
STRONG ASYMPTOTICS OF HERMITE-PADÉ APPROXIMANTS FOR
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MAXIM L. YATTSELEV

Abstract. In this work type II Hermite-Padé approximants for a vector of Cauchy trans-
forms of smooth Jacobi-type densities are considered. It is assumed that densities are sup-
ported on mutually disjoint intervals (an Angelesco system with complex weights). The
formulae of strong asymptotics are derived for any ray sequence of multi-indices.
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2 1 introduction

1 introduction

Let ~f = (f1, . . . , fp), p ∈ N, be a vector of germs of holomorphic functions at infinity.
Given a multi-index ~n ∈Np, Hermite-Padé approximant to ~f associated with ~n, is a vector
of rational functions

(1) [ ~n ]~f :=
(
P
(1)
~n /Q~n, . . . ,P(p)~n /Q~n

)
such that

(2)

 deg
(
Q~n

)
= | ~n | := n1 + · · ·+np,

R
(i)
~n (z) :=

(
Q~nfi − P

(i)
~n

)
(z) = O

(
z−(ni+1)

)
as z→∞, i ∈ {1, . . . ,p}.

It is quite simple to see that [ ~n ]~f always exists since (2) can be rewritten as a linear
system that has more unknowns than equations with coefficients coming from the Laurent
expansions of fi’s at infinity. Hence, Q~n is never identically zero and, in what follows, we
normalize Q~n to be monic.

The vector ~f is called an Angelesco system if

(3) fi(z) =

∫
dσi(t)
t− z

, i ∈ {1, . . . ,p},

where σi’s are positive measures on the real line with mutually disjoint convex hulls of
their supports, i.e., [aj,bj] ∩ [ak,bk] = ∅ for j 6= k where [ai,bi] is the smallest interval
containing supp(σi). Hermite-Padé approximants to such systems were initially consid-
ered by Angelesco [1] and later by Nikishin [23, 24]. The beauty of system (3) is that Q~n,
the denominator of [ ~n ]~f, turns out to be a multiple orthogonal polynomial satisfying

(4)
∫
Q~n(x)x

kdσi(x) = 0, k ∈ {0, . . . ,ni − 1}, i ∈ {1, . . . ,p}.

When p = 1, Hermite-Padé approximant [ ~n ]~f specializes to the diagonal Padé approx-
imant, quite often denoted by [n/n]f. It was shown by Markov [20] that if f is of the form
(3) (now called a Markov function), then [n/n]f converge to f locally uniformly outside of
[a,b]. Moreover, see [29, Thm. 6.1.6], it holds that

(5)

 lim
n→∞n−1 log

∣∣f− [n/n]f
∣∣ 6 −2

(
`− Vω

)
lim
n→∞n−1 log |Qn| = −Vω

locally uniformly in C\ [a,b], where Vω(z) := −
∫

log |z− t|dω(t) is the logarithmic potential
of ω, while the measure ω and the constant ` are the unique solutions of the min/max
problem:

(6) ` := min
x∈[a,b]

Vω(x) = max
ν∈M1(a,b)

min
x∈[a,b]

Vν(x),

where Mc(a,b) is the collection of all positive Borel measures of mass c supported on
[a,b]. In fact, it also holds that ω is the equilibrium distribution and ` is the Robin’s constant
for the interval [a,b]. That is, ω is the unique measure on [a,b] that solves the energy
minimization problem:

(7) I[ω] = min
ν∈M1(a,b)

I[ν], ` = I[ω],

where I[ν] := −
∫ ∫

log |z − t|dν(t)dν(z) =
∫
Vνdν is the logarithmic energy of ν (for the

notions of logarithmic potential theory we use [27] and [28] as primary references).
It easily follows from (6)–(7) and properties of the superharmonic functions that

(8)

{
`− Vω ≡ 0 on [a,b],

`− Vω > 0 in C \ [a,b].

Hence, the diagonal Padé approximants [n/n]f do indeed converge to f locally uniformly
in C \ [a,b]. Moreover, if σ is a regular measure in the sense of Stahl and Totik [29, Sec. 3.1]
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(in particular, σ′ > 0 almost everywhere on [a,b] implies regularity), then the inequality
in (5) can be replaced by equality.

The above results were extended by Gonchar and Rakhmanov [15] to Hermite-Padé
approximants for Angelesco systems when multi-indices are such that

(9) ni = ci| ~n |+ o (| ~n |) , ~c = (c1, . . . , cp) ∈
(
0, 1)p, |~c | = 1,

as | ~n | → ∞, and the measures σi satisfy σ′i > 0 almost everywhere on [ai,bi], i ∈
{1, . . . ,p}. The formulae for the errors of approximation are similar in appearance to (5)
with measures coming not from a scalar but from a vector minimum energy problem. To
describe it, define

M~c

(
{ai,bi}

p
1

)
:=
{
~ν = (ν1, . . . ,νp) : νi ∈Mci(ai,bi), i ∈ {1, . . . ,p}

}
.

Then it is known that there exists the unique vector of measures ~ω ∈ M~c

(
{ai,bi}

p
1

)
such

that

(10) I[ ~ω ] = min
ν∈M~c({ai,bi}

p
1 )
I[ ~ν ], I[ ~ν ] :=

p∑
i=1

(
2I[νi] +

∑
k6=i

I[νi,νk]
)

,

where I[νi,νk] := −
∫ ∫

log |z − t|dνi(t)dνk(z). The measures ωi might no longer be
supported on the whole intervals [ai,bi] (the so-called pushing effect), but in general it
holds that

(11) supp(ωi) = [a~c,i,b~c,i] ⊆ [ai,bi], i ∈ {1, . . . ,p}.

Let W~ν be a function on
⋃p
i=1[ai,bi] such that its restriction to [ai,bi] is equal to Vνi+ν

where ν =
∑p
i=1 νi is a probability measure such that ν|[ai,bi] = νi. Exactly as in (6), the

equilibrium vector measure ~ω can be characterized by the following property: if

(12) min
x∈[ai,bi]

W~ν(x) > min
x∈[ai,bi]

W ~ω(x) =: `i

simultaneously for all i ∈ {1, . . . ,p} for some ~ν ∈M~c

(
{ai,bi}

p
1

)
, then ~ν = ~ω.

Having all the definitions at hand, we can formulate the main result of [15], which
states that

(13)


lim

| ~n |→∞ | ~n |−1 log
∣∣fi − P(i)~n /Q~n

∣∣ = −
(
`i − V

ωi+ω
)
, i ∈ {1, . . . ,p},

lim
| ~n |→∞ | ~n |−1 log |Q~n| = −Vω

locally uniformly in C \
⋃p
i=1[ai,bi]

1. Even though (13) looks exactly as (5), the conver-
gence properties of the approximants are not as straightforward. Indeed, it is a direct
consequence of the pushing effect ([a~c,i,b~c,i] ( [ai,bi]), when it occurs, of course, that
the first relation in (8) is replaced now by

(14)

{
`i − V

ωi+ω ≡ 0 on [a~c,i,b~c,i],

`i − V
ωi+ω < 0 on [ai,bi] \ [a~c,i,b~c,i].

Further, set

(15)

{
D+
i :=

{
z : `i − V

ωi+ω(z) > 0
}

,

D−
i :=

{
z : `i − V

ωi+ω(z) < 0
}

.

Properties of the logarithmic potentials immediately imply that D+
i is an unbounded

domain. This is exactly the domain in which the approximants P(i)~n /Q~n converge to fi
locally uniformly, while D−

i is a bounded open set on which the approximants diverge
to infinity. This set can be empty or not. The latter situation necessarily happens when
[a~c,i,b~c,i] ( [ai,bi] as can be clearly seen from the second line in (14); however, the
pushing effect is not necessary for the divergence set to exist.

1 (13) is consistent with (5) when p = 1, since in this case I[~ν] = 2I[ν1], `1 = 2`, and Vω1+ω = 2Vω.
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a1 = a~c,1 b~c,1 b1 a2 = a~c,2 b2 = b~c,2

D�
1

Figure 1. Schematic representation of the pushing effect in the case of 2 intervals
(in Proposition 3 we shall show that this is the only possible situation for pushing
effect in the case of 2 intervals; this is also explained in [15]). The shaded region
is the divergence domain D−

1 while D−
2 = ∅.

The result of Gonchar and Rakhmanov (13) belongs to the realm of the so called weak
asymptotics as to distinguish from strong asymptotics in which one establishes the existence
of and identifies the limits

(16)


lim

| ~n |→∞
(

log
∣∣fi − P(i)~n /Q~n

∣∣+ | ~n |
(
`i − V

ωi+ω
))

,

lim
| ~n |→∞

(
log |Q~n|+ | ~n |Vω

)
.

Not surprisingly, the first result completely answering the previous question was obtained
for Padé approximants (p = 1) by Szegő. He proved that limit (16) takes place exactly
when σ′ satisfied

∫
logσ′dω > −∞, which is now known as Szegő condition2. The analog

of the Szegő theorem for true Hermite-Padé approximants was proven by Aptekarev [2]
when p = 2 and the multi-indices are diagonal (~n = (n,n)) with indications how one
could carry the approach to any p > 1. A rigorous proof for any p and diagonal multi-
indices was completed by Aptekarev and Lysov [4] for systems ~f of Markov functions
generated by cyclic graphs (the so called generalized Nikishin systems), of which Angelesco
systems are a particular example. The restriction on the measures σi is more stringent in
[4], as it is required that

(17) σ′i(x) = hi(x)(x− ai)
αi(bi − x)

βi , αi,βi > −1,

and hi is holomorphic and non-vanishing in some neighborhood of [ai,bi].
From the approximation theory point of view it is not natural to require the measures

σi to be positive (as well as to be supported on the real line, but we shall not dwell on
this point here). In the case of Padé approximants it was Nuttall [25] who proved the
existence of and identified the limit in (16) for the set up (3) and (17) with α = β = −1/2

and h being Hölder continuous, non-vanishing, and complex-valued on [a,b]. The proof
of Szegő theorem for any parameters α,β > −1 and h complex-valued, holomorphic,
and non-vanishing around [a,b] follows from Aptekarev [3] (this result was not the main
focus of [3], there weighed approximation on one-arc S-contours was considered), and the
condition of holomorphy of h was relaxed by Baratchart and the author in [5], where h
is taken from a fractional Sobolev space that depends on the parameters α,β (again, the
main focus of [5] was weighted (multipoint) Padé approximation on one-arc S-contours).
The goal of this work is to extend the results of [4] to Angelesco systems with complex
weights and Hermite-Padé approximants corresponding to multi-indices as in (9).

2 main results

From now on, we fix a system of mutually disjoint intervals
{
[ai,bi]

}p
i=1

and a vector
~c ∈ (0, 1)p such that |~c | = 1. We further denote by

~ω = (ω1, . . . ,ωp), ω :=

p∑
i=1

ωi, supp(ωi) =
[
a~c,i,b~c,i

]
⊆ [ai,bi],

the equilibrium vector measure minimizing the energy functional (10).

2 The word “completely” is slightly abused here as it was later realized by [31] that one can add any singular
measure to σ′(t)dt, the absolutely continuous part, without changing (16).
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To describe the forthcoming results we shall need a (p+ 1)-sheeted compact Riemann
surface, say R, that we realize in the following way. Take p+ 1 copies of C. Cut one of
them along the union

⋃p
i=1

[
a~c,i,b~c,i

]
, which henceforth is denoted by R(0). Each of the

remaining copies cut along only one interval
[
a~c,i,b~c,i

]
so that no two copies have the

same cut and denote them by R(i). To form R, take R(i) and glue the banks of the cut[
a~c,i,b~c,i

]
crosswise to the banks of the corresponding cut on R(0).

It can be easily verified that thus constructed Riemann surface has genus 0. Denote
by π the natural projection from R to C. We shall denote by z,w, x,e generic points on
R with natural projections z,w, x, e. We also shall employ the notation z(i) for a point
on R(i) with π(z(i)) = z. This notation is well defined everywhere outside of the cycles
∆i := R(0) ∩R(i). Clearly, π(∆i) =

[
a~c,i,b~c,i

]
. It also will be convenient to denote by

a~c,i and b~c,i the branch points of R with respective projections a~c,i and b~c,i, i ∈ {1, . . . ,p}.
Unfortunately, to be able to handle general multi-indices of form (9), one Riemann

surface is not sufficient. Let ~n ∈Np. Denote by

~ω~n = (ω~n,1, . . . ,ω~n,p), ω~n :=

p∑
i=1

ω~n,i, supp(ω~n,i) =
[
a~n,i,b~n,i

]
⊆ [ai,bi],

the equilibrium vector measure minimizing the energy functional (10) where ~c is replaced
by the vector

(
n1/| ~n |, . . . ,np/| ~n |

)
. The surface R~n is defined absolutely analogously to

R. Notation ∆~n,i, a~n,i, and b~n,i, i ∈ {1, . . . ,p}, is self-evident now.
Since each R~n has genus zero, one can arbitrarily prescribe zero/pole multisets of

rational functions on R~n as long as the multisets have the same cardinality. Thus, given a
multi-index ~n, we shall denote Φ~n a rational function on R~n which is non-zero and finite
everywhere on R~n \

⋃p
k=0

{∞(k)
}

, has a pole of order | ~n | at∞(0), a zero of multiplicity
ni at each∞(i), and satisfies

(18)
p∏
k=0

Φ~n

(
z(k)

)
≡ 1.

Normalization (18) is possible since the function log
∏p
k=0

∣∣Φ~n

(
z(k)

)∣∣ extends to a har-
monic function on C which has a well defined limit at infinity. Hence, it is constant.
Therefore, if (18) holds at one point, it holds throughout C. The importance of the func-
tion Φ~n to our analysis lies in the following proposition.

Proposition 1. With the above notation, it holds that

1

| ~n |
log
∣∣Φ~n(z)

∣∣ =
 −Vω~n(z) + 1

p+1

∑p
k=1 `~n,k, z ∈R

(0)
~n ,

Vω~n,i(z) − `~n,i +
1
p+1

∑p
k=1 `~n,k, z ∈R

(i)
~n , i ∈ {1, . . . ,p}.

If a sequence
{
~n
}

satisfies (9), then the measures ω~n converge to ω in the weak∗ topology of
measures as | ~n | → ∞ (in particular, this implies that `~n,i → `i, a~n,i → a~c,i, and b~n,i → b~c,i).
Moreover, it holds that Vω~n,i → Vωi uniformly on compact subsets of C for each i ∈ {1, . . . ,p}.

It immediately follows from Proposition 1 that

(19)
1

| ~n |
log

∣∣∣∣∣Φ~n

(
z(i)

)
Φ~n

(
z(0)

) ∣∣∣∣∣ = Vω~n,i+ω~n(z) − `~n,i = V
ωi+ω(z) − `i + o(1)

uniformly on compact subsets of C as | ~n |→∞ for each i ∈ {1, . . . ,p}.
The following corollary is an elementary consequence of Proposition 1. It describes the

assumption with which (9) often replaced when strong asymptotics is discussed (most
often ~k = (1, . . . , 1)).

Corollary 2. Let ~k ∈Np. If ~c =
(
k1/|~k |, . . . ,kp/|~k |

)
and ~n = n~k, n ∈N, then ~ω~n = ~ω and

Φ~n = Φn~k
.
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Proposition 1 allows to recover |Φ~n| via the vector equilibrium measure ~ω~n. In order
to do it for the function Φ~n itself, let us define h~n on R~n by the rule

(20)


h~n
(
z(0)

)
:=

∫
dω~n(x)

z− x
, z ∈ C \

⋃p
i=1

[
a~n,i,b~n,i

]
,

h~n
(
z(i)

)
:=

∫
dω~n,i(x)

x− z
, z ∈ C \

[
a~n,i,b~n,i

]
, i ∈ {1, . . . ,p}.

We further define the function h on R exactly as in (20) with ~ω~n replaced by ~ω. For
brevity, we also denote by γ~n,i (resp. γi) the Jordan arc belonging to R

(0)
~n (resp. R(0))

such that π(γ~n,i) =
[
b~n,i,a~n,i+1

]
(resp. π(γi) =

[
b~c,i,a~c,i+1

]
), i ∈ {1, . . . ,p− 1}.

