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Abstract

Posttraumatic epilepsy (PTE) usually develops in a small percentage of patients of trau-
matic brain injury after a varying latent period. Modeling this chronic neurological condition
in rodents is time consuming and inefficient, which constitutes a significant obstacle in
studying its mechanism and discovering novel therapeutics for its prevention and treatment.
Partially isolated neocortex, or undercut, is known to induce cortical hyperexcitability and
epileptiform activity in vitro, and has been used extensively for studying the neurophysiolog-
ical mechanism of posttraumatic epileptogenesis. However, whether the undercut lesion in
rodents causes chronic epileptic seizures has not been systematically characterized. Here
we used a miniature telemetry system to continuously monitor electroencephalography
(EEG) in adult C57BL mice for up to 3 months after undercut surgery. We found that 50% of
animals developed spontaneous seizures between 1650 days after injury. The mean sei-
zure duration was 8.9+3.6 seconds, and the average seizure frequency was 0.17+0.17
times per day. There was no progression in seizure frequency and duration over the record-
ing period. Video monitoring revealed behavioral arrests and clonic limb movement during
seizure attacks. A pentylenetetrazol (PTZ) test further showed increased seizure suscepti-
bility in the undercut mice. We conclude that undercut lesion in mice is a model of chronic
PTE that involves spontaneous epileptic seizures.

Introduction

Of the 1.7 million victims of traumatic brain injury (TBI) in the United States annually, 5-53%
of them, depending on the type and severity of brain injury, will develop chronic epileptic sei-
zures [1, 2]. Posttraumatic epilepsy (PTE) accounts for 20% of symptomatic epilepsy in the
general population. It is poorly controlled by currently available antiepileptic drugs[1, 3], and
constitutes one of the major conditions that compromise functional outcome and quality-of-
life in TBI patients[4, 5][6]. PTE has been observed and characterized in several animal models
of TBI, such as lateral fluid percussion, controlled cortical impact, and weight drop injury[7-
11]. These models are useful for studying the mechanisms of posttraumatic epileptogenesis
[12]. However, the low incidences of spontaneous seizures and the requirement for long peri-
ods of video/EEG monitoring in these models makes it very inefficient to use them for
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evaluating therapeutic or prophylactic efficacy. Developing and validating efficient models of
PTE are important and urgent for research on PTE.

Partially isolated neocortex, or undercut, is a well-established animal model of posttrau-
matic epileptogenesis [13, 14]. It is created by surgically making a transcortical cut and an
undercut in the white matter so that a portion of the neocortex is injured and deprived of affer-
ent input, and eventually becomes hyperexcitable. Presumably, the lesion models penetrating
brain injury in humans, in which up to 53% of penetrating TBI patients developed epilepsy [2,
12, 15]. In cats and rodents, epileptiform discharges become apparent after a latency of 2-3
weeks, and are detectable with field potential recording in brain slices in up to 93% of undercut
rats [13, 16-18]. In humans, spontaneous seizures developed in 29% of patients who received
frontal lobe undercut surgery for controlling intractable psychiatric conditions [19]. Extensive
in vivo or in vitro work on the neurophysiology of PTE has been done in this model in cats [14,
17, 20] and in rodents [21-26]. For example, the roles of axon sprouting and excitatory hyper-
connectivity, homeostatic activity regulation, impaired chloride homeostasis and GABAergic
inhibition in PTE, and the prevention of PTE through releasing tetrodotoxin have been dem-
onstrated in or proposed based on studies in this model [17, 21, 27, 28]. Furthermore, the
undercut model is highly efficient because epileptiform activity can be evoked in almost all rats
2 weeks after injury [13]. In cortical slices prepared from undercut rats, spontaneous and
evoked epileptiform discharges can be recorded in the majority of slices after 2 weeks following
injury [13]. However, although anecdotal observations of electrographic and behavioral sei-
zures were made in a few undercut rats, systematic characterization of chronic epileptic seizure
of this model in rodents has not been completed [21, 29]. The lack of this critical piece of infor-
mation substantially undermines the validity of the model and limits its use in epilepsy
research.

