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Recent research has shown an association between
monthly law enforcement drug seizure events and
accidental drug overdose deaths using cross-sectional
data in a single-state, whereby increased seizures
correlated with more deaths. In this study we
conduct statistical analysis of street-level data on
law enforcement drug seizures, along with street-
level data on fatal and non-fatal overdose events,
to determine possible micro-level causal associations
between opioid-related drug seizures and overdoses.
For this purpose we introduce a novel, modified
two-process Knox test that controls for self-excitation
to measure clustering of overdoses nearby in space
and time following law enforcement seizures. We
observe a small, but statistically significant (p < .001),
effect of 17.7 excess non-fatal overdoses per 1000
law enforcement seizures within 3 weeks and 250
meters of a seizure. We discuss the potential causal
mechanism for this association along with policy
implications.
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1. Introduction
Law enforcement efforts to disrupt drug markets can cause those who have developed a
dependency to the seized substances to shift to alternative dealers or different substances to
maintain use and avoid withdrawal [8]. Overdose can occur when users are unaware of their
tolerance, or unaware of the actual content of the new substances [14,23,50], which increases
the likelihood of an overdose [4,22,26,34,35,38,51]. And while there are several studies that
suggest drug seizures have no measurable public health benefit [2,15,55,56], only one recent study
has attempted to empirically examine the relationship between law enforcement seizures and
overdose [59]. This study by Zibbell and colleagues’ found that fentanyl seizures in Ohio were
associated with opioid-involved overdose deaths; however, causal inference was limited due to
the data being aggregated and cross-sectional.

In the current study we analyze the space-time co-occurrence of seizure events of illicit opioids
by law enforcement and opioid-related overdose events, all measured at the address level. We
approach the problem from a point process perspective, where we consider the seizures and
overdoses to be two separate processes and our goal is to assess their dependence. For this
purpose a two process Knox test for clustering [27] can be used when the parent process intensity
is separable. However, both law enforcement event data [37] and overdose event data [31] can
exhibit self-excitation. In this situation, permutation of event times changes the second-order
statistics of the process and the standard two process Knox test is no longer valid, as we will
show in subsequent sections. To overcome this issue, we introduce a modified two process Knox
test that uses a self-exciting point process, rather than a Poisson process, as the null distribution
for the parent process. We then apply the test to assess the space-time relationship between law
enforcement drug seizure events and opioid overdoses in a dataset from Indianapolis, Indiana
covering 2014-2018.

The outline of the paper is as follows. In Section 2, we provide an overview of the standard
Knox test, self-exciting point processes, and our modified Knox test. In Section 3, we describe
the data used in our study. We analyze both non-fatal opioid-related overdose events, measured
through emergency medical services (EMS) naloxone administrations, and coroner’s data on
accidental drug overdose deaths, both of which were collected in the same jurisdiction as law
enforcement drug seizure events, over a five-year period in Indianapolis, Indiana. In Section 4,
we present results from both a synthetic experiment illustrating the need for a modified two
process Knox test and from an experiment applying the new two process test to coupled seizure-
overdose data in Indianapolis. We observe a small, but statistically significant (p < 10−3), effect of
17.7 excess non-fatal overdoses per 1000 law enforcement seizures within 3 weeks and 250 meters
of a seizure. In Section 5, we discuss the policy implications of our findings.

2. Methodology
We consider a two-process Knox test [27,57] to detect excess clustering of overdoses following
law enforcement drug seizures. In particular, given a time cutoff τ and spatial distance cutoff δ,
the Knox statistic [28] κ(τ, δ) is given by,

κ(τ, δ) =
∑
i,j

1{‖xo
i − xsj‖ ≤ δ, |t

o
i − t

s
j |< τ}. (2.1)

Here the parent process, Ds = (xsj , t
s
j), consists of the space-time drug seizure events and the

dependent process, Do = (xoj , t
o
j ), consists of the space-time overdose events. The Knox statistic

counts the number of overdose events within a radius δ and within τ days of a drug seizure.
To determine excess clustering, the Knox statistic can be compared to a null hypothesis where

the two processes are independent. If the parent process, Ds, is Poisson or separable in time,
then the process is invariant under a random permutation of the event times. Thus the null Knox
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statistic and its uncertainty can be computed through multiple realizations of,

