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Introduction

The repetitive jaw-muscle activity generally known as bruxism (clenching and grinding of 

teeth during both sleep and while awake) (1) is commonly encountered by clinicians in 

dentistry, neurology, and psychiatry. Sleep bruxism (SB) has been reclassified in recent 

years as a sleep-related movement disorder; this category also includes periodic limb 

movement and rhythmic movement disorders (2). SB has been estimated at 10-20% of the 

pediatric population, 5-8% of the adult population, with a decrease to 3% in geriatric 

populations; no sex differences have been documented to date (3-5). SB is more frequent in 

smokers, those with high consumption of caffeine or alcohol, and in individuals taking 

neuroactive chemicals that affect the CNS (6-10). Clenching and grinding of teeth activities 

are often seen in individuals with stress and anxiety disorders (11-13) and are comorbid with 

restless leg syndrome, sleep apnea, oromandibular myoclonus, rapid eye movement behavior 

disorder, and other parasomnias (10, 14). Iatrogenic secondary causes of such activities may 
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include delivery/cessation of neuroactive medications (15), certain dental procedures, and 

treatment for temporomandibular disorder (TMD) (16-18). A high occurrence of TMD pain 

has been documented in persons exhibiting (1) the behaviors of both SB and daytime 

clenching (awake bruxism), and (2) the sleep disorders of sleep apnea, insomnia, and 

bruxism (10, 15, 19-24).

A link between emotion-induced brux-like activities and group I temporomandibular 

disorder (TMD) was proposed long ago (25-27), although the mechanism underpinning this 

association is still unclear. Recent neuroimaging studies of bruxism have identified the 

involvement of the Hypothalamic–Pituitary–Adrenal (HPA) axis system, which is also 

implicated in TMD and Post-Traumatic Stress Disorder (PTSD). Currently, it is thought that 

bruxism, PTSD, and other stress-related psychiatric disorders, are due to a dysfunction of a 

circuit involving the medial prefrontal/anterior cingulate cortical region, dorsolateral 

prefrontal cortex (DLPFC), hippocampus, and amygdala.

The role of neurochemicals in anxiety-related behaviors such as bruxism has been and 

continues to be of intense interest for some time now (9, 28-34). The exact neurochemical 

mechanisms that cause certain selective serotonin reuptake inhibitors (SSRIs) to manifest 

sleep bruxism is a focus of research efforts (9, 31, 33) as are those involved in the important 

comorbid factors of sleep regulation, endocrine systems, autonomic functions, stress/

anxiety, and motor control (14, 15, 35-37). As demonstrated by the bruxism-ameliorating 

effects of the drugs gabapentin, tiagabine, gamma-hydroxybutyrate, diazepam, and 

lorazepam, the major neurotransmitter γ-aminobutyric acid (GABA) is suggested to play a 

critical role in bruxism (9).

Magnetic resonance spectroscopy (MRS) techniques allow for a noninvasive examination of 

in vivo brain function by assessing regional concentrations of neurotransmitter metabolites 

(38). As determined by recent MRS studies (39, 40), GABA plays an important role in the 

pathophysiology of human anxiety disorders such as panic disorder and PTSD (41). 

Goddard et al. discovered lower than normal cortical GABA levels in panic disorder 

individuals (42, 43). The etiology of oral dysfunctions such as bruxism and TMD is 

multifactorial and psychological factors are considered a major component in the initiation 

and progression of these disorders (21), which suggests that GABA neuronal system may 

also be critical in the manifestation of bruxism. The increased incidence of anxiety and 

depression in these patients (26, 44-46) has led to a theory that psychological factors, such 

as anxiety, predispose patients to TMD/bruxism by increasing tooth grinding and clenching 

behaviors, which may produce masticatory muscle fatigue and soreness (25-27). We 

hypothesized that the stress-related behavioral disorder of bruxism and anxiety-related 

disorders share similar underlying mechanisms involving the inhibitory neurotransmitter 