Proposition 3. The function h~n is a rational function on R~n that has a simple zero at each∞(k),
k ∈ {0, . . . ,p}, a single simple zero, say z~n,i, on each γ~n,i, i ∈ {1, . . . ,p− 1}, a simple pole3 at
each

{
a~n,i,b~n,i

}p
i=1

, and is otherwise non-vanishing and finite. Moreover,

z~n,i = b~n,i ⇔ b~n,i ∈ ∂D−
~n,i and z~n,i = a~n,i+1 ⇔ a~n,i+1 ∈ ∂D−

~n,i+1,

where the sets D−
~n,i are defined as in (15). Absolutely analogous claims hold for h, R, and γi.

Furthermore, it holds that

(21) Φ~n(z) = exp
{
| ~n |

∫z
h~n(x)dx

}
,

where the initial bound for integration should be chosen so that (18) is satisfied. Finally, if we set
Rδ to be R with circular neighborhood of radius δ excised around each of its branch points, then
h~n → h uniformly on Rδ for each δ > 0, where h~n is carried over to Rδ with the help of natural
projections.

Thus, knowing the logarithmic derivative of Φ~n, we can recover the vector equilibrium
measure ~ω~n by

dω~n(x) =
(
h
(0)
~n−(x) − h

(0)
~n+(x)

) dx
2πi

,

as follows from Privalov’s Lemma [26, Sec. III.2] (the above formula does not allow to
recover ~ω~n via a purely geometric construction of Φ~n as one needs to know the intervals[
a~n,i,b~n,i

]
to construct R~n). We prove Propositions 1 and 3 in Section 5.

The purpose of the following proposition is to identify the limits in (16), which are
nothing but appropriate generalizations of the classical Szegő function. In order to do
that we need to specify the conditions we placed on the considered densities. In what
follows, it is assumed that

(22) ρi(x) = ρr,i(x)ρs,i(x),

where ρr,i is the regular part, that is, it is holomorphic and non-vanishing in some neigh-
borhood of [ai,bi], and ρs,i is the singular part consisting of finitely many Fisher-Hartwig
singularities [8], i.e.,

(23) ρs,i(x) =

Ji∏
j=0

|x− xij|
αij

Ji∏
j=1

{
1, x < xij
βij, x > xij

}
where ai = xi0 < xi1 < · · · < xiJi−1 < xiJi = bi, αij > −1, βij ∈ C \ (−∞, 0]. In what
follows, we adopt the following convention: given a function F on R, we denote by F(k)

its pull-back from R(k) \∆k, k ∈ {0, . . . ,p}. That is, F(k)(z) := F
(
z(k)

)
, z ∈ C \

[
a~c,i,b~c,i

]
.

Proposition 4. For each i ∈ {1, . . . ,p}, let ρi be of the form (22)–(23). Further, let

(24) wi(z) :=
√

(z− a~c,i)(z− b~c,i)

3 Of course, if z~n,i coincides with either b~n,i or a~n,i+1, then it cancels the corresponding pole.



3 riemann-hilbert approach 7

be the branch holomorphic outside of
[
a~c,i,b~c,i

]
normalized so thatwi(z)/z→ 1 as z→∞. Then

there exists the unique function S non-vanishing and holomorphic in R \
⋃p
i=1∆i such that

(25) S
(i)
± = S

(0)
∓
(
ρiwi+

)
on

(
a~c,i,b~c,i

)
\ {xij}

Ji
j=0,

i ∈ {1, . . . ,p}, and that satisfies

(26)
∣∣S(0)(z)∣∣ ∼ ∣∣S(i)(z)∣∣−1 ∼ |z− e|−(2α+1)/4 as z→ e ∈

{
a~c,i,b~c,i

}
,

i ∈ {1, . . . ,p}, where α = αij if e = xij and α = 0 otherwise;

(27)
∣∣S(0)(z)∣∣ ∼ ∣∣S(i)(z)∣∣−1 ∼ |z− xij|

−(αij±arg(βij)/π)/2

as z→ xij ∈
(
a~c,i,b~c,i

)
, ±Im(z) > 0,

i ∈ {1, . . . ,p}; and
∏p
k=0 S

(k)(z) ≡ 1.

We prove Proposition 4 in Section 6. Finally, we are ready to formulate our main result.

Theorem 5. Let ~f =
(
f1, . . . , fp

)
be a vector of functions given by

(28) fi(z) =
1

2πi

∫
[ai,bi]

ρi(x)

x− z
dx, z ∈ C \ [ai,bi],

for a system of mutually disjoint intervals
{
[ai,bi]

}p
i=1

, where the functions ρi are of the form
(22)–(23), i ∈ {1, . . . ,p}. Given ~c ∈ (0, 1)p such that |~c | = 1 and a sequence of multi-indices { ~n }

satisfying (9), let [ ~n ]~f be the corresponding Hermite-Padé approximant (1)–(2). Then Q~n = C~n

[
1+ o(1)

](
SΦ~n

)(0)
R
(i)
~n = C~n

[
1+ o(1)

](
SΦ~n

)(i)
/wi, i ∈ {1, . . . ,p},

locally uniformly in C \
⋃p
i=1[ai,bi], where the functions Φ~n are as in Proposition 1, the func-

tions S and wi are as in Proposition 4, and limz→∞ C~n

(
SΦ~n

)(0)
(z)z−| ~n | = 1. In particular,

deg(Q~n) = | ~n | for all | ~n | large enough.

Theorem 5 is proved in Section 8. It follows immediately from (2), (15), and (19) that

fi −
P
(i)
~n

Q~n
=
1+ o(1)

wi

(
SΦ~n

)(i)(
SΦ~n

)(0)
is geometrically small locally uniformly in D+

i and is geometrically big locally uniformly
in D−

i whenever the latter is non-empty.

3 riemann-hilbert approach

To prove Theorem 5 we use the extension to multiple orthogonal polynomials [14] of by
now classical approach of Fokas, Its, and Kitaev [11, 12] connecting orthogonal polyno-
mials to matrix Riemann-Hilbert problems. The RH problem is then analyzed via the
non-linear steepest descent method of Deift and Zhou [10].

The Riemann-Hilbert approach of Fokas, Its, and Kitaev lies in the following. Assume
that the multi-index ~n = (n1, . . . ,np) is such that

(29) deg(Q~n) = | ~n | and R
(i)
~n−~ei

(z) ∼ z−ni as z→∞, i ∈ {1, . . . ,p},

where all the entries of the vector ~ei are zero except for the i-th one, which is 1. Set

(30) Y :=


Q~n R

(1)
~n · · · R

(p)
~n

m~n,1Q~n−~e1 m~n,1R
(1)
~n−~e1

· · · m~n,1R
(p)
~n−~e1

...
...

. . .
...

m~n,pQ~n−~ep m~n,pR
(1)
~n−~ep

· · · m~n,pR
(p)
~n−~ep

 ,
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where m~n,i, i ∈ {1, . . . ,p}, is a constant such that

lim
z→∞m~n,iR

(i)
~n−~ei

(z)zni = 1.

To capture the block structure of many matrices appearing below, let us introduce
transformations Ti, i ∈ {1, . . . ,p}, that act on 2× 2 matrices:

Ti

(
e11 e12
e21 e22

)
:= e11E1,1 + e12E1,i+1 + e21Ei+1,1 + e22Ei+1,i+1 +

∑
j6=1,i+1

Ejj,

where Ejk is the matrix with all zero entries except for the (j,k)-th one which is 1. It can
be easily checked that Ti(AB) = Ti(A)Ti(B) for any 2× 2 matrices A,B.

The matrix-valued function Y solves the following Riemann-Hilbert problem (RHP-Y) :

(a) Y is analytic in C \
⋃p
i=1[ai,bi] and lim

z→∞Y(z)z−σ(~n) = I, where I is the identity

matrix and σ( ~n ) := diag (| ~n |,−n1, . . . ,−np);

(b) Y has continuous traces on each (ai,bi) that satisfy Y+ = Y−Ti

(
1 ρi
0 1

)
;

(c) the entries of the (i+ 1)-st column of Y behave like O
(
ψαij(z− xij)

)
as z → xij,

j ∈ {0, . . . , Ji}, while the remaining entries stay bounded, where

ψα(z) =


|z|α, if α < 0,
log |z|, if α = 0,
1, if α > 0.

The property RHP-Y(a) follows immediately from (2) and (29). The property RHP-Y(b)
is due to the equality

R
(i)
~n+ − R

(i)
~n− = Q~n (fi+ − fi−) = Q~nρi on (ai,bi),

which in itself is a consequence of (2), (28), and the Sokhotski-Plemelj formulae [13, Sec-
tion 4.2]. Finally, RHP-Y(c) follows from the local analysis of Cauchy integrals in [13,
Section 8.1].

Conversely, if Y is a solution of RHP-Y , then it follows from RHP-Y(b) and the normal-
ization at infinity in RHP-Y(a) that [Y ]1,1 is a polynomial of degree exactly | ~n |. It further
follows from RHP-Y(b) that [Y ]1,i+1, i ∈ {1, . . . ,p}, is holomorphic outside of [ai,bi], van-
ishes at infinity with order ni + 1, and satisfies

[Y ]1,i+1+ − [Y ]1,i+1− = [Y ]1,1ρi on (ai,bi).

Combining this with RHP-Y(c), we see that [Y ]1,i+1 is the Cauchy integral of [Y ]1,1ρi
on [ai,bi]. Furthermore, from the order of vanishing at infinity one can easily infer that
[Y ]1,1(x) is orthogonal to xj, j ∈ {0, . . . ,ni−1}, with respect to ρi(x)dx. Hence, [Y ]1,1 = Q~n,
[Y ]1,i+1 = R

(i)
~n , and (29) holds. Other rows of Y can be analyzed analogously. Altogether,

the following proposition takes place.

Proposition 6. If a solution of RHP-Y exists then it is unique. Moreover, in this case it is given
by (30) where Q~n and R(i)~n−~ei

satisfy (29). Conversely, if (29) is fulfilled, then (30) solves RHP-Y .

4 model riemann-hilbert problems

As known, to analyze RHP-Y via steepest descent method of Deift and Zhou, one needs to
construct local solutions around each singular point of the functions ρi and the endpoints
of the support of each component of the vector equilibrium measure, see Section 9. In this
section, we present all these model RH problems. In what follows we use the notation

σ3 :=

(
1 0

0 −1

)
.
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4.1 Singular Points of the Weights

In what follows, we always assume that the real line as well as its subintervals is oriented
from left to right. Further, we set

(31) I± :=
{
z : arg(z) = ±2π/3

}
, J± :=

{
z : arg(z) = ±π/3

}
,

where the rays I± are oriented towards the origin and the rays J± are oriented away from
the origin. Put

Σ(Φα,β) := I+ ∪ I− ∪ J+ ∪ J− ∪ (−∞,∞)

and consider the following Riemann-Hilbert problem: given α > −1 and β ∈ C \ (−∞, 0],
find a matrix-valued function Φα,β such that

(a) Φα,β is holomorphic in C \ Σ(Φα,β);
(b) Φα,β has continuous traces on Σ(Φα,β) \ {0} that satisfy

Φα,β+ =Φα,β−


(
0 1

−1 0

)
on (−∞, 0),(

0 β

−β−1 0

)
on (0,∞),

and

Φα,β+ =Φα,β−


(

1 0

e±απi 1

)
on I±,(

1 0

1/β 1

)
on J±;

(c) as ζ→ 0 it holds that

Φα,β(ζ) = O

(
|ζ|α/2 |ζ|α/2 + |ζ|−α/2

|ζ|α/2 |ζ|α/2 + |ζ|−α/2

)
and Φα,β(ζ) = O

(
1 log |ζ|

1 log |ζ|

)
when α 6= 0 and α = 0, respectively;

(d) Φα,β has the following behavior near∞:

Φα,β(ζ) =
(
I+O

(
ζ−1

)) (
iζ
)logβσ3/2πi

B± exp
{
∓ iζσ3/2

}
, ±Im(ζ) > 0,

uniformly in C \ Σ(Φα,β), where
(
iζ
)logβ/2πi has a branch cut along (0,∞) (ob-

serve also that
(
iζ
)logβ/2πi
−

= β
(
iζ
)logβ/2πi
+

on (0,∞)) and

B+ :=

(
β−1/2 0

0 e−απi/2

)
βσ3eαπiσ3 , B− := B+

(
0 −1

1 0

)
.

The solution of RHP-Φα,β can be written explicitly with the help of confluent hyper-
geometric functions. It was done first in [30] for the case β = 1, then in [21, 22] for
β ∈ (0,∞), and, in [8] for α± logβ/πi 6∈ {−2,−4, . . .} (of course, in all the cases α > −1;
parameters αj and βj in [8] correspond to α/2 and i logβ/2π above). To be more precise,
one needs to take Φα,ββ

σ3/4 multiply it by e−απiσ3/2 in the first quadrant, by eαπiσ3/2

in the fourth quadrant, and then rotate the whole picture by π/2 to get the corresponding
problem in [8].

4.2 Hard Edge

Given α > −1, find a matrix-valued function Ψα such that

(a) Ψα is holomorphic in C \
(
I+ ∪ I− ∪ (−∞, 0]

)
;
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(b) Ψα has continuous traces on I+ ∪ I− ∪ (−∞, 0) that satisfy

Ψα+ = Ψα−


(
0 1

−1 0

)
on (−∞, 0),(

1 0

e±πiα 1

)
on I±;

(c) as ζ→ 0 it holds that

Ψα(ζ) = O

(
|ζ|α/2 |ζ|α/2

|ζ|α/2 |ζ|α/2

)
and Ψα(ζ) = O

(
log |ζ| log |ζ|

log |ζ| log |ζ|

)
when α < 0 and α = 0, respectively, and

Ψα(ζ) = O

(
|ζ|α/2 |ζ|−α/2

|ζ|α/2 |ζ|−α/2

)
and Ψα(ζ) = O

(
|ζ|−α/2 |ζ|−α/2

|ζ|−α/2 |ζ|−α/2

)
when α > 0, for |arg(ζ)| < 2π/3 and 2π/3 < |arg(ζ)| < π, respectively;

(d) Ψα has the following behavior near∞:

Ψα(ζ) =
ζ−σ3/4√

2

(
1 i
i 1

)(
I+O

(
ζ−1/2

))
exp
{
2ζ1/2σ3

}
uniformly in C \

(
I+ ∪ I− ∪ (−∞, 0]

)
.

The solution of this Riemann-Hilbert problem was constructed explicitly in [19] with the
help of modified Bessel and Hankel functions.

4.3 Soft-Type Edge

To describe the model Riemann-Hilbert problem we need, it will be convenient to denote
by Ω1, Ω2, Ω3, and Ω4 consecutive sectors of C \

(
(−∞,∞) ∪ I− ∪ I+

)
starting with the

one containing the first quadrant and continuing counter clockwise. Given α ∈ R and
Re(β) > 0, we are looking for a matrix-valued function Ψα,β such that

(a) Ψα,β is holomorphic in C \
(
I+ ∪ I− ∪ (−∞,∞)

)
;

(b) Ψα,β has continuous traces on I+ ∪ I− ∪ (−∞, 0)∪ (0,∞) that satisfy

Ψα,β+ = Ψα,β−



(
0 1

−1 0

)
on (−∞, 0),(

1 0

e±iπα 1

)
on I±,(

1 β

0 1

)
on (0,∞);

(c) as ζ→ 0 it holds that

Ψα,β(ζ) = E(ζ)Sα,β(ζ)Aj, ζ ∈ Ωj,
where E is a holomorphic matrix function,

A3 = A4

(
1 0

e−απi 1

)
, A4 = A1

(
1 −β

0 1

)
, A1 = A2

(
1 0

eαπi 1

)
,

and

A2 =

 1
2 cos(απ/2)

1−βeαπi

1−eαπi
1

2 cos(απ/2)
β−eαπi

1−eαπi

−eαπi/2 e−απi/2

 while Sα,β(ζ) = ζ
ασ3/2

when α is not an integer,

A2 =

(
1
2e
απi/2 1

2e
−απi/2

−eαπi/2 e−απi/2

)
while Sα,β(ζ) =

(
ζα/2 1−β

2πi ζ
α/2 log ζ

0 ζ−α/2

)
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when α is an even integer,

A2 =

(
0 e−απi/2

−eαπi/2 e−απi/2

)
while Sα,β(ζ) =

(
ζα/2 1+β

2πi ζ
α/2 log ζ

0 ζ−α/2

)
when α is an odd integer;

(d) Ψα,β has the following behavior near∞:

Ψα,β(ζ; s) =
(
I+O

(
ζ−1

)) ζ−σ3/4√
2

(
1 i
i 1

)
exp
{
−
2

3
(ζ+ s)3/2σ3

}
uniformly in C \

(
I+ ∪ I− ∪ (−∞,∞)

)
.