Here we used a wireless electroencephalogram (EEG) recording system to continuously
monitor spontaneous epileptiform activities in undercut mice for 1.5 to 3 months. We found
that half of the undercut mice developed spontaneous seizures and epileptiform spikes, which
were accompanied by behavioral changes and reduction in the threshold of seizure induction.
Our data support that undercut is a model of chronic PTE.

Materials and Methods
Animals

Forty four male C57/BL6 mice at the age of 2 months were used in this experiment: fourteen
for EEG recording and thirty for pentylenetetrazol (PTZ) test. The mice were housed 5 per
cage in a temperature- and humidity-controlled animal facility on a 12-hour light/dark cycle,
with food and water supplied ad libitum. All procedures were approved by the Animal Care
and Use Committee of the Institutional Guide for the Care and Use of Laboratory Animals at
Indiana University School of Medicine.

Undercut surgery

An undercut lesion was made as previously described [30, 31]. An undercut device was made
consisting of a supporting plate, a guiding tube, and a syringe needle that was bent 90° at 2-3
mm from the tip. Animals were anesthetized with ketamine and xylazine (87.7/12.3 mg/kg, i.
p.) and fixed on a stereotaxic apparatus. Following exposing the skull with a midline incision, a
rectangular groove (2x4 mm) was drilled on the center of the left skull above the left sensori-
motor cortex and the central piece of bone was removed. The needle of the undercut device
was placed in the middle of the cranial window in a parasagittal direction, 1 mm lateral to the
sagittal suture and inserted in a horizontal direction through the dura and slowly lowered to
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1.2 mm depth to create a transcortical cut. It was then rotated 135° away from the midline to
create a half-circle white matter/deep layer VI undercut. The needle was raised again to under-
neath the pia and withdrawn. A piece of sterile plastic film was placed on the cranial window to
cover the exposed cortex, and the scalp was sutured.

Transmitter implantation

We used a telemeter system for continuous EEG recording in mice. The system consisted of a
miniature transmitter (~1 gram weight) and a capacitive-coupled receiver (Epoch system, Epi-
tel, Utah)[32]. The transmitter is composed of a physiological amplifier controlling a frequency
modulation oscillator encased by optically clear epoxy. The receiver amplifies and filters EEG
signals via a frequency-to-voltage converter and a band-pass filter in it. The system had a band-
width of 0.1-120 Hz and a gain of 4000x. The two leads of the transmitter provided single
channel EEG signals in a differential mode.

The transmitters were implanted 2 weeks after undercut surgery, a time point at which cor-
tical hyperexcitability is apparent after a latent period of posttraumatic epileptogenesis in this
model [9]. Animals were anesthetized with ketamine and xylazine (87.7/12.3 mg/kg, i.p.) and
fixed on a stereotaxic apparatus. After a midline incision of the scalp, the skin was pulled aside
and the periosteum was removed with sterile cotton swabs. A small hole was drilled on the skull
of the hemisphere contralateral to the undercut, ~1 mm lateral to the midline and parallel to the
center of the craniotomy window of the undercut lesion. After the two wires of the transmitter
were cut ~1-1.5 mm to length, one wire was inserted into the burr hole of the contralateral hemi-
sphere, and the other passed through a hole at the center of a plastic film that covered the under-
cut cortex. The tips of the wires extended through the burr holes in the skull and into the cortex
no more than 500 pm. The transmitter was then attached onto the skull by applying cyanoacry-
late glue to its bottom and edge. The scalp was then sutured, and the animals were injected with
0.1 ml saline (i. p.) and allowed to recover on a heat pad until becoming awake. For uninjured
control mice, transmitters were implanted on a similar location as undercut mice.

Continuous video-EEG recording and histological verification of
recording sites

The EEG signal from the receivers were converted into digital signals (Digidata 1440A, Axon
Instruments, CA) and recorded to a computer. The mice were continuously monitored for 50
days (group I) or 90 days (group II). Sampling rate was set at 250 Hz. A digital video camera
was used to monitor the behavior of the mice in their home cage.

At the end of video-EEG recording, animals were perfused with 0.9% NaCl followed by 4%
Paraformaldehyde. The brains were removed, and cortical region containing the recording site
was sectioned at a thickness of 30 um using a cryostat (Leica CM1950, Leica Biosystems, IL).
The sections were stained with Cresyl violet staining and imaged under a microscope to con-
firm the lesion location and recording sites.