GABA as well as the metabolites N-acetylaspartate (NAA), creatine, choline-containing 

compounds, myo-inositol, glutamate and glutamine (47). To study this cross-link between 

brux-like behaviors and anxiety-related disorders, we performed a proton (1H) MRS study 

for metabolite quantification in anxiety-related regions of the brain involved in the HPA axis 

system. HPA axis dysfunction plays a major role in the anxiety disorders reported by 

patients who clench and grind their teeth and suffer with TMDs (48). We focused on two 

HPA-axis brain regions, the right hippocampus and right thalamus and selected the right 
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hemisphere because of the documented laterality in stress-regulatory components of the 

HPA axis. In addition, we also investigated the DLPFC because of its role in anxiety-related 

disorders (49) and a dorsal anterior cingulate cortex/pre-supplementary motor area (dACC/

preSMA) involved in motor planning (50, 51). The dACC has also been implicated in 

anxiety behavioral disorders such as PTSD (52, 53) .

In this study we sought to identify parallels in metabolic and neurotransmitter changes 

between the manifestation of brux-like behavior and reported changes in anxiety disorders. 

The long term goal of this imaging-based, noninvasive research of the neurochemical 

mechanisms affecting the manifestation of oral behaviors such as bruxism is to provide 

improved treatment strategies in the clinical population.

Materials and Methods

Subject Recruitment

Subject group classification (see Appendix A) was based on an interview that was conducted 

after self-reported tooth clenching and grinding history, followed up by evaluation of each 

subject's protective occlusal splint and positive responses on the TMD history questionnaire 

(54). Examination of subjects’ occlusal splint confirmed that subjects indicating a history of 

possible brux-like behavior did in fact have an occlusal splint, which they were currently 

using and which was prescribed by a dentist specifically for the purpose of protecting the 

dentition from possible brux-like behaviors. The TMD questionnaire documented subjects’ 

perception of pain, loss of function, and possible brux-like behavior. Responses to the 

questions that best assessed possible brux-like behavior are presented in Appendix A, which 

shows not only the responses of both occlusal splint (OCS) and control (CON) subjects to 

selected questionnaire items, but also their occlusal splint use as prescribed and fabricated 

by dental clinicians. Based on this classification, 8 male subjects (age: 28.6±3.0 years; mean 

± SD) were recruited and classified in the OCS group. Subjects were classified to exhibit 

possible brux-like behavior if currently reporting active clenching and grinding of teeth and 

wearing of a protective occlusal splint, being right-handed, 20-45 years old, not currently 

under medication for migraine headaches, without previous history of brain injury or 

psychiatric problems, magnetic surgical implants, false teeth, retainers, or magnetic braces, 

having normal hearing sensitivity by self-report, and not being claustrophobic by self-report. 

The control (CON) group consisted of 9 age-matched (25.5±1.9 years) healthy men with the 

inclusion criteria identical to the OCS group except for possible brux-like behavior and 

occlusal splint use. In this study, the diagnosis of sleep bruxism was deemed “possible” 

because of OCS subject self-report and questionnaire use (1). Written informed consent 

approved by the Indiana University Institutional Review Board was obtained from all 

subjects prior to participation and all procedures conformed to international STROBE 

guidelines.

MRS data acquisition and analysis
1H MRS data were acquired on a 3 T Siemens Magnetom Tim-Trio MR scanner (Siemens 

Healthcare, Erlangen, Germany) using a 32-channel head array coil. Both single voxel short 

echo time Point RESolved Spectroscopy (PRESS) spectra (TE=30 ms, TR=1500 ms, 128 
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averages) and GABA-edited spectra (TR=1500 ms, TE=68 ms) using MEGA-PRESS 

(55-57) were obtained from four volumes of interest (VOIs): thalamus (25×25×25 mm3, 392 

averages), hippocampus (17×40×17 mm3, 512 averages), DLPFC (25×30×22 mm3, 392 

averages) and dACC/preSMA (25×35×25 mm3, 392 averages). A reference spectrum 

without water suppression was obtained in each brain region for phase and frequency 

correction. Placements of the VOIs and representative spectra from each brain region are 

illustrated by Figure 1.