Besides RHP-Ψα,β, we shall also need RHP-Ψ̃α,β obtained from RHP-Ψα,β by replacing
RHP-Ψα,β(d) with

(d̃) Ψ̃α,β has the following behavior near∞:

Ψ̃α,β(ζ; s) =
(
I+O

(
ζ−1

)) ζ−σ3/4√
2

(
1 i
i 1

)
exp
{
−

(
2

3
ζ3/2 + sζ1/2

)
σ3

}
.

The problems RHP-Ψα,β and RHP-Ψ̃α,β are simultaneously uniquely solvable and the
solutions are connected by

(32) Ψ̃α,β(ζ; s) =
(

1 0

is2/4 1

)
Ψα,β(ζ; s)

as follows from the estimate
2

3
(ζ+ s)3/2 −

(
2

3
ζ3/2 + sζ1/2

)
=
(
1+O

(
s/ζ
)) s2

4ζ1/2
as ζ→∞.

When α = 0, β = 1, and s = 0, the above Riemann-Hilbert problem is well known
[9] and is solved using Airy functions. When β = 1, the solvability of this problem for
all s ∈ R was shown in [16] with further properties investigated in [17] (RHP-Ψ̃α,β is
associated with a solution of Painlevé XXXIV equation). The solvability of the case α = 0,
β ∈ C \ (−∞, 0), and s ∈ R was obtained in [32]. The latter case appeared in [6] as well.
More generally, the following theorem holds.

Theorem 7. Given α ∈ R and β ∈ C \ (−∞, 0), the RH-problems RHP-Ψα,β, and therefore
RHP-Ψ̃α,β, is uniquely solvable for all s ∈ R. Moreover, assuming β 6= 0, it holds that

(33) Ψα,β(ζ; s) =
ζ−σ3/4√

2

(
1 i
i 1

)(
I+O

(√
|s|+ 1

|ζ|+ 1

))
exp
{
−
2

3
(ζ+ s)3/2σ3

}
uniformly for ζ ∈ C \

(
I+ ∪ I− ∪ (−∞,∞)

)
and s ∈ (−∞,∞), and it also holds uniformly for

s ∈ [0,∞) when β = 0; furthermore, we have that

(34) Ψ̃α,0(ζ; s) =
ζ−σ3/4√

2

(
1 i
i 1

)(
I+O

(√
|s|+ 1

|ζ|+ 1

))
exp
{
−

(
2

3
ζ3/2 + sζ1/2

)
σ3

}
uniformly for ζ ∈ C \

(
I+ ∪ I− ∪ (−∞, 0]

)
and s ∈ (−∞, 0].

Theorem 7 is proved in Section 10.

5 geometry

In this section we prove Propositions 1 and 3.

5.1 Proof of Proposition 1

Set
O±i :=

{
z : Re(z) ∈

(
a~n,i,b~n,i

)
and ± Im(z) > 0

}
.
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Since the measures ω~n,i are supported on the real line, (14) and Schwarz reflection prin-
ciple yield that the function{

`~n,i − V
ω~n+ω~n,i(z), z ∈ O+

i ,

Vω~n+ω~n,i(z) − `~n,i, z ∈ O−
i ,

is harmonic across (a~n,i,b~n,i). As the support of ω~n −ω~n,i is disjoint from
[
a~n,i,b~n,i

]
,

the function `~n,i + V
ω~n−ω~n,i is harmonic across

(
a~n,i,b~n,i

)
as well. By taking the differ-

ence of these two functions, we see that{
−2Vω~n(z), z ∈ O+

i ,

2Vω~n,i(z) − 2`~n,i, z ∈ O−
i ,

is harmonic in the same vertical strip. Thus, the function

(35) H~n(z) :=

 −Vω~n(z) + 1
p+1

∑p
k=1 `~n,k, z ∈R

(0)
~n ,

Vω~n,i(z) − `~n,i +
1
p+1

∑p
k=1 `~n,k, z ∈R

(i)
~n , i ∈ {1, . . . ,p},

is harmonic on R~n \
⋃p
k=0

{∞(k)
}

. Since Vν(z) = −|ν| log |z|+ O(1) as z → ∞, we get
that the difference

| ~n |−1 log |Φ~n(z)|−H~n(z)

is harmonic on the whole surface R~n and therefore is a constant. Since
∑p
k=0H~n

(
z(k)

)
≡

0 and Φ~n is normalized so that (18) holds, the first claim of the proposition follows.
Let ~ν be a weak∗ limit point of

{
~ω~n

}
. Since { ~n } satisfies (9), it holds that ~ν ∈

M~c

(
{ai,bi}

p
i=1

)
. Thus, if we show that I[ ~ω ] > I[ ~ν ], then ~ν = ~ω by (10). To this end,

let α~n,i be positive constants such that |α~n,iωi| = ni/| ~n |, i ∈ {1, . . . ,p}. By (9), α~n,i → 1

as | ~n | → ∞. Set ~ν~n := (α~n,1ω1, . . . ,α~n,pωp). Then it follows from (10) applied for the
vector

(
n1/| ~n |, . . . ,np/| ~n |

)
that

I
[
~ω
]
= lim

| ~n |→∞ I
[
~ν~n
]
> lim inf

| ~n |→∞ I
[
~ω~n

]
.

Furthermore, the very definition of the weak∗ convergence implies that

lim
| ~n |→∞ I

[
ω~n,j,ω~n,k

]
= I
[
νj,νk

]
for j 6= k as supp

(
ω~n,j

)
∩ supp

(
ω~n,k

)
= ∅ in this case. It also follows from the Principle of

Descent [28, Thm. I.6.8] that
lim inf
| ~n |→∞ I

[
ω~n,i

]
> I[νi].

Altogether,
I
[
~ω
]
> lim inf

| ~n |→∞ I
[
~ω~n

]
> I
[
~ν
]
,

which proves the claim about weak∗ convergence of measures.
Weak∗ convergence of measures implies convergence of minima of the corresponding

potentials [15]. Hence, (12) yields that `~n,i → `i for all i ∈ {1, . . . ,p}. Moreover, weak∗

convergence also implies locally uniform convergence of Vω~n,i to Vωi in C \
[
a~c,i,b~c,i]

(there is no convergence at infinity as, in general, |ω~n,i| 6= |ωi| for given ~n). Thus, it
remains to show that the convergence of the potentials is uniform on compact subsets
of C.

First let K be a continuum such that a~c,i,b~c,i /∈ K and either Im(z) > 0 for all z ∈ K or
Im(z) 6 0 for all z ∈ K (it can intersect

(
a~c,i,b~c,i

)
). Then there exists a unique continuum

K(i) such that π(K(i)) = K and K(i) ∩R(i) 6= ∅. Further, let U be a neighborhood of K
such that a~c,i,b~c,i /∈ U. Denote U(i) the neighborhood of K(i) such that π(U(i)) = U.
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Since a~n,i → a~c,i and b~n,i → b~c,i as | ~n | → ∞, we can analogously define K(i)
~n and U(i)

~n
on R~n. By definition,  V

ω~n,i
|K

= H
~n|K

(i)
~n

+ `~n,i −
1
p+1

∑p
j=1 `~n,j

V
ωi
|K

= H|K(i) + `i −
1
p+1

∑p
j=1 `j,

where H is defined on R exactly as H~n was defined on R~n. Hence, to show that Vω~n,i

converge to Vωi uniformly on K it is enough to show that the pull backs of H~n from
U

(i)
~n to U converge locally uniformly to the pull back of H. We do know that such a

convergence takes place locally uniformly on U∩ {Im(z) > 0} and U∩ {Im(z) < 0}. The full
claim will follow from Harnack’s theorem if we show that the pull backs of H~n, which are
harmonic in U, form a uniformly bounded family there. The latter is true since each H(k)

~n

converges to H(k) on any Jordan curve J that encloses
⋃p
i=1[ai,bi]. Hence, the moduli

|H~n| are bounded on the lift of J to R~n and the bound is independent of ~n. The maximum
principle propagates this estimate through the region of R~n containing U(i)

~n and bounded
by the lift of J.

Assume now that K is a continuum that contains one of the points
{
a~c,i,b~c,i

}
, say b~c,i

for definiteness. It is sufficient to assume that K is contained in a disk, say U, centered
at the b~c,i of radius small enough so that no other point from

⋃p
j=1

{
a~c,j,b~c,j

}
belongs

to U. We can define K(i) and K(i)
~n analogously to the previous case. Let U(i) and U(i)

~n
be the circular neighborhoods of b~c,i and b~n,i, respectively, with the natural projection U
(clearly, they cover U twice). Let V be a disk centered at the origin of radius smaller than
the one of U, but large enough so that the translation of V to b~c,i still contains K. Then the
functions φ~n(z) =

(
z+ b~n,i

)2 and φ(z) =
(
z+ b~c,i

)2 provide one-to-one correspondents

between V and some subdomains of U(i)
~n and U(i), respectively. These subdomains still

contain K(i)
~n and K(i). Since b~n,i → b~c,i as | ~n | → ∞, we can establish exactly as above

that H~n ◦ φ~n converges to H ◦ φ locally uniformly in V , which again yields that Vω~n,i

converges to Vωi uniformly on K. Clearly, the considered cases are sufficient to establish
the uniform convergence on compact subsets of C.

5.2 Proof of Proposition 3

Observe that

h
(0)
~n (z) =

∫
dω~n(x)

z− x
= −2∂zV

ω~n(z) = 2| ~n |−1∂z log
∣∣∣Φ(0)

~n (z)
∣∣∣

= | ~n |−1
(
Φ

(0)
~n (z)

)′
/Φ

(0)
~n (z)

by Proposition 1 and direct computation, where 2∂z := ∂x − i∂y. Clearly, analogous
formulae hold for h(i)~n . That is, h~n is the logarithmic derivative of Φ~n, in particular,
(21) holds. Therefore, h~n is holomorphic around each point of R~n \

{
a~n,i,b~n,i

}p
i=1

and
clearly has a simple zero at each∞(k), k ∈ {0, . . . ,p}. Since R~n has square root branching
at each ramification point, Φ(0)

~n has Puiseux expansion in non-negative powers of 1/2 at

each of them. Hence, h(0)~n has such an expansion as well and the smallest exponent is
−1/2. Thus, h~n has at most a simple pole at each {a~n,i,b~n,i

}p
i=1

and, in particular, is a
rational function on R~n.

The number of zeros and poles, including multiplicities, of a rational function should
be the same. Therefore, h~n has at most 2p and at least p+ 1 poles (the lower bound comes
from the number of zeros at “infinities”) and at most p− 1 “finite” zeros. Let us now show
that each of p− 1 arcs γ~n,i contains exactly one of those “finite” zeros (we slightly abuse
the notion of a zero here since a simple zero at the endpoint means cancelation of the
corresponding pole). Clearly, this is equivalent to showing that h(0)~n has a single simple
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zero in each gap
[
b~n,i,a~n,i+1

]
(again, a “zero” at the endpoint means that h(0)~n is locally

bounded there).
Assume to the contrary that there is at least one gap, say

[
b~n,j,a~n,j+1

]
, without a zero.

Then h(0)~n would be infinite at both endpoints b~n,j,a~n,j+1. However, sinceω~n is a positive

measure, the very definition (20) yields that h(0)~n is decreasing on
(
b~n,j,a~n,j+1

)
. The latter

is possible only if

(36) lim
x→b~n,j

h
(0)
~n (x) = − lim

x→a~n,j+1
h
(0)
~n (x) =∞.

As h(0)~n is continuous on
(
b~n,j,a~n,j+1

)
it must vanish there. Since there are exactly p− 1

gaps and p− 1 “free” zeros, this contradiction proves the claim.
Let us now show the correspondence between occurrence of the zeros at the endpoints

of the gaps and the fact that divergence domains are touching the support. To this end,
notice that (21) combined with (19) yields that

(37) `~n,i − V
ω~n,i+ω~n(x) =

∫x
b~n,i

(
h
(0)
~n − h

(i)
~n

)
(y)dy.

If the zero of h(0)~n on
[
b~n,i,a~n,i+1

]
does not coincide with b~n,i, then h

(0)
~n (y) = c~n

(
y− b~n,i

)−1/2
+O(1)

h
(i)
~n (y) = −c~n

(
y− b~n,i

)−1/2
+O(1)

for y− b~n,i > 0 and small enough, where c~n > 0, see (36). Hence,

(38) `~n,i − V
ω~n,i+ω~n(x) = 4c~n

(
x− b~n,i

)1/2
+O

(∣∣x− b~n,i
∣∣3/2) > 0

for x−b~n,i > 0 and small enough. On the other hand, if the zero coincides with b~n,i, then h
(0)
~n (y) = c̃~n − c′~n

(
y− b~n,i

)1/2
+O

(∣∣y− b~n,i
∣∣)

h
(i)
~n (y) = c̃~n + c′~n

(
y− b~n,i

)1/2
+O

(∣∣y− b~n,i
∣∣)

for y− b~n,i > 0 and small enough, where c′~n > 0 (recall that h(0)~n is a decreasing function
in each gap). Therefore,

(39) `~n,i − V
ω~n,i+ω~n(x) = −(4c′~n/3)

(
x− b~n,i

)3/2
+O

(∣∣x− b~n,i
∣∣5/2) < 0

for x− b~n,i > 0 and small enough. Thus, if the zero from
[
b~n,i,a~n,i+1

]
coincides with

b~n,i, then b~n,i ∈ ∂D−
~n,i and if it does not, then b~n,i /∈ ∂D−

~n,i, see (15). As the analysis near
a~n,i can be completed similarly, this finishes the proof of the claim.

Let now H~n be defined by (35) and H be defined analogously on R. We have shown
during the course of the proof of Proposition 1 that H~n → H uniformly on Rδ, where
H~n is carried over to Rδ with the help of natural projections. Since h~n = 2∂zH~n and
h = 2∂zH, we get that h~n → h uniformly on Rδ. This implies that h is a rational function
on R. The claim about zero/pole distribution of h follows from the analogous statement
for h~n and analysis similar to (37)–(39).

6 szegő function

In this section we prove Proposition 4. Let z,w ∈R. Denote by dΩz,w the unique abelian
differential of the third kind which is holomorphic on R \ {z,w} and has simple poles at
z and w of respective residues +1 and −1. Define

(40) dCz := pdΩz,w −

p∑
i=1

dΩzi,w,

where π−1(z) = {z, z1, . . . , zp} for each z which is not a projection of a branch point of R.
The differential dCz does not depend on the choice of w as it is simply the normalized
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third kind differential with p+ 1 simple poles at z, z1, . . . , zp having respective residues
p,−1, . . . ,−1.

For each x ∈ ∆i, which is not a branch point of R, we shall denote by x∗ a point on ∆i
having the same canonical projection, i.e., π(x) = π(x∗). When x ∈ ∆i is a branch point of
the surface, we simply set x∗ = x. Let λ be a Hölder continuous function on ∆ :=

⋃p
i=1∆i.

Define

(41) Λ(z) :=
1

2(p+ 1)πi

∮
∆
λdCz, z ∈R \ π−1

(
π(∆)

)
.

The function Λ is holomorphic in the domain of its definition. Further, if z → x ∈ ∆±,
then zj → x∗ ∈ ∆∓ for some j ∈ {1, . . . ,p} and

Λ+(x) −Λ−(x) =
pλ(x) + λ(x∗)

p+ 1
,

according to [33, Eq. (2.8)]. On the other hand, if z → x̃ 6∈ ∆, while zj → x ∈ ∆± and
zk → x∗ ∈ ∆∓ for some j,k ∈ {1, . . . ,p}, then

Λ+

(
x̃
)
−Λ−

(
x̃
)
=
λ(x∗) − λ(x)

p+ 1
.

Thus, if we additionally require that λ(x) = λ(x∗), then Λ is a holomorphic function in
R \∆ such that

(42) Λ+(x) −Λ−(x) = λ(x), x ∈ ∆.

