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Abstract

Background: Tuberculosis (TB) is the notifiable infectious disease with the second highest incidence in
the Qinghai province, a province with poor primary health care infrastructure. Understanding the spatial
distribution of TB and related environmental factors is necessary for developing effective strategies to
control and further eliminate TB.

Methods: Our TB incidence data and meteorological data were extracted from the China Information System
of Disease Control and Prevention and statistical yearbooks, respectively. We calculated the global and local
Moran’s I by using spatial autocorrelation analysis to detect the spatial clustering of TB incidence each year.
A spatial panel data model was applied to examine the associations of meteorological factors with TB incidence after
adjustment of spatial individual effects and spatial autocorrelation.

Results: The Local Moran’s I method detected 11 counties with a significantly high-high spatial clustering (average
annual incidence: 294/100 000) and 17 counties with a significantly low-low spatial clustering (average annual
incidence: 68/100 000) of TB annual incidence within the examined five-year period; the global Moran’s I values ranged
from 0.40 to 0.58 (all P-values < 0.05). The TB incidence was positively associated with the temperature, precipitation,
and wind speed (all P-values < 0.05), which were confirmed by the spatial panel data model. Each 10 °C, 2 cm, and
1 m/s increase in temperature, precipitation, and wind speed associated with 9 % and 3 % decrements and a 7 %
increment in the TB incidence, respectively.

Conclusions: High TB incidence areas were mainly concentrated in south-western Qinghai, while low TB
incidence areas clustered in eastern and north-western Qinghai. Areas with low temperature and precipitation
and with strong wind speeds tended to have higher TB incidences.
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Background
Tuberculosis (TB) remains a major public health burden
in many developing countries [1–3]. According to the
World Health Organization TB annual report, in 2013,
the number of new reported TB cases in the world was
estimated at 11.4 million. Among the 22 high TB burden
countries and regions, mainland China ranks second,
with 1.3 million cases, giving an incidence of 98/100 000
[4]. Based on the data from the fifth TB epidemiological
sampling survey in China, the TB number was higher in
the western regions compared with the central and
eastern regions [5]. The occurrence of TB in China has
obvious periodic and seasonal features, more frequently
occurring in the winter and spring, which suggests that
TB might be associated with meteorological factors [6].
Current evidence has suggested that, besides the
traditional factors such as genetic susceptibility [7], sex
[8], education, ethnicity, drinking [9], smoking [10], and
related diseases, several ecological factors, including
geographic, climatic, and socioeconomic factors, also
have critical impacts on the prevalence of TB [11–13].
Understanding the spatial variations in TB prevalence

and its determinants is crucial for improved targeting of
interventions and resources. Many geospatial analytical
methods, such as spatial autocorrelation analysis
(Moran’s I and Getis-Ord G) [14–16] and space-time
scan statistic (SaTScan) methods [17–19] have been used
for understanding TB and other public health problems
[20, 21]. In China, county-level studies have used various
spatial epidemiological methods to identify clustering of
health conditions, including notifiable pandemic influ-
enza A in Hong Kong [22], and TB in Linyi [2], Beijing
[5], and Xinjiang [23]. However, there are currently no
related studies on geospatial distribution of TB in Qinghai
province.
Moreover, while several studies have shown that the

TB incidence might be related with the temperature,
precipitation, and wind speed [24], few studies have con-
sidered the modifier effects from time and spatial factors
in the relationship between meteorological factors and
TB incidence. With further research of spatial econo-
metrics and the rapid development of computer technol-
ogy, spatial autocorrelation and spatial panel data
models are becoming useful tools in the analysis of
spatiotemporal data, and are gradually being applied to
the research of infectious diseases [24–26]. Therefore, in
this study, we aimed to understand the distribution of
TB and to explore the associations between meteorological
factors and TB incidence using spatial autocorrelation

analysis and a spatial panel data model based on surveil-
lance data from the Qinghai Center for Disease Control
and Prevention.

Methods
Qinghai province, which comprises 8 cities, including a
total of 46 counties, is located between longitude 89°35′
and 103°04′ East, and latitude 31°40′ and 39°19′ North
(Fig. 1). As an underdeveloped region in north-western
China, it has a higher annual incidence of TB than
other regions of the country. The average altitude is 3
000-5 000 m, with a typical plateau continental
climate, which includes little rain, low temperatures,
and long sunshine hours.