Pentylenetetrazol test

PTZ test was performed in two groups of undercut and naive mice (n = 15 for each group) in
15 days after undercut surgery or at the same age using a published protocol [33]. These mice
did not receive chronic EEG monitoring. A mouse was placed in a transparent box for 15 min-
utes to calm down, then an initial dose of PTZ (20 mg/kg, i.p. Sigma-Aldrich, St. Louis, MO,
USA) was injected and the mouse was observed for 15 minutes. Thereafter, additional doses of
10 mg/kg of PTZ were given every 15 minutes until a convulsive seizure was observed. The
total time to convulsive seizure and cumulative dose of PTZ injected were recorded.

PLOS ONE | DOI:10.1371/journal.pone.0158231 June 27,2016 3/12



D)
@ ’ PLOS | ONE Posttraumatic Epilepsy in Undercut Mice

Data analysis

The EEG traces were manually analyzed. Similar to previously reported results, we observed
transient loss of signals from time to time [26]. However, these short periods of signal loss can
be easily identified and were excluded from data analysis. Seizures were identified as repetitive
spike discharges with high amplitude (at least twice of baseline), and longer than 5 seconds
duration [8]. Interictal spikes were identified as high amplitude sharp epileptiform waveforms
with an interval between spikes at 1-8 seconds [34]. Video recordings were viewed to identify
seizures and to determine behavioral changes during the time periods of electrographic sei-
zures. The latency to first seizure, frequency of seizure events, and seizure duration were calcu-
lated based on data from the first seizure to the end of the recording period.

Results
Characteristics of undercut induced spontaneous seizures

A total of 6 naive adult C57BL mice and 14 undercut mice received continuous video-EEG
monitoring for 50-90 days after injury. Implantation of the transmitters did not significantly
interfere with general activity and behavior of the mice (Fig 1A) [35]. Nissl staining of brain tis-
sue at the end of EEG recording confirmed that the undercut lesions in all mice were neat and
within layer VI and whiter matter border. In some mice, the healing of the lesion was so com-
plete that the transcortical and undercut sites were barely discernible. All the recording sites of
the transmitter electrodes were located above the cortical lesion area (Fig 1B). No animal died
during the surgeries or recording period.

The mice were monitored in 2 groups with different recording periods. In the first group
that was recorded for 50 days, 33.3% of the mice (2 of 6) developed spontaneous seizures. In
the second group that was recorded for 90 days, 62.5% of them (5 of 8) developed spontaneous
seizures. The total average of epileptic mice was 50% (7 of 14) (Table 1). All 7 mice that devel-
oped spontaneous seizure displayed a stereotypical EEG pattern including a cluster of high
amplitude (at least twice of baseline), repetitive bursts of spikes (Fig 2B), with average duration

B

Fig 1. Chronic electroencephalography (EEG) monitoring with a telemetry system in undercut mice. (A). A mouse that was
chronically implanted with a miniature transmitter showed normal behaviors during the monitoring period. (B). Histological verification
of undercut lesion and recording site with Cresyl violet staining. A coronal brain section shows a continuous transcortical cut (black
arrow) and an undercut (white triangles) lesion at 8 weeks after undercut surgery and the recording site located on the pial surface
above the undercut lesion (asterisk). Scale bar in (B): 200 pm.

doi:10.1371/journal.pone.0158231.g001
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Table 1. Characterization of development of epileptiform activity after undercut

Group Recording time (days) | Epileptic mice (%) | Latency (days)
1(n=6) 50 2 (33.3%) 20.5+0.7
2(n=8) 90 5 (62.5%) 24.2+8.5
Total (n=14) 7 (50.0%) 23.1£7.2

doi:10.1371/journal.pone.0158231.t001

Frequency (seizure/day) | Seizure duration(s) | Spike (%)

