Loan, 1976) of W and L. Therefore, PEER
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estimates of γ is obtained by focusing on a subspace that is spanned by a basis of generalized

singular vectors which arise jointly from the predictors, W and the penalty, L. For details

about PEER estimation, please refer to Randolph et al. (2012). The estimation process is

implemented in peer() in refund() package in R.

2.4 Longitudinal functional linear model

The problem we address involves repeated observations from each of N subjects. At each

observation time, t, we collect data on a scalar response variable, y, and a (idealized)

predictor function, W (·). We are interested in longitudinal functional linear models of the

following form:

yit = x>itβ +

∫ 1

0
Wit(s)γ(t, s)ds+ z>it bi + εit (2.4.1)

Here γ(t, ·) denotes the regression function at time t, xit is a vector of scalar-valued (non-

functional) predictors. Further, εit ∼ N(0, σ2
ε ) and bi is the vector of r random effects

pertaining to subject i and distributed as N(0,Σbi). We want to estimate γ(t, ·) along with

β in PEER framework.

2.4.1 Literature review

The cross-sectional fLM with scalar response has been a focus of various investigations

(Cai and Hall, 2006; Cardot et al., 2007, 1999, 2003; Fan and Zhang, 2000; Faraway, 1997;

Ramsay and Silverman, 1997; Reiss and Ogden, 2009). Some of these methods estimate

regression functions in two steps. For example, principal components regression (PCR)

estimates of the regression function are obtained first and then these PCR estimates are

projected onto a B-spline basis (Cardot et al., 2003) or vice-versa; i.e., PCR fitting is per-

formed only after projection onto B-splines (Reiss and Ogden, 2009). Extensions of fLM

have been made towards generalized linear model with predictor function (James, 2002;
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Müller and Stadtmüller, 2005) and quadratic functional regression (Yao and Müller, 2010).

Another class of models, known as Functional Analysis of Variance (FANOVA), decom-

pose repetitively-observed functional predictors into several (fixed and random) groups and

subject-specific component functions (Brumback and Rice, 1998; Di et al., 2009; Greven

et al., 2011; Guo, 2002). However, it is important to distinguish the proposed work from

FANOVA methods which do not relate predictor function(s) to the scalar response in the

longitudinal setup, the way we did it in this paper. Although these models have recently

been well studied, extensions to longitudinally-collected functions have not received much

attention. To our knowledge, LPFR (Goldsmith et al., 2012) and LFPCR (Gertheiss et al.,

2013) are the only published methods addressing regression estimation in the longitudinal

functional predictor framework.

2.4.2 LPFR and LFPCR approaches

The LPFR approach assumes the regression function in (2.4.1) is independent of time and

proceeds in three steps: uses a truncated set of K-L vectors to represent the predictor

functions; expresses the regression function using a spline basis; and fits the longitudinal

model using an equivalent mixed-model framework that incorporates subject-specific ran-

dom effects. In LFPCR approach, first, the predictor function is decomposed into visit-

and subject- specific functions according via longitudinal functional principle component

analysis (LFPCA) (Greven et al., 2011) and then longitudinal analysis is carried out in sec-

ond step with the outcome of LFPCA. Both LPFR and LFPCR assume that the regression

function, γ(t, ·) remains constant over time. Due to this restrictive assumption, LPFR and

LFPCR are not suited for situations in which the association between the predictor function

and scalar response may evolve over time.
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2.4.3 Proposed method

We have extended the scope of the PEER approach to estimate γ(t, ·) in Eq. (2.4.1) in

a manner that allows the estimated regression function to vary with time. The extension

of PEER framework to the longitudinal setting has two major advantages: 1) the regres-

sion function is allowed to vary over time; and 2) external or a priori information about

the structure of the regression function can be incorporated directly into the estimation

process. We have formulated the estimation procedure within a mixed-model framework

making the method computationally efficient and easy to implement. We call our proposed

approach as LongPEER.

In the following section we have described LongPEER method of estimation for longi-

tudinal fLM. This includes discussion on how external information can be implemented in

the LongPEER estimation process via decomposition-based penalty in Subsection 2.5.2. In

Section 2.6.1, we have presented how these estimates can be obtained as best linear unbiased

predictors (BLUP) through mixed model equivalence. Expressions for the precision of the

estimates are derived in Section 2.6.2. In the appendix of this chapter, we have presented

present how our longitudinal generalized ridge estimate, along with its bias and precision,

can be obtained in terms of generalized singular (GS) vectors under weak assumptions.

Numerical illustrations are provided in Section 2.7. In particular, the simulation in

Section 2.7.1 compares LPFR with the method proposed in this paper. The simulation

in Section 2.7.2 evaluates the influence of sample size and relative contributions of prior

spatial information on the proposed method using a decomposition-based penalty. Confi-

dence band’s coverage probabilities are explored through a simulation in Section 2.7.3. The

performance of PEER estimate when only partial information is available are evaluated in
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Section 2.7.4. We analyze the MRS data using our method and summarize our findings in

Section 2.8. The methods discussed in this paper have been implemented in the refund

package (Ciprian Crainiceanu et al., 2012) in R in the lpeer() functions. Throughout the

presentation we consider a single functional predictor.

2.5 LongPEER estimation in longitudinal fLM

As before in Section 2.3, we consider Ω = [0, 1], a closed interval in R and let W (·) denotes

a random function in L2(Ω). In addition, we use t to indicate the time of measurement. Let

Wit(·) denotes a predictor function from the ith subject (i = 1, . . . , N) at the tth timepoint

(t = t1, . . . , tni).

Technically, we can observe an idealized predictor function only at finite sampling points.

We will assume that each observed predictor function is sampled equally at p sampling

points, s1, . . . , sp ∈ [0, 1], with sampling that is appropriately regular and dense enough to

capture informative spatial structure, as seen, for instance, in the MRS data in Section 1.1.

Let wit := [wit(s1), · · · , wit(sp)]> be the p × 1 vector of values sampled from the realized

function Wit(·) at p sampling points S = s1, · · · , sp. Clearly, as explained in Section 2.1,

wit is functional data because it represents the function Wit(·).

The observed data are of the form {yit;xit;wit}, where yit is a scalar outcome, xit is

a K × 1 column vector of measurements on K scalar predictors, and wit is the vector of

values sampled from the realized predictor function from ith subject at time t. Denoting the

true regression function at time t by γ(t, ·), the longitudinal functional regression outcome

model of interest is

yit = x>itβ +

∫ 1

0
Wit(s)γ(t, s)ds+ z>it bi + εit (2.5.1)
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where, εit ∼ N(0, σ2
ε ) and bi is the vector of r random effects pertaining to subject i and

distributed as N(0,Σbi). As usual we assume that zit is a subset of xit, εit and bi are inde-

pendent, εit and εi′t′ are independent whenever i 6= i′ or t 6= t′ or both, and bi and bi′ are

independent if i 6= i′. Here x>itβ is the standard fixed effect from K univariate predictors,

z>it bi is the standard random effect and
∫ 1

0 Wit(s)γ(t, s)ds is the subject/time specific func-

tional effect. We assume that γ(t, ·) ∈ L2(Ω), for all t.

When the association between predictor function and response changes over time, the

regression function γ(t, s) varies over both spatial and time domain. For example, γ(t, s)

may vary linearly with time, γ(t, s) = γ0(s) + tγ1(s), or quadratically, γ(t, s) = γ0(s) +

tγ1(s) + t2γ2(s). This is in a spirit similar to a linear mixed effects model with linear or

quadratic time slope (see e.g., Fitzmaurice and Ware, 2004). In general, we assume that

γ(t, s) can be decomposed into several time-invariant component functions γ0(s), · · · , γD(s)

as

γ(t, s) = γ0(s) + f1(t)γ1(s) + · · ·+ fD(t)γD(s)

where, f1, . . . , fD are D prescribed linearly independent functions of t and fd(0) = 0 for all

d; the time component t enters into γ(t, s) through these terms. At t = 0, γ(t, s) reduces to

γ0(s) and has the obvious interpretation of a baseline regression function pertaining to the

sampling points s. When D = 0, γ(t, s) ≡ γ0(s) is independent of t, a situation considered

by Goldsmith et al. (2012). In general, each f may be any function of t with f(0) = 0, e.g.,

f(t) = t or t exp(t). We can rewrite the equation (2.5.1) as

yit = x>itβ +

∫ 1

0
Wit(s){γ0(s) + f1(t)γ1(s) + · · ·+ fD(t)γD(s)}ds+ z>it bi + εit

In a PEER approach, the dependence of yit on Wit(·) is seen as a linear dependence on

observations at p sampling points, wit; spatial (functional) structure is imposed directly into
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the estimation of γd = [γd(s1), . . . , γd(sp)]
>, for d = 0, . . . , D. Combining all n• =

∑N
i=1 ni

observations from the N subjects obtained across all time points, we express the model as

y = Xβ +Wγ + Zb+ ε. (2.5.2)

Here, y = [y1t1 , · · · , y1tn1
, . . . , y1tN , . . . , yNtnN ]> is a n• × 1 vector of all responses, X =

[x>1t1 , · · · , x
>
1tn1

, · · · , x>1tN , · · · , x
>
NtnN

]> is an n•×K design matrix pertaining toK univariate

predictors, β is the associated coefficient vector, γ = [γ>0 , γ
>
1 , · · · , γ>D]> is a (D + 1)p × 1

vector of functional coefficients, W is the corresponding n•×(D+1)p design matrix. Further,

b is the rN × 1 vector of random effects and Z is the corresponding n•× rN design matrix.

The matrix W has the structure

W =



W1

...

WN


Wi =



w>it1 f1(t1)w>it1 · · · fD(t1)w>it1

...
...

. . .
...

w>itni
f1(tni)w

>
itni

· · · fD(tni)w
>
itni


2.5.1 Generalized ridge estimate

The formal model in (2.5.1) is ill-posed and has no unique solution for γ. Common ap-

proaches to estimate a regression function in a fLM involve reducing dimension by project-

ing onto a subspace defined by a few K-L (empirical) eigenvectors or onto the span of a set

of spline basis functions. Alternatively, our use of a generalized ridge penalty constrains the

estimation of γ in the spatial (or s) dimension without preliminary smoothing or explicit

dimension reduction. The process encourages structure of a particular type via the choice

of penalty operator. In the longitudinal (or t) dimension, γ is more explicitly and severely

constrained by the choice of f1, . . . , fD.
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The model of interest described in the previous Section can be written as follows:

y = Xβ +Wγ + ε∗ (2.5.3)

where ε∗ = Zb + ε ∼ N(0, V ) and V = ZΣbZ
> + σ2

ε I. Further, assume Ld be the

penalty operator for γd and λ2
d be the associated tuning parameter, ∀ d = 0, . . . , D. Then

the penalized estimates of β and γ can be obtained by minimizing

||y −Xβ −Wγ||2V −1 + λ2
0||γ0||2L>0 L0

+ · · ·+ λ2
D||γD||2L>DLD (2.5.4)

Here we have used the notation ||a||2B = a>Ba, where B is a symmetric, positive definite

matrix. A generalized ridge estimate of β and γ based on minimizing the above expression

is obtained as (see e.g., Ruppert et al., 2003, p. 66)

β̂
γ̂

 = (C>V −1C +D)−1C>V −1y (2.5.5)

where, C = [X W ], D = blockdiag{0, L>L} and L = blockdiag{λ0L0, · · · , λDLD}.

In Randolph et al. (2012), a PEER estimate and its mean squared error (MSE) were

established in terms of generalized singular (GS) vectors as obtained through generalized

singular value decomposition (GSVD); the setting was that of the cross-sectional fLM with

a single predictor function and no random effects. For additional background on the GSVD

and its computation, see Bjorck (1996); Golub and Van-Loan (1996); Paige and Saunders

(1981); Van-Loan (1976). In the Appendix of this chpater, we derive an expression for the

generalized ridge estimate γ̂ explicitly in terms of the GSVD components.
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2.5.2 Incorporating prior information via decomposition-based penalty

Our goal is to estimate γ imposing some presumed functional structure. In other words, the

aim is to supplement, not necessarily smooth, the predictor functions with knowledge about

spatial structure in a mathematically tractable way. A common approach to incorporate

spatial structure into the functional regression model is to use the strongest structure from

the predictors by considering only first few K-L vectors (Cardot et al., 2003; Hall et al.,

2001). However, we will incorporate spatial structure through an informed choice of penalty

operator as proposed by Randolph et al. (2012).

Let γ̂d ≡ γ̂Ld,λd be the estimate of γd obtained from the penalty operator Ld and tuning

parameter λ2
d, for each d = 0, . . . , D. For example, Ld may denote Ip (a ridge penalty) or a

second-order derivative penalty (giving an estimate having continuous second derivative).

Alternatively, with prior knowledge about potentially-relevant structure in a regression func-

tion, a decomposition-based penalty can be defined in terms of a subspace defined by such

structure (Randolph et al., 2012). To be precise, if it is appropriate to impose scientifically-

informed constraints on the “signal” being estimated by γd, d = 0, · · · , D, this prior may

be implemented by encouraging the estimate to be in or near a subspace, Q ⊂ L2(Ω). This

can be done by using decomposition-based penalty PQ as defined in equation (2.3.1).

As an example, when our predictor function is observed spectra obtained from a tissue

via Magnetic Resonance Spectroscopy (MRS), one can use the spatial information of pure

metabolites as a prior information as discussed in Section 1.2. In that case, Q would be

the subspace spanned by the spectra of available pure metabolites. If we have J such pure

metabolites and all of these metabolites are sampled at p points, then Q will be represented

by p×J matrix Q. The jth column of Q representing the observations at p sampling points

corresponding to spectrum of jth metabolites.
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2.5.3 Selection of time-structure in γ(t, ·)

The proposed approach allows us to choose very flexible time structure for γ(t, ·) during

estimation; however, in practice, we don’t have the information available about its time

structure. As an example, we don’t know whether γ0(t, ·) + tγ1(t, ·) is sufficient or we

need γ0(t, ·) + tγ1(t, ·) + t2γ2(t, ·). The problem of choosing appropriate time-structure in

γ(t, ·) (γ0(·) + t γ1(·) or γ0(·) + t γ1(·) + t2 γ2(·)) is similar, in principle, to the problem of

choosing the time structure in the linear mixed effects model (e.g., E(yit|bi) = β0 + β1 t

or E(yit|bi) = β0 + β1 t + β2 t
2). We can think of at least two ways to decide about the

form of unknown regression function: (a) Use of AIC to compare different structures, and

(b) Use of the point-wise confidence band for the γ0(·) , γ1(·) and γ2(·). If the confidence

band for γ2(·) encloses 0 in the entire region, then probably it is not good idea to consider

γ0(t, ·) + tγ1(t, ·) + t2γ2(t, ·); rather we should continue with γ0(t, ·) + tγ1(t, ·) only.

2.5.4 Selection of φa and φb for decomposition based penalty

We view φa and φb as weights in a tradeoff between preferred and non-preferred subspaces

and assume φa · φb = constant. In the current implementation, we use REML to estimate

λd’s for a fixed value of φa, and do a grid search over the φa values to jointly select the

tuning parameters which maximize the REML criterion such as AIC.

2.6 Mixed model representation

Estimates of β and γ obtained by minimizing the expression in equation (2.5.4) correspond

to a generalized ridge estimate. In this section we aim to construct an appropriate mixed

model that minimizes the expression in equation (2.5.4). In general, the penalty, L, is not

required to be invertible but for simplicity this will be assumed here. The mixed model

approach provides an automatic selection of tuning parameters. REML-based estimation
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of the tuning parameters has been shown to perform as well as the other criteria and under

certain conditions it is less variable than GCV-based estimation (Reiss and Ogden, 2009).