Tuberculosis incidence data
In this study, we focused on the cases of pulmonary TB.
Our TB data were based on the China Information System
for Disease Control and Prevention (CISDCP, http://
1.202.129.170/UVSSERVER2.0), which was established in
2005. TB cases were diagnosed using X-ray, pathogen
detection, and pathologic diagnosis according to the
diagnosis criteria recommended by the National Health
and Family Planning Commission of the People’s Republic
of China (Former Ministry of Health) in 2008 [6]. The
relevant information, including age, sex, occupation,
diagnostic category, and diagnostic date, was collected to
analyse the epidemic characteristics of TB in Qinghai
province.
TB is a notifiable infectious disease in China; all cases

must be reported online within 24 h after diagnosis in
the hospital. We collected the county- and city-level data
from January 2009 to December 2013 in Qinghai and
randomly selected 261 of all 771 medical institutions in
Qinghai province and checked all medical records of
these selected institutions to confirm whether there were
missing TB cases or not. During the period from 2009
to 2013, in all 46 counties, a total of 27 665 TB cases
and 51 TB-related deaths were identified; no missing
cases or outbreaks were declared.

Environmental data
Our meteorological data were based on the statistical
data from the Qinghai statistics office, which is reported
yearly by the meteorological bureau of each city. In this
study, we focused on four main meteorological factors,
including the monthly average temperature (MAT, °C),
precipitation (MP, mm), total sunshine hours (MSH,
hours), and wind speed (MAWS, m/s). Considering a
time lag between infectious disease development and
meteorological factors, the meteorological data were
collected from July 2008 to December 2013.
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Statistical methods
Spatial autocorrelation analysis method
Spatial autocorrelation analysis was conducted by using
Open GeoDa software (GeoDa Center for Geospatial
Analysis and Computation, Arizona State University,
AZ, USA) and used to identify the spatial clustering of
the annual TB incidence of all 46 counties [2, 5, 27, 28].
The row standardized first-order contiguity Rook neigh-
bours were used as the criterion for identifying neighbours
in this paper. In this rule, if regions i and j are neighbours
and share a boundary, wij = 1; otherwise, wij = 0. Global
Moran’s I was calculated to test the spatial autocorrelation
of all counties in Qinghai province, ranging from -1 to +1
[5]. Positive/negative spatial autocorrelation occurs when

Moran’s I is close to +1/-1, which indicates that areas with
similar (high-high or low-low)/dissimilar (high-low or
low-high) incidence of TB are clustered together [29].
Monte Carlo randomization (9999 permutations) was
employed to assess the significance of Moran’s I, with the
null hypothesis being that the distribution of TB incidence
in Qinghai province is completely spatially random [27];
in other words, that the counties with high and low
TB incidence are randomly distributed across the study
area [30]. If the test is significant (P ≤ 0.05), this suggests
a clustering/dispersing of the TB incidence [2, 16].
Subsequently, we used local indicators of spatial associ-
ation (LISA; Local Moran’ I) analysis and a Moran scatter
plot to examine the spatial autocorrelation of each

Fig. 1 Location of the study areas, Qinghai Province, China. The map was created using the ArcGIS software (version 10.0, ESRI Inc., Redlands, CA, USA)
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county in Qinghai province and to determine the
locations of the clusters [31]. Moran’s plot shows
high-high and low-low clustering in the upper right
and lower left quadrants, respectively. Statistically
significant high-high, low-low, and outlier local clus-
ters (high-low and low-high) were visualized using a
cluster map with county boundaries [15].

