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STRONG ASYMPTOTICS OF HERMITE-PADE APPROXIMANTS FOR
ANGELESCO SYSTEMS

MAXIM L. YATTSELEV

ABSTRACT. In this work type II Hermite-Padé approximants for a vector of Cauchy trans-
forms of smooth Jacobi-type densities are considered. It is assumed that densities are sup-
ported on mutually disjoint intervals (an Angelesco system with complex weights). The
formulae of strong asymptotics are derived for any ray sequence of multi-indices.
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1 INTRODUCTION

Let f = (f1,...,fp), p € IN, be a vector of germs of holomorphic functions at infinity.
Given a multi-index 1t € INP, Hermite-Padé approximant to f associated with #, is a vector
of rational functions

™ (ilr= (P /Qn o P /Qx)
such that
deg(Qn) =I|f|:=nq+ - +np,
R(j‘)(z) = (Qﬁ_fi —P(i)) (z)=0 (zf(“i”)) as z—oo, i€e{l,...,phL

n n

(2)

It is quite simple to see that [l ]; always exists since (2) can be rewritten as a linear
system that has more unknowns than equations with coefficients coming from the Laurent
expansions of f;’s at infinity. Hence, Q3 is never identically zero and, in what follows, we
normalize Q7 to be monic.

The vector fis called an Angelesco system if

3) fi(z)zjd"“”, ieql,...,pl,

t—z

where 0;’s are positive measures on the real line with mutually disjoint convex hulls of
their supports, i.e., [aj, bj] N [ay, bx] = & for j # k where [a;, b;] is the smallest interval
containing supp(o;). Hermite-Padé approximants to such systems were initially consid-
ered by Angelesco [1] and later by Nikishin [23, 24]. The beauty of system (3) is that Qz,
the denominator of [11], turns out to be a multiple orthogonal polynomial satisfying

@) JQﬁ(x)xkdcn(x) —0,  ke{0,...mi—1), ie{l,...p)

When p = 1, Hermite-Padé approximant [11]- specializes to the diagonal Padé approx-
imant, quite often denoted by [n/nl¢. It was shown by Markov [20] that if f is of the form
(3) (now called a Markov function), then [n/nls converge to f locally uniformly outside of
[a, b]. Moreover, see [29, Thm. 6.1.6], it holds that

{ nli_r)n(x)n’1 log |f — [n/n]¢| < =2(t— V)

(5) . -1 w
nlgnoon log|Qn|l=-V
locally uniformly in C\ [a, b], where V¥ (z) := — [ log|z—tldw(t) is the logarithmic potential
of w, while the measure w and the constant { are the unique solutions of the min/max
problem:
(6) (:= min V¥(x) = max min VY(x),

x€la,b] veEM;(a,b) x€la,b]
where M (a,b) is the collection of all positive Borel measures of mass ¢ supported on
[a, bl. In fact, it also holds that w is the equilibrium distribution and ({ is the Robin’s constant
for the interval [a,b]. That is, w is the unique measure on [a, b] that solves the energy
minimization problem:

I = i I =1
(7) [w] e I\I/Ill]l?a,b) [v], €= Tw],
where I[v] := — [ [loglz — tldv(t)dv(z) = [VVdv is the logarithmic energy of v (for the

notions of logarithmic potential theory we use [27] and [28] as primary references).
It easily follows from (6)—(7) and properties of the superharmonic functions that

{—V® =0 on [ab],
C—V® >0 in C\Ia,bl.

Hence, the diagonal Padé approximants [n/n]¢ do indeed converge to f locally uniformly
in C\ [a, b]. Moreover, if o is a regular measure in the sense of Stahl and Totik [29, Sec. 3.1]

(8)
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(in particular, 0’ > 0 almost everywhere on [a, b] implies regularity), then the inequality
in (5) can be replaced by equality.

The above results were extended by Gonchar and Rakhmanov [15] to Hermite-Padé
approximants for Angelesco systems when multi-indices are such that

(9) ni=ciitf+o(lil), ¢=(c1,...,cp) € (O,NP, [CI=1,

as || — oo, and the measures o; satisfy o} > 0 almost everywhere on [aj, bi], i €
{1,...,p}. The formulae for the errors of approximation are similar in appearance to (5)
with measures coming not from a scalar but from a vector minimum energy problem. To
describe it, define

Me({ai, bi)]) = {¥ = (v1,...,vp) s vi € M¢ (ay,by), ie{l,...,p}}.