2.6.1 Estimation of parameters

Using Henderson’s (1950) justification [(Henderson, 1950)], one can show that the model

y = Xβ+Wγ+ ε∗ where, ε∗ ∼ N(0, V ) and γd ∼ N(0, 1
λ2d

(L>d Ld)
−1), for each d = 0, . . . , D,

minimizes the expression in equation (2.5.4) to obtain the BLUP. Thus the generalized ridge

estimate of β and γ correspond to the BLUP from the following model:

y = Xβ +W ∗γ∗ + ε

where, W ∗ = [W Z], γ∗ = [γ> b>]> ∼ N [0,Σγ∗ ] and ε ∼ N(0, σ2
ε I) with

Σγ∗ = blockdiag{(L>L)−1, Σb} Σb = blockdiag{Σb1 , · · · ,ΣbN }

This representation allows us to estimate fixed and functional predictors simply by fitting

a linear mixed model (e.g., using the lme() of the nlme package in R or PROC MIXED in SAS).

2.6.2 Precision of estimates

Our ridge estimate is the BLUP from equivalent mixed model, hence the variance of the

estimate depends on whether the parameters are random or fixed. Randomness of γ is a

device used to obtain the ridge estimate while ε and b in our case are truly random. With

this argumentation, it can be advocated that variance of estimates to be conditional on γ,

but not on b (Ruppert et al., 2003). BLUP of β, γ and b can be expressed as (see e.g.,

Robinson, 1991; Ruppert et al., 2003):

β̃ =
(
X>V −1

1 X
)−1

X>V −1
1 y γ̃ = (L>L)−1W>V −1

1 (y −Xβ̃)
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b̃ = ΣbZ
>V −1

1 (y −Xβ̃)

where, V1 = V +W (L>L)−1W>. β̃ is an unbiased estimator of β, but γ̃ is not unbiased. It

is trivial to see that Cov(y|γ) = V . Thus, the variances of β̃ and γ̃, conditional on γ, are:

Cov(β̃|γ) =
(
X>V −1

1 X
)−1

X>V −1
1 V V −1

1 X
(
X>V −1

1 X
)−1

Cov(γ̃|γ) = AγV A
>
γ Aγ = (L>L)−1W>V −1

1 {V1 −X(X>V −1
1 X)>}V −1

1 (2.6.1)

To obtain the unconditional variance, we need to replace V by V1 in the above expressions

but this is will overestimate the variance of the estimates. The expressions for predicted

value of y and its variance are:

ỹ = Xβ̃ +Wγ̃ + Zb̃ Cov(ỹ|γ) = AyV A
>
y

where,

Ay = [{V1−WL>LW−ZΣbZ
>}−1X

(
X>V −1X

)−1
X>V −1+WL>LW>+ZΣbZ

>]V −1
1

Let, T = [1 f1(t) · · · fd(t)] ⊗ IK . Then the discretized version of regression function

at time t is γ(t) = [γ(t, s1), · · · , γ(t, sK)] = Tγ. Therefore, the estimate of γ(t) is γ̃(t) = T γ̃

and the estimate of its variance is TCov(γ̃|γ)T>.

2.7 Simulation

We pursue simulations to evaluate the properties of the LongPEER method. The first sim-

ulation study (Section 2.7.1) compares the performance of the LongPEER method with the

LPFR approach. In the remaining simulation studies, only the LongPEER method is con-
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sidered. The purpose of the second simulation study is to evaluate the influence of sample

size and the contribution of prior information about the spatial structure (as determined

by two different tuning parameters φa and φb in equation 2.3.1) on the LongPEER esti-

mate. In the third simulation study, we evaluate the coverage probabilities of the confidence

bands constructed using the formula presented in Section 2.6.2. Finally, we evaluate the

performance of LongPEER estimate when information on some features is missing and the

results are summarized in Section 2.7.4. In all the simulation studies, the simulated predic-

tor functions resemble the MRS data. All results summarized in this Section are based on

100 simulated datasets.

For each subject and visit, predictor functions were simulated independently. Predic-

tor functions are“bumpy” curves with bumps at some pre-specified locations. White noise

was added to the predictor functions to account for the instrumental measurement noise.

Bumpy regression functions were generated with bumps at some (but, not all) of the bump

locations of the predictor function. For the simulation in Section 2.7.1, the regression func-

tion is assumed to be independent of time, whereas it varies with time in simulation in

Section 2.7.2. For both the predictor and regression functions, 100 equi-spaced sampling

points in [0,1] are used.

For the decomposition based penalty, the matrix Ld is defined as follows: 1) select the

discretized functions qj , j = 1, . . . , J spanning the “non-penalized-subspace” and 2) com-

pute Ld = QQ+, where Q = col[q1, . . . , qJ ]. Vectors qj are discretized functions defined to

be zero except at one bump corresponding to a region in the simulated predictor functions.
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Estimation error was summarized in terms of the mean squared error (MSE) of the esti-

mated regression function defined as ||γ − γ̃||2, where γ̃ denotes the estimate of γ. Further,

MSE was decomposed into the trace of the variance and squared norm of bias. We also

calculated sum of squares of prediction error (SSPE) as ||y − ỹ||2/N , where ỹ denotes the

estimate of the true (noiseless) y. The estimates based on the proposed methods, includ-

ing the LongPEER estimate, were obtained as BLUPs from the mixed model formulation

described in Section 2.6.1.

2.7.1 Comparison with LPFR

As previously stated, LPFR estimates a regression function that does not vary with time.

Therefore, in the first set of simulations, we generated the outcomes using a time-invariant

regression function (i.e., γ(t, s) = γ0(s), for all t). The following model was used to generate

the outcome data for 100 individuals (i = 1, · · · , 100), each at 4 timepoints (t = 0, 1, 2, 3):

yit = β0 +

∫ 1

0
Wit(s)γ0(s)ds+ bi + εit, i = 1, · · · , 100, (2.7.1)

where γ0(s) =
∑
h∈Hγ0

a0h exp

[
−2500 ∗

(h− s
100

)2
]

The bumpy predictor functions were generated from the following equation

wit(s) =
∑
h∈H1

(ξ1h + c1h)exp

[
−2500 ∗

(
s− h
100

)2
]

(2.7.2)

+
∑
h∈H2

(ξ2h + c2h)exp

[
−1000 ∗

(
s− h
100

)2
]

+(ξ31 + 0.9)exp

[
−250 ∗

(
s− 50

100

)2
]
,

where c1h, c2h and a0h are defined in Table 2.1. {ξ1h, h ∈ H1}, {ξ2h, h ∈ H2}, and ξ31

were drawn independently from Uniform(0, 0.1). Also, β0 = 0.06, εit ∼ N [0, (0.02)2] and

bi ∼ N [0, (0.05)2].
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Figure 2.1: Average estimates of γ for the simulation study described in Section 2.7.1
with φa = 10 and φb = 1. Top panel displays the columns of Q matrix used in defining
decomposition based penalty. The bottom panels display the true γ and the average estimates
in 100 simulations.
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Table 2.1: Values of c1h, c2h, a0h and a1h for generating predictor and regression function
in simulation studies in Sections 2.7.1, 2.7.2, 2.7.3 and 2.7.4.

h ∈ H1 h ∈ H2 h ∈ Hγ0 h ∈ Hγ1

h c1h h c2h h a0h h a1h

15 0.10 30 0.60 15 0.20 30 0.06

5 0.10 70 0.50 50 -0.15 70 -0.06

80 0.50 80 0.15

90 0.40

Table 2.2: Estimation and prediction errors for LPFR and LongPEER estimates based on
100 simulated datasets. The sample size is set at N=100 and the number of longitudinal
observations at ni = 4.

LongPEER LPFR

MSE(γ0) 0.0323 0.2244

Trace of Variance(γ0) 0.0028 0.0490

||Bias(γ0)||2 0.0295 0.1754

SSPE of Y 1.1566 1.1535

We applied both LPFR (using lpfr() available in the refund package in R (Ciprian

Crainiceanu et al., 2012)) and the LongPEER method to the simulated data. To obtain

LPFR estimate, the dimension of both principal components for predictor function and

truncated power series spline basis for the regression function were set to 60. The columns

of Q matrix used for defining decomposition based penalty, LQ, for LongPEER estimate of

γ are plotted in the top panel of Figure 2.1.

Table 2.2 displays the MSE and prediction error obtained for LongPEER and LPFR

estimates. The SSPE in both the methods were very close (1.1566 and 1.1535). The Long-

PEER estimate has much smaller MSE compared to the LPFR estimate. Both the bias and

variance are higher for the LPFR estimate and consequently it has the greater MSE. Figure

2.1 displays the estimates of the regression function. The LongPEER estimate is closer to

the true regression function compared to the LPFR estimate. The LPFR estimate seems to
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be over-smoothed with the magnitude of the bumps underestimated. Better performance

of the LongPEER estimate is due to its ability to exploit presumed structural information

which is ignored by the LPFR method.

2.7.2 Simulation with time varying regression function

In this simulation, we consider a regression function that varies parametrically with time.

We are not aware of other longitudinal functional regression methods for estimating a time-

varying regression function so we only evaluated the performance of LongPEER. Our pri-

mary goal was to assess the effects of sample size, fraction of variance explained by the

model and the relative contribution of external information (as determined by φa and φb in

equation 2.3.1) on the regression function estimate.

Without loss of generality, we set φb = 1 and vary φa on an exponential scale. Larger

values of φa indicate greater emphasis of prior information on the estimation process. The

model considered here is similar to that described in Section 2.7.1 with the exception that

γ(t, s) = γ0(s) + t γ1(s). The function γ0(s) is defined in equation (2.7.2) and γ1(s) is of

the form

γ1(s) =
∑
h∈Hγ1

a1h exp

[
−2500 ∗

(
h− s
100

)2
]

where the value of h and a1h are listed in Table 2.1 and β0 = 0.06. Realizations of functional

predictors were generated as described in Section 2.7.1. For each simulation, an appropriate

σ2
ε was chosen to ensure that the squared multiple correlation coefficient R2 = s2

y/[s
2
y + σ2

ε ]

is 0.6 and 0.9. Here, s2
y = 1

4

∑3
t=0

1
N−1

∑N
i=1 (yit − ȳ.t)2 denotes the average sample variance

in the set {yit − εit : i = 1, · · · , N ; t = 0, · · · , 3} with ȳ.t = 1
N

∑N
i=1 yit.
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Figure 2.2: Average AIC, SSPE and MSE for simulation study in Section 2.7.2 over 100
simulations. At φa = 10, average AIC were maximized and MSE(γ0) and MSE(γ1) were
minimized. In general, average AIC increased with the increase in sample size and R2

whereas SSPE, MSE(γ0) and MSE(γ1) decreased.
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We have repeated the simulation for 4 distinct scenario : (i) N = 100, R2 = 0.6, (i)

N = 100, R2 = 0.9, (i) N = 200, R2 = 0.6 and (i) N = 200, R2 = 0.9. The estimate of γ0

and γ1 were obtained using decomposition based penalty. The columns of Q matrix used

for defining decomposition based penalty, LQ, are plotted in the top panel of Figure 2.4.

Results for AIC, MSE and SSPE are displayed graphically in Figure 2.2. The standard

deviation of MSE were plotted in Figure 2.3. As the sample size and R2 increased, both the

MSE(γ0) and MSE (γ1) were decreased, providing empirical evidence that the LongPEER

estimates were consistent. In all the 4 scenario, MSE(γ0) were minimized at φa = 10, then

it increased upto φa = 100 and became plateau after that. On the contrary, we observed a

decrease in MSE(γ1) as the value of φa increased up to 10 and after that it became plateau.

That is, increase in φa up to 10 resulted in improvement in estimation of both γ0 and γ1.

However, increase in φa beyond 10 resulted in deterioration in performance of estimation for

γ0 and estimation performance for γ1 remained almost unchanged. In order to understand

this result, we need to compare the plots of columns for Q matrix used in defining LQ with

true γ0 and γ1 in Figure 2.4. The γ0 had 3 peaks at s = 0.2, 0.5 and 0.8. There were also

columns in Q matrix representing peaks at these locations (which serves as a prior infor-

mation in the estimation process), however, the shape of the peak at s = 0.5 were much

different from that in γ0. Due to this difference in shape, as φa increased from 10 to 100, the

feature at s = 0.5 in γ̃0 gradually became smaller and smaller leading to gradual increase

in MSE(γ0). On the other hand, γ1 had two features and the corresponding features in Q

matrix were almost similar in shape and that’s why MSE(γ1) was stabilized after φa = 10.

Therefore, it is important to identify appropriate φa, especially when we know about pos-

sible locations of the features in true functions, but we are not too sure about their shape.

Alike MSE(γ0), AIC were maximized at φa = 10 and decreased sharply after that. That is,

the value of φa that maximized AIC also minimized MSE(γ0) and MSE(γ1). This suggests
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Figure 2.3: Standard deviation of MSE for simulation study in Section 2.7.2 over 100
simulations. In general, standard deviation of MSE(γ0) and MSE(γ1) decreased with the
increase in sample size and R2. Also, both MSE(γ0) and MSE(γ1) were decreased upto
101.25 and then became a plateau with only exception for MSE(γ0) in the scenario with
N = 200 and R2 = 0.9

that AIC can be used to guide the choice of φa while setting φb at 1. In general, the choice

of φa should be one that maximizes AIC.

The average LongPEER estimate of γ0 and γ1 using decomposition based penalty are

displayed in Figure 2.4 with φa = 10 and φb = 1. For smaller sample size and R2 the Long-

PEER estimate (a) seems to over-smooth (i.e. negatively biased) the estimate regression

function at the location of the true feature and (b) was positively biased in the locations

where we have the prior information about the possible existence of feature, but the true

function did not have any feature. However, as we increased the sample size to 200 and/or

R2 to 0.9, we observed that the average LongPEER estimate γ0(·) and γ1(·) approached to

the true functions.
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Figure 2.4: Average estimates of the components of regression functions for the simulation
study described in Section 2.7.2 with φa = 10 and φb = 1. Top panel displays the columns
of Q matrix used in defining decomposition based penalty. The middle and bottom panels
display the average estimates of γ0 and γ1. Average estimates of γ0 and γ1 improved as N
and/or R2 increased.
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Figure 2.5: Coverage probabilities of LongPEER estimates in 100 simulations with φa = 10
and φb = 1 as discussed in Section 2.7.3. Top panel displays the columns of Q matrix used
in defining decomposition based penalty. The plots in middle and bottom panels display the
pointwise 95% confidence band (shaded region) and coverage proportions (the dotted line)
based on N = 100, and N = 400 subjects, respectively.. Plots in the left column display
the cross-sectional function γ0(·) and the plots in the right column the longitudinal function
γ1(·). The horizontal line in each plot marks the nominal coverage of 95%.
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2.7.3 Coverage probability

In this section, we used the simulation setup described in Section 2.7.2 with R2 = 0.90.

The columns of Q matrix used in defining decomposition based penalty are displayed in top

panel of Figure 2.5. The middle and bottom panel plots the confidence bands and the

coverage probabilities obtained using φa = 10. The 95% confidence bands are constructed

as Estimate ±1.96× (Standard Error). When the sample size N increased, there was a

notable improvement in coverage of both γ0(·) and γ1(·). For N = 100, the coverage of

γ1(·) by the confidence bands was only around 81%. This confidence band under-coverage

of γ1(·) is caused by the comparatively larger bias in the estimation of γ1(·) with N = 100.

(see Section 2.7.2 and Figure 2.4). The observed coverage approaches the desired level of

0.95 when N increases and for N = 400, the coverage is very close to the 95% mark. We also

explored the influence of φa on the confidence band and coverage probability (not shown

here). The higher values of φa led to the confidence band shrinkage and this in turn resulted

in under-coverage of both γ0(·) and γ1(·).

2.7.4 Estimation in the presence of only partial information

Since the LongPEER estimate uses external information in the estimation process, it is

of interest to evaluate its estimation performance when only partial information is avail-

able. In this Section, we use the similar simulation scenario as described in Section 2.7.3.