It also can be readily verified using (40) and (41) that

(43) Λ(z) +

p∑
i=1

Λ(zi) ≡ 0 on R.

The above construction works for discontinuous function as well. Moreover, it is known
that the continuity of Λ±, in fact, Hölder continuity, depends on Hölder continuity of λ
only locally. That is, if λ is Hölder continuous on some open subarc of ∆, so are the traces
Λ± on this subarc irrespectively of the smoothness of λ on the remaining part of ∆. To
capture the behavior of Λ around the points where λ is not continuous, we define a local
approximation to the Cauchy differential dCz. To this end, fix i ∈ {1, . . . ,p} and denote
by U a connected annular neighborhood of ∆i disjoint from other ∆j such that every
point in π(U) has exactly two preimages (except for the branch points, of course). Write
U+ ∪U− = U \∆, where U+ ∩U− = ∅, U± are connected and partially bounded by ∆±i .
Set w̃i(z) := ±wi(z), z ∈ U±, where wi is given by (24). Then w̃i is holomorphic in U.
Further, put

dΩ̃z(x) :=
1

2

w̃i(x) + w̃i(z)

x− z

dx
w̃i(x)

,

which is a holomorphic differential on U \ {z} that has a simple pole at z with residue 1.
Then the difference dCz − pdΩ̃z + dΩ̃zi is a holomorphic differential in U and therefore
the function Λ− Λ̃ is holomorphic U, where

Λ̃(z) :=
1

2(p+ 1)πi

∮
∆i

λd
(
pΩ̃z − Ω̃z∗

)
and z∗ 6= z is a point in U such that π(z) = π(z∗). Thus, to understand the local behavior
of Λ is sufficient to study Λ̃. Since w̃i(z∗) = −w̃i(z) for z ∈ U, and wi−(x) = −wi+(x)

for x ∈
(
a~c,i,b~c,i

)
, it holds for λ(x) = λ(x) that

(44) Λ̃(z) =
w̃i(z)

2πi

∫
∆i

λ(x)

wi+(x)

dx
x− z

, z ∈ U \∆.

The first type of singularities we are interested in is of the form

(45) λ(x) = α log
∣∣x− x0∣∣, x ∈ ∆i,
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where x0 ∈
[
a~c,i,b~c,i

]
. Carefully tracing the implications of [13, Sec. I.8.5–6] to the

integrals of the form (44) and (45), we get that

(46) Λ̃(z) = ±α
2

log(z− x0) +O(1), U± 3 z→ x0.

The second type of the singular behavior we want to consider is given by

(47) λ(x) = (logβ)χx0(x), x ∈ ∆i,
where x0 ∈

(
a~c,i,b~c,i

)
and χx0 is the characteristic function of

[
x0,b~c,i

]
. It follows from

the analysis in [13, Sec. I.8.6] that

(48)

 Λ̃
(
z(0)

)
= ∓ logβ

2πi log(z− x0) +O(1),

Λ̃
(
z(i)

)
= ± logβ

2πi log(z− x0) +O(1),
z→ x0, ±Im(z) > 0.

Now, let the functions ρi be of the form (22)–(23). Set

λρ(x) := − log
(
ρi(x)wi+(x)

)
, x ∈ ∆i.

By using the identitywi+(x) = i|wi(x)| and the explicit expressions (23), we can then write

λρ(x) = − log
(
iρr,i(x)

)
−

Ji∑
i=0

(
αij log |x− xij|+ logβijχxij(x)

)
− (1/2) log

∣∣x− a~c,i
∣∣− (1/2) log

∣∣x− b~c,i
∣∣.

Clearly, the singular behavior of λρ is precisely of the form (45) and (47). Define Λρ as in
(41) and set S := exp{Λρ}. Then (25) is a consequence of (42) since(

S
(i)
± /S

(0)
∓

)
(x) = exp

{(
Λρ− −Λρ+

)
(x)
}

.

Moreover, (26) and (27) clearly follow from (46) and (48). Finally, the last claim of the
proposition follows from (43).

7 auxiliary results

Below we prove auxiliary estimates (50) and (51) that will be needed in Section 8.4 to finish
the proof of Theorem 5. They are presented here in a separate section as the arguments
used to prove them are disconnected from the techniques of the steepest descent method
employed in Section 8.

Let x,w ∈ R be such that x is not a branch point of R. There exists a unique, up
to multiplicative normalization, rational function on R, say Ψ, with a simple pole at x, a
simple zero at w, and otherwise non-vanishing and finite. For uniqueness, we normalize
Ψ(z) = z + {holomorphic part} around x if x is a point above infinity, and Ψ(z) = (z −

x)−1 + {holomorphic part} around x otherwise.
Let x~n,w~n ∈ R~n be such that they have the same canonical projections and belong to

the sheets with the same labels as x,w, respectively, when the latter are not branch points
of R (points on

⋃p
i=1∆i need to be identified with the sequences of points convergent to

them to set up the correspondence). If w is a branch point, we set w~n to be the branch
point of R~n whose projection converges to or coincides with the one of w. We define Ψ~n

to be similarly normalized rational function on R~n with a pole at x~n and a zero at w~n.
As the statement of Proposition 3, let Rδ be the subsets of R obtained by removing

circular neighborhoods of radius δ around each branch point. We assume that δ is small
enough so that x ∈ Rδ and w ∈ Rδ when w is not a branch point. Using natural
projections we can redefine Ψ~n as a function on Rδ. Naturally, it will have a pole at x and
a zero at w if the latter belong to Rδ. Then, regarding Ψ~n as a function on Rδ, we have
that

(49) Ψ~n =
[
1+ o(1)

]
Ψ
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uniformly on Rδ as | ~n | → ∞. Indeed, assume first that w ∈ Rδ. Let Ux ⊂ Rδ be a
circular neighborhood of x such that w /∈ Ux. Observe that Ψ is a univalent function on
R. Thus, by applying Koebe’s 1/4 theorem to 1/Ψ, we see that |Ψ| < C on ∂Ux for some
constant C > 0 that depends only on the radius of Ux. Moreover, the maximum modulus
principle implies that |Ψ| < C on R \ Ux. Clearly, absolutely analogous considerations
apply to Ψ~n on R~n and the constant C remains the same. Hence, the ratio Ψ~n/Ψ is a
holomorphic function on Rδ such that |Ψ~n/Ψ| < C/C̃ by the maximum modulus principle,
where 0 < C̃ 6 minR\Rδ

|Ψ| and this constant can be chosen independently of δ. Picking
a discrete sequence δn → 0 and using the diagonal argument as well as the normal family
argument, we see that any subsequence of

{
Ψ~n/Ψ

}
contains a subsequence convergent to

a function holomorphic on R \
⋃p
i=1

{
a~c,i,b~c,i

}
. Moreover, this function is necessarily

bounded around the branch points and therefore holomorphically extends to the entire
Riemann surface R. Thus, this function must be a constant and the normalization at x
yields that this constant is 1. This finishes the proof of (49) in the case w ∈ Rδ. When
w is a branch point, the first half of the above considerations yields that {Ψ − Ψ~n} is a
family of holomorphic function on Rδ with uniformly and independently of δ bounded
moduli. Therefore, the same argument yields that Ψ~n = Ψ+ o(1) uniformly on Rδ. As Ψ
is non-vanishing in Rδ, this estimate implies (49).

Let Υ~n,i (resp. Υi), i ∈ {1, . . . ,p}, be rational functions on R~n (resp. R) with a simple
pole at ∞(i), a simple zero at ∞(0), otherwise non-vanishing and finite, and normalized
so Υ(i)

~n,i(z)/z→ 1 as z→∞. Then (49) immediately yields

(50) Υ~n,i =
[
1+ o(1)

]
Υi

uniformly on each Rδ as | ~n |→∞.
Further, let dΩ~n

z,w be the unique abelian differential of the third kind which is holo-
morphic on R~n \ {z,w}, has simple poles at z and w with respective residues +1 and −1.
It is known that such a differential can be written as dΩ~n

z,w(x) = Ψ~n
z,w(x)dx, where Ψ~n

z,w
is the unique rational function on R~n with double zero at each ∞(k), k ∈ {0, . . . ,p}, a
simple pole at each

⋃p
i=1

{
a~n,i,b~n,i

}
, simple poles at z and w, otherwise non-vanishing

and finite, and normalized to have residue 1 at z. Writing 1/Ψ~n
z,w as a product of terms

with one zero and one pole and applying (49) to these factors, we see that

Ψ~n
z,w =

[
1+ o(1)

]
Ψz,w

uniformly on each Rδ as | ~n | → ∞, where dΩz,w(x) = Ψz,w(x)dx is the corresponding
differential on R. Then, defining Λ~n via analogs of (40) and (41) for R~n, we get that
Λ~n(z) = Λ(z) + o(1) uniformly in R \N for each neighborhood N of

⋃p
i=1∆. Therefore,

if we define S~n on R~n exactly as S was defined on R and consider S~n as function on
R \N, then

(51) S~n =
[
1+ o(1)

]
S

uniformly there. Moreover, S~n obeys all the conclusions of Proposition 4 with respect to
R~n.

8 non-linear steepest descent analysis

In this section we prove Theorem 5 with some technical details relegated to Section 9.
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8.1 Opening of the Lenses

Since we shall use these sets quite often, put

(52)


E~c :=

⋃p
i=1

{
a~c,i,b~c,i

}
,

Ein :=
⋃p
i=1

(
{xij}∩

(
a~c,i,b~c,i

))
Eout :=

⋃p
i=1

{
xij : xij 6∈

[
a~c,i,b~c,i

]
and αij 6 0

}
.

That is, Ein consists of the singular points xij that belong to the support of ~ω, and Eout
consists of those singular points outside of the support for which the densities ρi are
unbounded.

To proceed with the factorization of the jump matrices in RHP-Y(b), we need to con-
struct the so-called “lens” around

⋃p
i=1[ai,bi]. To this end, given e ∈ Eout ∪ Ein ∪ E~c, let

Ue be a disk centered at e. We assume that the radii of these disks are small enough so
that Ue1 ∩Ue2 = ∅ for e1 6= e2. We also assume that Ue ⊂ D−

i when e ∈ Eout.
Now, let e0, e1 be the j-th pair of two consecutive points from

(
Ein ∪ E~c

)
∩
[
a~c,i,b~c,i

]
.

We choose arcs Γ±ij incident with e0 and e1 and lying in the upper (+) and lower (−)

half-planes in the following way: if ek ∈ E~c, then it should hold that

(53) ζek
(
Γ±ij ∩Uek

)
⊂ I±,

where the rays I± are defined in (31) and ζek is a certain conformal function in Uek
constructed further below in (69) or (76) (depending on the considered case); if ek ∈ Ein,
it should hold that

(54) ζek
(
Γ±ij+k−1 ∩Uek

)
⊂ I± and ζek

(
Γ±ij+k ∩Uek

)
⊂ J±,

where ζek is a conformal function in Uek constructed further below in (63) and the rays
J± are also defined in (31). Outside Ue0 ∪Ue1 we choose Γ±ij to be segments joining the
corresponding points on ∂Ue0 and ∂Ue1 , see Figure 2. We further set Γ±i :=

⋃
j Γ
±
ij .

Since the geometry of the problem might depend on each particular index ~n (and not
only on ~c), we construct in a similar fashion arcs Γ±~n,ij and Γ±~n,i, where this time the maps
ζek are replaced by ζ~n,ek , see (64), (70), (77), or (85). As we show later in (65), the arcs Γ±~n,i
converge to Γ±i in Hausdorff metric. Finally, we denote by Ω±~n,ij the domains delimited
by Γ±~n,ij and

[
a~n,i,b~n,i

]
, and set Ω±~n,i :=

⋃
jΩ
±
~n,ij.

�+
i1

��
i1

�+
~n,i1

��
~n,i1

�+
ij

��
ij

�+
~n,ij

��
~n,ij

ai bib~c,ib~n,i

xi1

Figure 2. The arcs Γ±ij and Γ±~n,ij in the case where there is at least one point in
Ein, b~n,i < b~c,i < bi, and bi ∈ Eout.

Fix Γ±~n,il with endpoints e1 < e2. There exists an index k such that xij 6 e1 for j < k and
xij > e2 for j > k. Then it follows from (22) and (23) that the function ρi holomorphically
extends to Ω±~n,il by

(55) ρi(z) := ρr,i(z)
∏
j<k

βij
∏
j<k

(z− xij)
αij
∏
j>k

(xij − z)
αij ,
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where (z− xij)
αij is holomorphic off (−∞, xij] and (xij− z)

αij is holomorphic off [xij,∞).
Using these extensions, set

(56) X := Y

 Ti

(
1 0

∓1/ρi 1

)
in Ω±~n,i,

I otherwise,

where Y is a matrix-function that solves RHP-Y (if it exists). It can be readily verified that
X solves the following Riemann-Hilbert problem (RHP-X):

(a) X is analytic in C \
⋃p
i=1

(
[ai,bi]∪ Γ+~n,i ∪ Γ−~n,i

)
and lim

z→∞X(z)z−σ(~n) = I;
(b) X has continuous traces on

⋃p
i=1

(
(ai,bi)∪ Γ+~n,i ∪ Γ−~n,i

)
that satisfy

X+ = X−



Ti

(
0 ρi

−1/ρi 0

)
on

[
a~c,i,b~c,i

]
,

Ti

(
1 ρi
0 1

)
on (ai,bi) \

[
a~c,i,b~c,i

]
,

Ti

(
1 0

1/ρi 1

)
on Γ+~n,i ∪ Γ−~n,i;

(c) X has the following behavior near e ∈ E~c ∪ Ein ∪ Eout:
– if e ∈ Eout, then X satisfies RHP-Y(c) with Y replaced by X;
– if e ∈ E~c \ {xij}, then all the entries of X are bounded at e;
– if e ∈ Ein or e ∈ E~c ∩ {xij}, then X satisfies RHP-Y(c) with Y replaced by X

outside of Ω+
~n,i ∪Ω−

~n,i while inside it behaves exactly as in RHP-Y(c) when
αij < 0, the entries of the first and (i+ 1)-st column behave like O(ψ0(z−xij))

and the rest of the entries are bounded when αij = 0, and the entries of
the first column behave like O(ψ−αij(z− xij)) and the rest of the entries are
bounded when αij > 0.

Due to the block structure of the jumps in RHP-Y(b), [5, Lemma 17] can be carried over
word for word to the present case to prove:

Lemma 8. RHP-X is solvable if and only if RHP-Y is solvable. When solutions of RHP-X and
RHP-Y exist, they are unique and connected by (56).

8.2 Auxiliary Parametrices

To solve RHP-X, we construct parametrices that asymptotically describe the behavior of
X away from and around each point in Ein ∪ Eout ∪ E~c. To this end, we construct a matrix-
valued function N that solves the following Riemann-Hilbert problem (RHP-N):

(a) N is analytic in C \
⋃p
i=1

[
a~n,i,b~n,i

]
and lim

z→∞N(z)z−σ(~n) = I;

(b) N has continuous traces on
(
a~n,i,b~n,i

)
that satisfy N+ = N−Ti

(
0 ρi

−1/ρi 0

)
.

Let Φ~n be the functions from Proposition 1 while S~n and Υ~n,i, i ∈ {1, . . . ,p}, be the
functions introduced in Section 7. Set

(57) N := CMD,

where D := diag
(
Φ

(0)
~n , . . . ,Φ(p)

~n

)
, C := diag

(
C~n,0, . . . ,C~n,p

)
with the constant C~n,k de-

fined by

(58)


lim
z→∞C~n,0

(
S~nΦ~n

)(0)
(z)z−| ~n | = 1

lim
z→∞C~n,i

(
S~nΦ~n

)(i)
(z)zni = 1, i ∈ {1, . . . ,p},
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and the matrix M is given by

(59) M :=


S
(0)
~n S

(1)
~n /w~n,1 · · · S

(p)
~n /w~n,p(

S~nΥ~n,1
)(0) (

S~nΥ~n,1
)(1)

/w~n,1 · · ·
(
S~nΥ~n,1

)(p)
/w~n,p

...
...

. . .
...(

S~nΥ~n,p
)(0) (

S~nΥ~n,p
)(1)

/w~n,1 · · ·
(
S~nΥ~n,p

)(p)
/w~n,p

 .