Spatial panel analysis method
In our study, we used data of TB incidence and
meteorological factors, which were collected from
different cities monthly, to explore the associations of
meteorological factors with TB incidence. The data were
collected at different times (monthly) and in different
areas (cities), and were hence considered repeated obser-
vations data, referred to as panel data (also known as
pooled time series and cross-section data). The spatial
heterogeneity and spatial dependence in different cities
need to be considered in the analysis [5, 32]. A spatial
panel data model is able to address data with spatial
dependence and also enables researchers to consider
spatial heterogeneity, which typically refers to data
containing continuous observations of a number of
spatial units [24–26]. Compared to traditional methods
based on cross-sectional or time series models, spatial
panel data models are more informative and contain
more variation and less collinearity among the variables
[26, 33]. The use of panel data results in a greater
availability of degrees of freedom, and hence increases
the efficiency of the estimation [26, 34]. Therefore, we
used a spatial panel data model to examine the associ-
ation between the TB incidence and meteorological
factors after adjustment for the spatial confounders. As
the distribution of the TB incidence rate is highly
skewed, log transformation of the TB incidence was used
in the analyses, according to the following formula: log
incidence = lg (TB incidence). The unit root test and
co-integration test were conducted to confirm the
stationary of the data [35]. The spatial panel data model
analyses were conducted by using Matlab R2009a
(Mathworks Inc., Natick, MA, USA), and the significant
level was 0.05.

Results
Annually, the incidences of TB in Qinghai province were
93, 87, 93, 112, and 106 per 100 000 people from 2009
to 2013, accounting for 12.24, 13.96, 17.13, 19.00, and
16.84 % of all reported infectious diseases, respectively
(Table 1). The high incidence areas were mainly concen-
trated in the cities of Yushu and Guoluo, while the top
three counties of TB annual incidence were Maduo
(656/100 000), Jiuzhi (461/100 000), and Zaduo (393/100
000) in the southwest of Qinghai. The low incidence
areas were mainly concentrated in the cities of Haixi

and Xining, with the bottom three counties being
Mangya (15/100 000), Delingha (39/100 000), and
Dachaidan (42/100 000) in the northwest of Qinghai
(Fig. 2). The TB incidence rate showed significant
periodicity and seasonality, reaching a seasonal peak
around April and then decreasing to a trough in Decem-
ber (Fig. 3). The significant meteorological characteris-
tics in Qinghai province included the strong sunlight
and relative low temperature throughout the year
(Table 2).

Spatial autocorrelation analysis of TB incidence
The global Moran’s I values of each year at the county level
were high, ranging from 0.40 to 0.58 (all P-values < 0.05),
which indicated that the counties with high TB incidence
tended to be adjacent to the districts with high TB
incidence, and that the counties with low TB incidence
tended to be adjacent to the districts with low TB
incidence (Fig. 4). LISA analysis revealed 11 counties with
a significantly high-high spatial clustering and 17 counties
with a significantly low-low spatial clustering of
TB annual incidence in the five-year period. The
high-high clustering areas were mainly concentrated
around the cities of Yushu and Guoluo, such as Cheng-
duo, Maduo, Qumalai, and Dari counties, with an average
annual incidence of 294/100 000. The low-low clustering
areas were concentrated in Xining city and surrounding
areas, as well as in several counties of Haixi city, such as
Mangya, Lenghu, and Dachaidan, with an average
incidence of 68/100 000 (Fig. 5).

Spatial panel analysis of meteorological factors
TB is a chronic infectious disease with a certain
amount of time lag between the influencing factors
and the disease. We used the meteorological factors
with a 0- to 6-month lag from the incidence of TB to
fit the simple linear model and classical panel data
models. The associations between TB incidence and
meteorological factors with a 3-month lag were found
to have the best goodness of fit. Subsequently, we
examined the individual effects of spatial cities by
using the Hausman-test and F-test; as a result, a sig-
nificant fixed effect of each city was found (P < 0.001).
The Durbin-Watson statistic and Moran’s I (P < 0.001)
indicated a spatial autocorrelation in error term. The
Lagrange multiplier (LM) test showed that the spatial
lag effect was more significant than the spatial error
effect (Table 3). Therefore, we finally used the spatial
lag fixed effects panel data model to examine the
associations between TB incidence and meteorological
factors.
The result showed that the background incidence of

each city was different; the highest and lowest background
incidences were found in Guoluo city (12.88/100 000) and
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Table 1 Characteristics of tuberculosis cases in Qinghai Province, China, 2009-2013

Variables 2009 2010 2011 2012 2013

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Report cases
(incidence rate,
1/100 000)

Death cases
(mortality rate,
1/100 000)

Infectious disease 42 006 (757.82) 50 (0.90) 34 865 (625.60) 29 (0.52) 30 541 (542.79) 22 (0.39) 33 514 (589.86) 42 (0.74) 35 954 (627.28) 38 (0.66)