0.13+0.26 8.2+4.3 4 (66.7%)
0.200.20 9.0£3.9 6 (75%)
0.17£0.17 8.9+3.6 10 (71.4%)

of 8.9£3.6 s (Table 1). A typical electrographic seizure started with increasingly short interval
interictal spikes, which turned into high amplitude rhythmic ictal activity dominated with
theta activity (in the range of 4-8 Hz). The ictal activities usually lasted for 6-18s. The seizure
events usually ended with a long-duration negative peak followed by irregular spikes with grad-

ually decreasing amplitude (Fig 2B). Epileptic spikes were seen in 66.7% (4 of 6) and 75% (6 of
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Fig 2. Representative EEG traces showing normal activity in a naive mouse, and spontaneous seizure and
interictal spikes in undercut mice. (A). A trace recorded in a naive mouse. (B). A representative EEG trace of a
spontaneous seizure that lasted for ~13 seconds in an undercut mouse at 51 days after injury. (C). A trace showing
interictal spikes in an undercut mouse. Each bottom trace in A-C shows the rectangular area in an expanded time

scale.

doi:10.1371/journal.pone.0158231.9002
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8) of mice of the first and second groups respectively, which led to the incidence of epileptiform
spiking of 71.4% in all animals (Table 1).

Most mice that had spontaneous electrographic seizures also had behavioral seizures, which
were characterized by sudden behavioral arrest, head nodding, and clonic movements of fore-
limbs. All the seven animals that had spontaneous seizure also showed interictal spikes (Fig
2C). However, no behavioral abnormalities were observed during the occurrence of interictal
spikes.

Seizure development and progression

In the 7 animals that developed spontaneous seizures, the latency to first seizure was 23.1 + 7.2
days after undercut lesion (Table 1, 20.5 + 0.7 days for group I and 24.2 + 8.5 days for group
IT), ranging between 17-34 days. Of the epileptic mice, 5 of 7 started to show seizure activity
within 3 weeks after undercut, and the other 2 mice showed first seizure events around 1
month post-injury (Fig 3A). The frequency of spontaneous seizures was quite low, with an
average of 0.17 + 0.17/day/mouse (Table 1). All mice had seizure free days (Fig 3B). The distri-
bution of seizure frequency displayed a random pattern during the whole monitoring period
and there was no progression in the frequency of seizures over time. The duration of seizure
events was 8.9 + 3.6 s (Table 1) and remained relatively consistent during the whole recording
period (Fig 3C).

Increase seizure susceptibility in PTZ test

PTZ tests were made in 15 naive and 15 undercut mice. There was a significant increase in sei-
zure susceptibility in the undercut mice. The cumulative PTZ dose needed for inducing convul-
sive seizure was significantly lower in undercut mice than in naive mice (87.3+6.2 mg/kg and
69.316.1 mg/kg for naive and undercut mice respectively, p<0.05, Student ¢-test), while the
latency from initial dose of PTZ to the occurrence of convulsive seizure was significantly
shorter in the undercut mice than naive mice (103.3+8.2 minutes and 76.7+8.6 minutes for the
naive and undercut mice respectively, p<0.05) (Fig 4).

Discussion

The present study used continuous video/EEG monitoring to characterize the development of
spontaneous epileptic seizures and change in seizure susceptibility in the undercut model in
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Fig 3. Characterization of spontaneous epileptic seizures in the undercut model. (A). Cumulative percentage of mice that developed posttraumatic
epilepsy after undercut. In group |, 6 mice were recorded for 50 days; In group II, 8 mice were recorded for 90 days after injury. (B). Mean daily frequency of
spontaneous seizure events per mouse during the recording period. There seems no significant change in the distribution of seizure frequency over time. (C).
Mean duration of seizure events during the recording period. The seizure duration ranged between ~5-20 seconds.

doi:10.1371/journal.pone.0158231.9003
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Fig 4. Reduced seizure threshold in undercut mice. Undercut mice received PTZ test at 15 days after
undercut lesion. There were significant decreases in the cumulative dose of PTZ for seizure induction (A) and
the latency period to first seizure (B) in the undercut than in the naive mice. *: p<0.05, Student t-test.

doi:10.1371/journal.pone.0158231.g004

mice. The major finding is that posttraumatic epilepsy developed in up to 62.5% of the under-
cut mice in 3-5 weeks after initial lesion. The spontaneous electrographical seizures were
accompanied by freeze and clonic limb movement. A PTZ test also showed a significant
decrease in the threshold of seizure induction. These results suggest that undercut lesion is a
valid and efficient model of posttraumatic epilepsy that involves spontaneous seizures in about
a half of the injured mice.