The post-processing and quantification of all spectra was performed with LCModel 

(v6.2-0R) (58). PRESS spectra were analyzed for the major metabolites N-acetyl aspartate 

(NAA), choline (Cho), total creatine (tCr), myo-inositol (mIns) and glutamate (Glu), 

whereas GABA levels were obtained from the GABA-edited spectra. Quantification results 

are expressed in institutional units (i.u.) and only the NAA, tCr, Glu, and mIns metabolites 

from the PRESS spectrum with LCModel fitting standard deviation below 20% were used 

for further statistical analysis. Since the GABA resonance at 3.0 ppm also contains some 

signal from macromolecules, GABA results are reported as GABA+ (GABA + 

macromolecules). More detailed descriptions of the MRS data acquisition and analysis 

methods are provided in Appendix B.

Statistical Analysis

All statistical calculations were performed with SPSS (Version 20.0, IBM Corp.). The 

questionnaire data were grouped into three categories: depression, anxiety and pain with an 

overall (summed) score calculated for each category. The scores in each category were 

compared between groups using the Wilcoxon–Mann–Whitney two-sample rank-sum test. 

Spearman's rank correlations were computed for the questionnaire scores in each of the 

categories and regional metabolite estimates. A Group (2; OCS and CON) × Region (4; 

hippocampus, DLPFC, thalamus and preSMA) × Metabolite (5; NAA, Glu, mIns, tCr, and 

GABA+) repeated measures ANOVA was performed with a post-hoc ANOVA F-test 

conducted where effects of Group × Region interaction were significant. In addition, 

questionnaire scores were examined in the regression analysis or as covariates when 

showing significant effects of Group.

Results

TMD questionnaire

As shown in Appendix A, questionnaire data from both groups indicated that all occlusal 

splint subjects reported experiencing daytime and night time tooth clenching/grinding, 

morning jaw soreness /stiffness, and the use of a protective occlusal splint obtained from a 

dentist. Control subjects had negative responses to all of the aforementioned questionnaire 

items shown in Appendix A.

Anxiety and depression scores in all subjects were significantly correlated (Spearman's r= 

0.736, p<0.01, two-sided). There were no significant group differences in the scores of 

depression (Mann-Whitney U=29, p=0.54, two-tailed) or pain (Mann-Whitney U=24.5, 

p=0.28, two-tailed), while a trend was present for anxiety (Mann-Whitney U=18.5, OCS 
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mean=3.88, CON mean=1.00, p=0.09, two-tailed). This trend-level anxiety score difference 

was in the anticipated direction (e.g. higher for the OCS). Therefore, anxiety scores were 

added as a covariate in the MRS data analysis to test whether anxiety contributed to the 

metabolite group differences reported below.

MRS

The multivariate tests in the repeated-measures ANOVA showed significant Group × 

Region interaction (Wilk's lambda=0.38, F=3.36). In the repeated-measures ANOVA, 

Group × Region interaction was significant for two metabolites, GABA+ (F(3,55)=6.66, 

p=0.001) and Glu (F(3,55)=3.22, p=0.031). Between-group post-hoc ANOVA showed 

significant effects only in the DLPFC, where lower levels of GABA+ (F(1,12)=14.01, 

p=0.003) and higher levels of Glu (F(1,13)=14.71, p=0.002) were observed in OCS. These 

GABA+ and Glu group differences in the DLPFC were reduced but remained significant 

(GABA+, F(1,13)=5.17,p=0.049; Glu; F(1,13)=5.829, p=0.039) after the inclusion of 

anxiety as a covariate. Furthermore, GABA+ and Glu levels in the DLPFC showed a 

significant negative relationship (Pearson's r=−0.754, p=0.003 two-sided) as illustrated by 

Figure 2. While no group differences in GABA+ and Glu were present in the hippocampus, 

these two metabolites did show positive relationship (Pearson's r=0.783, p=0.004 two-sided; 

see Figure 3).

Discussion

While the focus of previous neurochemical studies was on sleep bruxism (SB) (15), there is 

some evidence that the variability of bruxism symptoms in both diurnal and nocturnal forms 

may have a neurochemical basis, involving different brain regions such as the ventral 

tegmental area and the distribution of striatal dopaminoceptor-2 (D2R) receptors (59). In this 

study, lower GABA+ levels in occlusal splint DLPFC subjects suggest that anxiety-related 

circuits (49, 60) that may affect possible bruxism were less inhibited than in controls (Table 

1). Decreased frontal lobe GABA levels have also been detected in panic disorder 

individuals (42) albeit in the medial rather than dorsolateral prefrontal cortex.