κ̃(τ, δ) =
∑
i,j

1{‖xo
i − xsj‖ ≤ δ, |t

o
i − t̃

s
j |< τ}, (2.2)

where t̃si are a random permutation of the event times of the drug seizure events.
In cases where the parent process, Ds, is non-Poisson and exhibits self-excitation, then the

permutation test is no longer valid [16]. We propose in this situation to use the following modified
two-sample Knox test: 1) fit a self-exciting Hawkes process, Hs, to the parent process, Ds, that
accounts for potential space-time clustering in the parent process itself and 2) calculate a bootstrap
distribution for the null Knox statistic,

κ̃H(τ, δ) =
∑
i,j

1{‖xo
i − zsj‖ ≤ δ, |t

o
i − u

s
j |< τ}, (2.3)

through repeated simulation of the Hawkes process. Here (zs, us) are synthetic drug seizure event
datasets with the same first and second order statistics as the original parent process.

To better disentangle the time-ordering between drug seizures and overdose events, we also
analyze pre-post Knox statistics of the form:

κ̃∆(τ, δ) = κ̃1(τ, δ)− κ̃1(−τ, δ), (2.4)

where
κ̃1(−τ, δ) =

∑
i,j

1{‖xo
i − xsj‖ ≤ δ,−τ < t

o
i − t̃

s
j <−1}. (2.5)

Because the time of occurrence of events in the data is uncertain (and hence the order of
occurrence within the same day is uncertain), we include a 1-day buffer around drug seizures
in Equation 2.5. A statistically significant positive value of κ̃∆ indicates that more overdose
events cluster after a law enforcement drug seizure, whereas a statistically significant negative
value would indicate a deterrence effect of the law enforcement intervention. We also compute
an analogous pre-post Knox difference statistic, κ̃H , with the Hawkes process null replacing the
random time permutation null model.

(a) Details of the Hawkes process null model
We fit a self-exciting Hawkes process [31] to drug seizure events with intensity,

λ(z, u) = µf(z)hd(u)hm(u)hy(u) + (2.6)∑
u>ui

θgt(u− ui;ω)gx(z− zi;σ).

Here the background Poisson rate of events is assumed separable in space and time, where
f(z) models the spatial component of the background rate, fit using a Gaussian mixture model
(GMM), and hd, hm, and hy model day of the week, monthly, and yearly trends in the background
rate. The second term in Equation 2.6 models self-excitation, where θ is the expected number of
offspring events triggered by an event (under the branching process representation of the Hawkes
process [52]), the temporal component gt is assumed exponential, and the spatial component gx
is assumed Gaussian. The model is fit to the data using an expectation-maximization algorithm
as detailed in [31,52]. We use residual analysis in Section 4 below to show goodness of fit of the
model.

To construct confidence intervals for the Hawkes process null Knox statistics, κ̃H and κ̃H∆ ,
we simulate multiple realizations of the Hawkes process fit to drug seizure data. The branching
process representation of the Hawkes process is used for simulation, where first background
Poisson events are generated from the Poisson process intensity µf(z)hd(u)hm(u)hy(u).
Offspring events are then iteratively added to the dataset, where each event generatesL∼ Pois(θ)
offspring events with spatial coordinates determined by adding random numbers drawn from gx
to the parent event location and a random number drawn from gt to the time of the parent event.
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To better match the spatial distribution of events in the actual data, which lie on a street network,
we resample the original dataset coordinates using the EM estimation branching probabilities to
assign spatial locations to the background events in each simulation.