Pulmonary tuberculosis 5 141 (92.75) 21 (0.38) 4 868 (87.35) 6 (0.11) 5 232 (92.99) 10 (0.18) 6 369 (112.10) 7 (0.12) 6 055 (105.64) 7 (0.12)

Age (years) 0- 12 (15.57) 0 (0.00) 11 (14.15) 1 (1.29) 16 (21.07) 0 (0.00) 14 (19.57) 0 (0.00) 12 (16.99) 0 (0.00)

1- 1 (1.32) 0 (0.00) 5 (6.58) 0 (0.00) 5 (6.73) 0 (0.00) 14 (19.07) 0 (0.00) 5 (6.94) 0 (0.00)

2- 2 (2.62) 0 (0.00) 0 (0.00) 0 (0.00) 2 (2.70) 0 (0.00) 9 (12.37) 0 (0.00) 7 (9.87) 0 (0.00)

3- 1 (1.30) 0 (0.00) 1 (1.32) 0 (0.00) 5 (6.72) 0 (0.00) 10 (13.76) 0 (0.00) 7 (9.93) 0 (0.00)

4- 3 (3.83) 0 (0.00) 3 (3.90) 0 (0.00) 3 (3.99) 0 (0.00) 7 (9.53) 0 (0.00) 7 (9.85) 0 (0.00)

5- 3 (3.76) 0 (0.00) 7 (8.95) 0 (0.00) 7 (9.14) 0 (0.00) 7 (9.48) 0 (0.00) 3 (4.20) 0 (0.00)

6- 8 (9.89) 0 (0.00) 4 (5.04) 0 (0.00) 10 (12.88) 0 (0.00) 5 (6.68) 0 (0.00) 6 (8.28) 0 (0.00)

7- 3 (3.66) 0 (0.00) 8 (9.95) 0 (0.00) 9 (11.44) 0 (0.00) 6 (7.69) 0 (0.00) 8 (10.22) 0 (0.00)

8- 4 (5.10) 0 (0.00) 5 (6.11) 0 (0.00) 11 (13.75) 0 (0.00) 15 (16.25) 0 (0.00) 8 (7.34) 0 (0.00)

9- 6 (9.49) 0 (0.00) 7 (8.90) 0 (0.00) 6 (7.69) 0 (0.00) 16 (19.60) 0 (0.00) 11 (12.73) 0 (0.00)

10- 72 (16.16) 0 (0.00) 82 (19.68) 0 (0.00) 107 (25.96) 0 (0.00) 147 (36.70) 0 (0.00) 116 (30.73) 0 (0.00)

15- 320 (62.73) 2 (0.39) 346 (69.38) 0 (0.00) 396 (79.19) 0 (0.00) 570 (118.71) 0 (0.00) 497 (106.16) 0 (0.00)

20- 444 (97.99) 0 (0.00) 492 (104.25) 0 (0.00) 506 (107.63) 2 (0.43) 662 (131.56) 0 (0.00) 577 (111.56) 0 (0.00)

25- 432 (97.20) 1 (0.23) 438 (101.70) 0 (0.00) 490 (112.60) 0 (0.00) 511 (124.20) 1 (0.24) 467 (118.75) 0 (0.00)

30- 495 (99.50) 1 (0.20) 452 (94.60) 0 (0.00) 464 (95.63) 0 (0.00) 493 (105.84) 0 (0.00) 486 (110.15) 0 (0.00)

35- 514 (91.63) 2 (0.36) 475 (84.59) 0 (0.00) 472 (81.85) 0 (0.00) 536 (95.05) 0 (0.00) 526 (94.52) 0 (0.00)

40- 465 (89.57) 0 (0.00) 451 (86.40) 0 (0.00) 471 (87.35) 0 (0.00) 533 (94.34) 0 (0.00) 501 (87.92) 1 (0.18)

45- 365 (120.16) 3 (0.99) 338 (92.96) 0 (0.00) 391 (102.58) 0 (0.00) 475 (94.71) 1 (0.20) 497 (83.64) 2 (0.34)

50- 308 (111.30) 2 (0.72) 236 (90.25) 1 (0.38) 205 (75.55) 1 (0.37) 323 (136.33) 0 (0.00) 329 (141.60) 0 (0.00)