Then it is known that there exists the unique vector of measures @ € Mg({ai, bi}?) such
that

P
(10) @] = min 1[V], I[V]:= Z (ZI[V;J + Z I[vy, Vk])/

vEMe({ay,bi}}) k#i

where I[vi, vi] = — [ [loglz — t|dvi(t)dvk(z). The measures w; might no longer be
supported on the whole intervals [ai, b;] (the so-called pushing effect), but in general it
holds that

(11) supp(wi) = [agi, be i) C lag, bil, ie{l,...,ph

i=1

Let WY be a function on Ule [ai, bi] such that its restriction to [a;, bi] is equal to VVitY
where v = Zf:1 v; is a probability measure such that v|(4, v,) = vi. Exactly as in (6), the
equilibrium vector measure @ can be characterized by the following property: if
(12) min WY(x)> min W%®(x) =
x€lay, byl x€lay, byl
simultaneously for all i € {1,...,p} for some ¥V € M¢({ai, bi}}), then ¥ = @.
Having all the definitions at hand, we can formulate the main result of [15], which
states that
lim [ log|fi —PL/Qn| = (6 — VOT®), ie{l,...,p),

(13) e

lim || "log|Qx| = —V¥

| L [—o0

locally uniformly in C\ J?_,[a;, bi]". Even though (13) looks exactly as (5), the conver-
gence properties of the approximants are not as straightforward. Indeed, it is a direct
consequence of the pushing effect ([agzi, bzi] C [ai, bi]), when it occurs, of course, that
the first relation in (8) is replaced now by
4) G —VPit® =0 on [agi, beil,
1

4 6 — VT <0 on [ay,bi)\lagi, beil
Further, set
(15) DI = {z: 4 —V¥T?®(z) >0},
1
> Dy = {z: {; — V@) <0}.
Properties of the logarithmic potentials immediately imply that D} is an unbounded

domain. This is exactly the domain in which the approximants Pg )/ Qi converge to f;
locally uniformly, while D; is a bounded open set on which the approximants diverge
to infinity. This set can be empty or not. The latter situation necessarily happens when
lagi, beil € [ai, bi] as can be clearly seen from the second line in (14); however, the

=

pushing effect is not necessary for the divergence set to exist.

1(13) is consistent with (5) when p = 1, since in this case I[V] = 21[v1], £; = 2{, and V®1+® = 2Vv@,

3
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Dy

a; = ag1 bz1 b1 as = agzp by = bz

FIGURE 1. Schematic representation of the pushing effect in the case of 2 intervals
(in Proposition 3 we shall show that this is the only possible situation for pushing
effect in the case of 2 intervals; this is also explained in [15]). The shaded region
is the divergence domain D7 while D, = @.

The result of Gonchar and Rakhmanov (13) belongs to the realm of the so called weak
asymptotics as to distinguish from strong asymptotics in which one establishes the existence
of and identifies the limits

im (log|fi — PY)/Qu | + 7 |(6 — veite)),

| |—o0

lim (log|Qg|+I7[VY).

|l |—o00

(16)

Not surprisingly, the first result completely answering the previous question was obtained
for Padé approximants (p = 1) by Szeg6. He proved that limit (16) takes place exactly
when o’ satisfied [logo’dw > —oo, which is now known as Szegd condition®. The analog
of the Szeg6 theorem for true Hermite-Padé approximants was proven by Aptekarev [2]
when p = 2 and the multi-indices are diagonal (1 = (n,n)) with indications how one
could carry the approach to any p > 1. A rigorous proof for any p and diagonal multi-
indices was completed by Aptekarev and Lysov [4] for systems f of Markov functions
generated by cyclic graphs (the so called generalized Nikishin systems), of which Angelesco
systems are a particular example. The restriction on the measures o; is more stringent in
[4], as it is required that

(17) o} (x) = hi(x)(x — a;) *i(by —x)Pt, aq, Bi > —1,

and h; is holomorphic and non-vanishing in some neighborhood of [a;, bi].

From the approximation theory point of view it is not natural to require the measures
0; to be positive (as well as to be supported on the real line, but we shall not dwell on
this point here). In the case of Padé approximants it was Nuttall [25] who proved the
existence of and identified the limit in (16) for the set up (3) and (17) with x = = —1/2
and h being Holder continuous, non-vanishing, and complex-valued on [a, b]. The proof
of Szegd theorem for any parameters «,3 > —1 and h complex-valued, holomorphic,
and non-vanishing around [a, b] follows from Aptekarev [3] (this result was not the main
focus of [3], there weighed approximation on one-arc S-contours was considered), and the
condition of holomorphy of h was relaxed by Baratchart and the author in [5], where h
is taken from a fractional Sobolev space that depends on the parameters «, 3 (again, the
main focus of [5] was weighted (multipoint) Padé approximation on one-arc S-contours).
The goal of this work is to extend the results of [4] to Angelesco systems with complex
weights and Hermite-Padé approximants corresponding to multi-indices as in (9).