3. Data Sources

39.6

39.7

39.8

39.9

−86.3 −86.2 −86.1 −86.0
Longitude

La
tit

ud
e

(a)

39.6

39.7

39.8

39.9

−86.3 −86.2 −86.1 −86.0
Longitude

La
tit

ud
e

(b)

law enforcement drug seizures

non−fatal overdoses

fatal overdoes

0

50

100

150

200

2014 2016 2018

ev
en

ts
 p

er
 m

on
th

(c)

Figure 1. Association between law enforcement drug seizures and overdoses in Indianapolis. (a) Heat map of spatial

distribution of non-fatal overdoses where EMS administered naloxone along with contour map of opioid-related law

enforcement drug seizures in Indianapolis (2014 to 2018). (b) Heat map of spatial distribution of fatal overdoses along with

contour map of opioid-related law enforcement drug seizures in Indianapolis (2014 to 2018). (c) Number of opioid-related

law enforcement drug seizures per month (red), non-fatal overdoses where EMS administered naloxone per month (blue)

and fatal overdoses in Indianapolis per month (orange).

Data for this study come from Indianapolis, Indiana, in Marion County, and cover January
1, 2014 through December 31, 2018. These data come from the property room and consist of the
location, date, and physical description of the evident drug type seized by the metropolitan police
department which covers over 90% of the county geographically. Because our indicator of time
for the seizure events was limited to day (without time) we did not include overdose events that
might have occurred on the same day of the seizure; offering a more conservative measure of
the causal impact. Between 2014 - 2018, there were 6,201 individual opioid related drug seizures
during 5,045 events, with an average of 1,240.2 per year (see Figure 1).

Toxicology data from Marion County, Indiana were used to measure fatal overdose events in
this study. These data have been used to examine trends in fatal overdose events [9,40,41,43] and
document gaps in the death investigation process [21,32]. Between 2014-2018, there were 1,626
fatal overdoses with the peak number occurring in 2017 with 406 deaths. Across this study period
85 percent of the overdose deaths were opioid-related; however we did not distinguish between
these in the present analysis.

Non-fatal overdose data come from Indianapolis Emergency Medical Services which also
covers nearly all of the county geographically and includes measures of naloxone administration
and calls for overdose events [42]. The records database for EMS events includes where the event
occurred, the chief complaint, and whether naloxone was administered to the patient. There were
7,228 total naloxone administrations with an average of 1,445.6 administrations per year.

4. Results
In this section we first conduct a synthetic experiment to illustrate the need for a modified two-
process Knox test. We then estimate a Hawkes process model from the Indianapolis data and
assess the goodness of fit of the model. Finally, we apply the modified Knox test to the coupled
seizure-overdose data to assess co-clustering of the two processes.
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(a) Synthetic experiment illustrating failure of standard two-process Knox
statistic under self-excitation

To illustrate the need for a modified Knox test, we simulate two independent Hawkes processes,
each with parameters θ= .75, ω= .1, σ= .01 and background rate specified as in Equation
2.6 with day of week marginal density hd ∝ [1, 2, 3, 4, 3, 2, 1], month of year marginal density
hm ∝ [3, 3, 4, 4, 5, 6, 6, 5, 4, 4, 3, 3], yearly trend density hy ∝ [2, 3, 4, 5] and µ= 500/(4 · 365). For
the spatial component of the background rate we specify a Gaussian mixture model with 3
components having means m1 = [.2, .7], m2 = [.5, .5], m3 = [.7, .2], diagonal covariance matrices
diag(Σ1) = [.01, .01], diag(Σ2) = [.025, .09], and diag(Σ3) = [.04, .0004] and mixture probabilities
p1 = .2, p2 = .5 and p3 = .3.

In Figure 2, we compare the permutation based Knox test, where the parent process times
are repeatedly permuted to construct a bootstrap distribution for κ, with a modified Hawkes
process based Knox test, where 1) the Hawkes process parameters are estimated from the parent
process using an EM algorithm and 2) bootstrap replicates of the parent process are obtained by
repeatedly sampling realizations from the estimated Hawkes process parameters. We observe that
the permutation based Knox statistic distribution has too small of variance and does not contain
the observed Knox statistic of the original two independent processes within its range (after 250
bootstrap samples). On the other hand, the Knox statistic for the original data is well contained
within the 95% bootstrap confidence interval under the Hawkes process null.