55- 317 (134.66) 2 (0.85) 314 (129.21) 0 (0.00) 335 (134.05) 1 (0.40) 396 (164.15) 0 (0.00) 378 (151.86) 1 (0.40)

60- 356 (202.39) 0 (0.00) 345 (189.88) 1 (0.55) 376 (201.76) 1 (0.54) 438 (242.60) 1 (0.55) 473 (259.34) 2 (1.10)

65- 379 (257.16) 1 (0.68) 316 (207.94) 1 (0.66) 336 (226.41) 0 (0.00) 448 (306.43) 0 (0.00) 432 (293.55) 0 (0.00)

70- 341 (306.56) 5 (4.50) 292 (259.21) 1 (0.89) 320 (290.80) 4 (3.64) 399 (355.38) 1 (0.89) 350 (304.40) 0 (0.00)

75- 201 (326.43) 2 (3.25) 170 (254.85) 1 (1.50) 195 (299.84) 1 (1.54) 218 (314.61) 2 (2.89) 239 (319.44) 1 (1.34)

80- 75 (292.16) 0 (0.00) 53 (204.76) 0 (0.00) 79 (312.09) 0 (0.00) 86 (314.02) 0 (0.00) 85 (298.13) 0 (0.00)

85- 14 (251.57) 0 (0.00) 17 (291.75) 0 (0.00) 15 (262.97) 0 (0.00) 31 (254.86) 1 (8.50) 28 (232.00) 0 (0.00)

Sex Men 3 179 (111.66) 7 (0.25) 2 952 (103.18) 2 (0.07) 3 123 (107.18) 7 (0.24) 3 787 (131.70) 7 (0.24) 3 547 (120.26) 3 (0.10)

Women 1 962 (72.77) 14 (0.52) 1 916 (70.65) 4 (0.15) 2 109 (77.74) 3 (0.11) 2 582 (92.01) 0 (0.00) 2 508 (90.14) 4 (0.14)
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Table 1 Characteristics of tuberculosis cases in Qinghai Province, China, 2009-2013 (Continued)

Occupation Farmers and
herdsmen

3 441 (-) 13 (-) 3 329 (-) 5 (-) 3 558 (-) 7 (-) 4 328 (-) 6 (-) 4 249 (-) 4 (-)

Student 354 (-) 1 (-) 383 (-) 0 (-) 475 (-) 0 (-) 685 (-) 0 (-) 592 (-) 0 (-)

Worker 333 (-) 1 (-) 317 (-) 0 (-) 302 (-) 0 (-) 264 (-) 0 (-) 228 (-) 0 (-)

Attendant 79 (-) 0 (-) 60 (-) 0 (-) 66 (-) 0 (-) 59 (-) 0 (-) 36 (-) 0 (-)

Teacher 60 (-) 1 (-) 34 (-) 0 (-) 36 (-) 0 (-) 39 (-) 0 (-) 30 (-) 0 (-)

Medical
personnel

19 (-) 0 (-) 16 (-) 0 (-) 29 (-) 0 (-) 29 (-) 0 (-) 23 (-) 0 (-)

Unemployed
and retirees

855 (-) 5 (-) 729 (-) 1 (-) 766 (-) 3 (-) 965 (-) 1 (-) 897 (-) 3 (-)

Diagnostic
category

Sputum
smear
positive

2 710 (-) 12 (-) 2 633 (-) 5 (-) 2 670 (-) 5 (-) 2 665 (-) 6 (-) 2 326 (-) 5 (-)

Bacterium
negative

1 431 (-) 6 (-) 1 328 (-) 1 (-) 1 582 (-) 4 (-) 2 164 (-) 0 (-) 2 374 (-) 2 (-)

No detection
in sputum

974 (-) 3 (-) 900 (-) 0 (-) 958 (-) 1 (-) 1 528 (-) 1 (-) 1 333 (-) 0 (-)

Only
germiculture
positive

26 (-) 0 (-) 7 (-) 0 (-) 22 (-) 0 (-) 12 (-) 0 (-) 22 (-) 0 (-)
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Fig. 2 Annual incidence of tuberculosis in Qinghai Province, China, 2009-2013. The areas of high annual incidence of TB were mainly concentrated in
south-western Qinghai, with the top three counties being Maduo, Jiuzhi, and Zaduo