Recording spontaneous epileptic seizures in undercut mice

The miniature telemetry system used in this study has been introduced and used for chroni-
cally recording seizure activities in neonatal and adult rodents [35]. This system is minimally
invasive during surgical implantation, allows free moving of the animals so that long-term con-
tinuous recording is possible, and provides high quality recording without significant environ-
mental interference. Therefore, it provides unique advantages for characterizing the
development of posttraumatic epilepsy in rodent models. One limitation is that this system has
only one channel, which does not allow determining the origin and propagation of epileptic
events in cortical hemispheres. However, this limitation has been improved with the recent
development of a new two-channel system by the company.

The spontaneous seizures in undercut mice featured high-amplitude rhythmic discharges
that lasted for > 5s (Fig 2B)[8], which were accompanied by motor manifestation including
behavioral arrest and subtle limb clonus. Development of posttraumatic epilepsy has been
characterized in several models of TBI such as controlled cortical impact (CCI) and fluid per-
cussion injury in rats and mice [8, 12, 34]. In the CCI and FPI models, the incidence of sponta-
neous seizures in rats varies from 3% to 50%, depending on the type, location, and severity of
lesion; and the latencies from TBI to initial seizure are often several months [8, 9, 12]. In this
study, the percentages of epileptic mice are 33.3% and 62.5% in the 2 groups of mice respec-
tively, with a total incidence of 50%. Although the latent period we observed was mostly within
3-4 weeks (Fig 3A) after undercut lesion, the possibility of seizure events in an earlier time
period cannot be excluded. In fact, acute seizures are observed within the first few days to one
week after undercut injury or in other models of TBI [36, 37]. Because acute and chronic post-
traumatic seizures are believed to be different in mechanism and clinical treatment [37, 38], we
did not attempt to characterize early seizures within 2 weeks after undercut. The frequency of
spontaneous seizures in undercut mice is 0.17 seizure per day (Fig 3B), which is comparable to
the frequencies of up to 0.3 seizure per day in CCI and FPI models [12]. Seizure durations in
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the CCI and FPI models can last from dozens of seconds to hundreds of seconds [12, 39],
which are much longer than what has been seen in the undercut mice (8.9+3.6 s) (Fig 3C).

A major factor that may contribute to a difference in seizure duration is injury type and
severity. Specifically, severe TBI in FPI and CCI models leads to a more severe brain trauma
and larger lesion area, and subsequently more dramatic and widespread pathological reaction
and circuit reorganization, which may have a significant contribution to the long seizure dura-
tion [7]. Indeed, seizure duration of posttraumatic epilepsy has been shown to vary between a
few seconds in fluid percussion and undercut to tens of seconds or over a hundred seconds in
CCI and severe lateral fluid percussion models in rodents [40-42]. In addition, epileptiform
spikes are detected in a large percentage of undercut mice, and reduced PTZ dosage is needed
to induce general seizure in a shorter latency period. These findings are consistent with obser-
vations in other models of PTE and indicative of cortical hyperexcitability and decreased sei-
zure threshold in vivo [43]. Recently, spontaneous electrographic and behavioral seizures have
also been demonstrated in a high percentage of undercut mice at old age by another group
[29], which further confirm our observation in this study and support the use of the rodent
model for epilepsy research.

Neocortical undercut as a model of PTE

Neocortical undercut lesion has been used as a model of posttraumatic epileptogenesis for
studying the mechanisms of epileptogenesis in vitro and in vivo for decades [13, 23, 30]. In
human, surgical undercut lesion to the white matter of the frontal cortex was used as a thera-
peutic approach for psychiatric diseases and was found to result in spontaneous seizures in
about 40% of patients [19]. Undercut lesion of the parietal cortex in cats causes spontaneous
seizures, which are accompanied by reduction in interneuron density, homeostatic synaptic
plasticity, and development of synchronized network activity [17, 44]. In rats, evoked and
spontaneous epileptiform discharges were recorded in undercut cortical slices of in 2 weeks
after injury [13]. The development of a rodent model greatly enhances its application for basic
study on the neurophysiological mechanism of posttraumatic epileptogenesis.