Figure 2. Top: (a) two simulated independent Hawkes processes and (b) the same two simulated Hawkes processes

with the parent process (blue) times randomly permuted. The time range is specified as 2013 to 2016 and is displayed,

by Matlab convention, in units of days since Jan 0, 0000. Bottom: Knox statistic bootstrap distribution for the standard

permutation based Knox test (red) and for the modified Hawkes process based Knox test (blue). The dashed lines

represent the Knox statistics obtained for the two simulated datasets above (e.g. the “real" dataset in the case of (a)

and data after permutation of the parent process times in (b)).



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(b) Estimation of the Hawkes process from drug seizure data
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Figure 3. Hawkes process fit to drug seizure data. (a) Scatter plot of drug seizure data coordinates along

with GMM background intensity estimate contour plot for a fitted Hawkes process (θ̂= 0.239, ω̂= 2.306, and

σ̂= 0.006). (b) Scatter plot of event coordinates of one realization of a simulated Hawkes process fit to drug

seizure data. (c) K-function (black) of fitted Hawkes process thinned residuals of the drug seizure data (thinned

with probability λinf/λ(ti)). K-function for 100 realizations of a constant rate Poisson process (red). Radius r

measured in degrees. (d-f) Distribution of number of events per day (d), per month (e) and per year (f) for law

enforcement drug seizure data (black) and 100 fitted Hawkes process simulations (red).

Next we fit the Hawkes process model in Equation 2.6 to law enforcement drug seizure data
in Indianapolis. For the background rate we use a 20-component Gaussian mixture to model the
spatial distribution of events, f(z). In Figure 3 we display an example simulation from the fitted
Hawkes process, along with the estimated model parameters and the background rate GMM
components. To assess the goodness of fit, we apply residual analysis and thin the original drug
seizure data by retaining events with probability λinf/λ(x

s
i , t

s
i ) (where λinf is the infimum of

the intensity on the domain of Indianapolis). When the model is correctly specified, the thinned
residual points are a realization of a constant-rate Poisson process. In Figure 3 we display the K-
function [44] (area normalized number of points within a given radius) for the thinned residuals
along with the K-function of 100 simulated Poisson processes.

(c) Association between drug seizures and overdose in Indianapolis
Next we apply the standard permutation based Knox test and the modified Hawkes process Knox
test to Indianapolis drug seizure and opioid overdose data. In Figure 4, we display the bootstrap
null distribution corresponding to the standard (red) and Hawkes process (blue) pre-post tests.
As an example, in Figure 4 we show the distances in time and space of subsequent overdoses
relative to drug seizures within 250 meters and within 21 days, a spatial and temporal scale that
yields κ= 510. In Figure 4, we also plot inter-event distances and the Knox statistic for example
realizations of the permutation and Hawkes process null models, along with the distribution of
the Knox statistics for τ = 21 days and δ= 250 meters.
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Figure 4. Top: Distribution of the pre-post Knox difference statistic, κ∆, for the permutation and Hawkes process null

models applied to non-fatal overdoses within 21 days and 250 meters of a law enforcement drug seizure. Bottom:

Distances in time and space of non-fatal overdoses are shown relative to drug seizures (with a 1 day buffer window

removed) for an example realization of the permutation process (original seizure data with times reshuffled), an example

realization of the Hawkes process fit to seizure data, and the actual observed data. In the observed data there are 510

overdose events within 250 meters and within 21 days following drug seizures compared to 400 overdose events within

250 meters and within 21 days preceding drug seizures. The null models are designed to control for day of week, seasonal,

trend, and self-excitation effects that could lead to excess overdoses following drug seizures.