Fig. 3 Monthly incidence rates of TB in Qinghai Province, China, from January 2009 to December 2013. The TB incidence rate showed significant
periodicity and seasonality, reaching a seasonal peak around April and decreasing to a trough in December. TB, tuberculosis
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Haixi city (2.75/100 000), respectively (Table 4). The
spatial autocorrelation coefficient was 0.30, meaning
that a spatial spillover phenomenon existed; the TB
incidence of the study city increased 1 time when the
TB incidence of adjacent cities increased 9 times and
other influencing factors were kept constant. The re-
gression coefficients of MAT, MP, and MAWS were
all statistically significant (all P-values < 0.05), with

each 10 °C, 2 cm, and 1 m/s increase in temperature,
precipitation, and wind speed being associated with
9 % and 3 % decrements and a 7 % increment in the
TB incidence, respectively (Table 5).

Discussion
In our study, we used the data of TB from the CISDCP
to analyse the characteristics of the TB incidence in

Table 2 Descriptive statistics for meteorological variables in Qinghai Province, China, from July 2008 to December 2013

District, city Meteorological variables Mean Standard deviation Minimum Maximum

Total MAT (°C) 5.0 8.9 -13.4 20.4

MP (mm) 35.3 39.4 0.0 195.1

MSH (hours) 218.9 31.8 99.6 307.9

MAWS (m/s) 1.5 0.5 0.1 3.5

Xining MAT (°C) 6.1 9.1 -11.2 18.8

MP (mm) 35.4 36.8 0.0 147.7

MSH (hours) 217.7 29.5 151.9 289.6

MAWS (m/s) 1.0 0.2 0.7 1.8

Haidong MAT (°C) 7.8 9.1 -9.9 20.4

MP (mm) 28.6 30.4 0.0 128.9

MSH (hours) 222.2 27.9 156.6 282.2

MAWS (m/s) 2.0 0.4 1.0 2.6

Hainan MAT (°C) 5.6 8.8 -9.8 18.8

MP (mm) 28.0 31.3 0.0 101.4

MSH (hours) 238.3 28.1 176.6 303.8

MAWS (m/s) 1.6 0.5 0.7 3.5

Haibei MAT (°C) 2.1 9.1 -13.4 14.9

MP (mm) 41.0 42.7 0.0 195.1

MSH (hours) 206.2 24.4 133.1 262.3

MAWS (m/s) 1.5 0.4 0.6 2.5

Haixi MAT (°C) 5.0 9.7 -11.8 19.5

MP (mm) 21.0 30.0 0.0 124.2

MSH (hours) 243.3 28.1 192.1 307.9

MAWS (m/s) 1.6 0.5 0.9 2.6

Huangnan MAT (°C) 7.1 8.3 -8.7 19.2

MP (mm) 36.1 37.7 0.0 144.2

MSH (hours) 209.7 30.0 121.3 278.6

MAWS (m/s) 1.1 0.3 0.1 1.6

Guoluo MAT (°C) 0.9 7.8 -12.8 12.4

MP (mm) 47.3 50.7 0.0 169.5

MSH (hours) 210.8 34.6 99.6 285.5

MAWS (m/s) 1.8 0.4 1.2 2.7

Yushu MAT (°C) 5.1 7.8 -7.7 19.2

MP (mm) 44.9 44.8 0.0 159.8

MSH (hours) 202.9 26.3 132.9 274.1

MAWS (m/s) 1.3 0.4 0.8 2.5

MAT monthly average temperature, MP monthly precipitation, MSH monthly total sunshine hours, MAWS monthly average wind speed
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Qinghai province. The incidence of TB in Qinghai
province showed clear periodic and seasonal features in
the colder winter and spring months, similar to the
patterns of epidemic regularity reported in Beijing [5]
and Shandong [2], China, and in India [36, 37] and
Mongolia [38]. In our study, it was shown that the TB
incidence was higher in elders than in young people,
with farmers and herdsmen at particularly high risks
(Table 1), which supported the notion of TB pathogen-
esis regularity [39]. Moreover, the TB incidence in re-
gions with relatively poor economic conditions and
high altitudes has been shown to be high, potentially
owning to differences in the ethnicity, medical and
health conditions, and economic and educational
levels of the residents. Additionally, the local environ-
ment and climatic conditions may also influence the
incidence of TB [37, 40–43]. Thus, in Qinghai, the
farmers and herdsmen living in the regions with cold
climate and high altitudes should be made aware of
the high risk of TB occurrence.