A review of earlier studies of DLPFC metabolite levels in anxiety subjects indicates that the 

DLPFC plays an important role in responses to threatening stimuli, particularly in anxiety 

disorders (60-63). It is currently thought that the DLPFC guides control of tasks by 

providing excitatory feedback to pools of neurons that process task-relevant aspects of 

anxiety-provoking stimuli; in this case the DLPFC may enhance the manifestation of 

bruxism by channeling anxiety-associated stimuli to those brain regions actually causing the 

behavior. Increased DLPFC activity during an emotional Stroop task suggests that the 

DLPFC is important for task control mechanisms in the face of emotional distraction 

(64-66). The documented decrease of bruxism with increased age may also be related to an 

age-related decrease of DLPFC mechanisms regarding early perceptual features (67).

Hippocampus metabolite levels in anxiety subjects have been reported to show higher Glx, 

myo-inositol, and Cr, and to be correlated with psychiatric symptoms and mitochondrial 

disorders (68). Alterations in hippocampal activity and volume have also been documented 

in anxiety disorders (52, 69). In our study, no significant group differences were found for 
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any of the reported metabolites in the hippocampus. However, a significant positive 

correlation between GABA+ and Glu emerged. Interestingly, these two metabolites were 

negatively related in the DLPFC, which may reflect the documented bidirectional 

interactions between the hippocampus and the DLPFC (70). In this sense, our finding might 

indicate the presence of a negative feedback circuit between hippocampus and DLPFC, 

which may play an important role in regulating the manifestation of bruxing behaviors 

(71-73). The activity dynamics between the DLPFC and hippocampus in retrieval of facts 

during problem solving (70) and our findings may also suggest a role for both the DLPFC 

and hippocampus in motor memory systems (74, 75) that might be involved in bruxism 

behaviors. It has also been suggested that epileptic seizures involving limbic structures 

within the temporal lobe (hippocampus) may activate masticatory central pattern generators 

that help cause bruxism behaviors (76). A recent case report documented a 5-year old male 

with a cystic lesion compressing the left hippocampus and exhibiting teeth grinding 

behavior during sleep (77). It has been found that DLPFC of idiopathic generalized epilepsy 

patients demonstrate increased levels of glutamine and GABA compared with controls (57). 

This differs from our study in that DLPFC of OCS subjects showed significantly lower 

levels of GABA+ and higher levels of Glu (see Table 1). The precise neurochemical 

mechanisms and interactive relationships between epilepsy and brux behaviors need to be 

investigated further.

Thalamus metabolite levels in restless legs syndrome individuals demonstrate significantly 

higher levels of Glx/Cr than control subjects (78). In the present study, the thalamic GABA 

showed only trend-level group differences (see Table 1) that might be suggestive of another 

nondopaminergic neurologic system that plays a role in the manifestation of bruxism. It has 

also been noted that thalamus activity is decreased in PTSD, an important anxiety disorder 

(79-81).

In this study, we detected no metabolic group differences in the preSMA/dACC; this despite 

our earlier fMRI findings that the preSMA/dACC may play an important role in oral brux-

like behaviors such as tooth grinding and clenching (50, 51). This discrepancy may be due to 

the passive nature of the MRS scans in the present study, while our earlier fMRI studies 

employed the active, physical tasks of jaw clenching and tooth grinding.

Limitations of this study include: (1) modest sample size, and (2) occlusal splint wearer 

inclusion criteria that were based on self-report and were non-specific in bruxing 

classification. In addition, continuing analysis of possible sleep bruxism and pain data in the 

occlusal splint wearers was not performed. In this study, subject gender selection was 

necessarily driven by a small sample so we focused on males due to the higher incidence of 

PTSD and TBI in men (82, 83). In the future, we intend to include women subjects and 

make gender ratios similar and more representative of possible sleep bruxism behaviors 

prevalence. Polysomnography (PSG), the current gold standard for determination of bruxism 

(15, 84) was not used in this study because of limited research monies available to us. We 

hope to include PSG analyses in future studies.