Next we use the permutation based two-process Knox test to investigate the effect of opioid-
related law enforcement drug seizures on non-fatal overdoses where EMS administered naloxone
(Figure 5a). We observe excess clustering of non-fatal overdose events around opioid-related
drug seizures across a wide range of temporal and spatial cutoffs. For example, within 14 days
and 500 meters of seizures, we expect a 95% confidence interval for κ̃ of 1633 to 1800 overdose
events (cumulative across all 14 day, 500 meter windows surrounding all drug seizures in the
dataset); however, we observe 1928 events in those windows in the actual data, a statistically
significant effect at the p= .001 level. In Figure 6a we display the analagous results for the Knox
test using the Hawkes process null. Thought the confidence interval is wider when the Hawkes
process null is used, we still find that the effect is statistically significant below the .001 level.
This co-clustering is significant even when controlling for multiple comparisons (e.g. conservative
Bonferroni correction).

In Figures 5b and 6b we also report results for the pre-post Knox difference tests applied
to non-fatal drug overdoses. Here we observe a statistically significant increase in the number
of non-fatal overdoses after an opioid-related law enforcement seizure compared to the same
time period before and same spatial radius. The effect appears to be weaker farther away from
the seizure event; however, for a relatively small radii (100-250 meters), we find statistically
significant effects for both the Hawkes and permutation test. For example, within 21 days and
250 meters of seizures, under the null hypothesis we expect a 95% confidence interval of -53 to 68
for the difference in overdoses before and after a seizure event. However we observe a difference
of 110 overdoses (p= .001), which corresponds to 17.7 excess overdoses within 21 days (after) and
250 meters per 1,000 seizures.

Finally, in Figures 5-6c and 5-6d we provide results for the 2-sample Knox tests when fatal
overdoses are used as the unit of analysis. Here we find a statistically significant effect of fatal
overdose clustering around seizures in the majority of the radii and temporal windows used (for
both the permutation and Hawkes process nulls). However, we failed to detect any effect when
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applying the pre-post Knox difference test, indicating that fatal overdoses fall temporally on either
side of seizures with similar rates in the present data set. These results were replicated using only
opioid-related overdose deaths, but again did not detect the pre-post seizure effect.
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Figure 5. Knox permutation test statistics reported for varying spatial and temporal cutoffs δ and τ . (a) Knox test

results for association between drug seizures and overdoses where naloxone was administered by EMS. Knox test

statistic κ reported for the data along with 95% confidence intervals for the Knox statistic corresponding to the most

conservative null model (Hawkes or Permutation). (b) Modified pre-post knox statistic κ∆ reported for the non-fatal

overdose data along with 95 % confidence interval. (c) Knox test results for association between drug seizures

and fatal overdoses. Knox test statistic κ reported for the data along with 95% confidence interval. (d) Modified

pre-post knox statistic κ∆ reported for the fatal overdose data along with 95 % confidence interval. Significance

level denoted by * (p=.05), ** (p=.01), and *** (p=.001) and color coded by the Z-value of the Knox test statistic (red

indicating clustering and blue indicating inhibition).

5. Discussion
Using law enforcement drug seizure data, alongside both fatal and non-fatal overdose data for a
5-year period in the same jurisdiction, our analysis found statistically significant excess clustering
of non-fatal overdoses, within a given time frame and spatial distance, following an opioid-
related drug seizure event. These non-fatal overdoses are where EMS administered naloxone -
the medication designed to rapidly reverse opioid overdose - and confirmed through multiple
analysis that all suggest increases within the radius of an opioid-related law enforcement drug
seizure.

A number of studies have documented how law enforcement disruptions to the local drug
market can result in persons with a chemical dependency to the seized substances shifting to
alternative dealers or using different substances [2,3,5,7,8,19,25,54,59]. Drug users can have a
long-standing and trusting relationship with a supplier which often comes with consistency of
a product quality [8]. In the case of opioids this could include either prescription medications
(e.g., oxycodone, hydrocodone, oxymorphone, hydromorphone) or illicitly produced heroin and
fentanyl where the shift to a new dealer or substance can be chaotic as the person will likely
be attempting to avoid painful withdrawal symptoms [10,30,46]. Moreover, when using new or
unknown products it is not possible to determine tolerance so it could be a more potent opioid,
resulting in an overdose, or less potent, result in co-use with other substances and overdose.
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Figure 6. Modified Knox Hawkes test statistics reported for varying spatial and temporal cutoffs δ and τ . (a)