Then (57) solves RHP-N. Indeed, RHP-N(a) follows immediately from the analyticity
properties of S~n, Υ~n,i, and Φ~n as well as from (58). Observe that the multiplication by

Ti

(
0 ρi

−1/ρi 0

)
on the right replaces the first column by the (i+ 1)-st one multiplied by ρi, while (i+ 1)-
st column is replaced by the first one multiplied by −1/ρi. Hence, RHP-N(b) follows
from the analog of (25) for S~n and the fact that any rational function Ψ on R~n satisfies
Ψ
(0)
± = Ψ

(i)
∓ on

(
a~n,i,b~n,i

)
.

Since the jump matrices in RHP-N(b) have determinant 1, det(N) is a holomorphic
function in C \

⋃
i

{
a~n,i,b~n,i

}
and det(N)(∞) = 1. Moreover, it follows from the analogs

of (26) and (27) for S~n that each entry of the first column of N behaves like

O
(
|z− e|−(2α+1)/4

)
and O

(
|z− xij|

−(αij∓arg(βij)/π)/2
)

for e ∈
{
a~n,i,b~n,i

}
(α = αij if e = xij and α = 0 otherwise) and for xij ∈

(
a~n,i,b~n,i

)
(±Im(z) > 0), respectively, the entries of the (i+ 1)-st column behave like

O
(
|z− e|(2α−1)/4

)
and O

(
|z− xij|

(αij∓arg(βij)/π)/2
)

there, and the rest of the entries are bounded. Thus, the determinant has at most square
root singularities at these points and therefore is a bounded entire function. That is,
det(N) ≡ 1 as follows from the normalization at infinity.

Further, for each e ∈ Ein ∪ Eout ∪ E~c, we want to solve RHP-X locally in Ue. That is, we
are seeking a solution of the following RHP-Pe:

(a,b,c) Pe satisfies RHP-X(a,b,c) within Ue;
(d) Pe = M

(
I+O(εe,~n)

)
D uniformly on ∂Ue \

(
[ai,bi]∪

⋃p
i=1 Γ

+
~n,i ∪ Γ−~n,i

)
, where

0 < εe,~n → 0 as | ~n |→∞.

Since the construction of Pe solving RHP-Pe is rather lengthy, it is carried out separately
in Section 9 further below.

8.3 Final R-H Problem

Denote by Ω~n,ij the domain delimited by Γ+~n,ij and Γ−~n,ij (in particular, Ω±~n,ij ⊂ Ω~n,ij). Set
Ω~n :=

⋃
ijΩ~n,ij and U :=

⋃
e∈Ein∪Eout∪E~c Ue. Define

Σ~n := ∂U∪
[
p⋃
i=1

(
Γ+~n,i ∪ Γ−~n,i

)
\U

]
∪
[
p⋃
i=1

[ai,bi] \
(
U∪Ω~n

)]
.

Moreover, we define Σ by replacing Γ±~n,i with Γ±i in the definition of Σ~n see Figure 3. Given
matrices N and Pe, e ∈ Ein ∪ Eout ∪ E~c, from the previous section, consider the following
Riemann-Hilbert Problem (RHP-Z):

(a) Z is a holomorphic matrix function in C \ Σ~n and Z(∞) = I;
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⌃

⌃~n ⌃
⌃~nai bib~c,ib~n,ixi1

Uai
Uxi1

Ub~c,i Ubi

Figure 3. Contours Σ (black and blue lines) and Σ~n (black and red lines).

(b) Z has continuous traces on Σ~n that satisfy

Z+ = Z−



MDTi

(
1 0

1/ρi 1

)
(MD)−1 on

(
Γ+~n,i ∪ Γ−~n,i

)
\U,

MDTi

(
1 ρi
0 1

)
(MD)−1 on [ai,bi] \

(
U∪Ω~n

)
Pe(MD)−1 on ∂Ue.

Then the following lemma takes place.

Lemma 9. The solution of RHP-Z exists for all | ~n | large enough and satisfies

(60) Z = I+O
(
ε~n
)

uniformly in C, where ε~n = mine εe,~n.

Proof. Analyticity of ρi yields that Z can be analytically continued to be holomorphic
outside of Σ. To do that one simply needs to multiply Z by the first jump matrix in RHP-
Z(b) or its inverse (the jump matrices have determinate 1 and therefore are invertible). We
shall show that the jump matrices are locally uniformly geometrically small in D+

i . This
would imply that the new problem is solvable if and only if the initial problem is solvable
and the bound (60) remains valid regardless the contour. Hence, in what follows we shall
consider RHP-Z on Σ rather than on Σ~n.

It was shown in Section 8.2 that det(N) ≡ 1. Moreover, it follows from (18) that
det(D) ≡ 1 while the equality

∏p
k=0 S

(k)
~n ≡ 1 and (58) imply that det(C) ≡ 1. Hence,

det(M) ≡ 1 and it follows from RHP-Pe(d), (51), and (50) that

Pe(MD)−1 = I+MO
(
εe,~n

)
M−1 = I+O(εe,~n)

holds uniformly on each ∂Ue. On the other hand, it holds on Γ±i \U that

MDTi

(
1 0

1/ρi 1

)
(MD)−1 = I+

1

ρi

Φ
(i)
~n

Φ
(0)
~n

MEi+1,1M
−1 = I+O

(
C
−| ~n |
i

)
for some constant Ci > 1 by (15), (19), and Proposition 1. Analogously, we get that

MDTi

(
1 ρi
0 1

)
(MD)−1 = I+ ρi

Φ
(0)
~n

Φ
(i)
~n

ME1,i+1M
−1 = I+O

(
C̃
−| ~n |
i

)
on [ai,bi] \

(
U∪Ω~n

)
for some C̃i > 1 by (19) and (14). That is, all the jump matrices for

Z asymptotically behave like I+ O
(
ε~n
)

(as will be clear in Section 9, the decay of ε~n is
of power type and not exponential). The conclusion of the lemma follows from the same
argument as in [7, Corollary 7.108]. �

8.4 Proof of Theorem 5

Let Z be the solution of RHP-Z granted by Lemma 9, Pe be solutions of RHP-Pe, and
N = CMD be the matrix constructed in (57). Then it can be easily checked that

(61) X = CZ

{
MD in C \

(
U∪⋃[a~c,ib~c,i

])
,

Pe in Ue, e ∈ Eout ∪ Ein ∪ E~c,
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solves RHP-X for all | ~n | large enough. Given a closed set K in C \
⋃p
i=1[ai,bi], we can

always shrink the lens so that K ⊂ C \
(
U∪Ω~n

)
. In this case Y = X on K by Lemma 8.

Write the first row of Z as
(
1+ υ~n,0,υ~n,1, . . . ,υ~n,p

)
. Then (1, j+ 1)-st entry of ZM is equal

to (
1+ υ~n,0 +

p∑
i=1

υ~n,iΥ
(j)
~n,i

)
S
(j)
~n /w~n,j =

(
1+O(ε~n)

)
S
(j)
~n /w~n,j

by Lemma 9 and (50), where w~n,0 ≡ 1. Therefore, it follows from Proposition 6 that Q~n = C~n,0
[
1+O(ε~n)

](
S~nΦ~n

)(0)
R
(j)
~n = C~n,0

[
1+O(ε~n)

](
S~nΦ~n

)(j)
/w~n,j.

Theorem 5 now follows from (51), since C~n,0 = (1+ o(1))C~n again by (51) and w~n,j → wj
uniformly on K.

9 local riemann-hilbert analysis

The goal of this section is to construct solutions to RHP-Pe.

9.1 Local Parametrices around Points in Eout

Let e ∈ Eout, see (52). A solution of RHP-Pe is given by

(62) Pe :=MTi

(
1 CiΦ

(0)
~n /Φ

(i)
~n

0 1

)
D,

where Ci(z) :=
1
2πi
∫
[ai,bi]

ρi(x)
x−z dx. Indeed, since the matrices M and D are holomorphic

in Ue, and Ci has a jump only across (ai,bi) ∩Ue, the matrix above satisfies RHP-Pe(a).
As
(
C+
i − C−

i

)
(x) = ρi(x) for x ∈ (ai,bi) \ {xij}, RHP-Pe(b) follows. RHP-Pe(c) is a conse-

quence of the fact that
∣∣Ci(z)(z− xij)−αij ∣∣ is bounded in the vicinity of xij for αij < 0, [13,

Sec. 8.3]. Finally, RHP-Pe(d) is easily deduced from the inclusion Ue ⊂ D−
i , (19) and (14).

9.2 Local Parametrices around Points in Ein

The construction below is known [30, 21, 22, 8].

9.2.1 Conformal Maps

Since h is a rational function on R, it holds that h(0)± = h
(i)
∓ on

(
a~c,i,b~c,i

)
∩Ue. Then

(63) ζe(z) := sgn
(
Im(z)

)
i
∫z
e

(
h(0) − h(i)

)
(x)dx, Im(z) 6= 0,

extends to a conformal function in Ue vanishing at e. Define ζ~n,e exactly as in (63) with
h replaced by h~n. Then it holds that

(64) ζ~n,e(z) =
sgn
(
Im(z)

)
i

| ~n |
log
(
Φ

(0)
~n (z)/Φ

(i)
~n (z)

)
, Im(z) 6= 0,

by (21). It follows from (19) and (14) that ζ~n,e is real on
(
a~c,i,b~c,i

)
∩Ue. Moreover, since

Ue \
(
a~c,i,b~c,i

)
⊂ D+

i , ζ~n,e maps upper half-plane into the upper half-plane. In particular,
ζ~n,e(x) > 0 for x ∈

(
e,b~c,i

)
∩Ue. Observe also that

(65) ζ~n,e → ζe

holds uniformly on Ue by (19) since (19) is the statement about convergence of the imagi-
nary parts of ζ~n,e to the imaginary part of ζe.
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9.2.2 Matrix Pe

It follows from the way we extended ρi into Ω±~n,i that we can write

(66) ρi(z) = ρr,e(z)

{
(e− z)α, Re(z) < e,
β(z− e)α, Re(z) > e,

where ρr,e(x) is a holomorphic and non-vanishing function in Ue. Define re by

re(z) :=
√
ρr,e(z)(z− e)

α/2,

where the square root is principal. Then re is a holomorphic and non-vanishing function
in Ue \ {x : x < e} that satisfies

(67)


re+(x)re−(x) = ρi(x), x ∈ {x : x < e}∩Ue,

r2e(z) = ρi(z)e
±πiα, z ∈ Γ±~n,ij ∩Ue,

r2e(x) = β
−1ρi(x),

(
Γ+~n,ij+1 ∪ Γ−~n,ij+1 ∪ {x : x > e}

)
∩Ue.

It is a straightforward computation using (67) and (64) to verify that RHP-Pe is solved by

Pe := EeTi

(
Φα,β

(
| ~n |ζ~n,e

)
r
−σ3
e

(
Φ

(0)
~n /Φ

(i)
~n

)−σ3/2)
D,

where Φα,β is the solution of RHP-Φα,β and the holomorphic prefactor Ee chosen below
to fulfill RHP-Pe(d).

9.2.3 Holomorphic Prefactor Ee

It follows from the properties of the branch of
(
iζ
)logβσ3/2πi that

(68)
(
iζ
)logβσ3/2πi
+

B+ =
(
iζ
)logβσ3/2πi
−

B−


(
0 1

−1 0

)
on (−∞, 0),(

0 β

−1/β 0

)
on (0,∞),

and it is holomorphic in C \ (−∞,∞). Therefore, it follows from RHP-N(b) that

Ee :=MTi

((
i| ~n |ζ~n,e

)logβσ3/2πi
B±r

−σ3
e

)−1
, ±Im(z) > 0,

is holomorphic in Ue \ {e}. Since |re(z)| ∼ |z− e|α/2 and
∣∣ζlogβ/2πi

∣∣ ∼ |ζ|arg(β)/2π, Ee is in
fact holomorphic in Ue as claimed. Clearly, in this case it holds that ε~n,e = | ~n ||arg(β)|/π−1.

9.3 Hard Edge

In this section we assume that e ∈ E~c and e 6∈ ∂D−
i .

9.3.1 Conformal Maps

It follows from Proposition 3 that b~c,i = b~n,i = bi or a~c,i = a~n,i = ai for all | ~n | large
in this case. Define

(69) ζe(z) :=

(
1

4

∫z
e

(
h(0) − h(i)

)
(x)dx

)2
, z ∈ Ue.

Since h(0)± = h
(i)
∓ on (ai,bi) ∩Ue, ζe is holomorphic in Ue. Moreover, since h has a pole

at e (the corresponding branch point of R), ζe has a simple zero at e. Thus, we can choose
Ue small enough so that ζe is conformal in Ue.

Define ζ~n,e as in (69) with h replaced by h~n. The functions ζ~n,e form a family of
holomorphic functions in Ue, all having a simple zero at e. Moreover, (21) yields that

(70) ζ~n,e(z) =

(
1

4| ~n |
log
(
Φ

(0)
~n /Φ

(i)
~n

))2
, z ∈ Ue,
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which, together with (15) and (19), implies that ζ~n,e(x) is positive for x ∈
(
R\ [ai,bi])∩Ue

and is negative x ∈ (ai,bi)∩Ue (this also can be seen from (37) and (38)).
Considering h~n and h as defined on the same doubly circular neighborhood of e and

recalling that their ratio converges to 1 on its boundary, we see that it converges to 1

uniformly throughout the neighborhood. The latter implies that (65) holds uniformly on
Ue. In particular, the functions ζ~n,e are conformal in Ue for all ~n large.

9.3.2 Matrix Pe

In this case we can write

(71) ρi(z) = ρr,e(z)

{
(e− z)α, e = bi,
(z− e)α, e = ai,

where ρr,e is non-vanishing and holomorphic in Ue, α > −1, and the α-roots are principal.
Set

(72) re(z) :=
√
ρr,e(z)

{
(z− e)α/2, e = bi,
(e− z)α/2, e = ai,

where the branches are again principal. Then re is a holomorphic and non-vanishing
function in Ue \ [ai,bi] and satisfies

(73)

{
re+(x)re−(x) = ρi(x), x ∈ (ai,bi),

r2e(z) = ρi(z)e
±πiα, z ∈ Γ±~n,i ∩Ue.

Then (70) and (73) imply that RHP-Pe is solved by

(74) Pe := EeTi

(
Ψe

(
| ~n |2ζ~n,e

)
r
−σ3
e

(
Φ

(0)
~n /Φ

(i)
~n

)−σ3/2)
D,

where Ψe := Ψα when e = bi and Ψe := σ3Ψασ3 when e = ai, and Ψα solves RHP-Ψα,
while Ee is a holomorphic prefactor chosen so that RHP-Pe(d) is fulfilled.

9.3.3 Holomorphic Prefactor Ee

As ζ1/4+ = iζ1/4− , it can be easily checked that

ζ
−σ3/4
+√
2

(
1 ±i
±i 1

)
=
ζ
−σ3/4
−√
2

(
1 ±i
±i 1

)(
0 ±1
∓1 0

)
on (−∞, 0). Then RHP-N(b) implies that

(75) Ee :=MTi

(
(| ~n |2ζ~n,e

)−σ3/4
√
2

(
1 ±i
±i 1

)
r
−σ3
e

)−1

is holomorphic around in Ue \ {e}, where the sign + is used around e = bi while the sign
− is used around e = ai. Since |re(z)| ∼ |z− e|α/2, Ee is in fact holomorphic in Ue as
desired. Clearly, ε~n,e = | ~n |−1 in this case.

9.4 Soft-Type Edge I

Below, we assume that e ∈ E~c and b~n,i ∈ ∂D−
~n,i or a~n,i ∈ ∂D−

~n,i.

9.4.1 Conformal Maps

By the condition of this section, it holds that e ∈ ∂D−
i . Define

(76) ζe(z) :=

(
−
3

4

∫z
e

(
h(0) − h(i)

)
(x)dx

)2/3
, z ∈ Ue.
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Further, define ζ~n,e exactly as ζe only with h replaced by h~n and e replaced by b~n,i if
e = b~c,i and by a~n,i if e = a~c,i. It follows from (21) that

(77) ζ~n,e(z) =

(
−

3

4| ~n |
log
(
Φ

(0)
~n (z)/Φ

(i)
~n (z)

))2/3
, z ∈ Ue.