The incidence and spatial autocorrelation differ, but are
associated in some regards. A higher incidence reflects
higher epidemic strength. Spatial autocorrelation describes
the relationship of incidence between one region and the
surrounding areas and is based on incidence and overall
consideration of regional geographical, human, and
environmental factors. In our study, we chose Moran’s I to
analyse the spatial autocorrelation. It showed a positive
correlation within regions, and the correlation displayed
an increasing tendency year by year, indicating that the
distribution of TB in Qinghai is not random, with obvious
spatial clusters. These results are consistent with previ-
ously published studies [2, 11, 37, 40].
Spatial clustering analysis has suggested that classical

multiple linear regression analysis is not suitable for
exploration of TB risk factors at the ecological level.
Thus, this method should be combined with a spatial
statistical model to explore the risk factors [25]. A panel
data model can be directly used to assess the differences
between regions, control for individual heterogeneity,

Fig. 4 Moran scatter plot for the annual incidence of tuberculosis in Qinghai Province, China, 2009-2013. The horizontal axis shows the standardized
incidence of the counties, and the vertical axis indicates the spatial lag factors; the linear slope is the Moran’s I
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Fig. 5 LISA significance map and cluster map for annual tuberculosis incidence in Qinghai Province, China, 2009-2013. The high risk areas were
mainly concentrated in the cities of Yushu and Guoluo, while the low incidence districts were mainly distributed in the cities of Xining and Haixi.
LISA, local indicators of spatial association
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and present more reasonable results. However, this
model does not consider the spatial autocorrelation in
the study area. Accordingly, a spatial panel data model
combining spatial metrology with the panel data model
was used in our study. This model takes the individual
effects and spatial autocorrelation into consideration,
which could result in better use of the spatiotemporal
information from infectious diseases surveillance data
[24, 26]. In a spatial panel data model, the introduction
of a spatial individual effect can correct deviations
caused by unobserved variables, and the use of a spatial
weight matrix can illustrate the spatial correlation and
reflect the interaction between regions [34]. Moreover,
the modelling estimation is more effective and could
help us research unknown variables in depth.
Some studies have reported that the average incuba-

tion period of TB ranges from four to eight weeks, with
a two-month interval from the symptom appearance to
medical diagnosis [6]. Accordingly, we created a fitting
model with a 3-month lag [44–46]. The results showed

that the combined data using the traditional method
would overstate the influence of the meteorological
factors, because the effect is different in different re-
gions. Conversely, the spatial panel data model reduced
error occurrence and increased the goodness of fit. The
spatial autocorrelation coefficient was 0.30, which indi-
cated that the introduction of the spatial lag dependent
variable could reasonably explain the spatial autocorrel-
ation. Further, the regression coefficients of MAT and
MP were negative, while that of MAWS was positive,
suggesting that with increasing MAT and MP, the inci-
dence of TB decreases exponentially. Conversely, with
increasing MAWS, the incidence increases exponentially.
These result are in accordance with the findings of
previous studies, such as those by Li et al. [6] and Naranbat
et al. [38].
In cold condition, especially in the winter, most people

stay indoors for a long time, hence, once someone
releases bacteria into the environment, elderly and

Table 3 Results of the classical panel data models for the log of TB incidence with meteorological factors of a 3-month lag

Factors Simple linear regression Fixed effects model Random effects model

Coefficient t-value P-value Coefficient t-value P-value Coefficient t-value P-value