However, the penalty is defined without regard for information about the feature at the

location s = 0.5. As displayed in Figure 2.6, the LongPEER estimates of γ0(s) has proper

structure at s = 0.5 on average. Indeed as with the ordinary ridge penalty this structure

is inherited from the empirical eigenvectors of W (·). This highlights the advantage of the

PEER estimate which arises from the jointly determined eigenvectors of W (·) and L (see
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Figure 2.6: Performance of LongPEER estimate when only partial information is available
via simulation as described in Section 2.7.4. Top panel: true regression functions γ0(·) (left)
and γ1(·) (right) plotted using solid lines and 6 vectors spanning PQ (dashed lines). Middle
panel: Average LongPEER estimates (over 100 simulations) obtained from the ordinary
ridge penalty. Bottom panel: Average LongPEER estimates (over 100 simulations) obtained
from the penalty using PQ defined by 6 vectors displayed in the top panel and φa = 100.75.
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Appendix). This estimate depends on the relative contribution of the predictors and the

penalty controlled by the ratio of φa to φb.

The relative increase in the contribution of external information in the estimation process

resulted in the estimate shrinkage towards zero at s = 0.5. The estimates displayed in Figure

2.6 result from keeping φb constant at 1 and values of φa = 1 (i.e. ridge penalty in the middle

row) and φa = 100.75 (bottom row). For φa values larger than 100.75, minimal change in the

estimate were observed.

2.8 MRS study application

We applied LongPEER to understand the association of metabolite spectra obtained from

basal ganglia and the global deficit score (GDS) in a longitudinal study of late stage HIV

patients and how this association evolves over time. The study description is available else-

where (Harezlak et al., 2011). We treat global deficit score (GDS) as our scalar continuous

response variable and MR spectrum (sampled at K = 399 distinct frequencies) as functional

predictor. GDS is often used as a continuous measure of neurocognitive impairment (e.g.,

Carey et al., 2004) and a large GDS score is an indicator of high degree of impairment.

The collected MRS spectra are composed of the combination of pure metabolite spectra,

Table 2.3: Comparison of AIC for selection of scalar covariates, φa (φb = 1) and time
structure in γ(t, ·) in Section 2.8

Scalar covariates Time structure in γ(t, ·) φa AIC

Model 1 t γ0(t, ·) + tγ1(t, ·) 10 −395.2335

Model 2 Age, t γ0(t, ·) + tγ1(t, ·) 10 −405.2796

Model 3 Gender, t γ0(t, ·) + tγ1(t, ·) 10 −395.9040

Model 4 Race, t γ0(t, ·) + tγ1(t, ·) 10 −398.5607

Model 5 t, t2 γ0(t, ·) + tγ1(t, ·) + t2γ2(t, ·) 10 −394.5752

Model 6 t γ0(t, ·) + tγ1(t, ·) 100 −395.3670

Model 7 t γ0(t, ·) + tγ1(t, ·)
√

10 −394.9788
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Figure 2.7: Prediction performance of Model in equation (2.8.1) as discussed in Section 2.8.
Left panel displays plot for observed GDS score (y) and predicted value (ỹ). Right panel
displays plot for observed ỹ and residuals (y − ỹ).

instrument noise and baseline profile. We collected a total of n• = 306 observations from

N = 114 subjects. The longitudinal observations for each subject were within 3 years

from baseline. The number of observations per subject ranged from 1 to 5 with a median

equal to 3. Information on spectra obtained from nine pure metabolites was available and

hence we were able to use this to define a decomposition based penalty LQ as in equa-

tion (2.3.1). The pure metabolite spectra included spectra of Creatine (Cr), Glutamate

(Glu), Glucose (Glc), Glycerophosphocholine (GPC), myo-Inositol (mI), N-Acetylaspartate

(NAA), N-Acetylaspartylglutamate (NAAG), scyllo-Inositol (Scyllo) and Taurine (Tau).

These pure metabolite spectra are displayed in Figure 1.2.

We also had the information available on demographic factors including age at baseline,

gender and race. We relied on AIC to choose (a) scalar covariates in the model, (b) φa (while

setting φb = 1) for defining decomposition based penalty LQ and (c) the time structure in

γ(t, ·). Based on the AIC (see Table 2.3), it appeared that the Models 1, 5 and 7 were fairely

close and doing better compared to the remaining models. In both the models, φa was set

at 10 and gender was considered as only covariate. Models 1 and 5 were different in terms of
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Figure 2.8: Estimates of the regression function (with 95% point-wise confidence band)
for the analysis described in Section 2.8. Shaded region in both the plots represent the
point-wise confidence band. The top panel shows the estimated γ0(·) and bottom panel the
estimate of γ1(·) . Selected scaled pure metabolite profiles are also shown on both plots.
Estimation was carried out using decomposition based penalty using φa = 10, φb = 1.
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the time structure in γ(t, s). Even though inclusion of γ2(t, ·) led to only marginal increase

in AIC (−394.5752 vs −395.2335), we did not find any region of γ1(t, ·) significant using

point-wise 95% confidence interval in Model 5. Hence we preferred Model 5 over Model 1.

Models 1 and 7 were different in terms of the φa. Use of smaller φa led to slight increase

in AIC (−394.9788 vs −395.2335), but estimates for γ0(·) and γ1(·) became very wiggly.

Hence, we fit Model 1 to fit data (with φa = 10, φb = 1) as follows:

yit = β0 + β1 t+

∫
Ω
Wit(s)γ(t, s)ds+ bi + εit, (2.8.1)

where, γ(t, s) = γ0(s) + t γ1(s) and yit and Wit(·) are the GDS and basal ganglia spec-

trum for subject i at time t, respectively. We assume that εit ∼ N(0, σ2
ε ) and bi is the

subject-specific random intercept distributed as N(0, σ2
b ). The estimates were obtained as

the BLUP from the mixed model formulation described in Section 2.6.1 using L0 = L1 = LQ.

The estimate of λ (tuning parameter) associated with γ0(·) and γ1(·) were 1.1516 and

2.242, respectively. Estimates of σ2
ε and σ2

b were 0.0786 and 0.3332, respectively. Plot of

observed GDS score and fitted value and residual plot are displayed in Figure 2.7 for the

purpose of model checking. It appears that the residuals lie evenly both side of the origin.

Figure 2.8 displays the estimates of γ0(·) and γ1(·) with pointwise 95% confidence bands.

To make the interpretation easier, we include the selected pure metabolite spectra. These

figures reveal that γ̂0(·) (the ‘baseline’ part of the regression function) is different from zero

at the locations where at least one of the pure metabolites Cr and Gluhas a bump. Similarly,

each non-zero part of γ̂1(·) (the ‘longitudinal’ part of the regression function) coincides with

bump locations of one or more pure metabolite profiles of NAA and Scyllo.
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Pointwise confidence interval for γ0(·) and γ1(·) contain the“zero” line over most of the

intervals of interest. The estimated γ0 is significant in the region s ∈ (0.4, 0.5) which cor-

responds to spectrum of Glu. The estimated γ0 was also significant in s ∈ (0.55, 0.70),

however, none of the 9 pure metabolite spectra has peak in this region. The estimated γ1 is

significant in the region s ∈ (0.50, 0.55) which corresponds to spectrum of NAA. The finding

of the significant negative ‘longitudinal’ effect of NAA is worth noticing. This suggests that

GDS increases as the NAA concentration decreases in basal ganglia. This finding is consis-

tent with the studies where reduced concentration of NAA has been found to be associated

with decrease in neuronal mass (Christiansen et al., 1993; Lim and Spielman, 2005; Soares

et al., 2009).

The proposed method also allowed us to investigate other form of f(t) (such as exp(t)−1

or log(t + 1)). When we actually compared γ(t, ·) = γ0(t, ·) + [exp(t) − 1]γ1(t, ·) with

γ(t, ·) = γ0(t, ·) + tγ1(t, ·) the AIC was increased to −394.5601 from −395.2335. However,

the estimation with γ(t, ·) = γ0(t, ·) + log(t + 1)γ1(t, ·) did not show any region in γ1(·)

using 95% confidence band. This suggests that it may be good idea to investigate other

time structures in γ(t, ·) if we can collect longitudinal observations for longer period from

baseline, say 10 years.

2.9 Discussion

We have proposed a novel estimation method for longitudinal functional regression and

derived some properties of the coefficient function estimate. Within this framework, the

LongPEER method is the first to allow a coefficient function to vary with time. It extends

the scope of generalized ridge regression to the realm of longitudinal data. The approach

may be viewed as an extension of longitudinal mixed effects models, replacing scalar pre-
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dictors by functional predictors. Advantages of this method include: 1) a framework that

allows the regression function to vary over time; 2) the ability to incorporate structural

information into the estimation process; and 3) easy implementation through the linear

mixed model equivalence.

The emphasis here is on a general statistical framework for incorporating scientific

knowledge into the estimation process when both the scalar response and predictor func-

tions are observed longitudinally. An advantage when we use specific prior information

is illustrated in the first simulation study where smoothness constraints or a spline basis

representations perform poorly. The simulation in Section 2.7.3 suggests that the coverage

probabilities of the confidence bands for the true regression function are close to the nom-

inal level. However, for smaller sample size, the naive confidence bands do not seem to be

sufficient and an alternative solution which can take into account the estimation bias might

be needed. In the case when only partial information is available, the proposed method

can be still very useful if we limit the relative contribution of “informed” space and/or

increase the sample size (see Subsection 2.7.4). In total absence of prior information, one

may impose more vaguely-defined constraints—such as smoothness or re-weighted empirical

subspaces—to estimate the coefficient function.

Solutions to the generalized ridge regression problem can be expressed in many forms.

The linear mixed model equivalence provides an easy computational implementation as well

as an automatic choice of the tuning parameters using REML criterion. The GSVD pro-

vides algebraic insight and a convenient way to derive the bias and variance expressions of

the estimates. Another natural way to obtain the regression function estimates is by using

Bayesian equivalence (see e.g., Robinson, 1991) with the informative priors quantifying the

available scientific knowledge.
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One of the natural extensions of our work can incorporate multiple functional pre-

dictors. For example, if we observe two functional predictors W
(1)
t (·) and W

(2)
t (·) with

γ(1)(t, ·) and γ(2)(t, ·) their associated coefficient functions, respectively. Furthermore,

we can express γ(1)(t, s) = γ
(1)
0 (s) + f

(1)
1 (t)γ

(1)
1 (s) + · · · + f

(1)
d (t)γ

(1)
d (s) and γ(2)(t, s) =

γ
(2)
0 (s) + f

(2)
1 (t) + γ

(2)
1 (s) + · · ·+ f

(2)
d (t)γ

(2)
d (s). If W (1) and W (2) represent design matrices

for the two functional predictors, then we can estimate γ(1)(t, ·) and γ(2)(t, ·) by finding the

BLUP estimate of γ(1) and γ(2) from the mixed model, y = Xβ+W (1)γ(1)+W (2)γ(2)+Zb+ε.

The simplified formula for bias and variance derived in Appendix still holds with an addi-

tional assumption (W (1))>V −1W (2) = 0.

As presented here, the method addresses models having a continuous scalar outcome, but

allowing for either binary or count responses is of interest. Indeed, an important problem

that arises in MRS data is that of understanding the neurocognitive impairment status of

HIV patients, defined as a binary variable, based on functional predictors collected over

time. Extending our approach to these general settings is possible and currently being

pursued.

Appendix

Connection with the GSVD

We provide the derivation of the estimates using the GSVD. After some algebra, the gen-

eralized ridge estimate in Eq. (2.5.5) for γ can be expressed as

γ̂ = −A1X
>V −1y +A2W

>V −1y
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where

A>1 = (X>V −1X)−1X>V −1W [W>V −1W + L>L−W>V −1X(X>V −1X)−1X>V −1W ]−1

A2 = W>V −1W + L>L−W>V −1X(X>V −1X)−1X>V −1W

When X = 0 (a situation without any scalar predictors) or X>V −1W = 0 the generalized

ridge estimation of γ can be put into a PEER estimation framework in terms of GS vectors,

as discussed below.

With X = 0 or X>V −1W = 0, the γ̂ reduces to [W>V −1W + L>L]−1W>V −1y. More-

over, in this case generalized ridge estimate of β becomes [X>V −1X]−1X>V −1y. Now, if

we transform W̃ := V −1/2W and ỹ := V −1/2y, we can rewrite L as

L = λ0 blockdiag

{
L0,

λ1

λ0
L1, · · · ,

λD
λ0
LD

}
= λ0L

s

Here, Ls can be interpreted as a scaled L where scaling is done for all the tuning param-

eters associated with the ‘longitudinal’ part of the regression function with respect to the

‘baseline’ tuning parameter.

Set p̃ = (D + 1)p, let m denote the number of rows in L and set c = dim[Null(L)].

Further, assume that n• ≤ m ≤ p̃ ≤ m + n• and the rank of the (n• + m) × p̃ matrix

[W̃> (Ls)>]> is p̃. The following describes the GSVD of the pair (W̃ , Ls): there exist

orthogonal matrices U and V, a nonsingular G and diagonal matrices S and M such that

Randolph et al. (2012)

W̃ = USG−1 S = [0 S] S = blockdiag{S1, Ip̃−m}
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Ls = VMG−1 M = [M 0] M = blockdiag{Ip̃−n• , M1}

Submatrices S1 and M1 have ` = n• +m− p̃ diagonal entries ordered as

0 < σ1 ≤ σ2 ≤ · · · ≤ σ` < 1

0 > µ1 ≥ µ2 ≥ · · · ≥ µ` > 1

where, σ2
k + µ2

k = 1, k = 1, . . . , `

Here, the columns {gk} of G are the GS vectors determined by the GSVD of the pair

(W̃ , Ls). Denote the columns of U and V by uk and vk, respectively. Now, it can be

shown that [W>V −1W+L>L]−1W>V −1 = [W>V −1W+λ2
0(Ls)>Ls]−1W>V −1 = G(S>S+

λ2
0M>M)−1G> W̃>V −1/2 and consequently, γ̂ can be expressed as

γ̂ = G(S>S + λ2
0M>M)−1S>U>ỹ =

p̃−c∑
k=p̃−n•+1

σ2
k

σ2
k + λ2

0µ
2
k

1

σk
u>k ỹgk +

p̃∑
k=p̃−c+1

u>k ỹgk

Further, the bias and variance can be expressed as

Bias[γ̂] = (I −W#W )γ = G(S>S + λ2
0M>M)−1(λ2

0M>M)G−1

=
∑p̃−n•

k=1 gkg̃
>
k γ +

∑p̃−c
k=p̃−n•+1

λ20µ
2
k

σ2
k+λ20µ

2
k
gkg̃
>
k γ

V ar[γ̂] = W#V (W#)> = G(S>S + λ2
0M>M)−1S>S(S>S + λ2

0M>M)−1G>

=
∑p̃−c

k=p̃−n•+1
σ2
k

(σ2
k+λ20µ

2
k)2
gkg
>
k +

∑p̃
k=p̃−c+1 gkg

>
k

where, W# = [W>V −1W + L>L]−1W>V −1 and g̃k denotes the kth column of G−T =

(G−1)> = (G>)−1. Further, we can express bias as [W>V −1W +L>L]−1L>Lγ which means

γ̂ will be unbiased only when γ ∈ Null(L).
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For estimates obtained using this technique, the bias and variance can be expressed in

terms of generalized singular vectors, provided the assumption of X>V −1W = 0 applies.