2 MAIN RESULTS

From now on, we fix a system of mutually disjoint intervals {[ai, bi]}f:1 and a vector
¢ € (0,1)P such that | ¢'| = 1. We further denote by

P
@ = (w,...,wp), w:=) wi, supp(wi)=[ag, bei] C lag,bil,
i=1
the equilibrium vector measure minimizing the energy functional (10).

2The word “completely” is slightly abused here as it was later realized by [31] that one can add any singular
measure to o’ (t)dt, the absolutely continuous part, without changing (16).
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To describe the forthcoming results we shall need a (p + 1)-sheeted compact Riemann
surface, say R, that we realize in the following way. Take p + 1 copies of C. Cut one of
them along the union JY_; [az 1, bz 1], which henceforth is denoted by 9:(°). Each of the
remaining copies cut along only one interval [azi,bzi] so that no two copies have the
same cut and denote them by St(V). To form 9, take 9" and glue the banks of the cut
[aai, bad crosswise to the banks of the corresponding cut on R (0]

It can be easily verified that thus constructed Riemann surface has genus o. Denote
by 7 the natural projection from 9% to C. We shall denote by z, w,x, e generic points on
R with natural projections z, w,x, e. We also shall employ the notation z(V for a point
on (V) with 71(z(!)) = z. This notation is well defined everywhere outside of the cycles
A; = RO R, Clearly, m(A;) = [agi,bei]. It also will be convenient to denote by
ag i and bg; the branch points of R with respective projections ag; and bg;,1 € {1,...,p}.

Unfortunately, to be able to handle general multi-indices of form (9), one Riemann
surface is not sufficient. Let ' € INP. Denote by

P
G = (Wi, Wip), Wri=) Wi supp(ws,i) = [ar, brs) C lag, bil,
i

the equilibrium vector measure minimizing the energy functional (10) where ¢ is replaced
by the vector (m /I, o mp /i I). The surface PR is defined absolutely analogously to
. Notation A i, g i, and by i, 1 €{1,...,p}, is self-evident now.

Since each PRz has genus zero, one can arbitrarily prescribe zero/pole multisets of
rational functions on PRy as long as the multisets have the same cardinality. Thus, given a
multi-index 11, we shall denote @ a rational function on 98z which is non-zero and finite
everywhere on Rz \ P _, {00(¥)}, has a pole of order || at 00!®), a zero of multiplicity
n; at each oY) and satisfies

P
(18) [Tox@E=")=1.
k=0
Normalization (18) is possible since the function log [T}_, |® (z'*))| extends to a har-
monic function on C which has a well defined limit at infinity. Hence, it is constant.
Therefore, if (18) holds at one point, it holds throughout C. The importance of the func-
tion @5 to our analysis lies in the following proposition.

Proposition 1. With the above notation, it holds that

“(2) + o (0)
1 log]cp (z)] —VW@i(z) N MZE,1 i x, zZER,
TS R — .
|| Vwﬁi(l)_g",i"‘p]i]ZEfl Uik, sz(j)/ tefl,...,p

If a sequence {1t} satisfies (9), then the measures wx converge to w in the weak* topology of
measures as | L | — oo (in particular, this implies that {z; — {;, ari — agq, and bz — bey).
Moreover, it holds that V¥ i — V@i yniformly on compact subsets of C for each i € {1,...,p}.

It immediately follows from Proposition 1 that

1 Dz (zV)
(19) — log o (Z(O)>

7]
uniformly on compact subsets of C as | 11| — oo for each i € {1,...,p}
The following corollary is an elementary consequence of Proposition 1. It describes the
assumption with which (9) often replaced when strong asymptotics is discussed (most
oftenk = (1,...,1)).