Analysis in (37) and (39) yields that these functions are conformal in Ue (make the radius
smaller if necessary), are positive on

(
R \

[
a~n,i,b~n,i

]
)∩Ue and negative on

(
a~n,i,b~n,i)∩

Ue. Moreover, (65) holds as well.

9.4.2 Matrix Pe

If e = xij for some j ∈ {1, . . . , Ji − 1}, set α := αij and β := βij when e = b~c,i or
β := 1/βij when e = a~c,i, see (23); if e 6∈ {xij}

Ji−1
j=1 and e ∈ (ai,bi), set α = 0 and β = 1; if

e = ai, set α = αi0 and β = 0; if e = bi, set α = αiJi and β = 0. It follows from the way
we extended ρi into Ω±~n,i that

(78) ρi(z) = ρr,e(z)

{
(e− z)α, e = b~c,i,
(z− e)α, e = a~c,i,

for Re(z) ∈
(
a~c,i,b~c,i

)
and

(79) ρi(z) = βρr,e(z)

{
(z− e)α, e = b~c,i,
(e− z)α, e = a~c,i,

for Re(z) 6∈
[
a~c,i,b~c,i

]
, where all the branches are principal. Define re by (72) with bi

and ai replaced by b~c,i and a~c,i. Then re is a holomorphic and non-vanishing function in
Ue \

[
a~c,i,b~c,i

]
that satisfies

(80)


re+(x)re−(x) = ρi(x), x ∈

(
a~c,i,b~c,i

)
∩Ue,

r2e(z) = ρi(z)e
±πiα, z ∈ Γ±~n,i ∩Ue,

r2e(x) = β
−1ρi(x),

(
R \

(
a~c,i,b~c,i

))
∩Ue.

Then one can check using (80) and (77) that RHP-Pe is solved by

(81) Pe := EeTi

(
Ψe

(
| ~n |2/3

(
ζ~n,e − ζ~n,e(e)

))
r
−σ3
e

(
Φ

(0)
~n /Φ

(i)
~n

)−σ3/2)
D,

where Ψe := Ψα,β(·; s~n) when e = b~c,i and Ψe := σ3Ψα,β(·; s~n)σ3 when e = a~c,i,
Ψα,β(·; s) solves RHP-Ψα,β,

s~n := | ~n |2/3ζ~n,e(e),
and Ee is a holomorphic prefactor chosen so RHP-Pe(d) is satisfied.

9.4.3 Holomorphic Prefactor Ee

If s~n = 0, then Ee is given by (75) with | ~n |2 replaced by | ~n |2/3. In this case we have
by Theorem 7 that ε~n,e = | ~n |−1/3.

If s~n > 0, then (75) is no longer applicable as the matrix M has the jump only across(
a~n,i,b~n,i) while r−σ3e is discontinuous across

(
a~c,i,b~c,i

)
∩Ue where b~n,i < b~c,i or a~n,i >

a~c,i. Observe that

re+(x) = re−(x)e
απi, x ∈

((
a~c,i,b~c,i

)
\
(
a~n,i,b~n,i

))
∩Ue.

Therefore, define

Gα(ζ) := exp

{
−πiα

√
ζ
1

2πi

∫1
0

1√
x

dx
x− ζ

}
, ζ ∈ C \ (−∞, 1].

It is quite easy to see that {
Gα+Gα− ≡ 1 on (−∞, 0),

Gα− = Gα+πiα on (0, 1).
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Moreover, from the theory of singular integrals [13, Sec. 8.3] we know that Gα is bounded
around the origin and behaves like |ζ− 1|−α/2 around 1. Then it can be checked using the
above properties that the matrix function

Ee :=MTi


(
| ~n |2/3ζ~n,e

)−σ3/4
√
2

(
1 ±i
±i 1

)(
Gα ◦

(
ζ~n,e/ζ~n,e(e)

)
re
)−σ3


−1

is holomorphic in Ue. With such Ee it holds that

Pe =MTi

(
G

−σ3
α ◦

(
ζ~n,e/ζ~n,e(e)

) (
I+O

(
ε~n,e

)))
D

uniformly on ∂Ue \
(
(ai,bi)∪ Γ+~n,i ∪ Γ−~n,i

)
, where

(82) ε~n,e = max
{
|ζ~n,e(e)|

1/2, | ~n |−1/3
}

,

according to Theorem 7. To see that RHP-Pe(d) is fulfilled it only remains to notice that
Gα(ζ) = 1+O

(
ζ−1/2

)
as ζ→∞ uniformly in C \ (−∞, 1].

If s~n < 0, we need to modify (75) again because M still has its jump over
(
a~n,i,b~n,i

)
while re over

(
a~c,i,b~c,i) where b~n,i > b~c,i or a~n,i < a~c,i. Define

(83) Fβ(ζ) := β
1/2

(
i + (ζ− 1)1/2

i − (ζ− 1)1/2

)logβ/2πi

, ζ ∈ C \ (−∞, 1].

This function is holomorphic in the domain of its definition, tends to 1 as ζ → ∞, and
satisfies

Fβ+(x)Fβ−(x) =

{
1, x ∈ (−∞, 0),

β, x ∈ (0, 1).

Indeed, the function (i+
√
ζ− 1)/(i−

√
ζ− 1) maps the complement of (−∞, 1] to the lower

half-plane, its traces on (−∞, 1) are reciprocal to each other, are positive on (0, 1), and are
negative on (−∞, 0). The stated properties now easily follow if we take the principal
branch of logβ/2πi root of this function. Then

Ee :=MTi


(
| ~n |2/3ζ~n,e

)−σ3/4
√
2

(
1 ±i
±i 1

)(
Fβ ◦

(
ζ~n,e(e) − ζ~n,e

ζ~n,e(e)

)
re

)−σ3


−1

is holomorphic in Ue \ {e}. Since |re(z)| ∼ |z− e|α/2 as z→ e, one can deduce as before Ee
is holomorphic in Ue. Moreover, exactly as in the case s~n > 0, we get that RHP-Pe holds
with ε~n,e given by (82) since Fβ(ζ) = 1+O

(
ζ−1/2

)
as ζ→∞.

9.5 Soft-Type Edge II

Let e ∈ E~c, e ∈ ∂D−
i , but b~n,i 6∈ ∂D−

~n,i or a~n,i 6∈ ∂D−
~n,i. In this case it necessarily holds

that b~n,i = b~c,i = bi or a~n,i = a~c,i = ai.

9.5.1 Conformal Maps

By Proposition 3, h is bounded at e (the corresponding branch point of R) while h~n
has a simple pole at e (this time e is a branch point of R~n, but it has the same projection
e) and a simple zero z~n,i or z~n,i−1 that approaches e. Hence, we can write

(84) −
3

4

∫z
e

(
h
(0)
~n − h

(i)
~n

)
(x)dx =

√
z− e (z− e− ε~n) f~n(z),

where 0 6 ε~n → 0 as | ~n |→∞ and f~n is non-vanishing in some neighborhood of e and is
positive on the real line within this neighborhood (one can factor out

√
z− e as the square

of the left-hand side is holomorphic exactly as in (69) and (70)). Then there exist functions
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ζ~n,e, conformal in Ue, vanishing at e, real on R ∩Ue, and positive for x > e in Ue such
that

(85) −
3

4

∫z
e

(
h
(0)
~n − h

(i)
~n

)
(x)dx = ζ3/2~n,e (z) − ζ~n,e(e+ ε~n)ζ

1/2
~n,e (z).

Moreover, (65) holds, where ζe is defined by (76), and the left-hand side of (85) is equal to
the right-hand side of (77). Indeed, consider the equation

(86) u(z; ε)
(
u(z; ε) − p

)2
= g(z; ε), g(z; ε) := z(z− ε)2f(z; ε),

where p is a parameter, f(z; ε) is positive on the real line in some neighborhood of zero
and g1/3(z; 0) is conformal in this neighborhood. The solution of (86) is given by

(87) u(z; ε) = 2p+ v1/3(z; ε) + p2v−1/3(z; ε),

where v(z; ε) is the branch satisfying v1/3(0; ε) = −p of

(88) v(z; ε) = g(z; ε) − p3 +
√
g(z; ε)

(
g(z; ε) − 2p3

)
.

Choose p so that

(89) 2p3 = max
x∈[0,ε]

g(x; ε).

Conformality of g1/3(z; 0) implies that there exists the unique xε > ε such that{
g(x; ε)

(
g(x; ε) − 2p3

)
< 0, x ∈ (0, xε) \ {ε},

g(x; ε)
(
g(x; ε) − 2p3

)
> 0, x > xε,

for all ε small enough. Then we can see from (88) that

(90) |v±(x; ε)|2 =
(
g(x; ε) − p3)2 − g(x; ε)

(
g(x; ε) − 2p3

)
= p6

for x ∈ [0, xε]. Moreover, it holds that

(91) v+(x; ε) = p2v−1− (x; ε), x ∈ [0, xε].

Finally, observe that the conformality of g1/3(z; 0) yields that the change of the argument
of v+(x; ε) is 3π when x changes between 0 and xε. Hence, v1/3(z; ε) is holomorphic off
[0, ε] and its traces on [0, ε] map this interval onto the circle centered at the origin of radius
p by (90). This together with (91) implies that u(z; ε) given by (87) is conformal in some
neighborhood of the origin and u(0; ε) = 0. Thus, ζ~n,e in (85) is given by

ζ~n,e(z) = u(z− e; ε~n),

where u(z; ε) is the solution given by (87) of (86) with f(z; ε) := f2~n(z−e) and the parameter
p chosen as in (89).

9.5.2 Matrix Pe

Clearly, formulae (71) and (72) remain valid in this case. Then (73) and (85) imply that
the solution of RHP-Pe is given by

Pe := EeTi

(
Ψe

(
| ~n |2/3ζ~n,e

)
r
−σ3
e

(
Φ

(0)
~n /Φ

(i)
~n

)−σ3/2)
D,

where Ee is given by (75) with | ~n |2 replaced by | ~n |2/3, Ψe = Ψ̃α,0(·; s~n) when e = bi and
Ψe = σ3Ψ̃α,0(·; s~n)σ3 when e = ai,

s~n := −| ~n |2/3ζ~n,e(e+ ε~n),

and Ψ̃α,β is the solution of RHP-Ψ̃α,β. In this case, it holds by Theorem 7 that

ε~n,e = max
{
ζ
1/2
~n,e (e+ ε~n), | ~n |−1/3

}
.
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10 model riemann-hilbert problem rhp-Ψα ,β

In this section we prove Theorem 7.

10.1 Uniqueness and Existence

Since all the jump matrices in RHP-Ψα,β(b) have unit determinant, det(Ψα,β) is holo-
morphic in C \ {0}. By RHP-Ψα,β(d), it holds that det(Ψα,β)(∞) = 1. It also follows
from RHP-Ψα,β(c) that det(Ψα,β) cannot have a polar singularity at the origin. Hence,
det(Ψα,β) ≡ 1. In particular, any solution of RHP-Ψα,β is invertible. If Ψ1 and Ψ2 are
two such solutions, then it is easy to verify that Ψ1Ψ−1

2 is holomorphic in C. Moreover,
Ψ1Ψ

−1
2 (ζ) = I+O(1/ζ) as ζ→∞. Thus, Ψ1Ψ−1

2 = I, which proves uniqueness.

10.2 Local Behavior

To proceed with the existence, we need more detailed description of the behavior of Ψα,β
at the origin. Denote by Ω1, Ω2, Ω3, and Ω4 consecutive sectors of C \

(
(−∞,∞) ∪ I− ∪

I+
)

staring with the one containing the first quadrant and continuing counter clockwise.
Then we can write

(92) Ψα,β(ζ) = E(ζ)Sα,β(ζ)Aj, ζ ∈ Ωj,
where E is a holomorphic matrix function,

(93) A3 = A4

(
1 0

e−απi 1

)
, A4 = A1

(
1 −β

0 1

)
, A1 = A2

(
1 0

eαπi 1

)
,

and

(94) A2 =

 1
2 cos(απ/2)

1−βeαπi

1−eαπi
1

2 cos(απ/2)
β−eαπi

1−eαπi

−eαπi/2 e−απi/2

 while Sα,β(ζ) = ζ
ασ3/2

when α is not an integer,

(95) A2 =

(
1
2e
απi/2 1

2e
−απi/2

−eαπi/2 e−απi/2

)
while Sα,β(ζ) =

(
ζα/2 1−β

2πi ζ
α/2 log ζ

0 ζ−α/2

)
when α is an even integer,

(96) A2 =

(
0 e−απi/2

−eαπi/2 e−απi/2

)
while Sα,β(ζ) =

(
ζα/2 1+β

2πi ζ
α/2 log ζ

0 ζ−α/2

)
when α is an odd integer (observe that det(Aj) = 1 for all j ∈ {1, 2, 3, 4}). Indeed, equation
(92) can be viewed as a definition of the matrix E. Relations (93) are chosen so E is
holomorphic across I± and (0,∞). Moreover, on (−∞, 0) it holds that

E−1− E+ = Sα,β−A2

(
1 0

eαπi 1

)(
1 −β

0 1

)(
1 0

e−απi 1

)(
0 1

−1 0

)
A−1
2 S

−1
α,β+ = I,

where the last equality is a tedious but straightforward computation. Hence, E is holo-
morphic in C \ {0}. Using RHP-Ψα,β(d) and (92), one can verify that E cannot have a polar
singularity at 0 and therefore is entire as claimed.

10.3 Vanishing Lemma

The crucial step in showing solvability of RHP-Ψα,β is the following result. Assume Fα,β
satisfies RHP-Ψα,β(a,b,c) and it holds that

(97) Fα,β(ζ) = O
(
ζ−1

) ζ−σ3/4√
2

(
1 i
i 1

)
exp
{
−

(
2

3
ζ3/2 + sζ1/2

)
σ3

}
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as ζ → ∞ uniformly in C \
(
I+ ∪ I− ∪ (−∞,∞)

)
. Then Fα,β ≡ 0. To prove this claim, we

follow the line of argument from [16] and [32]. Set, for brevity, θ(ζ) :=
(
2
3ζ
3/2 + sζ1/2

)
.

Assuming Re(β) > 0, define

Gα,β(ζ) :=



Fα,β(ζ)e
θ(ζ)σ3

(
0 −1

1 0

)
, ζ ∈ Ω1,

Fα,β(ζ)e
θ(ζ)σ3

(
1 0

eαπie2θ(ζ) 1

)(
0 −1

1 0

)
, ζ ∈ Ω2,

Fα,β(ζ)e
θ(ζ)σ3

(
1 0

−e−απie2θ(ζ) 1

)
, ζ ∈ Ω3,

Fα,β(ζ)e
θ(ζ)σ3 , ζ ∈ Ω4.

Then Gα,β satisfies the following Riemann-Hilbert problem (RHP-Gα,β):

(a) Gα,β is holomorphic in C \ (−∞,∞);
(b) Gα,β has continuous traces on (−∞, 0)∪ (0,∞) that satisfy

Gα,β+ = Gα,β−


(

1 −eαπie2θ+

e−απie2θ− 0

)
on (−∞, 0),(

βe−2θ −1

1 0

)
on (0,∞);

(c) as ζ→ 0 it holds that

Gα,β(ζ) = O

(
|ζ|α/2 |ζ|α/2

|ζ|α/2 |ζ|α/2

)
when α < 0,

Gα,β(ζ) = O

(
1 1+ (1−β) log |ζ|

1 1+ (1−β) log |ζ|

)
and Gα,β(ζ) = O

(
1+ (1−β) log |ζ| 1

1+ (1−β) log |ζ| 1

)
when α = 0, for Im(ζ) < 0 and Im(ζ) > 0, respectively, and

Gα,β(ζ) = O

(
|ζ|α/2 |ζ|−α/2

|ζ|α/2 |ζ|−α/2

)
and Gα,β(ζ) = O

(
|ζ|−α/2 |ζ|α/2

|ζ|−α/2 |ζ|α/2

)
when α > 0, for Im(ζ) < 0 and Im(ζ) > 0, respectively;

(d) Gα,β = O(ζ−3/4) as ζ→∞.