In this case, one can show that β̂ is simply the generalized least squares estimate from the

linear model y = Xβ + ε∗, and γ̂ is the generalized ridge estimate from y = Wγ + ε∗ with

penalty L. That is, β is estimated as if Wγ were not present, and γ is estimated as if Xβ

were not present. The PEER estimate discussed in this Section can be thought of as an

extension of the estimation discussed in Randolph et al. (2012) in two ways: we allow for a

general covariance matrix V (for y) and we also extend the penalty operator to apply across

multiply-defined domains, L0, . . . , LD.
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Chapter 3

Regression tree with longitudinal data

In longitudinal studies, repeated measurements of the outcome variable are often collected

at irregular and possibly subject-specific time points. Parametric regression methods for

analyzing such data have been developed by Laird and Ware (1982) and Liang and Zeger

(1986) among others, and have been summarized by Diggle et al. (2002). Often the pop-

ulation under consideration is heterogeneous in terms of trend and covariate effect. Under

such situation traditional mixed effect models (such as, linear mixed effect model) assuming

a “common parametric form” for covariates and time might not be an appropriate option.

If the population under consideration is diverse and there exists several distinct subgroups

within it, the true parameter value(s) for longitudinal mixed effect model may vary between

these subgroups. For example, Raudenbush (2001) used a longitudinal depression study as

an example to argue that it is incorrect to assume that all the people in a given population

will be experiencing either increasing or decreasing levels of depression. In such instances,

an assumption of “common parametric form” will mask important subgroup differences and

will lead to erroneous conclusions. In this chapter, we present an regression tree construction

algorithm to identify meaningful and interpretable subgroups with differential longitudinal

trajectories and/or differential covariate effect(s) on the response variable from such a het-

erogeneous population. We propose a regression tree construction technique (LongCART

algorithm) with longitudinal data that (1) takes the decision about further splitting at each

node controlling type I error, and (2) is applicable in cases when measurements are taken

at subject specific time-points.
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3.1 Regression tree in cross-sectional setting

Tree based methods, unlike classical regression techniques, do not require any pre-specified

relationship between the response and predictors. In principle, tree based methods tries to

partition the model space (defined by the predictors) into smaller subspaces in ‘best possi-

ble’ way and then fit simple model (like a constant) within each of these subspaces. Among

the tree based methods, classification and regression tree (CART) method (Breiman et al.,

1984; Clark and Pregibon, 1992; Verbyla, 1987) is probably the most popular one. When

the response variable of interest is categorical, then this problem is known as classification

tree. We are interested in regression tree, where the response variable is continuous. In the

context of CART, the predictor variables available to construct the tree are often known as

partitioning variables.

Let y be the response variable and X1, · · · , XS are the candidate partitioning variables.

We want to construct regression tree via recursive binary partitioning with the data of N

individuals. The main challenge in constructing regression tree is to find out the partitioning

variable Xs ∈ {X1, · · · , XS} and split point g ∈ Range{Xs} that solves (Hastie et al., 2001)

min
s,g

[
min
c1

∑
i

I(xis ≤ g)(yi − c1)2 + min
c2

∑
i

I(xis > g)(yi − c2)2

]

where, yi and xis are the respective values of y and Xs for ith individual and I(·) is the

indicator function. For any choice of Xs and g, the inner minimization is solved by

ĉ1 =
1∑

i I(xis ≤ g)

∑
i

I(xis ≤ g)yi ĉ2 =
1∑

i I(xis > g)

∑
i

I(xis > g)yi

The pair (Xs, g) is chosen by scanning through all the cut-off points of all the partitioning

variables. Having found the best split, we partition the data into two resulting regions and
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repeat the splitting process on each of the two regions. Then this process is repeated on all

of the resulting regions. We continue growing tree until we hit some threshold point such

as minimum number of observations in a region.

3.2 Longitudinal tree

The thrust of any tree techniques is the extraction of meaningful subgroups characterized

by common covariate values and homogeneous outcome. The idea of constructing “tree”

can be generalized to longitudinal setting with linear mixed effect model in order to find

relatively more homogeneous subgroups. For longitudinal data, this homogeneity can per-

tain to the mean and/or covariance structure (Segal, 1992).

We refer to the regression tree for longitudinal data as ‘Longitudinal tree’. Figure 3.1

displays a toy example for a longitudinal tree. This regression tree represents a heteroge-

neous population with three distinct subgroups in terms of their longitudinal profiles. These

subgroups can be characterized by gender and age. Here, gender and age are the baseline

attributes. We consider these baseline attributes as partitioning variables in construction of

Longitudinal tree. In each of the three subgroups, the longitudinal trajectory of y depends

Figure 3.1: Sample longitudinal tree. The population consists of 3 subgroups and they differ
in their longitudinal profiles (To be precise, intercept and the coefficients associated with
time, t and covariate, w, are not all same). These subgroups are defined by the partitioning
variables gender and age.
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on the covariates w1, · · · , wq, but these subgroups are heterogeneous in terms of the true

coefficients associated with their longitudinal profiles. That is, all β1, β2 and β3 are differ-

ent where βj = [β0j , β1j , β2j ]
> is the vector of true coefficients in jth subgroup (j = 1, 2, 3).

3.2.1 Why longitudinal tree?

The overall goal of ‘Longitudinal Tree’ technique is to identify subpopulations with distinct

longitudinal trajectories within a population. The identification of subpopulation is done

in a way that the individuals within a subpopulation a) are relatively more comparable in

terms of their longitudinal profile with the other individuals in that subgroup compared to

other individuals in the population b) have common realized values for one or few base-

line attributes. When the longitudinal profile in a population depends on some baseline

attributes, the most common strategy is to include these attributes (and their interaction

terms) as covariates in the model. However, this strategy has some inherent drawbacks:

(a) it can lead to overfitting due to inclusion of all possible interaction terms, especially

when the number of potential baseline attributes is large, (b) functional form of the associ-

ation with baseline attributes need to be known and correctly specified, and (c) it cannot

capture nonlinear (not intrinsically linear) effect of baseline attributes. Our goal is to deter-

mine the most parsimonious model consisting of a number of homogeneous subgroups from a

heterogeneous population profile without strict parametric restrictions or prior information.

One of the popular technique to construct homogeneous subgroups is latent class mod-

eling (LCM) (Muthén and Shedden, 1999). LCM is a statistical method used to identify

a set of discrete, mutually exclusive latent classes of individuals based on their responses.

An alternative approach is to construct regression tree with longitudinal data (Segal, 1992).
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Advantages of regression tree technique over LCM includes: (1) it characterizes the sub-

groups in terms of partitioning variables and (2) number of subgroups need not to be known

a-priori.

3.2.2 Homogeneity and heterogeneity

Consider the following form of a linear longitudinal mixed effect model

yit = βx0 + βx1 t+ w>itβ
x + z>itbi + εit (3.2.1)

where i is the subject index and y, t and w denote the outcome variable, time and the

vector of measurements on scalar covariates w1, · · · , wq, respectively. Let XG1
1 , · · · , XGS

S

include all potential baseline attributes that might influence the longitudinal trajectory in

(3.2.1). The superscript x is added to the coefficients β0, β1 and β to reflect their possible

dependence on these baseline attributes. Denote θx> = (βx0 , β
x
1 ,β

x>). With such a model,

‘homogeneity’ refers to the situation when the coefficients’ true values remain the same for

all the individuals in the entire population, i.e. θx = θ. When the longitudinal changes

in the population of interest are heterogeneous there exists distinct subgroups differing in

terms of the true values of the coefficients, i.e. θx 6= θ. XG1
1 , · · · , XGS

S are the partitioning

variables used in the regression tree construction. The superscripts to these partitioning

variables indicate the number of cut-off points these partitioning variables have. That is,

Xs has Gs number of cut-off points (s = 1, · · · , S).

3.2.3 Challenges

Generally, in construction of regression tree with cross-sectional data, the best split is

determined by examining the each cut-off point of all partitioning variables as explained

in Section 3.1. We can carry that idea in longitudinal setting by performing a test for
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improvement due to binary partitioning at each cut-off point of all partitioning variables.

This idea have been pursued by Abdolell et al. (2002) considering deviance as goodness of fit

criterion. They performed test for deviance at each split of a given partitioning variable and

selected the partition with maximum (and statistically significant) reduction in deviance

for the binary splitting. However, repetitive evaluation of goodness-of-fit criterion at each

cut-off point of all partitioning variable leads to the multiple testing problem. With S

partitioning variables as XG1
1 , · · · , XGS

S (with cut-off points as G1, · · · , GS , respectively),

total number of tests would be
∑S

s=1 (Gs − 1). Clearly, it would be very challenging to

control type I error with so many tests, especially when one or more partitioning variables

are continuous.

3.2.4 Proposed approach

To minimize the problem of multiplicity, we have proposed LongCART algorithm for con-

struction of regression tree that involves only single test for each partitioning variable.

We call these tests as test for parameter instability. Hence, with S partitioning variables,

we need to perform only S tests for parameter instability. The number of tests with the

proposed approach would be much smaller than
∑S

s=1 (Gs − 1) in presence of continuous

partitioning variables and/or categorical partitioning variables with greater than two cat-

egories. Consequently, LongCART algorithm seems more promising to put a better check

on the type I error.

We want to construct the regression with certain level of confidence. In general, the

controlling type I error rate in the entire tree construction process would be very difficult

firstly, because the number of branches are unknown a-priori, and secondly, there are large

number of possibilities in choosing a split. To address the issue of type I error, at each node,
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we divide task of finding best split at a given node into two sub-tasks: (a) First, identify

if there is any need for further splitting and (b) Second, given there is need for further

splitting, choose the optimum splitting point. Our proposed LongCART algorithm controls

type I error while performing the first task, that is, to decide whether there any need for

further splitting. Once this decision is taken in favor of splitting, the optimum split can

be chosen adopting some model selection process. In order to offer an better overview of

LongCART, let’s assume there is only a single partitioning variable, say XG, with G cut-off

points. In such case, LongCART algorithm identifies the best split at a given node in a

two-step process as follows:

• Step 1. Perform an overall parameter instability test to detect any evidence of het-

erogeneity of longitudinal model parameters across G cut-off points of XG.

• Step 2. Given that there is a ‘significant’ evidence for heterogeneity, the split that

provides maximal improvement in goodness of fit criterion is chosen as a partitioning

point for the tree construction.

We adapt the LongCART algorithm in situations with multiple partitioning variables

via repeating the parameter instability test for each partitioning variable controlling type I

error at a given level (with some adjustment for multiple testing in step 1). We continue to

the second step using the ‘most significant’ partitioning variable. Details of this algorithm

are presented in Section 3.5. The key idea here is that we are combining the multiple testing

procedure (step 1) with model selection (step 2) in order to control the type I error while

taking the decision on splitting at each node.

In order to construct a test for parameter instability, we borrow an idea from the time-

series literature. In time-series context often the goal is to evaluate whether the parameter

of a regression model is stable across different time points. This is often known as a test for

structural change or constancy of parameters (e.g., Brown et al., 1975; Hjort and Koning,
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2002; Nyblom, 1989). We apply very similar idea to evaluate whether the true values of the

parameter remains the same across the cut-off values of a partitioning variable in a mixed

effects longitudinal model of interest.

3.2.5 Literature review

Binary partitioning for longitudinal data has been proposed first by Segal (1992). How-

ever, Segal’s implementation is restricted to longitudinal data with a regular structure,

that is all the subjects have an equal number of repeated observations at the same time

points (Zhang and Singer, 1999). Zhang (1997) proposes multivariate adaptive splines to

analyze longitudinal data. Their method, multivariate adaptive splines for the analysis of

longitudinal data (MASAL), can be used to generate regression trees for longitudinal data.

Abdolell et al. (2002) used deviance as a goodness-of-fit criterion for binary partitioning.

They controlled the level of Type I error via permutation test taking into account testing

multiplicity. However, permutation tests are computer intensive and the time taken to fit

the models is intimidatingly high even for medium-sized data. Sela and Simonoff (2012) as

well as Galimberti and Montanari (2002) merged the subgroup differences with the random

individual differences. They constructed the regression tree through an iterative two-step

process. In the first step, they obtained the random effects’ estimates and in the second

step, they constructed the regression tree ignoring the longitudinal structure. They repeat

these two steps until the estimates of the random effect converge in the first step. The

LongCART algorithm provides an improvement over the existing methods in the following

aspects: (1) the decision about further splitting at each node is type I error controlled,

(2) it is applicable to the when measurements are taken at subject-specific time points, (3)

it does not merge group differences with the random subject effect components and (4) it

reduces computational time.
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In this paper we utilize the parameter instability test in multiple ways. First, in the

case of continuous partitioning variables, the proposed test uses the results on score process

derived by Hjort and Koning (2002) in conjunction with the properties of Brownian motion

and Brownian Bridge. Second, for categorical partitioning variables with a small number

of cut-off points, a test for parameter instability is derived in a straightforward way by em-

ploying asymptotic normality of the score functions. We derive the asymptotic properties

of the instability test and explore its size and power through an extensive simulation study.

Finally, we use these instability tests to construct an algorithm for regression trees with

longitudinal data.

The remainder of this paper is organized as follows. In Section 3.3 the longitudinal

mixed effects model of interest have been summarized. Tests for parameter instability for

continuous and categorical partitioning variable cases are discussed separately in Section

3.4. Algorithm for constructing regression trees along with measures of improvement and a

pruning technique have been presented in Section 3.5. Results from the simulation studies

examining the performance of the instability test and the regression tree as a whole are

reported in Section 3.6. An application of the longitudinal regression tree method was

illustrated on the metabolite data collected from the chronically HIV-infected patients in

Section 3.7.

3.3 Notations and assumptions

Let {yit,wit} be a set of measurements recorded on the ith subject (i = 1, . . . , N) at time

t = (t1, . . . , tni), where y is a continuous scalar outcome; and w is the vector of mea-

surements on scalar covariates w1, · · · , wq. We assume that these covariates are linearly

associated with y. In addition, for each individual, we observe a vector of attributes
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(XG1
1i , · · · , X

GS
Si ) measured at baseline. We assume that XG1

1 , · · · , XGS
S includes all the

potential baseline attributes that might influence the longitudinal trajectory of y and its

association with covariates w1, · · · , wq. Further, we don’t have any idea about the func-

tional form of influence of these baseline attributes. We use the variables XG1
1 , · · · , XGS

S as

the candidate partitioning variables to construct a longitudinal regression tree to discover

meaningful and interpretable subgroups with differential changes in y characterized by the

XG1
1 , · · · , XGS

S .

When the longitudinal profile is homogeneous in the entire population, we can fit the

following traditional linear mixed effects model for all N individuals (Laird and Ware, 1982)

yit = β0 + β1t+ w>itβ + z>itbi + εit, (3.3.1)

where εit ∼ N(0, σ2) and bi is the vector of random effects pertaining to subject i and dis-

tributed as N(0, σ2D). By ‘homogeneity’ we mean that the true value of θ> = (β0, β1,β
>)

remains the same for all the individuals. In fact, (3.3.1) is the simplified version of model

in (3.2.1) under homogeneity.

We follow the common assumptions made in longitudinal modeling that zit is a subset

of [w>it t]>; εit and bi are independent; εit and εi′t′ are independent whenever i 6= i′ or t 6= t′

or both, and bi and bi′ are independent if i 6= i′. Here, w>itβ is the fixed effect term and

z>itbi is the standard random effects term. For the ith subject, we rewrite the Eq. (3.3.1)

as follows

yi = wiθ + zibi + εi, (3.3.2)
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where y>i = (yi1, · · · , yini), wi is the design matrix consisting of the intercept, time (t) and

covariates (w). ni is the number of observations obtained from the ith individual. The score

function for estimating θ under (3.3.2) is (see e.g., Demidenko, 2004)

u(yi,θ) =
d

dθ
l(yi,θ) =

1

σ2
w>i V−1

i (yi −wiθ)

where Vi = I + ziDz>i and ei = yi −wiθ. Further, its variance is

Var [u(yi,θ)] = J(θ) = −E
[
d

dθ
u(yi,θ)

]
=

1

σ2
w>i V−1

i wi

Likelihood estimate of θ obtained using all the observation from N subjects is valid

only if all the individuals under considerations are homogeneous. If the individuals are not

homogeneous in terms of θ then the likelihood estimate obtained considering all the subjects

together are misleading; the extent and direction of ambiguity in the estimate will depend

on the nature and proportion of heterogeneity in the sampled individuals. Therefore, it is

important to decide first whether the true value of θ remains the same for all the subjects

or not. In the next section, we describe a way to test whether the true value of θ remains

the same across all the values of a given partitioning variable.