Modified Knox test results for association between drug seizures and overdoses where naloxone was administered

by EMS. Knox test statistic κ reported for the data along with 95% confidence intervals for the Knox statistic

corresponding to the most conservative null model (Hawkes or Permutation). (b) Modified pre-post knox statistic

κ∆ reported for the non-fatal overdose data along with 95 % confidence interval. (c) Modified Knox test results

for association between drug seizures and fatal overdoses. Knox test statistic κ reported for the data along with

95% confidence interval. (d) Modified pre-post knox statistic κ∆ reported for the fatal overdose data along with 95

% confidence interval. Significance level denoted by * (p=.05), ** (p=.01), and *** (p=.001) and color coded by the

Z-value of the Knox test statistic (red indicating clustering and blue indicating inhibition).

On the other hand, we note that there are other possible explanations for excess clustering of
overdoses following drug seizures.

While our study is limited to administrative data sources from a single jurisdiction and time
period, it represents a critical step in understanding how law enforcement practices supported by
current US drug policy may inadvertently aid the ongoing overdose epidemic. Future research
should aim to replicate these results in other jurisdictions with similar data sources, but also
look for alternative data sources, such as Zibbell and colleagues’ use of crime laboratory data
(2019), to look at the relationship between drug seizures and overdose events nationwide.
Our results suggest an increase in non-fatal overdose following drug seizures but not fatal
overdoses, which may be driven by demographic characteristics, drug use behaviors, or 911
call response [18,39], which were not accounted for in this study. Despite these limitations, the
results highlight the importance of public health and police partnerships in addressing the opioid
epidemic. Police can play an integral part in promoting public health, and this has occurred most
recently in the overdose epidemic through training and co-response efforts for individuals with
behavioral health concerns [6], violence prevention initiatives [29,33,48], and numerous multi-
sector coalitions. Yet these results suggest the need for a rapid community response following a
drug seizures; this response would need to target harm reduction and treatment opportunities to a
specific geographical region. This idea aligns more with recent policing efforts that focus on harm
reduction [36], arrest diversion programs [13], and police-led treatment initiatives for opioid use
disorder [58], compared to traditional place-based deterrence policing methods. A police-public
health collaboration following police drug seizures is also an opportunity to link individuals to
treatment and lower the rate of overdoses.

There are also broader policy implications from the results in this study. The “war on drugs"
has long been deemed a US policy failure, yet the vast majority of law enforcement agencies
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continue to enact practices aimed at laws criminalizing illicit substances. The decriminalization
reform efforts in Portugal started in 2001 have been wildly successful at reducing the burden of
drug-related harms, with demonstrated decreases in overdose, HIV/STI, and incarceration [24].
Nearly 20 years later the question of whether decriminalization is politically feasible in the
US has been answered with Oregon as the first US state to decriminalizes the possession for
small amounts of cocaine, heroin, and methamphetamine beginning in 2021 [1,12,17]. This is
also following a number of states that regulated of cannabis, suggesting a growing policy trend
away from law enforcement responses. With the overdose epidemic being exasperated as part of
a syndemic with COVID-19 [20,45,49,53], if the results from this study are replicable, then both
local practices, along with state and federal policies, will need to transform to reduce preventable
deaths and the continued loss of potential life in the US.

Finally, we believe that the modified Knox test introduced in this study will be useful in
assessing co-clustering effects in other applications where two spatial-temporal point processes
may interact. Future research may focus on handling other types of processes, for example self-
correcting or self-avoiding point processes, where random permutation can change the statistics
of the process and a modified null model is needed. These models can then be assessed using the
residual analysis employed here or by alternative point process goodness-of-fit techniques, such
as super-thinning [11]. We note that there is some tradeoff between the standard permutation test,
that preserves spatial structure in the data (though may change the second order statistics), and
our approach that introduces some spatial smoothing. While we resampled the event coordinates
to address this concern, future research could also focus on designing modified Knox tests that
better capture the spatial statistics of street networks [47].
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