Properties RHP-Gα,β(a,b) can be easily verified using RHP-Ψα,β(a,b), the definition of
Gα,β, and the fact that θ+ + θ− ≡ 0 on (−∞, 0). To show RHP-Gα,β(c), observe that the
representations (92)–(96) holds for Fα,β as well. They imply that

Gα,β = ESα,βA1

(
0 −1

1 0

)
e−θσ3 and Gα,β = ESα,βA4e

θσ3

in Ω1 ∪Ω2 and Ω3 ∪Ω4, respectively. Since [A1]21 = [A4]21 = 0, RHP-Gα,β(c) follows.
Finally, RHP-Gα,β(d) is the consequence of the fact that Re(θ) < 0 in Ω2 ∪Ω3.

For the next step of the proof consider the matrix function

Gα,β(ζ)
(
Gα,β(ζ̄)

)∗, ζ 6∈ (−∞,∞),

where
(
Gα,β

)∗ is the hermitian conjugate ofGα,β. This matrix function is holomorphic off
the real line, has integrable traces on the real line by RHP-Gα,β(c) (recall that α > −1), and
vanishes at infinity as ζ−3/2 by RHP-Gα,β(d). Thus, we deduce from Cauchy’s theorem
that the integral of its traces over the real line is zero, i.e.,

(98) 0 =

∫∞
−∞Gα,β+(x)

(
Gα,β−(x)

)∗dx = ∫∞
−∞Gα,β−(x)

(
Gα,β+(x)

)∗dx.
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Adding the last two integrals together and using RHP-Gα,β(b), we get

0 =

∫0
−∞Gα,β−(x)

(
2 0

0 0

)(
Gα,β−(x)

)∗dx
+

∫∞
0
Gα,β−(x)

(
(β+ β̄)e−2θ(x) 0

0 0

)(
Gα,β−(x)

)∗dx.

The above equality yields that the first column of Gα,β− vanishes identically on (−∞, 0)
(on the whole real line if β is not purely imaginary). In any case, since Gα,β− consists
of traces of holomorphic functions, its first column vanishes identically in the lower half-
plane. Thus, by RHP-Gα,β(b), the second column of Gα,β vanishes identically in the
upper half-plane. To finish proving that Gα,β ≡ 0 in the case Re(β) > 0 (and therefore
Fα,β ≡ 0), set

gi(ζ) :=

{
[Gα,β]i1(ζ), Im(ζ) > 0,

[Gα,β]i2(ζ), Im(ζ) < 0.

Both functions gi are holomorphic in C \ (−∞, 0], satisfy gi(ζ) = O(ζ−3/4) as ζ→∞ and
gi(ζ) = O(|ζ|−|α|/2) as ζ→ 0, while their traces are related by the formula

gi+(x) = gi−(x)e
−απie2θ−(x), x ∈ (−∞, 0).

The latter is possible only if gi ≡ 0 as shown in [16, Def. (2.26) and below].
When Re(β) < 0 and Im(β) 6= 0, let us redefine Gα,β in Ω1 and Ω2 by setting

Gα,β(ζ) :=


Fα,β(ζ)e

θ(ζ)σ3

(
0 1

1 0

)
, ζ ∈ Ω1,

Fα,β(ζ)e
θ(ζ)σ3

(
1 0

eαπie2θ(ζ) 1

)(
0 1

1 0

)
, ζ ∈ Ω2.

This newly defined function Gα,β still satisfies RHP-Gα,β except for RHP-Gα,β(b), which
now becomes

Gα,β+ = Gα,β−


(

1 eαπie2θ+

e−απie2θ− 0

)
on (−∞, 0),(

βe−2θ 1

1 0

)
on (0,∞).

Observe that (98) remains valid. Thus, by taking the difference of the integrals in (98), we
arrive at

0 =

∫∞
0
Gα,β−(x)

(
(β− β̄)e−2θ(x) 0

0 0

)(
Gα,β−(x)

)∗dx.

This again allows us to conclude that the first column of Gα,β vanishes identically in the
lower half-plane and the second column vanishes in the upper half-plane. The remaining
part of the proof is now exactly the same as in the case Re(β) > 0.

10.4 Existence

For Aj and Sα,β as in (93)–(96), define

Mα,β(ζ) :=


Ψα,β(ζ)A

−1
j S

−1
α,β(ζ), ζ ∈ Ωj ∩

{
|ζ| < 1

}
,

Ψα,β(ζ)e
θ(ζ)σ3 1√

2

(
1 −i
−i 1

)
ζσ3/4, ζ ∈ Ωj ∩

{
|ζ| > 1

}
.

Further, let the contour ΣM be as on Figure 4 with its subarcs oriented so that C \ ΣM =

Ω+ ∪Ω−, where ΣM is positively oriented boundary of Ω+ and is negatively oriented
boundary of Ω−. If Ψα,β uniquely solves RHP-Ψα,β, then Mα,β uniquely solves the
following Riemann-Hilbert problem (RHP-Mα,β):

(a) Mα,β is holomorphic in C \ ΣM and Mα,β(ζ) = I+O(1/ζ) as ζ→∞;
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Figure 4. Contours ΣM.

(b) Mα,β has continuous traces on ΣM that satisfy Mα,β+ =Mα,β−J, where

J(ζ) =

(
Sα,β(ζ)Aje

θ(ζ)σ3
1√
2

(
1 −i
−i 1

)
ζσ3/4

)±1
,

on Ωj ∩
{
|ζ| = 1

}
with the exponent 1 for j = 1, 3 and the exponent −1 for j = 2, 4,

and on the rest of the contour ΣM the jump is equal to

J(ζ) = I+ e−2θ(ζ)



0, ζ ∈ ΣM ∩
{
|ζ| < 1

}
or ζ ∈ (−∞,−1),

β
2

(
−i ζ−1/2

ζ1/2 i

)
, ζ ∈ (1,∞),

e±απi

2

(
iζ−1/2 1

1 −iζ1/2

)
, ζ ∈ I± ∩

{
|ζ| > 1

}
.

According to [18, Appendix], see also [16, Prop. 2.4], the unique solution of RHP-Mα,β
is given by the formula

Mα,β(ζ) = I+ C
(
M(W+ +W−)

)
(ζ), ζ ∈ C \ ΣM,

where J = (I−W−)
−1(I−W+) is a factorization of the jump J for someW± ∈ L2(ΣM)∩

L∞(ΣM), C is a Cauchy operator

CH(ζ) =
1

2πi

∫
ΣM

H(s)

s− ζ
ds, H ∈ L2(ΣM), ζ ∈ C \ ΣM,

and M ∈ I+ L2(ΣM) is the solution of the singular integral equation

(99)
(
I− CW

)
M = I

for the singular operator CW : L2(ΣM)→ L2(ΣM) given by

CWH := C+(HW−) + C−(HW+), H ∈ L2(ΣM),

provided this solution exists and is unique. Indeed, given such M, it holds that

I+ C±
(
M(W+ +W−)

)
= I+ CWM+

(
C± − C∓

)
(MW±) =M±MW±

by (99) and Sokhotski-Pemelj formulae [13, Section 4.2]. Then(
I+ C−

(
M(W+ +W−)

))−1 (
I+ C+

(
M(W+ +W−)

))
= (I−W−)

−1(I−W+) = J

as desired. Thus, only the unique solvability of (99) needs to be shown. The sufficient
condition for the latter is bijectivity of the operator I− CW , which can be established by
showing that I− CW is Fredholm with index zero and trivial kernel.

To this end, let us specify W±. Away from the points of self-intersection of ΣM, set

W+ := J− I and W− = 0.
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Around the points of self-intersection, we choseW+ to be continuous along the boundary
of Ω+ andW− to be continuous along the boundary of Ω−. The latter is possible because
around each point of self-intersection of ΣM, the jumps satisfy the cyclic relation

J1J
−1
2 J3J

−1
4 = I,

where we label the four arcs meeting at the point of self-intersection counter-clockwise
starting with an arc oriented away from the point and denote by Ji the jump across the
i-th arc. Clearly, W± ∈ L2(ΣM)∩ L∞(ΣM). To show that I− CW is Fredholm, one needs
to construct its pseudoinverse. The latter is given by I− C

W̃
, where

W̃+ :=
(
I+W+

)−1
− I and W̃− := I−

(
I−W−

)−1,

as explained in [16, Eq. (2.39)–(2.42)]. The index of I−CW is equal to the winding number
of det(J), which is zero since det(J) ≡ 1. Finally, the kernel of I−CW is trivial if and only if
the homogeneous Riemann-Hilbert problem corresponding to RHP-Mα,β has only trivial
solutions. Correspondence between RHP-Ψα,β and RHP-Mα,β implies that the kernel is
trivial if and only if the solution of RHP-Ψα,β with RHP-Ψα,β(d) replaced by (97) has only
trivial solutions. This is precisely the content of the preceding subsection. This finishes
the proof of the first claim of Theorem 7.

10.5 Asymptotics of RHP-Ψα,β for s > 0

It is known that O
(
η−1

)
is uniform for s on compact subsets of the real line [16]. Thus,

we only need to prove (33) for s large.

10.5.1 Renormalized RHP-Ψα,β

Set Î± := {η : arg(η+ 1) = ±2π/3} and let Ω̂j, j ∈ {1, 2, 3, 4}, be the domains comprising
C \

(
(−∞,∞) ∪ Î+ ∪ Î−

)
, numbered counter-clockwise and so that Ω̂1 contains the first

quadrant. Define

g(η) =
2

3
(η+ 1)3/2, η ∈ C \ (−∞,−1],

to be the principal branch and set for convenience τ := s3/2. Let

(100) Ψ̂α,β(η; τ) = sσ3/4Ψα,β(sη; s)


I in Ω1 ∪Ω4 ∪ Ω̂2 ∪ Ω̂3,(

1 0

±e±απi 1

)
in Ω2 \ Ω̂2, Ω3 \ Ω̂3,

where the sign + is used in Ω2 \ Ω̂2 and the sign − in Ω3 \ Ω̂3. Then Ψ̂α,β solves the
following Riemann-Hilbert problem (RHP-Ψ̂α,β):

(a) Ψ̂α,β is holomorphic in C \
(̂
I+ ∪ Î− ∪ (−∞,∞)

)
;

(b) Ψ̂α,β has continuous traces on Î+ ∪ Î− ∪ (−∞,−1)∪ (−1, 0)∪ (0,∞) that satisfy

Ψ̂α,β+ = Ψ̂α,β−



(
0 1

−1 0

)
on (−∞,−1),(

eαπi 1

0 e−απi

)
on (−1, 0),(

1 β

0 1

)
on (0,∞),(

1 0

e±απi 1

)
on Î±;

(c) as η→ 0 it holds that

Ψ̂α,β(η; τ) = Ê(η)Sα,β(η)Aj, η ∈ Ω̂j, j ∈ {1, 4},

where Ê is holomorphic, and Sα,β, A1 and A4 are the same as in RHP-Ψα,β(c);
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(d) Ψ̂α,β has the following behavior near∞:

Ψ̂α,β(η; τ) =
(
I+O

(
η−1

)) η−σ3/4√
2

(
1 i
i 1

)
e−τg(η)σ3

uniformly in C \
(̂
I+ ∪ Î− ∪ (−∞,∞)

)
.

10.5.2 Global Parametrix

Let

Ψ̂
(∞)

(η; τ) :=

(
1 0

αi 1

)
(η+ 1)−σ3/4√

2

(
1 i
i 1

)(
(η+ 1)1/2 + 1

(η+ 1)1/2 − 1

)−ασ3/2

e−τg(η)σ3

=: F(∞)(τ)e−τg(η)σ3 .

Then, as is explained in [17, Section 2.4.1], this matrix-valued function solves the following
Riemann-Hilbert problem:

(a) Ψ̂
(∞)

is holomorphic in C \ (−∞, 0];

(b) Ψ̂
(∞)

has continuous traces on (−∞,−1)∪ (−1, 0) that satisfy

Ψ̂
(∞)
+ = Ψ̂

(∞)
−


(
0 1

−1 0

)
on (−∞,−1),

eαπiσ3 on (−1, 0),

(c) as η → 0 it holds that Ψ̂
(∞)

(η; τ) = Ê
(∞)

(η)ηασ3/2, where Ê
(∞)

is holomorphic
and non-vanishing around zero;

(d) Ψ̂
(∞)

satisfies RHP-Ψ̂α,β(d) uniformly in C \ (−∞; 0] and the term O
(
η−1

)
does

not depend on τ.

Notice that F(∞) has the same jumps as Ψ̂
(∞)

.

10.5.3 Local Parametrix Around −1

The solution ΨAi := Ψ0,1(·; 0) is known explicitly and is constructed with the help of
the Airy function and its derivative [9]. Set

Ψ̂
(−1)

(η; τ) := Ê
(−1)

(η)ΨAi

(
s(η+ 1)

)
e±απiσ3/2, ±Im(η) > 0,

where Ê
(−1)

is holomorphic around −1 and is given by

Ê
(−1)

(η) := F(∞)(η)

((
s(η+ 1)

)−σ3/4
√
2

(
1 i
i 1

)
e±απiσ3/2

)−1

, ±Im(η) > 0.

LetU−1 be the disk of radius 1/4 centered at −1with boundary oriented counter-clockwise.

Then it is shown in [17, Section 2.4.2] that Ψ̂
(−1)

satisfies

(a) Ψ̂
(−1)

is holomorphic in U−1 \
(̂
I+ ∪ Î− ∪ (−∞,∞)

)
;

(b) Ψ̂
(−1)

has continuous traces onU−1∩
(̂
I+∪ Î−∪ (−∞,∞)

)
that satisfy RHP-Ψ̂α,β(b);

(c) it holds that

Ψ̂
(−1)

(η; τ) = F(∞)(η)
(
I+O

(
τ−1

))
e−τg(η)σ3

as τ→∞, uniformly for η ∈ ∂U−1 \
(̂
I+ ∪ Î− ∪ (−∞,∞)

)
.

10.5.4 Local Parametrix Around 0

Define

Ψ̂
(0)

(η; τ) := Ê
(0)

(η)Sα,β(τ)

{
A1, Im(η) > 0,

A4, Im(η) < 0,
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where Sα,β and Aj are the same as in RHP-Ψα,β(c) and

Ê
(0)

(η) := Ψ̂
(∞)

(η; τ)η−ασ3/2
(
[A1]

−1
11 0

0 [A1]
−1
22

)
,

which is a holomorphic function around the origin by the properties of Ψ̂
(∞)

. Let U0 be

the disk of radius 1/4 centered at 0 with boundary oriented counter-clockwise. Then Ψ̂
(0)

possesses the following properties:

(a) Ψ̂
(0)

is holomorphic in U0 \ (−1/4, 1/4);

(b) Ψ̂
(0)

has continuous traces on (−1/4, 0)∪ (0, 1/4) that satisfy RHP-Ψ̂α,β(b);

(c) Ψ̂
(0)

satisfies RHP-Ψ̂α,β(c) with Ê replaced by Ê
(0)

;
(d) it holds that

Ψ̂
(0)

(η; τ) = F(∞)(η)
(
I+O

(
e−cτ

))
e−τg(η)σ3

as τ→∞ for some c > 0, uniformly for η ∈ ∂U0 \ {−1/4, 1/4}.

Indeed, properties (a,b,c) easily follow from RHP-Ψ̂α,β(b,c) and the holomorphy of Ê
(0)

.
To get (d), write [Sα,β]12(η) = η

α/2κ(η), where

κ(η) = 0, κ(η) =
1−β

2πi
logη, or κ(η) =

1+β

2πi
logη

depending on whether α is not an integer, an even integer, or an odd integer. Recall also
that A1 and A4 are upper triangular matrices and [A1]ii = [A4]ii for i ∈ {1, 2}. Then

Ψ̂
(0)

(η; τ) = F(∞)(η)e−τg(η)σ3

(
[Aj]

−1
11 0

0 [Aj]
−1
22

)(
1 κ(η)

0 1

)
Aj

= F(∞)(η)

(
1 e−2τg(η)

(
[Aj]22κ(η) + [Aj]12

)
/[Aj]11

0 1

)
e−τg(η)σ3 ,

from which property (d) can be easily deduced as τ > 0 and Re(g(η)) > 0 for η ∈ ∂U0.

10.5.5 Asymptotics of RHP-Ψα,β

Denote by

Σ(Rα,β) := ∂U−1 ∪ ∂U0 ∪
((̂
I− ∪ Î+ ∪ (−1,∞)

)
∩
(
C \

(
U−1 ∪U0

)))
,

and let Σ◦(Rα,β) be Σ(Rα,β) with the points of self-intersection removed. Put

Rα,β(η; τ) := Ψ̂α,β(η; τ)


Ψ̂

(−1)
(η; τ)−1, η ∈ U−1,

Ψ̂
(0)

(η; τ)−1, η ∈ U0,

Ψ̂
(∞)

(η; τ)−1, η ∈ C \
(
U0 ∪U−1

)
.