3.4 Test for parameter instability

In this section, we utilize the ideas introduced by Hjort and Koning (2002) to test for

the constancy of model parameters over time in time-series context. Our goal is to test

whether the true value of θ remains the same across all distinct values of a given partition-

ing variable. We refer to this test as a test for parameter instability. The testing strategy is

described in this section with a single partitioning variable. For multiple partitioning vari-

ables, the test needs to be repeated for each of them with an adjustment for multiple testing.
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Let XG ∈ {XG1
1 , · · · , XGS

S } be any partitioning variable with G ordered cut-off points

c(g), g = 1, · · · , G; c(1) ≤ · · · ≤ c(G) and θ(g) be the true value of θ when XG = c(g). Assume

that there are mg subject with XG = c(g). We denote the cumulative number of subjects

with XG ≤ c(g) by Mg. That is, Mg =
∑g

j=1mj and MG =
∑G

j=1mj = N . We want to

conduct an omnibus test,

H0 : θ(g) = θ0 H1 : θ(g) 6= θ0.

Here, H0 indicates the situation when parameter θ remains constant (that is, homogene-

ity) and H1 corresponds to the situation of parameter instability (that is, heterogeneity) .

The two tests described in this section utilize the following properties of score function

under H0:

• A1: EH0 [u(yi,θ0)] = 0;

• A2: VarH0 [u(yi,θ0)] = J(θ0) = J;

• A3: u(yi, θ̂)|H0 →d N [0, Ĵ],

where θ̂ is the maximum likelihood estimate of θ and Ĵ = J(θ̂). We discuss the instability

test separately for the categorical and continuous variables XG.

3.4.1 Instability test with a categorical partitioning variable

It is straightforward to obtain a test for parameter instability using the properties A1–A3

when the partitioning variable, XG, is categorical with a small number of categories (that

is, G � N). Since the score functions u(yi, θ̂) are independent, we have under H0, the

following quantity

χ2
cat =

G∑
g=1

[
N∑
i=1

I(XG
i = c(g))u(yi, θ̂)

]> [
mgĴ

]−1
[
N∑
i=1

I(XG
i = c(g))u(yi, θ̂)

]
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is asymptotically distributed as χ2 with (G−1)p degrees of freedom where p is the dimension

of θ. Here, I(·) is the indicator function. The reduction in p degrees of freedom is due to

the estimation of p dimensional θ from the data.

3.4.2 Instability test with continuous partitioning variable

Here, we first review the results obtained by Hjort and Koning (2002) and then we propose

the test for instability with a single continuous partitioning variable. We begin by defining

the following score process

WN (t,θ0) = N−1/2

Mg∑
i=1

u(yi,θ0) t ∈ [tg, tg+1)

where tg =
Mg

N
. Using multivariate version of Donsker’s theorem and Cramér-Wold theorem

(see e.g. Billingsley, 2009) it can be shown that

WN (t,θ0)→d Z(t)

where Z(t) is the zero-mean Gaussian process with cov[Z(t),Z(s)] = min(t, s)J(θ0). Note

that Z is a linear transformation of p independent Brownian motions. Since, θ0 is unknown

in practice, we define the following estimated score process replacing θ0 by θ̂

WN (t, θ̂) = N−1/2

Mg∑
i=1

u(yi, θ̂)

By applying Taylor series expansion it is straightforward to show that

WN (t, θ̂)
.
= WN (t,θ0)− t WN (1,θ0)
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where An
.
= Bn means that An−Bn tends to zero in probability. In the case of linear mixed

effects models, this relationship is exact as the second derivative of the score function is

equal to 0. That is, WN (t, θ̂) = WN (t,θ0)− t WN (1,θ0). Consequently,

WN (t, θ̂)→d Z0(t) = Z(t)− t · Z(1)

The limit process Z0(t) is a p-dimensional process with covariance function cov[Z0(t),Z0(s)] =

s(1 − t)J(θ0) for s < t. We can go on to the construction of canonical monitoring process

MN (t, θ̂), and under H0,

MN (t, θ̂) = Ĵ−1/2WN (t, θ̂)→d W0(t)

where W0(t) = (W 0
1 (t), · · · ,W 0

p (t)) is a vector with p independent standard Brownian

Bridges as component processes. In other words, kth component of MN (t, θ̂) is distributed

as a standard Brownian Bridge, W 0(t). That is,

MN (t, θ̂k)→d W
0(t)

The above weak convergence continues to hold for any ‘reasonable’ functionals (including

supremum) of MN (t, θ̂k) (see e.g. ?, pp 509, Theorem 1). At this point, Hjort and Koning

(2002) proposed several functionals of MN (t, θ̂k) as possible test statistics and suggested to

approximate their distribution functions through simulation for comparison purpose. For

example, they stated

max
0≤t≤1

||MN (t, θ̂k)||2 →d max
0≤t≤1

||W 0(t)||2
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and suggested to use max0≤t≤1 ||MN (t, θ̂k)||2 as test statistic. Instead we propose to use Dk

as defined below as a test statistic

Dk ≡ max
0≤t≤1

|MN (t, θ̂k)| = max
1≤j≤N−1

|MN (t, θ̂k)| →d max
0≤t≤1

|W 0(t)| ≡ D (3.4.1)

The primary reason for preferring max0≤t≤1 |MN (t, θ̂k)| over the

max0≤t≤1 ||MN (t, θ̂k)||2 is that the limiting distribution of the former is known. The use of

Dk as a test statistic eliminates the additional simulation work approximating the limiting

distribution and thus making the testing process much more computationally efficient. The

resulting reduction in the computation time is significant in the context of regression tree

construction with the longitudinal data. D has distribution function (Billingsley, 2009)

FD(x) = 1 + 2
∞∑
l=1

(−1)l exp (−2 l2x2).

Although this expression involves an infinite series, this series converges very rapidly. Usu-

ally a few terms suffice for very high accuracy. This result can be used to formulate a test

for instability of parameters at α level of significance as follows: (1) Calculate the value of

the process Dk for each parameter k = 1, · · · , p and obtain the raw p-values. (2) Adjust

the p-values according to a chosen multiple testing procedure. (3) Reject H0 if the adjusted

p-value for any of the processes, Dk, is less than α.

3.4.3 Instability test for multiple partitioning variables

The testing strategy discussed in Sections 3.4.1 and 3.4.2 for a single partitioning variable

depends only on the predictor variable type, either categorical or continuous. However, in

practice, we expect to have more than one partitioning variable. Let there be S partitioning

variables: {XG1
1 , · · · , XGS

S }. In that case we need to perform the instability test for each
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of the partitioning variables XG1
1 , · · · , XGS

S subject to adjustment for multiplicity of type

I errors. Let the p-values after multiplicity adjustment be p1, · · · , pS , respectively and

pmin = min {p1, · · · , pS}. Candidate partitioning variable with the smallest p-value (pmin)

is chosen as a partitioning variable if pmin is smaller than the nominal significance level.

For further discussion please see Section 3.5.

3.4.4 Power under the alternative hypothesis

We consider the following form of Pitman’s local alternatives in the vicinity of H0

θ(g) = θ0 + δ ◦ h
( c(g)

c(G)

) 1√
N

+O

(
1

N

)
(3.4.2)

where δ = (δ1, · · · , δp)> is the vector containing degrees of departure from the null hypoth-

esis and h = (h1, · · · , hp)> is the vector containing magnitudes of departure. The operation

◦ denotes the point-wise multiplication, i.e.,

δ ◦ h
( c(g)

c(G)

)
=

[
δ1h1

( c(g)

c(G)

)
, · · · , δphp

( c(g)

c(G)

)]>

Theorem 3.4.1. Under (3.4.2), the limiting distribution for the χ2
cat is a non-central chi-

square distribution

χ2
cat −→d χ

′2

(G− 1)p,
G∑
g=1

λ2
g


where

λg = J ·mgh
( c(g)

c(G)

)
· 1√

N
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Theorem 3.4.2. Under (3.4.2), the limiting distribution for the canonical monitoring pro-

cess is as follows

MN (t, θ̂) −→d J1/2 · tg · δ ◦ (h̄g − h̄) + W0(t) t ∈ [tg, tg+1)

where,

h̄g =
1

Mg

g∑
j=1

mjh
( c(j)

c(G)

)
h̄ = h̄G

Proofs of these theorems are provided in the Appendix. Briefly, we first approximate

the density function using Taylor series expansion and then proceed in the way analogous

to the one discussed in Section 3.4.2.

3.5 Longitudinal regression tree

3.5.1 LongCART algorithm

Smaller p-values from the instability test indicate greater evidence towards instability. In-

tuitively, splits in the tree should be based on the partitioning variable that shows higher

evidence towards instability of the parameters. Therefore, we propose the following algo-

rithm in order to construct a regression tree for longitudinal data.

Step 1. Perform the instability test for each partitioning variable separately at a prespec-

ified level of significance α. The level of significance for performing instability test is

subject to adjustment for multiple comparisons in order to maintain the level of type

I error.

Step 2. Stop if no partitioning variable is significant at level α. Otherwise, choose the

partitioning variable with the smallest p-value and proceed to step 3.
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Step 3. Consider all cut-off points of the chosen partitioning variable. At each cut-off

point, calculate the improvement in the goodness of fit criterion (e.g., deviance). With

XG as the chosen partitioning variable, the improvement in goodness of fit criterion

can be obtained at the cut-off point c(g) in the following steps:

a. Split the data in two parts. One group will include the observations from subjects

with XG ≤ c(g) and the other group will have the observations from subjects with

XG > c(g).

b. Fit the longitudinal model on (i) all the individuals in the node, (ii) the individuals

with XG ≤ c(g) and (iii) the individuals with XG > c(g). Calculate the goodness

of fit criterion from each of these three models. Call them as GOFall, GOFI and

GOFII , respectively.

c. Calculate the improvement in goodness of fit criterion as GOFI+GOFII−GOFall.

Step 4. Choose the cut-off value that provides the maximum improvement in goodness

of fit criterion and use this cut-off for binary splitting.

Step 5. Follow the Steps 1-4 for each non-terminal node.

The above strategy for construction of regression tree with longitudinal data has two

major advantages over the currently existing algorithms. First, the decision about further

splitting at each node is taken controlling type I error. Second, there are huge savings in

computation time as we are evaluating the improvement in selected goodness of fit criterion

at the cut-off points of the chosen partitioning variable only.

3.5.2 Improvement

A measure of improvement due to regression tree can be provided in terms of likelihood

function based criterion. For example, Akaike Information criterion (AIC) for a tree T can
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be obtained as

AICT = 2

|T |∑
k=1

lk − 2 · |T | · p

where |T | denotes the number of terminal nodes in T , lk is the log-likelihood in kth terminal

node and p is the number of estimated parameters in each node. If we denote the AIC

obtained from the traditional linear mixed effects model at root node (that is, common

parametric form for covariates and time for the entire population) by AIC0, the improvement

due to regression tree can be measured as

Improvement (T ) = AICT −AIC0

Since the overall model fitted to all the data is nested within the regression tree based

model, a likelihood ratio test or test for deviance can be constructed as well to evaluate the

overall significance of a given regression tree.

3.5.3 Pruning

The improvement in regression tree comes at a cost of adding complexity to the model. If

we can summarize complexity of a tree by number of terminal nodes, the cost adjusted AIC

of a regression tree T can be defined as follows

AICT (γ) = AICT − γ(|T | − 1), γ > 0

where γ be the average complexity for each terminal node. As a result, the tree T will be

selected if

AICT − γ(|T | − 1) > AIC0

or

γ <
AICT −AIC0

|T | − 1
≡ γT (3.5.1)
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That is, the tree T will be chosen as long as γT does not exceed some pre-set level of average

complexity, γ0; otherwise, we have to prune the tree T to bring γT below γ0.

3.6 Simulation

We have explored the performance of instability test for continuous partitioning variables

and the performance of proposed LongCART algorithm as a whole through simulation

studies. The first two simulation studies evaluate the performance of instability test with

continuous partitioning variable (as discussed in Section 3.4.2). The third simulation study

is aimed to explore the performance of the LongCART algorithm in Section 3.5.1.

3.6.1 Performance of instability test with continuous partitioning variable

Let XG be continuous partitioning variable with ordered cut-off points as c(1) ≤ · · · ≤ c(G).

We first investigated the size of the test and then obtained the size-corrected power.

Size of the test

In order to examine the size of the test we have considered a longitudinal model with

single mean parameter. We generated observations for N subjects at t = 0, 1, 2, 3 from the

following model

XG = c(g) : yit = β0 + bi + εit (3.6.1)

with β0 = 2, bi ∼ N(0, 0.52) and εit ∼ N(0, 0.22). The observations for XG were gener-

ated for each simulation separately from uniform(0,300). For each N , 10, 000 Monte-Carlo

samples were generated and the test statistic Dk (see Eq. (3.4.1)) was calculated for each

sample separately. The null hypothesis of parameter stability is rejected at α% level of

significance when Dk exceeds the (1− α)× 100th percentile of the limiting distribution.
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Table 3.1: Size of proposed parameter instability test for continuous partitioning variable
via simulation as discussed in Section 3.6.1. The results were summarized based on 10, 000
simulations for various nominal levels of type I error (α) and sample size (N). The critical
values (Dα) from the true limiting distribution of test statistic Dk (see Eq. 3.4.1) is also
provided for each α. For each N and α, the simulation results have been summarized by (a)
percentage of rejection (to be compared with α) and (b) observed (1 − α)100th percentile
of Dk (to be compared with Dα). The propose parameter instability test seems to be
conservative; however, the size of the test approaches to nominal level with the increase in
N .

(a) Percentage of rejection

N

α(%) 50 100 200 500 1000

1.25 0.54 0.56 0.89 1.02 0.95

1.67 0.75 0.85 1.10 1.33 1.29

2.50 1.20 1.46 1.77 2.04 1.94

5.00 2.78 3.35 3.48 4.07 4.19

10.00 5.66 7.14 7.19 8.37 8.53

20.00 13.05 14.73 15.83 16.97 17.14

(b) Observed (1− α)100th percentile of Dk

N

α(%) Dα 50 100 200 500 1000

1.25 1.5930 1.4760 1.4938 1.5366 1.5643 1.5504

1.67 1.5472 1.4447 1.4532 1.4891 1.5147 1.4986

2.50 1.4802 1.3722 1.3998 1.4180 1.4392 1.4412

5.00 1.3581 1.2497 1.2924 1.2934 1.3154 1.3287

10.00 1.2238 1.1236 1.1585 1.1629 1.1901 1.1857

20.00 1.0728 0.9859 1.0045 1.0194 1.0350 1.0373
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The observed percentiles and the percentage of rejected null hypotheses are summarized

in Table 3.1. We can make following observations: 1) the type I error of test does not

exceed the nominal level, 2) the size of the test approaches to the desired significance level

α with the increase in the sample size N , and 3) the test is under-sized for smaller sample

sizes. The severe problem with the size of the test for smaller sample size can be explained

as follows. Calculation of test statistic, Dk, involves σ2 and Vi. However, in practice, the

true values of σ2 and Vi are unknown and we replace them by their estimates. A consistent

estimator (e.g. ML- or REML-based) approaches the true value with an increasing sample

size. However, the estimates might be biased for smaller sample sizes. To be precise, for

smaller sample size, σ2 and Vi may remain underestimated and this leads to smaller value of

Dk which in turn results in a smaller size of the test. However, bias in estimation of σ2 and

Vi fades away with the increase in N and this increases the size of the test. We observe this

trend in Table 3.1 as the size of test approaches the nominal level of type I error with the

increase in sample size. However, the size of test remains smaller than nominal level even

for the reasonably large N . The reduced size has been also reported in other tests based on

the Brownian Bridge process. For example, Kolmogorov Smirnov test for normality (which

also uses the Brownian Bridge as limiting distribution) is conservative (Birnbaum, 1952;

Lilliefors, 1967; Massey Jr, 1951). As N exceeds 500, the size of the test is close to the

nominal level of significance. As a remedy for smaller sample sizes, one might consider using

a liberal α level or small sample distribution for Dk obtained through simulation.