The neocortical undercut model is often used for studying the mechanisms of hyperexcit-
ability and epileptogenesis. Histological studies showed a disorganized cortical cytoarchitecture
which lacks normal arrangement of neurons on layers and columns and degeneration of layer
V pyramidal neurons, as well as increased axonal length and number of axonal collaterals after
undercut injury [26, 30, 44]. While electrophysiological experiments found that layer V pyra-
midal neurons received increased AMPA receptor-mediated excitatory synaptic drive and
decreased GABA 4 receptor-mediated inhibition, impaired chloride homeostasis, and forma-
tion of recurrent excitatory circuits in this undercut cortical slices [25]. These changes are
believed to shift the balance within cortical circuits toward increased synaptic excitation and
contribute to epileptogenesis [23].

Although spontaneous seizures have been reported in humans, monkeys, cats, and occa-
sionally in rats [10, 31], they have not been systematically documented in rodent preparation.
Results from the current study in mice indicate that undercut lesion dose increase seizure sus-
ceptibility and cause chronic posttraumatic epilepsy in a relatively short latent period. These
findings fill the information gap about this well-studied model and support the use of this prep-
aration as a valid rodent model of PTE.

Advantages and limitations of the undercut model

The advantages of the undercut model include its easy preparation of the model, a high rate of
epileptiform activity in vitro (epileptiform activity can be evoked in up to ~95% of cortical
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slices), high reproducibility, and a low rate of animal mortalities after injury. Now we further
show that a good percentage of undercut mice develop spontaneous seizures in vivo.

In contrast to other PTE models that mimic the physical impact in TBI, the undercut lesion
is apparently “artificial” and rarely seen in TBI patients. The surgical focal undercut lesion may
be regarded both as a limitation and an advantage of this model. On one hand, the lesion does
not mimic common clinical TBI such as those caused by falls, motor vehicle-related collisions,
sports injuries, and explosive blasts. In these injuries, biomechanical forces are various and
often induce simultaneous injury to remote brain structures including the hippocampus [9, 10,
40, 45, 46]. Although the undercut lesion can be regarded as a model of TBI because it involves
tissue penetration and tissue loss, bleeding, and neuronal damage, which are followed by
edema, inflammation, and other pathological reactions, it likely does not reproduce all aspects
of penetrating TBI in humans. For example, cortical tissue damage and loss are limited after
undercut, and other brain structures such as hippocampus are minimally damaged and less
involved in posttraumatic epileptogenesis. Such highly focal neocortical injury may at least par-
tially explain why only mild spontaneous seizures are observed in the undercut model. On the
other hand, the lack of widespread brain injury in this model can be advantageous in certain
aspects: a more localized and consistent lesion may reduce variability and increase the possibil-
ity that epileptiform activity is actually originated from the cortical circuit of interest. The high
consistency in producing hyperexcitable brain tissue not only is important for efficient study of
epileptogenesis, but also may suggest modeling of common essential factors in the pathological
process of epileptogenesis such as axonal sprouting, reorganization of cortical circuits, homeo-
static synaptic plasticity, and altered GABAergic inhibition [22, 23, 26, 27, 44]. The key point is
to take into account the advantages and limitations in choosing this unique model for address-
ing specific scientific questions.

In conclusion, we used continuous video/EEG monitoring to characterize epileptiform
activities in the neocortical undercut model in mice. Spontaneous epileptic seizures were
detected in 50% of mice in about 3-4 weeks after undercut lesion. The good percentage of PTE,
relatively short latency from injury to seizure onset, and high consistency make this model use-
ful and efficient for research on mechanism, prevention, and treatment of posttraumatic

epilepsy.

Supporting Information

S1 Fig. An EEG trace showing a spontaneous seizure. This figure shows the EEG activity
recorded simultaneously with S1 Video.
(TIF)

S1 Video. An episode of behavioral seizure. This video shows an undercut mouse featuring
sudden motion freeze that last for about 5-6 seconds and subsequent recovery.
(AVI])
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