Constant 1.0097 10.42 <0.0001 1.0367 12.27 <0.0001

MAT (°C) -0.0195 -10.03 <0.0001 -0.0059 -4.96 <0.0001 -0.0060 -5.12 <0.0001

MP (mm) 0.0024 5.07 <0.0001 -0.0008 -2.77 0.0060 -0.0007 -2.63 0.0090

MSH (hours) -0.0011 -2.56 0.0110 -0.0003 -1.10 0.2720 -0.0003 -1.14 0.2570

MAWS (m/s) 0.1441 5.94 <0.0001 0.0320 1.93 0.0550 0.0339 2.05 0.0410

Log likelihood 1.92 328.57

AIC 0.01 -1.32

SC 0.06 -1.21

F-statistic 193.90 <0.0001

H-statistic 10.41 0.0340

LM lag 14.14 <0.0001 39.40 <0.0001

Robust LM lag 161.22 <0.0001 21.00 <0.0001

LM error 34.13 <0.0001 35.93 <0.0001

Robust LM error 181.21 <0.0001 17.54 <0.0001

Moran’s I 0.20 6.07 <0.0001 0.20 6.20 <0.0001

TB tuberculosis, MAT monthly average temperature, MP monthly precipitation, MSH monthly total sunshine hours, MAWS monthly average wind speed, AIC Akaike
information criterion, SC Schwarz Criterion, H-statistic Hausman-statistic, LM Lagrange multiplier

Table 4 Results for spatial individual effects of each city by
using the spatial panel data model

Cities Intercept
term (μi)

Background
incidence
(1/100 000)

Cities Intercept
term (μi)

Background
incidence
(1/100 000)

Haixi 0.44 2.75 Hainan 0.70 5.01

Xining 0.51 3.24 Haibei 0.79 6.17

Haidong 0.57 3.72 Yushu 1.09 12.30

Huangnan 0.64 4.37 Guoluo 1.11 12.88

Table 5 Results of the spatial panel data model for the log of
TB incidence with meteorological factors of a 3-month lag

Factors Coefficient 95 % CIs of coefficients P-value

MAT (°C) -0.0040 -0.0063, -0.0017 <0.0001

MP (mm) -0.0006 -0.0011, -0.0001 0.0250

MSH (hours) -0.0002 -0.0007, 0.0002 0.2680

MAWS (m/s) 0.0309 0.0001, 0.0618 0.0490

ρ 0.2997 0.2003, 0.3992 <0.0001

TB tuberculosis, CI confidence interval, MAT monthly average temperature,
MP monthly precipitation, MSH monthly total sunshine hours, MAWS monthly
average wind speed, ρ spatial autocorrelation coefficient
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immunocompromised populations are at particularly
high risk of infection because of the poor ventilation.
Moreover, some studies have shown a relationship
between vitamin D levels and TB incidence [38]. Fewer
outdoor activities and less exposure time to sunlight
result in decreased synthesis of vitamin D in the human
body. In turn, this may increase the risk of TB infection
[6, 47]. In the traditional view, TB infection is mainly
caused by bacteria in the sputum. When the sputum
gets dry, bacteria are expelled into the air and enter
other people’s respiratory systems. With increasing rain-
falls, the air humidity increases and the transmission of
aerosols decreases. Hence, the risk of bacteria entering
the respiratory system is decreased, as is the incidence
of TB.
In summary, we found that the spread of TB in

Qinghai province is not random, but rather present
obvious spatial clustering. The use of spatial statistic
methods may offer necessary feedback in terms of the
prevalence nature and epidemic characteristics of TB
in various regions, and may consequently result in
public health officials providing TB control and devel-
oping novel prevention strategies. In this study, we
quantified the relationship between TB and meteoro-
logical factors using a spatial panel data model on the
basis of panel data for the first time. A spatial panel
data model is appropriate if longitudinal data of
multiple units are available and if spatial autocorrel-
ation exists. This model has a better model fitting
and provides more precise effect size estimation.
Additionally, as meteorological factors obviously affect
the TB incidence in Qinghai province, future strat-
egies of TB control and prevention should consider
climate variations.
However, there are some limitations in the present

study that are worth mentioning. First, as it is difficult to
collect meteorological data of each county, our analysis
was initiated at the city level. Second, the temperature,
precipitation, sunshine hours, and wind speed are not
the only meteorological factors affecting TB distribution.
Therefore, additional county-level factors, such as
atmospheric pressure, average vapour pressure, and
average relative humidity, will be taken into consider-
ation in our future study.

Conclusions
Our study found that high-high clustering areas of TB
incidence were mainly concentrated in the southwest,
while low-low clustering areas were found mainly in
eastern and north-western Qinghai. The TB incidence
was positively associated with the temperature, precipi-
tation, and wind speed after adjusting for spatial hetero-
geneity and spatial correlation in Qinghai province.
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