Power

We generated observations for N subjects at t = 0, 1, 2, 3 from the following model to

evaluate performance of instability test for XG

XG = c(g) : yit = β0(g) + β1(g)t+ bi + εit,
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Table 3.2: Power (%) of parameter instability test with continuous partitioning variable
obtained in the simulation described in Section 3.6.1. Numbers corresponding to β1 and β0

represent the percentages of rejection associated with parameter instability for β1 and β0,
respectively. The ‘Overall’ figures represent the percentage of at least one rejection out of
the two.

% of rejection

δ

Parameter

instability

N test 0 .25(−.25) .50(−.50) .75(−.75) 1.00(−1.00) 1.2(−1.2)

β1 1.4 1.4(1.4) 1.6(1.6) 1.9(1.9) 2.3(2.3) 2.4(2.3)

50 β0 1.6 4.4(4.3) 16.9(16.6) 41.9(42.0) 70.2(70.6) 86.9(87.0)

Overall 2.9 5.6(5.5) 17.9(17.6) 42.6(42.5) 70.5(70.8) 87.0(87.1)

β1 1.5 1.6(1.6) 2.0(2.1) 2.5(2.6) 3.0(3.0) 3.2(3.2)

100 β0 1.7 (5.2(5.3) 18.7(19.7) 44.4(46.0) 72.9(73.9) 88.9(89.0)

Overall 3.1 6.6(6.7) 19.8(20.8) 45.0(46.6) 73.1(74.2) 89.0(89.1)

β1 1.8 1.9(1.8) 2.2(2.2) 2.7(2.7) 3.3(3.3) 3.5(3.4)

200 β0 1.9 5.6(5.3) 20.7(19.8) 47.5(46.8) 75.7(75.2) 90.1(89.8)

Overall 3.6 7.4(6.8) 21.9(21.0) 48.2(47.4) 76.0(75.4) 90.6(89.9)

β1 2.1 2.1(2.2) 2.7(2.5) 3.2(3.2) 3.6(3.7) 3.9(4.0)

500 β0 1.8 6.1(6.0) 21.4(20.1) 48.1(48.2) 76.6(76.6) 91.1(91.1)

Overall 3.7 7.8(7.8) 22.8(22.2) 48.8(49.1) 77.0(77.0) 91.3(91.2)

β0(g) = β0 β1(g) = β1 + δ ·
c(g)

c(G)

We set β0 = 1 and β1 = 2. bi, εit and XG were generated similarly as before in Section

3.6.1. In this simulation, the parameter β1 is not stable unless δ = 0. We dealt with two

parameters: β0 and β1, thus we will have two Brownian bridge processes. We adjusted

the p-values according to the Hochberg’s step-up procedure (Hochberg, 1988). We chose

Hochberg’s step-up procedure because it is relatively less conservative than the Bonferroni

procedure (Hochberg and Tamhane, 1987). However, in principle, any multiple comparison

procedure can be applied here.
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Figure 3.2: True tree structure for the simulation described in Section 3.6.2. In rth subgroup,
fr observations were generated according to Eq. (3.6.2) with specified β0 and β1.

The results based on 10,000 simulation are displayed in Table 3.2. As the absolute

value of δ deviates from zero, the power increases. The power of test is close to 80% and

approaching the 90% mark as |δ| > 1. The sign of δ does not influence the power of the test.

Sizes of the test are very much in agreement with the first simulation study. As observed

previously, the test is mildly conservative in the current simulation scenario as the observed

level of type I error is consistently slightly below the nominal value α = 0.05.

3.6.2 Performance of regression tree for longitudinal data

In this simulation, our goal is to assess the improvement in estimation due to LongCART

algorithm when the population under consideration is truly heterogeneous. We have sim-

ulated observations for N = 300 subjects and these subjects come from one of the four

different subgroups. Description of these subgroups is displayed in the form of a tree struc-

ture in Figure 3.2. The subgroups can be defined in terms of the partitioning variables X1,

X2 and X3. In rth subgroup (r = 1, · · · , 4), the values for continuous response variable y

were generated at t = 0, 1, 2, 3 according to following model:

yit = β0r + β1rt+ bi + εit; i = 1, · · · , fr (3.6.2)
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Table 3.3: Description of the mixed models used in Section 3.6.2 for the comparison with
LongCART algorithm (Model 1). All models include random intercepts to account for the
subject-specific effects.

Predictors

Model 2 t

Model 3 t, X1, X2, X3

Model 4 t, X1, X2, X3, X1X2, X1X3, X2X3

Model 5 t, X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3

Model 6 t, X1, X2, X3, tX1, tX2, tX3

Model 7 t, X1, X2, X3, X1X2, X1X3, X2X3, tX1, tX2, tX3,

tX1X2, tX1X3, tX2X3

Model 8 t, X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3, tX1, tX2, tX3,

tX1X2, tX1X3, tX2X3, tX1X2X3

where bi ∼ N(0, 4) and εit ∼ N(0, 1). As displayed in Figure 3.2, the true values of β1 were

set at 2.5, 3.0, 3.5 and 4.0 and for β0, the true values were set at 6, 5, 4 and 3, for the

four subgroups, respectively. Further, observations were generated for f1 = 70 individuals

in subgroup 1, f2 = 50 individuals in subgroup 2, f3 = 50 individuals in subgroup 3, and

f4 = 130 individuals in subgroup 4. In order to study the performance of our algorithm

constructing the longitudinal regression tree, we calculated the mean absolute deviation

(MAD) in β0 and β1 in rth subgroup for each simulation as defined below

MAD(β̂0r), β
d
0r =

1

fr

∑
j∈Sr

|β0r − β̂0j | MAD(β̂1r), β
d
1r =

1

fr

∑
j∈Sr

|β1r − β̂1j | (3.6.3)

where β0r and β1r are the true values of β0 and β1 in the rth subgroup and β̂0j and β̂1j

are the corresponding estimates for the jth individual applyig longitudinal tree and then

fitting mixed model in each subgroup. Sr is the set of indices for all individuals in the rth

subgroup while fr denotes their number.
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Table 3.4: Summary of the results for the simulation described in Section 3.6.2

Subpop 1 Subpop 2 Subpop 3 Subpop 4 Overall

ψ β̄d0 β̄d1 β̄d0 β̄d1 β̄d0 β̄d1 β̄d0 β̄d1 β̄d0 β̄d1

Model 1 8? 0.29 0.08 0.31 0.09 0.32 0.09 0.16 0.03 0.241 0.064

Model 2 2 1.80 0.90 0.80 0.40 0.20 0.10 1.20 0.60 1.107 0.554

Model 3 5 1.44 0.90 0.62 0.40 0.32 0.10 0.89 0.60 0.879 0.554

Model 4 8 1.35 0.90 0.64 0.40 0.28 0.10 0.90 0.60 0.855 0.554

Model 5 9 1.35 0.90 0.63 0.40 0.28 0.10 0.90 0.60 0.854 0.554

Model 6 8 0.40 0.19 0.20 0.06 0.59 0.29 0.43 0.20 0.413 0.189

Model 7 14 0.29 0.07 0.31 0.11 0.30 0.11 0.29 0.07 0.294 0.085

Model 8 16 0.29 1.82 0.31 1.23 0.30 2.18 7.09 2.26 3.242 1.970

ψ: No.of parameters

β̄d0=Average βd0 ; β̄d1=Average βd1 ; βd0 and βd1 are defined in Eq. (3.6.3)

Model 1: Subgroups are extracted using LongCART algorithm and mixed model

with time slope and random intercept fitted separately in each subgroup.

Models 2 - 8: Description is given in Table 3.3
? - In Model 1, 81% of time regression tree with 4 subgroups were extracted.

The simulation results are summarized in Table 3.4 based on 1000 simulations in each

case. In each simulation, regression tree was constructed with the following specifications:

(1) the overall significance level of instability test was set at 5%, (2) minimum node size for

further split was set at 40, and (3) minimum terminal node size was set at 20. Recall that

we are considering four subgroups in the current simulation. The LongCART algorithm

extracted exactly four subgroups in 81% of the cases. Five subgroups were extracted in

16% of the cases and in these trees we observed a split in subgroup 4 which was not present

in the true tree (see Figure 3.2). There were only 1.3% [1.6%] instances when three [six]

subgroups were extracted.

For the comparison purposes, we considered seven linear mixed models (Models 2 - 8).

These models are described in Table 3.3. The application of the LongCART algorithm

(Model 1) shows comparatively larger improvements in the estimation of the coefficients in
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all four subgroups. Both the MAD(β̂0) and MAD(β̂1) were considerably smaller in Model 1

compared to the Models 2 - 8. The improvement in estimation of coefficients in regression

tree was attributed to its ability to extract homogeneous subgroups and then fitting mixed

model separately within each group. On the contrary, Models 2 - 8 assume either additive

(Models 2 - 3) or an interaction (Models 4 - 8) mixed effects model for the entire popula-

tion assuming parametric form for both covariates and time. These models do not capture

the complexity for the heterogeneous subgroups and overestimate it for the homogeneous

subgroups.

Inclusion of the interaction terms in the model does not necessarily take into account

subgroup heterogeneity in the presence of continuous partitioning variable. For example, in

Models 4 and 5 common slope is assumed for the entire population, but include interaction

terms in the baseline effect; still, the absolute deviation in estimating β0 is almost 2.5 times

higher compared to that of in regression tree. Similarly, the Models 6 – 8 include interac-

tion terms for both baseline and longitudinal effects, but again the absolute deviations in

estimating β0 and β1 are higher compared to what we have obtained with the longitudinal

regression tree.

Model 6 including the interaction terms with t and the partitioning variables is probably

the most commonly used model in practice. However, the application of the LongCART al-

gorithm offers a considerable improvement in the estimation compared to Model 6. Models 6

– 7 provide some improvement over regression tree in some of the subgroups. However, these

improvements are comparatively rare and largely influenced by the fact how the subgroups

are defined. We would close this section pointing out, apart from providing improvement in
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estimation, the LongCART algorithm also identifies the meaningful subgroups defined by

the partitioning variables which would remain unidentified otherwise.

3.7 Application

We applied the LongCART algorithm to study the changes in concentration of choline in

gray matter region of brain among HIV patients. These patients were enrolled in HIV Neu-

roimaging Consortium (HIVNC) which was formed to examine pattern or extent of brain

injury in chronically infected patients on ARV treatment (Harezlak et al., 2011). Con-

centrations of choline were obtained via proton MRS. Choline is considered as marker of

inflammation. An elevated concentration of choline is an indicator of increased cellular

turnover. In general, the concentration of choline is increased in tumors and inflammatory

processes. It has been found in previous studies that the concentrations of choline were

elevated in all three brain regions among HIV patients (Chang et al., 2002). We considered

a total of
∑N

i=1 ni = 780 observations from N = 239 subjects. The longitudinal observa-

tions for each subject were within 3 years from baseline. The number of observations per

subject ranged from 2 to 6 with median number of observations equal to 3. We observed

overall significant decrease of 0.077 AU per year (p-value=0.003) in concentration of choline.

For the construction of regression tree we used baseline measurements of several clinical

and demographic variables including sex, race, education, age, CD4 count, nadir CD4 count,

duration of HIV, duration of antiretroviral (ARV) treatment, duration of highly active an-

tiretroviral therapy (HAART), plasma HIV RNA count, antiretroviral CNS penetration-

effectiveness (CPE) score and AIDS dementia complex (ADC) stage as partitioning vari-
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Figure 3.3: Longitudinal regression tree results for progression of concentration of choline as
discussed in Section 3.7. Left panel. Longitudinal regression tree obtained via LongCART
algorithm. The p-value in each node corresponds to the estimate of the slope β1. Right
panel. Estimated linear trajectory for longitudinal change within each sub-group obtained
via fitting mixed effect model of form Eq. (3.7.1). This regression tree suggests duration of
ARV treatment and HAART are significant determinants for longitudinal change of choline.

ables. In each node we consider fitting the following model separately

yit = β0 + β1t+ bi + εit (3.7.1)

where yit indicates the measurement of the concentration of choline from the ith indi-

vidual at time t (in years) and bi is the subject specific intercept. It was assumed that

bi and εit are independently and normally distributed with mean equal to origin. Long-

CART algorithm was applied with the following specifications: (1) the significance level for

individual instability test was set to 5%, (2) the minimum node size for further split was

set to 50, and (3) the minimum terminal node size was set to 25. Figure 3.3 displays the

estimated longitudinal regression tree with the estimates of β0 and β1 for each terminal

node or subpopulation and the plot of estimated linear trajectories within each subgroup.

Duration of ARV treatment (p-value=0.004) and HAART (p-value=0.004) seem to in-

fluence the change in concentration of choline over time. Improvement in deviance due to
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application of LongCART algorithm was 519 (log-likelihoods were −1427 vs. −1687; with

4 degrees of freedom). ARV treatment for over 7.5 years not only helped to reduce baseline

concentration of choline, but also resulted in a significant decrease of 0.094 per year (p-

value=0.015). A higher baseline value of choline concentration was observed among those

who received ARV treatment for at most 7.5 years; however, a longer period of HAART

therapy in them led to significant decrease of 0.196 per year (p-value=0.041) in concentra-

tion over time. We did not observe any decrease among those who received ARV treatment

for less than 7.5 years and HAART therapy for 2.64 years.

In summary, both the longer duration of ARV treatment and HAART resulted in reduc-

tion of concentration in choline. However, the rate of reduction is almost double (4.14% vs

2.06%) when patients were on HAART compared to only ARV treatment (see Figure 3.3).

This suggests that both ARV treatment and HAART are effective in controlling brain in-

flammation via reducing choline concentration, however, HAART should be preferred when-

ever possible with appropriate advice from medical doctor. Finally, all these interpretable

subgroups along with a significant improvement in overall model fit suggests underlying

heterogeneity in the population in terms of longitudinal change in concentration of choline.

Thus considering a traditional linear mixed effects model for the entire population is not

defensible.

3.8 Discussion

The longitudinal profile in a population may be influenced by several baseline character-

istics. This may be true both in observational and controlled studies (e.g., clinical trials).

The most common strategy to incorporate the effect of baseline attributes in a traditional

linear mixed effects model is to include these baseline characteristics (and probably their
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interaction) by including them as covariates in the model. However, this approach has its

own limitation as discussed in Introduction section. Longitudinal trees (regression trees for

longitudinal data) are extremely useful to identify the heterogeneity in longitudinal trajec-

tories in a given population in a non-parametric way. We proposed LongCART algorithm

for the construction of longitudinal tree which controls type I error at the time of taking

decision about splitting at each node. Secondly, LongCART algorithm reduces the com-

putation time substantially as we first choose the partitioning variable and then evaluate

the goodness of fit criterion at all cut-off points of the selected partitioning variable only.

Both the instability test and the LongCART algorithm discussed in this paper are based

on the score process. We can apply a similar algorithm in other scenarios as long as we can

obtain (or approximate) an expression for the score function and the Hessian matrix in a

tractable form. For example, there is a scope to extend LongCART algorithm in the gen-

eralized linear mixed effects model (GLMM) or multiple response variables settings. There

is a plethora of evidence for the heterogeneity of longitudinal profiles; for example Leuchter

et al. (2002) reported heterogeneity in progression of depression in a double-blind random-

ized trial. Other reported examples include heterogeneous trend in aggressive behavior

among different classes of students (Ialongo et al., 1999; Kellam et al., 1994), differential

math achievement among different dropout groups (Muthén, 2004), and varying age-crime

curve among different birth cohorts (Loughran and Nagin, 2006).