Then Rα,β has the following properties:

(a) Rα,β is holomorphic in C \ Σ(Rα,β);
(b) Rα,β has continuous traces on Σ◦(Rα,β) that satisfy R(0)

α,β+ := R
(0)
α,β−

(
I+O

(
τ−1

))
as τ→∞;

(c) it holds that Rα,β(η; τ) = I+O
(
η−1

)
as η→∞ uniformly in C \ Σ(Rα,β).

Property (a) follows from the facts that Ψ̂
(e)

has the same jumps as Ψ̂α,β in Ue, e ∈
{−1, 0}, Ψ̂

(∞)
has the same jump across (−∞,−1) as Ψ̂α,β, and Ψ̂

(0)
has the same local

behavior around 0 as Ψ̂α,β. Property (c) follows easily from the fact that both Ψ̂
(∞)

and
Ψ̂α,β satisfy RHP-Ψ̂α,β(d). Property (b) on ∂Ue, e ∈ {−1, 0}, is the consequence of the fact

R−1
α,β−Rα,β+ = Ψ̂

(∞)
Ψ̂

(e)−1
= I+ F(∞)O

(
τ−1

)
F(∞)−1.
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Finally, on the rest of Σ(Rα,β) it holds that

Rα,β+ = Rα,β−



I+ F
(∞)
−

(
0 e−2τg

0 0

)
F
(∞)−1
+ on (−3/4,−1/4),

I+ F(∞)

(
0 βe−2τg

0 0

)
F(∞)−1 on (1/4,∞),

I+ F(∞)

(
0 0

e±απie2τg 0

)
F(∞)−1 on Î± \U−1.

As g(η) > 0 for η ∈ (−1,∞) and g(η) < 0 for η ∈ Î±, the last part of the property (b)
follows. Given (a,b,c) it is by now standard to conclude that

Rα,β(η; τ) = I+O

(
1

τ(1+ |η|)

)
as τ→∞ uniformly for η ∈ C \ Σ(Rα,β). Thus,

Ψ̂α,β(η; τ) =
η−σ3/4√

2

(
I+O

(
1

τ
√
1+ |η|

))(
I+O

(
η−1/2

))(
1 i
i 1

)
e−τg(η)σ3

=
η−σ3/4√

2

(
I+O

(
η−1/2

))(
1 i
i 1

)
e−τg(η)σ3(101)

as η → ∞ uniformly for η ∈ C \ Σ(Rα,β) and τ large. Estimate (33) now follows from
(100).

10.6 Asymptotics of RHP-Ψα,β for s < 0

In this section we assume that β 6= 0 and define

logβ = log |β|+ iarg(β), arg(β) ∈ (−π,π).

Again, we only need to prove (33) when s→ −∞.

10.6.1 Renormalized RHP-Ψα,β

Set Ĵ± to be two Jordan arcs connecting 0 and 1, oriented from 0 to 1, and lying in the
first (+) and the fourth (−) quadrants. Denote further by Ω± the domains delimited by
Ĵ± and [0, 1]. Define

g(η) =
2

3
(η− 1)3/2, η ∈ C \ (−∞, 1],

to be the principal branch and set for convenience τ := (−s)3/2. Let

(102) Ψ̂α,β(η; τ) = (−s)σ3/4Ψα,β(−sη; s)


(

1 0

∓1/β 1

)
in Ω±,

I otherwise.

Put for brevity Σ(Ψ̂α,β) := I+ ∪ I− ∪ (−∞,∞) ∪ Ĵ+ ∪ Ĵ−. Then Ψ̂α,β solves the following
Riemann-Hilbert problem (RHP-Ψ̂α,β):

(a) Ψ̂α,β is holomorphic in C \ Σ(Ψ̂α,β);
(b) Ψ̂α,β has continuous traces on Σ(Ψ̂α,β) \ {0, 1} that satisfy

Ψ̂α,β+ = Ψ̂α,β−



(
0 1

−1 0

)
on (−∞, 0),(

0 β

−1/β 0

)
on (0, 1),(

1 β

0 1

)
on (1,∞),
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and

Ψ̂α,β+ = Ψ̂α,β−


(
1 0

1/β 1

)
on Ĵ±,(

1 0

e±απi 1

)
on I±;

(c) as η→ 0 it holds that

Ψ̂α,β(η; τ) = O

(
|ζ|α/2 |ζ|α/2 + |ζ|−α/2

|ζ|α/2 |ζ|α/2 + |ζ|−α/2

)
and Ψ̂α,β(η; τ) = O

(
1 log |ζ|

1 log |ζ|

)
when α 6= 0 and α = 0, respectively;

(d) Ψ̂α,β has the following behavior near∞:

Ψ̂α,β(η; τ) =
(
I+O

(
η−1

)) η−σ3/4√
2

(
1 i
i 1

)
e−τg(η)σ3

uniformly in C \
(
I+ ∪ I− ∪ (−∞,∞)

)
.

10.6.2 Global Parametrix

Set
Ψ̂

(∞)
(η; τ) := F(∞)(η)e−τg(η)σ3 ,

where

F(∞)(η) :=

(
1 0

− 1
πi logβ 1

)
(η− 1)−σ3/4√

2

(
1 i
i 1

)
F
−σ3
β (η)

and the function Fβ is give by (83). Now, it is a straightforward verification to see that

(a) Ψ̂
(∞)

is holomorphic in C \ (−∞, 1];

(b) Ψ̂
(∞)

has continuous traces on (−∞, 1) that satisfy

Ψ̂
(∞)
+ = Ψ̂

(∞)
−


(
0 1

−1 0

)
on (−∞, 0),(

0 β

−1/β 0

)
on (0, 1);

(c) Ψ̂
(∞)

satisfies RHP-Ψ̂α,β(d) uniformly in C \ (−∞; 1] and the term O
(
η−1

)
does

not depend on τ.

Again, notice that Ψ̂
(∞)

and F(∞) satisfy the same jump relations.

10.6.3 Local Parametrix Around 1

Denote by U1 the disk centered at 1 of radius 1/4 with boundary oriented counter-
clockwise. Choose arcs Ĵ± so that{

η− 1 : η ∈ Ĵ± ∩U1
}
⊂ I±.

Let, as before, ΨAi = Ψ0,1(·; 0). Set

Ψ̂
(1)

(η; τ) := Ê
(1)

(η)ΨAi

(
− s(η− 1)

)
β−σ3/2,

where Ê
(1)

is holomorphic around 1 and is given by

Ê
(1)

(η) := F(∞)(η)

((
− s(η− 1)

)−σ3/4
√
2

(
1 i
i 1

)
β−σ3/2

)−1

.

Then it can be checked that Ψ̂
(1)

satisfies

(a) Ψ̂
(1)

is holomorphic in U1 \ Σ(Ψ̂α,β);

(b) Ψ̂
(1)

has continuous traces on U1 ∩ Σ(Ψ̂α,β) that satisfy RHP-Ψ̂α,β(b);
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(c) it holds that

Ψ̂
(1)

(η; τ) = F(∞)(η)
(
I+O

(
τ−1

))
e−τg(η)σ3

as τ→∞, uniformly for η ∈ ∂U1 \ Σ(Ψ̂α,β).

10.6.4 Local Parametrix Around 0

Denote by U0 the disk centered at 0 of radius 1/4 whose boundary oriented counter-
clockwise. Let

m(η) := 3∓ 2ig(η), ±Im(η) > 0.

Then m is conformal in U0, m(0) = 0, and m(x) > 0 for x ∈ (0, 1/4). Choose the arcs Ĵ±
so that m

(̂
J±
)
⊂ J±. Define

Ψ̂
(0)

(η; τ) := Ê
(0)

(η)D
(
Φα,β

(
τm(η)

))
,

whereΦα,β is the solution of RHP-Φα,β, D
(
Φα,β

(
τm
))

is a holomorphic deformation of

Φα,β
(
τm
)

that moves the jumps from (τm)−1
(
I±
)

to I±, and Ê
(0)

is holomorphic around
0 and is given by

(103) Ê
(0)

(η) := F(∞)(η)
(
e−3τiσ3/2

(
iτm(η)

)logβσ3/2πi
B±
)−1

(the constant matrices B± were also defined in RHP-Φα,β). To see that E(0) is indeed
holomorphic recall that

B+ = B−

(
0 1

−1 0

)
and

(
ix
)logβ/2πi
−

= β
(
ix
)logβ/2πi
+

for x > 0, which implies that the function in parenthesis in (103) has the same jump as
F(∞) on (−1/4, 1/4). Observe further that

B±e
∓iτm(η)σ3/2 = e3τiσ3/2B±e

−τg(η)σ3 , ±Im(η) > 0.

Therefore, it follows from RHP-Φα,β(d) that

Ψ̂
(0)

(η; τ) = F(∞)(η)
(
e−3τiσ3/2

(
iτm(η)

)logβσ3/2πi
B±
)−1 (

I+O
(
τ−1

))
×

×
(
e−3τiσ3/2

(
iτm(η)

)logβσ3/2πi
B±
)
e−τg(η)σ3 .

Finally, notice that ∣∣∣τlogβ/2πi
∣∣∣ = τarg(β)/2π, arg(β) ∈ (−π,π).

Thus, Ψ̂
(0)

has the following properties:

(a) Ψ̂
(0)

is holomorphic in U0 \ Σ(Ψ̂α,β);

(b) Ψ̂
(0)

satisfies RHP-Ψ̂α,β(b) on Σ(Ψ̂α,β)∩U0;

(c) Ψ̂
(0)

satisfies RHP-Ψ̂α,β(c) within U0 (by RHP-Φα,β(c));
(d) it holds that

Ψ̂
(0)

(η; τ) = F(∞)(η)
(
I+O

(
τarg(β)/π−1

))
e−τg(η)σ3

as τ→∞ uniformly on ∂U0 \ Σ(Ψ̂α,β).

10.6.5 Asymptotics of RHP-Ψα,β

Define

Rα,β(η; τ) := Ψ̂α,β(η; τ)


Ψ̂

(0)
(η; τ)−1, η ∈ U0,

Ψ̂
(1)

(η; τ)−1, η ∈ U1,

Ψ̂
(∞)

(η; τ)−1, η ∈ C \
(
U0 ∪U1

)
.
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Notice that the jumps of Rα,β across Ĵ± \
(
U0 ∪U1

)
are equal to

I+ F(∞)−1

(
0 0

e2τg 0

)
F(∞).

Since Re(g) < 0 there, we get exactly as in the case s > 0 that

Rα,β(η; τ) = I+O

(
1

τ1−arg(β)/π(1+ |η|)

)
as τ→∞ uniformly for η ∈ C \

(
∂U0 ∪ ∂U1 ∪

(
Σ(Ψ̂α,β) \

(
U0 ∪U1

)))
. Hence, (101) still

holds and therefore (33) follows from (102).

10.7 Asymptotics of RHP-Ψ̃α,β

Below, we assume that β = 0. As before, we only need to prove (34) when s→ −∞.

10.7.1 Renormalized RHP-Ψ̃α,β

Define
g(η) =

2

3
η1/2(η− 1), η ∈ C \ (−∞, 1],

to be the principal branch and set for convenience τ := (−s)3/2. Let

(104) Ψ̂α(η; τ) = (−s)σ3/4Ψ̃α,0(−sη; s).

Then Ψ̂α solves the following Riemann-Hilbert problem (RHP-Ψ̂α,β):

(a) Ψ̂α is holomorphic in C \
(
I+ ∪ I− ∪ (−∞, 0]

)
;

(b) Ψ̂α has continuous traces on I+ ∪ I− ∪ (−∞, 0) that satisfy

Ψ̂α+ = Ψ̂α−


(
0 1

−1 0

)
on (−∞, 0),(

1 0

e±απi 1

)
on I±;

(c) as η→ 0 it holds that

Ψ̂α(η; τ) = O

(
|ζ|α/2 |ζ|α/2 + |ζ|−α/2

|ζ|α/2 |ζ|α/2 + |ζ|−α/2

)
and Ψ̂α(η; τ) = O

(
1 log |ζ|

1 log |ζ|

)
when α 6= 0 and α = 0, respectively;

(d) Ψ̂α has the following behavior near∞:

Ψ̂α(η; τ) =
(
I+O

(
η−1

)) η−σ3/4√
2

(
1 i
i 1

)
e−τg(η)σ3

uniformly in C \
(
I+ ∪ I− ∪ (−∞,∞)

)
.

10.7.2 Global Parametrix

Set

Ψ̂
(∞)

(η; τ) :=
η−σ3/4√

2

(
1 i
i 1

)
e−τg(η)σ3 =: F(∞)(η)e−τg(η)σ3 .

It is a straightforward verification to see that

(a) Ψ̂
(∞)

is holomorphic in C \ (−∞, 0];

(b) Ψ̂
(∞)

has continuous traces on (−∞, 0) that satisfy Ψ̂
(∞)
+ = Ψ̂

(∞)
−

(
0 1

−1 0

)
;

(c) Ψ̂
(∞)

satisfies RHP-Ψ̂α(d) with O
(
η−1

)
≡ 0.
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10.7.3 Local Parametrix Around 0

Denote by U0 the disk centered at 0 of small enough radius so that g2(η) is conformal
in U0. Notice that g2(x) > 0 for {x > 0}∩U0. Define

Ψ̂
(0)

(η; τ) := Ê
(0)

(η)D
(
Ψα
(
(τg(η)/2)2

))
,

where Ψα is the solution of RHP-Ψα, D
(
Ψα
(
(τg/2)2

))
is a holomorphic deformation of

Ψα
(
(τg/2)2

)
that moves the jumps from (τ2g2/4)−1

(
I±
)

to I±, and Ê
(0)

is holomorphic
around 0 and is given by

Ê
(0)

(η) := F(∞)(η)D
(
F(∞)−1

(
(τg/2)2

))
.

Clearly, Ψ̂
(0)

has the following properties:

(a) Ψ̂
(0)

is holomorphic in U0 \
(
I+ ∪ I− ∪ (−∞,∞)

)
;

(b) Ψ̂
(0)

satisfies RHP-Ψ̂α(b) on
(
I+ ∪ I− ∪ (−∞,∞)

)
∩U0;

(c) Ψ̂
(0)

satisfies RHP-Ψ̂α(c) within U0 (by RHP-Ψα(c));
(d) it holds that

Ψ̂
(0)

(η; τ) = F(∞)(η)
(
I+O

(
τ−1

))
e−τg(η)σ3

as τ→∞ uniformly on ∂U0 \
(
I+ ∪ I− ∪ (−∞,∞)

)
.

10.7.4 Asymptotics of RHP-Ψ̃α,β

Define

Rα(η; τ) := Ψ̂α(η; τ)

 Ψ̂
(0)

(η; τ)−1, η ∈ U0,

Ψ̂
(∞)

(η; τ)−1, η ∈ C \U0.
Exactly as before we have that

Rα(η; τ) = I+O

(
1

τ(1+ |η|)

)
as τ→∞ uniformly for η ∈ C \

(
∂U0 ∪

((
I+ ∪ I− ∪ (−∞,∞)

)
\U0

))
. Hence, (34) follows

from (104).
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Sciences, Paris, 168:262–265, 1919. 2

[2] A.I. Aptekarev. Asymptotics of simultaneously orthogonal polynomials in the Angelesco case. Mat. Sb.,
136(178)(1):56–84, 1988. English transl. in Math. USSR Sb. 64, 1989. 4

[3] A.I. Aptekarev. Sharp constant for rational approximation of analytic functions. Mat. Sb., 193(1):1–72, 2002.
English transl. in Math. Sb. 193(1-2):1–72, 2002. 4

[4] A.I. Aptekarev and V.G. Lysov. Asymptotics of Hermite-Padé approximants for systems of Markov functions
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[32] S.-X. Xu and Y.-Q. Zhao Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight
with a jump at the edge. Applied Mathematics, 127:67–105, 2011 11, 29

[33] E.I. Zverovich. Boundary value problems in the theory of analytic functions in Hölder classes on Riemann
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