Larger voxel sizes were chosen to compensate for the low signal-to-noise ratio of GABA 

MRS. The geometric limitations of the MRS VOIs preclude complete sampling of some 
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neuroanatomical regions or include small contributions of adjacent non-targeted regions. 

The measured GABA levels include some contribution from co-edited macromolecules 

(MM30) at 3 ppm and a small contribution from homocarnosine and are hence reported as 

GABA+ (GABA+MM30). However, changes in macromolecules have not been reported for 

anxiety-related disorders to date.

Conclusions

These results in our proof-of-concept study are the first indications of the disturbances in 

GABAergic and glutamatergic systems of possible sleep bruxers. Future research in larger 

samples should improve sensitivity of quantifying GABA and other pertinent metabolites 

and detecting group differences. In addition, results of this study indicate a need for a more 

comprehensive MRS investigation with an emphasis on the coupling of anxiety-related and 

limbic regions with executive control brain networks. The relevance of such research is 

supported by the observed differences between HPA anxiety-related brain areas as indicated 

by our finding of negative feedback between the hippocampus and DLPFC. Careful further 

investigations may reveal not only the neurochemical mechanisms underlying bruxism 

behaviors and their interactions with other anxiety disorders, but also myofascial TMD as 

recently documented by Gerstner et al. (85).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sagittal and axial views showing representative VOI placement in the thalamus, 

hippocampus, DLPFC and dACC/preSMA (left column) and the respective short TE single 

voxel 1H PRESS spectra (middle column) and MEGA-PRESS GABA spectra (right 

column). The GABA+ peak at 3 ppm is very prominent for all four regions of interest. VOI 

= Volume Of Interest.
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Figure 2. 
In the DLPFC, a significant negative correlation (Pearson coefficient=−0.754, p=0.003) is 

present between GABA+ and Glu concentrations.
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Figure 3. 
In the hippocampus, a significant positive correlation (Pearson coefficient=0.783, p=0.004) 

is present between GABA+ and Glu concentrations.
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Table 1

Metabolite concentrations (in i.u.) are listed for four brain regions and both groups.

Group Region NAA Glu mIns tCr GABA

CON

Hipp

Mean 3.83 4.64 4.62 3.66 2.32

Standard Deviation 0.70 0.60 1.02 0.75 0.20

N 7 7 7 7 7

DLPFC

Mean 5.20 4.15‡ 3.78 3.93 2.18‡

Standard Deviation 0.41 0.49 0.23 0.37 0.24

N 6 6 6 6 6

Thal

Mean 5.49 4.45 3.59 4.01 2.86*

Standard Deviation 0.77 1.03 0.86 0.62 0.36

N 7 6 7 7 7

dACC/preSMA

Mean 5.87 6.01 4.68 4.71 2.81

Standard Deviation 0.57 0.67 0.43 0.17 0.25

N 9 9 9 9 9

OCS

Hipp

Mean 3.96 4.46 3.40 3.21 2.40

Standard Deviation 0.94 0.60 0.79 0.92 0.32

N 6 5 6 6 8

DLPFC

Mean 5.21 4.97‡ 3.80 4.25 1.55‡

Standard Deviation 0.48 0.31 0.59 0.22 0.35

N 8 8 8 8 7

Thal

Mean 5.24 3.78 3.55 4.33 3.23*

Standard Deviation 0.48 0.60 0.48 0.36 0.38

N 8 8 8 8 8

dACC/preSMA

Mean 6.10 6.02 4.73 4.84 2.80

Standard Deviation 0.55 0.66 0.40 0.43 0.10

N 8 8 8 8 8

Significant (‡, p<0.01) or trend-level (*, 0.05 ≤ p ≤ 0.10) differences between occlusal splint-wearer (OCS) and control (CON) groups are 
indicated. Hipp = Hippocampus, DLPFC = Dorsolateral prefrontal cortex, Thal = Thalamus, dACC/preSMA = dorsal anterior cingulate cortex/pre-
supplementary motor area.
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