Both the instability test and the LongCART algorithm discussed in this paper are based

on the score process. This increases the utility of the proposed method beyond the applica-

tion to the mixed effects longitudinal models studied in this paper. We can apply a similar

algorithm in other scenarios as long as we can obtain (or approximate) an expression for the

score function and the Hessian matrix in a tractable form. For example, we can apply our
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method in the generalized linear mixed effects model (GLMM) where score function is dif-

ficult to obtain, but can be approximated. With the binary response it would be analogous

to the construction of a classification tree with the longitudinal data. Another extension,

we currently work on is in the context of regression tree construction with multiple response

variables, both in cross-sectional and longitudinal setting.

One of the drawbacks of the proposed method is an underestimation of the nominal

test size, especially for the small sample sizes. As already mentioned in Section 3.6.1,

this finding is consistent with other score type tests that use Brownian Bridge as limiting

process. One way to address this issue is by increasing the nominal type I error level. A

more principled approach to address this problem would be to find the exact distribution

through a simulation study. As an follow-up work, it would be interesting to compare the

results of the parameter instability test for continuous partitioning variable (and, regression

tree in general) between the exact and the limiting distributions. We end our conclusions by

discussing the possibility of sup-Wald type test (e.g. see Andrews, 1993) as an alternative to

the score test. In general, Wald test has higher power compared to score test (?), however,

the former is often criticised for not maintaining the type I error. Further, we are not aware

of any result on the convergence of the test statistic distribution used in sup-Wald type

tests. Unavailability of limiting distribution for sup-Wald type test makes it infeasible to

use in construction of a longitudinal tree.
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Appendix

Proofs of expressions for power in parameter instability tests

Proof of Theorem 3.4.1

Proof. Using Taylor series expansion we can write

f(y,θ(g))
.
= f(y,θ0)

{
1 + u(y,θ0)>δ ◦ h

( c(g)

c(G)

) 1√
N

}

Consequently,

Eθg [u(y,θ0)] =

∫
u(y,θ0)f(y,θ(g))dy = Eθ0 [u(y,θ0)] + J · δ ◦ h

( c(g)

c(G)

) 1√
N

= J · δ ◦ h
( c(g)

c(G)

) 1√
N

(3.8.1)

It can be shown that

covH1 [WN (t,θ0)] = covH0 [WN (t,θ0)] +O

(
1

N

)
.
= J (3.8.2)

Proof of Theorem 3.4.1 follows from the definition of non-central chi-square distribution.

Proof of Theorem 3.4.2

Proof. Using (3.8.1) and (3.8.2),

EH1 [WN (t,θ0)] = J
1

N

Mg∑
i=1

δ ◦ h
( c(g)

c(G)

)
= J · tg · δ ◦ h̄g t ∈ [tg, tg+1)
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This time using the FCLT along with Cramer-Wold device we can show that

WN (t,θ0) −→d J · tg · δ ◦ h̄g + Z(t) t ∈ [tg, tg+1)

Therefore, for t ∈ [tg, tg+1),

WN (t, θ̂) = WN (t,θ0)− tg WN (1,θ0) + op(1) −→d J · tg · δ ◦ (h̄g − h̄) + {Z(t)− t · Z(1)}

Thus under H1,

MN (t, θ̂) = ĥ−1/2WN (t, θ̂) −→d J1/2 · tg · δ ◦ (h̄g − h̄) + W0(t) t ∈ [tg, tg+1)
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Chapter 4

Identifying factors influencing longitudinal changes of brain metabolites in

HIV-infected subjects enrolled in HIVNC study

4.1 Introduction

The introduction of highly active antiretroviral therapy (HAART) or antiretroviral (ARV)

treatment has resulted in marked improvement in survival with a substantial increase in the

number of asymptomatic HIV infected patients with improved immunological status (Anti-

nori et al., 2007; Palella Jr et al., 1998). However, HIV may continue to affect the brain

even in the presence of HAART (Cysique et al., 2004; Dore et al., 1999; Robertson et al.,

2004, 2007; Tozzi et al., 2007; Valcour et al., 2006). The basal ganglia are affected early in

the course of the disease and carry the heaviest HIV load of all brain structures; however,

white matter and gray matter are also typically involved (Navia et al., 1986, Pumarola-Sune

et al., 1987, Meyerhoff et al., 1995, Kumar et al., 2009 ). HIV infection in brain results in

imbalance in brain metabolites leading to cognitive, motor and behavioral impairments and

other neurological complications. Therefore, coupled with increased survival and an aging

patient population, the HIV infection in brain could result in an increase in the prevalence

of impairment in the chronically infected and treated population.

Proton magnetic resonance spectroscopy (1H-MRS) provides a sensitive and noninva-

sive in-vivo method to detect changes in levels of specific cerebral metabolites, including

N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), glutamate and glutamine (Glx)

and creatine (Cr). A number of MRS-derived abnormalities were described including re-

duced levels of NAA as a marker of neuronal metabolism, whereas elevations in the Cho
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considered as markers of cell membrane damage, MI as a marker of neuroinflammation in

the context of HIV, Glx as a major excitatory neurotransmitter and Cr as a marker of

metabolism and cellular energy. MRS may provide a useful marker for early detection of

brain injury associated with HIV infection Tracey et al. (1996). For example, a common

finding in most of the MRS studies in HIV patients is the reduced level of NAA and NAA

to Cr ratio (Laubenberger et al., 1996; López-Villegas et al., 1997). However, there are ev-

idences that HAART reverses brain metabolite abnormalities (e.g., see Chang et al., 1999).

We are interested in studying the progression of concentration of brain metabolites

among HIV patients. There are evidences (e.g. see Chang et al., 1999) that this longitudinal

change might be affected by the clinical and demographic factors. Despite considerable

evidence of HIV associated brain disease, there have been no published longitudinal studies

to date of metabolite abnormalities in the setting of chronic infection and treatment. The

HIV Neuroimaging Consortium (HIVNC) was formed to examine pattern or extent of brain

injury in chronically infected patients on ARV treatment. It is a prospective multicenter

study of chronically HIV-infected individuals. Recently, Gongvatana et al. (2013) studied

the progressive changes in cerebral metabolites in this multicenter MRS study. We have

hypothesized that one or more demographic and clinical factors influence the progression of

brain metabolites. This would help us to identify high risk subgroups early and will allow

us to design more sophisticated treatment for them.

4.2 Patients and methods

4.2.1 Participants

Our study cohort was comprised of 243 chronically HIV-infected patients enrolled in HIV

Neuroimaging Consortium (HIVNC), a longitudinal study of HIV associated brain injury,

at the following sites: University of California (San Diego), University of California (Los
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Angeles), Harbor-UCLA, Stanford University, University of Colorado, University of Pitts-

burgh, and Rochester University. At the time of enrollment, patients were on stable ARV

treatment with any Food and Drug Administration (FDA)-approved therapy. Details of

the inclusion and exclusion criteria for this cohort have been described elsewhere (Harezlak

et al., 2011). For the purpose of longitudinal analysis, baseline was defined as the time of

enrollment. We considered only observations within 3 years from baseline. Subjects with at

least one post-baseline measurements within 3 years from baseline were only included and

this criteria was evaluated for each metabolites separately.

4.2.2 Brain metabolites

We studied longitudinal changes of concentration of N-acetylaspartate (NAA), choline

(Cho), myo-inositol (MI), glutamine and glutamate (Glx) and creatine (Cr) collected from

three different brain regions, namely, mid-frontal cortex (gray matter), mid-frontal centrum

semiovale (white matter), and basal ganglia. NAA, Cho, MI, Glx and Cr are commonly

seen on MR spectrum (Hesselink, 2013). The concentrations of individual metabolites were

determined using the LC Model spectral analysis software (Provencher, 2005) from single-

voxel 1H spectra. Please see Harezlak et al. (2011) for a more detailed description of the

imaging study.

4.2.3 Baseline factors

We considered several clinical and demographic variables at baseline as candidate baseline

factors that might influence the longitudinal change of metabolites. This included age,

gender, race (White vs Non-white), education (college vs. no college), duration of HIV

infection, ARV treatment and HAART, and laboratory measures such as baseline CD4

count, nadir CD4 count, plasma HIV RNA levels (dichotomized as detectable, if > 400

copies/ml – versus undetectable), AIDS dementia complex (ADC) stage (no impairment,
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subclinical impairment and clinical impairment), and CNS penetration effectiveness (CPE)

score of the antiretroviral regimen received at baseline. The CPE score is a measure of the

relative effectiveness of antiretroviral regimens to cross the blood–brain barrier with 0 as

the lowest penetration and increases as the degree of penetration increases. ADC is one

of the most common and clinically important CNS complications of late HIV-1 infection

leading to mental and motor impairment (0: No impairment, 0.5: subclinical impairment

and ≥ 1: impaired).

4.2.4 Statistical methods

We summarized all the baseline factors and concentration of metabolites at baseline using

descriptive statistics including number of observations, median and inter-quartile range.

Our primary goal was to study the influence of different baseline factors on the longitudinal

change of metabolite concentrations non-parametrically. We applied LongCART algorithm

of constructing regression tree for longitudinal data (proposed and discussed in Chapter

3) for this purpose. We considered 12 baseline factors (see Section 4.2.3) as partitioning

variables to construct regression tree. LongCART algorithm, at each non-terminal node,

identifies the best splitting point for binary partitioning in two steps: 1) First, a statistical

test (also referred as parameter instability test) is carried out for each of the partitioning

variables separately, and the partitioning variable with smallest p-value is chosen. 2) In

second step, at each cut-off point of the partitioning variable (chosen in first step), the

improvement in deviance due to binary partitioning were obtained. Then, the best split

was identified as the cut-off point that provided maximum improvement in deviance. The

overall error rate at each split was controlled at 10% level of significance according to Hom-

mel’s step-up procedure (Hommel, 1988).
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We applied following additional criteria in construction of regression tree: 1) minimum

number of individuals in a terminal node as 15 and b) minimum number of individuals in

a terminal node for further splitting as 30. Within each node of regression we considered

fitting regression model with time slope and random subject intercept as follows:

yit = β0 + β1 t+ bi + εit 0 ≤ t ≤ 3, i = 1, · · · , N

where, yit is the concentration of a specific metabolite from subject i at time t from baseline.

β0 and β1 are population level intercept and time slope, bi is the subject specific random

intercept and εit is the error term. In addition, we assumed bi and εit were independently

and normally distributed. All analyses were carried out in R-2.15.1 (R Core Development

System: http//www.r-project.org).

4.3 Results

4.3.1 Participant characteristics

Summary characteristics are provided for the 243 participants having at least one post-

baseline observations within 3 years from baseline in Tables 4.1 - 4.2. The median age of

patients was 47 years. 84.4% of subjects were male and 70% of subjects were white. The

median duration of HIV was 12 year. The patients received ARV treatment and HAART for

Table 4.1: Descriptive summary of continuous baseline factors

N Min Q1 Median Q3 Max

Age [yr] 243 23.00 42.00 47.00 53.00 70.00

Duration of HIV [yr] 242 0.00 7.00 12.00 17.00 26.00

Duration of ARV treatment [yr] 242 0.00 1.80 3.90 8.20 19.20

Duration of HAART [yr] 210 0.00 0.73 1.55 3.07 10.87

CD4 count 239 10.00 208.00 326.00 473.00 1445.00

Nadir CD4 count 242 0.00 12.00 36.00 96.00 811.00

Min: Minimum; Q1: First quartile; Q3: Third quartile; Max: Maximum
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Table 4.2: Summary of categorical baseline factors

N [%]

Gender

Female 38 [15.6]

Male 205 [84.4]

Race

White 170 [70.0]

Non-white 73 [30.0]

Education

High school or less 95 [39.1]

College or higher 148 [60.1]

CPE score

0.0 5 [2.2]

0.5 20 [8.7]

1.0 53 [23.1]

1.5 51 [22.3]

2.0 41 [17.9]

2.5 34 [14.9]

3.0 9 [3.9]

3.5 11 [4.8]

4.0 5 [2.2]

ADC stage

No impairment 143 [58.8]

Sub-clinical impairment 54 [22.2]

Clinical impairment 41 [16.9]

Missing 5 [2.1]

Plasma HIV RNA

Detectable∗ 190 [78.2]

Not detectable 49 [20.2]

Missing 4 [1.6]

Percentages were calculated using total number of subjects of 243.
∗ > 400 copies/ml
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Table 4.3: Descriptive summary of MRS metabolites at baseline

N Minimum Q1 Median Q3 Maximum

White matter

Cr 230 3.247 6.905 8.192 9.148 14.700

NAA 241 4.058 7.408 8.200 8.939 11.840

Cho 241 2.894 4.437 4.806 5.272 7.589

MI 241 0.834 1.459 1.674 1.896 4.403

Glx 240 1.324 4.447 5.034 5.909 10.200

Basal ganglia

Cr 202 5.752 8.653 10.170 11.98 15.590

NAA 230 2.629 7.156 7.940 8.585 11.060

Cho 230 1.737 4.814 5.308 5.886 8.552

MI 229 0.717 1.291 1.485 1.642 4.543

Glx 227 1.221 3.518 4.169 4.790 7.512

Gray matter

Cr 226 3.497 8.830 10.180 11.080 15.080

NAA 239 2.678 6.174 6.898 7.41 10.200

Cho 239 1.577 4.25 4.723 5.204 7.570

MI 238 0.383 1.083 1.249 1.401 2.063

Glx 238 1.937 3.734 4.355 5.052 8.146
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Figure 4.1: Influence of baseline factors in longitudinal progression of Cr in white matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

a median period of 3.90 and 1.55 years, respectively. 78.2% of the individuals had detectable

plasma HIV RNA levels (i.e. > 400 copies/ml). For 58.8% of subjects no CNS impairment

was observed. Subclinical and clinical CNS impairment were observed among 22.2% and

16.9% subjects, respectively. The median values of current and nadir CD4 counts were 326

and 36, respectively. The summary of the baseline values of MRS metabolites are displayed

in Table 4.3.

4.3.2 Longitudinal change of concentration of metabolites

We observed overall decrease in most of the metabolites under consideration in the three

brain regions except for Cho in basal ganglia. The estimate of intercept and slope for each

of the metabolites in the overall population are provided in Table 4.4.

Metabolite change in white matter

Creatine: The concentration of Cr was significantly (p-value=0.020) decreased at 0.144 per

year among 230 individuals. Nadir CD4 was found to be significant (p-value<0.001) de-

terminant of longitudinal progression of Cr (see Figure 4.1). A significant (p-value<0.001)
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Table 4.4: Overall trend of MRS metabolites and factor influencing the longitudinal change

Factors (p-value)

No. of Total influencing

subjects obs β̂0 β̂1 (p-value) longitudinal change

White matter

Cr 230 721 8.11 -0.144 (0.020) Nadir CD4 (< 0.001)

NAA 241 802 8.13 -0.144 (< 0.001) ARV trt dur.(< 0.001)

Cho 241 802 4.86 -0.039 (0.085) ARV trt dur. (0.005)

MI 241 802 1.70 -0.030 (0.022) -

Glx 240 795 5.17 -0.092 (0.013) -

Basal ganglia

Cr 202 628 10.11 -0.291 (< 0.001) ARV trt dur. (< 0.001)

NAA 230 740 7.82 -0.010 (0.807) -

Cho 230 737 5.33 0.034 (0.246) -

MI 229 735 1.49 -0.011 (0.301) ARV trt dur.(< 0.001)

ARV trt dur. (< 0.001)

Glx 227 722 4.20 -0.011 (0.760) -

Gray matter

Cr 226 702 9.92 -0.510 (< 0.001) Age (0.009)

NAA 239 780 6.78 -0.111 (< 0.001) ARV trt dur. (< 0.001)

Cho 239 780 4.75 -0.077 (0.003) ARV trt dur. (0.004)

HAART dur. (0.004)

MI 238 777 1.24 -0.025 (0.003) CD4 count (0.002)

Glx 238 776 4.44 -0.101 (0.002) ARV trt dur. (0.004)

obs: observation; dur: duration; trt: treatment
Estimate of β0 and β1 were obtained from all the subjects.
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Figure 4.2: Influence of baseline factors in longitudinal progression of NAA in white matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

sharp decrease of 0.368 per year in concentration of Cr was observed among those who had

nadir CD4 count smaller than 36. On the contrary, the individuals with higher CD4 count

experienced increase in concentration of Cr at 0.141 per year.

NAA: The concentration of NAA was significantly (p-value<0.001) decreased at 0.144

per year among 241 individuals. Duration of ARV treatment was found to be significant

determinant of longitudinal progression of NAA (see Figure 4.2). The baseline concentra-

tion of NAA was decreased with longer period of ARV treatment. Further, the prolonged

period of ARV treatment was associated with greater rate of decrease in NAA. We observed

decrease of 0.131 and 0.197 per year among those who had ARV treatment for less than

10.9 year, and greater than 10.9 years, respectively.

Choline: The concentration of Cho was decreased at 0.039 per year among 241 individ-

uals. Duration of ARV treatment was found to be significant (p-value=0.005) determinant

of longitudinal progression of Cho (see Figure 4.3). Those who received ARV treatment for
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Figure 4.3: Influence of baseline factors in longitudinal progression of Cho in white matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

greater than 3.8 years had smaller baseline concentration of Cho (4.73 vs 5.02) and also

experienced significant decrease (p-value=0.0043) at the rate of 0.102 per year.

In overall, the concentration of MI (0.030 per year, p-value=0.022) and Glx (0.092 per

year, p-value=0.013) were decreased in white matter region; however, we did not find any

factor influencing their change over time.

Metabolite change in basal ganglia

Creatine: The concentration of Cr was significantly (p-value<0.001) decreased at 0.291 per

year among 202 individuals. Duration of ARV treatment was found to be significant (p-

value<0.001) determinant of longitudinal progression of Cr (see Figure 4.4). A significant

(p-value<0.001) sharp decrease of 1.018 per year in concentration of Cr was observed among

those who were receiving ARV treatment for at least 11.3 years at baseline. However, the

rate of decrease was only about one-nine-th among the individuals with shorter duration of

ARV treatment.
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Figure 4.4: Influence of baseline factors in longitudinal progression of Cr in basal ganglia.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.
25

1.
30

1.
35

1.
40

1.
45

1.
50

1.
55

t

ARV trt <=1.5 yr
1.5 yr< ARV trt <=7.7 yr
ARV trt >7.7 yr

Figure 4.5: Influence of baseline factors in longitudinal progression of MI in basal ganglia.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.
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Figure 4.6: Influence of baseline factors in longitudinal progression of Cr in gray matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

Myo-inositol: The concentration of MI decreased at 0.011 per year (p-value=0.301)

among 229 individuals. Duration of ARV treatment was found to be significant determi-

nant (p-value< 0.001) of longitudinal progression of MI (see Figure 4.5). The baseline

concentration of MI decreased with longer period of ARV treatment. We observed MI con-

centration of 1.57, 1.48 and 1.44 at baseline, among those who had ARV treatment for less

than 1.5 year, between 1.5 and 7.7 year and greater than 7.7 years, respectively. Significant

decrease in MI concentration (0.073 per year, p-value= 0.001) was observed among those

who received ARV treatment for over 7.7 years.

Metabolite change in gray matter

Creatine: The concentration of Cr was significantly (p-value<0.001) decreased at 0.510 per

year among 226 individuals. Age was found to be significant determinant (p-value= 0.009)

of longitudinal progression of MI (see Figure 4.6). Increase in age was associate with

smaller baseline concentration of Cr and smaller decrease.
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Figure 4.7: Influence of baseline factors in longitudinal progression of NAA in gray matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

NAA: The concentration of NAA was significantly (p-value<0.001) decreased at 0.111

per year among 239 individuals. Duration of ARV treatment was found to be significant

determinant (p-value< 0.001) of longitudinal progression of NAA (see Figure 4.7). The

baseline concentration of NAA was smaller among those who received ARV treatment for

greater than 2.4 years compared to those who did not (6.62 vs 7.09). The rate of decrease

in concentration of NAA was also almost double (0.126 vs 0.062) among those who received

the ARV treatment for longer period.

Choline: We observed overall significant decrease of 0.077 per year (p-value=0.003) in

concentration of Cho. Duration of ARV treatment and HAART period seem to influence

the change in concentration of Cho over time. ARV treatment for over 7.5 years was associ-

ated with decreased baseline concentration of Cho and significant decrease of 0.094 per year

(p-value=0.015). A higher baseline value of Cho concentration was observed among those

who received ARV treatment for at most 7.5 years; however, a longer period of HAART

therapy in them was found to be associated with significant decrease (0.196 per year; p-
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Figure 4.8: Influence of baseline factors in longitudinal progression of Cho in gray matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.

value=0.041) in concentration over time. We did not observe any decrease among those

who received ARV treatment for less than 7.5 years and HAART therapy for 2.64 years.

Myo-inositol: The concentration of MI was significantly (p-value=0.003) decreased at

0.025 per year among 238 individuals. CD4 count appeared to be significant determinant

(p-value= 0.002) of longitudinal progression of MI (see Figure 4.9). The concentration of

MI was decreased significantly (p-value<0.001) at 0.057 per year in those who had CD4

count greater than 359.

Glutamine-Glutamate: The concentration of Glx was significantly (p-value=0.002) de-

creased at 0.101 per year among 238 individuals. Duration of ARV treatment was found

to be significant determinant (p-value= 0.004) of longitudinal progression of Glx (see Fig-

ure 4.10).The baseline value of concentration of Glx was smaller (4.22 vs 4.68) among those

who received ARV treatment for greater than 3.7 years; however, the rate of decrease was

smaller (0.075 vs 0.135 per year).
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Figure 4.9: Influence of baseline factors in longitudinal progression of MI in gray matter.
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displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.
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Figure 4.10: Influence of baseline factors in longitudinal progression of Glx in gray matter.
Regression tree for longitudinal progression is displayed on the left. The figure on right
displays the estimated longitudinal profiles for the subgroups extracted by the regression
tree.
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4.4 Discussion

In this analysis we have studied the influence of baseline factors on the longitudinal change

in concentration of brain metabolites non-parametrically via constructing regression tree.

Usually the influence of baseline factors is adjusted via including them (and possibly their

interactions) as covariate in the longitudinal model. By using regression tree methodology,

we were able to explore more complex relationships among baseline covariates than what

could be discovered including them as covariates in the model. For example, the observed

influence of duration of HAART and duration of (non HAART) ARV therapy on the pro-

gression of Cho in gray matter region of brain would be difficult to explore via traditional

mixed effects model without applying regression tree technique (see Figure 4.8). The impor-

tant feature of the regression tree technique is that we can identify distinct subpopulations

with differential longitudinal change. The subpopulations are characterized by baseline fac-

tors and the entire process is data-driven.

In general, we found that almost all the metabolites under consideration were decreased

with time in the three brain regions with only exception in choline in basal ganglia. The

longitudinal change in brain metabolites were influenced by baseline factors, namely, dura-

tion on ARV treatment and HAART, CD4 counts and age. These metabolites changes are

often found to be associated to the course of the disease. Hence, the study of longitudinal

progression of these metabolites may help us to understand the progression of disease due

to imbalance of these metabolites and consequently, helps to identify the high risk group in

advance.

Creatine (Cr). Creatine is considered as marker for metabolism and cellular energy.

In general, sick people tend to have reduced concentration of creatine, however, there is in-

consistency in the relationship between Cr and cognitive function (Ross and Sachdev, 2004).
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A reduced level of Cr has been observed in previous studies in gray matter region of HIV

patients; however elevation was observed in white matter and basal ganglia (Chang et al.,

2002; Meyerhoff et al., 1999). We observed overall significant reduction in concentration of

Cr with time in all the three regions of brain, however, the reduction was sharp in gray

matter followed by basal ganglia. In frontal white matter region, we observed a decreasing

trend in the concentration of Cr with time among individuals with nadir CD4 count lower

than 36 (see Figure 4.1). Cr has been found positively correlated with IQ in the frontal

white matter (Yeo et al., 2000). This suggests that individuals with smaller CD4 count

are at greater risk of developing impairment reflected by smaller IQ. It has been shown in

multiple studies that HAART helps to improve CD4 counts in HIV patients. Therefore,

HAART actually helps to improve brain performance via elevating the concentration of Cr.

In basal ganglia, duration of ARV treatment seems to influence the progression of Cr

over time (see Figure 4.4). Longer duration of ARV treatment was associated with increased

rate of decrease in concentration of Cr. Decrease in creatine level in patients with longer

duration of ARV treatment may be caused by the progression of the disease or by the di-

rect action of ARV treatment in basal ganglia region. Elevation of Cr does not necessarily

indicate always better neuronal activity. Higher concentration of Cr is not good especially

when increase in metabolism is due to active gliosis or inflammation (not due to neuronal

cell) (Ratai et al., 2011). This is likely case when entry of HIV in brain leads to neuronal

damage and glial cell activation and proliferation. In this case high concentration of Cr

would be reflective of high metabolic demand of glial cells (not of the neuronal cells). Un-

der such scenario, our finding about the observed association of duration of ARV treatment

with progression of Cr in basal ganglia suggests that longer duration of ARV treatment is

actually helpful in reversing the neuronal damage.
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In gray matter, the concentration of Cr was reduced with increase in age, but the rate

of decrease slowed down with time. Probably this is true for any population that rate of

metabolism decreases with age, so the concentration of Cr.

N-acetylaspartate (NAA). NAA is a marker of neuronal integrity and viability. It

decreases when the neuronal integrity is adversely affected. Laubenberger et al. (1996) and

Chang et al. (2002) reported a decreased concentration of NAA in white matter region

and increased concentration in basal ganglia among HIV patients in comparison to normal

population. We observed that the longer duration of ARV treatment not only reduced the

baseline concentration of NAA, it also increased the rate of the decrease in frontal white

matter and gray matter region (see Figures 4.2 and 4.7). There are two possible explana-

tions for this. First, ARV treatment may be neurotoxic as suspected by others (e.g., see

Maschke et al., 2000). Secondly, patients with longer duration of ARV treatments were also

those who had longer duration of HIV (i.e., advanced stages of HIV infection). The longer

duration of HIV might result in accelerated decay in NAA in frontal white matter and gray

matter and ARV treatment was not effective in reversing or decelerating this decay. The

decrease in concentration of NAA in basal ganglia region over time was very minimal and

we did not find any factor influencing this change. This is good thing because basal ganglia

control several functions including voluntary motor control, learning ability, eye movements,

cognitive, and emotional functions.

Choline (Cho). Choline is marker of inflammation. It is measure of increased cellular

turnover and is elevated in tumors and inflammatory processes. It has been found in previ-

ous studies that the concentrations of choline were elevated in all three brain regions among

HIV patients (Chang et al., 2002). We observed decreasing trend in the concentration of
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choline in white matter region, but the change was not significant when duration of ARV

treatment at baseline exceeded 3.8 year (see Figure 4.3). This suggests that ARV treat-

ment reduced choline only upto a certain level and after that the concentration seems to be

stabilized. Also, in gray matter, we observed decreasing trend in concentration of choline

with longer period of ARV treatment (see Figure 4.8). However, those who did not receive

ARV treatment for long time, but received HAART therapy for more than 2.64 year, also

experienced sharp decrease in concentration of choline. This suggests that both long-term

ARV treatment and HAART are effective in reducing concentration of Cho in gray matter

region which might be reflective of reduced inflammation.

Myo-inositol (MI). MI is considered a glial marker and is seen in higher concen-

tration during development of several diseases (e.g., pre-dementia phase of Alzheimer’s

disease). Concentration of MI has been found to be elevated in all three brain regions

among HIV patients (Chang et al., 2002). We observed decreasing trend in concentration

of MI in the patients with longer period of ARV treatment in basal ganglia and higher

CD4 count in gray matter (see Figures 4.5 and 4.9). Therefore, both the ARV treatment

and grerater CD4 count help to control the concentration of MI in brain. It is well known

that longer duration of HAART leads to increase in CD4 count. These findings are very

much consistent with previous finding that treatment of HIV patients with HAART results

in decrease in concentration of MI in brain (Chang et al., 1999). This again suggests that

longer duration of both ARV treatment and HAART help to reduce the brain inflammation.

Glutamine-Glutamate (Glx). Glial cells and neurons are believed to be the pri-

mary sources of Glx. Brain uses Glx for chemical communication between cells. However,

when Glx is present in excessive amount, the extra Glx is taken up by surrounding glial
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cells and transported to the neuron where it acts as potential excitotoxin. Excitotoxins

cause particular brain cells to become excessively excited, to the point they will quickly

die. Excitotoxins can also cause a loss of brain synapses and connecting fibers. Increase

in glutamate resulting from glial cell dysfunction may lead to neuronal injury (Kaul et al.,

2001; Kaul and Lipton, 1999). Chang et al. (2002) has reported elevation in concentration

of Glx in basal ganglia region, but decrease in gray and white matter regions among HIV

patients. We observed overall decreasing trend in concentration of Glx in all three brain

regions. The baseline concentration of Glx in gray matter was reduced with increase in

duration of ARV treatments, but the rate of decrease was relatively slow among those who

received ARV treatment for more than 3.7 years (see Figure 4.10). This suggests that long

term ARV treatment may be effective in reducing the concentration of Glx, but the rate

get decelerated with longer duration of ARV treatment.

In summary, we observed that longer periods of ARV treatment and HAART were as-

sociated with reduced concentration of Cho, MI and Glx. Therefore, our findings suggest

that individuals with lower duration of ARV treatment or HAART are at higher risk of

developing cognitive dysfunction and neuronal injury. However, since longer duration of

ARV is also likely to increase the rate of the decrease in the concentration of NAA, ARV

treatment may be neurotoxic or at the minimum cannot stop neuronal injury among the

patients with relatively higher duration of HIV. We also observed the influence of nadir

CD4 count and duration of ARV treatment on the longitudinal progression of concentra-

tion of creatine in white matter and basal ganglia, respectively. This finding need to be

explained depending on the role of Cr in each of the brain regions. Further knowledge on

the development of disorders due to imbalance in brain metabolites in conjunction with our

study findings would be helpful to identify the subgroup of individuals at higher risk.
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The present study is a first attempt to identify the factors influencing the progression

of cerebral metabolites in a data-driven manner. Along with the strength of this study,

the work has important limitations. It is not possible to discern how stable the splits (i.e.

thresholds) and branches (the location of baseline factors). This problem is only partially

ameliorated by comparing Akaike information criterion (AIC) of the tree based model.

Thus, the observations described in these analyses, must be replicated by others in order to

ensure that the results are not data specific. We have used only baseline factors available

to us in regression tree construction.

While these limitations are significant, the primary focus of the study was to identify the

factors influencing the longitudinal progression of metabolite. Our findings are, by and large,

interpretable and most of the time is in c with the findings reported by other researchers.

In conclusion, we are able to identify the subpopulation of individuals, characterized by

clinical and demographic, factors who are at greater risk of developing disorders due to

imbalances in brain metabolites early. The practical implication of these findings are to

identify the high risk group much prior to the development of the brain disorders. Several

reports suggested to use MRS to monitor the effect of HIV treatments (Chang et al., 1999;

Stankoff et al., 2001; Wilkinson et al., 1997). Prior and accurate knowledge about the

progression of brain metabolites in the subgroups of HIV patients would minimize the need

of repeated MRS in HIV patients and thus a more accurate and affordable therapy could

be made available to HIV patients. However, there is need for further studies to confirm

our results.
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