= VORITOR(2) — 3 = VEHFL(2) — 4 +0(1)

Corollary 2. Let k € NP. If¢ = (k1/|K],..., kp/IK|) and i =nk, n € N, then G = & and
(Dﬁ :q)T}.
k

5
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Proposition 1 allows to recover |® | via the vector equilibrium measure @y. In order
to do it for the function @ itself, let us define hi on PRz by the rule

hﬁ (Z(O]) = J dwﬁ(;(), zeC \ U?=1 [aﬁ,i, bﬁ’i],

hy(zM) = J o

We further define the function h on R exactly as in (20) with @z replaced by @®. For

(20)
dwg i(x) '
%, zeC\ [ani,bai), i€{l,...,ph

brevity, we also denote by v ; (resp. v;) the Jordan arc belonging to SR%O) (resp. R(9))
such that 7t(ys 1) = [bri, A iv1] (resp. m(yi) = [bei, agiv1]) ie{l,...,p—1%

Proposition 3. The function hy is a rational function on Ry that has a simple zero at each co'™),
k € {0,...,p}, a single simple zero, say z;, on each yg 3, 1 € {1,...,p — 1}, a simple pole? at

each {aﬁ_,i, bﬁ’i}f:] , and is otherwise non-vanishing and finite. Moreover,

ZRi= bﬁ"i & bﬁ‘,i S aDT:L’i and Zai = QFi+1 < Qf,i+1 € aD;l,i_._],

where the sets D . are defined as in (15). Absolutely analogous claims hold for h, R, and y;.
Furthermore, it holds that

(21) Dx(z) =exp { | JZ hﬁ(x)dx} ,

where the initial bound for integration should be chosen so that (18) is satisfied. Finally, if we set
R to be R with circular neighborhood of radius & excised around each of its branch points, then
hix — huniformly on R for each & > 0, where hy is carried over to s with the help of natural
projections.

Thus, knowing the logarithmic derivative of @, we can recover the vector equilibrium
measure Mz by
dx
R/
as follows from Privalov’s Lemma [26, Sec. III.2] (the above formula does not allow to
recover Wy via a purely geometric construction of @ as one needs to know the intervals
l:aﬁ’i, bﬁ,i] to construct ?R). We prove Propositions 1 and 3 in Section 5.

The purpose of the following proposition is to identify the limits in (16), which are
nothing but appropriate generalizations of the classical Szeg6 function. In order to do
that we need to specify the conditions we placed on the considered densities. In what
follows, it is assumed that

dws(x) = (h§) (x) —n ()

(22) pi(x) = pri(x)psi(x),

where p, ; is the regular part, that is, it is holomorphic and non-vanishing in some neigh-
borhood of [ai, bi], and ps; is the singular part consisting of finitely many Fisher-Hartwig
singularities [8], i.e.,

Ji Ji
. 1 X < Xij
. — oyl | 4 Y
23) oust) = [Tk—xs™ TT{ . %530
j=0 j=1
where a; = xjp < Xi1 < -+ < XiJ;—1 < XiJ; = by, &35 > —1, By; € C\ (—o00,0]. In what

follows, we adopt the following convention: given a function F on 9%, we denote by F(¥)
its pull-back from 9|\ Ay, k €{0,...,p}). Thatis, F*(z) := F(z(})), z € C\ [agi bzl

Proposition 4. For eachi € {1,...,p}, let p; be of the form (22)—(23). Further, let

(24) wiz) = 1/ (z2— agi)(z—bes)

30f course, if zj,; coincides with either by ; or a i1, then it cancels the corresponding pole.
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be the branch holomorphic outside of [aai,bai] normalized so that wi(z)/z — 1asz — oco. Then
there exists the unique function S non-vanishing and holomorphic in R\ UY_; A such that

) o A
(25) Si] = 5; ) (Piwiy) on (agi bei) \{Xij})l;o/
ie{1,...,p}, and that satisfies

(26) SO@)| ~[sP )| ~lz—el= 22D/ g5z ee{azi,bai),

ie{l,...,p}l, where a = ayj if e = xi5 and o = 0 otherwise;
(27) |S(°)(z)| - |S(i)(z)|71 N |Z,Xij|—(0<ijﬁ:arg(f5ﬁ)/7t)/2
as z—xij € (agi,bei), +lm(z) >0,
ie{l,...phand [I}_yS™M(z) =1.
We prove Proposition 4 in Section 6. Finally, we are ready to formulate our main result.

Theorem 5. Let f = (f1,...,Tp) be a vector of functions given by

o pi(x) N
(28) fi(z) = g J[ﬂirbi] o— dx, z € C\ [ai, bil,

for a system of mutually disjoint intervals {[a;, bi] f=1, where the functions p; are of the form

(22)—(23), 1 €{1,...,p}. Given € € (0,1)P such that | C| = 1 and a sequence of multi-indices { 11 }
satisfying (9), let [1i]; be the corresponding Hermite-Padé approximant (1)—(2). Then

Qi = Cx[1+o(M](s0s)"”
R = Call+oM](50x) " /wi, iell,...p),

locally uniformly in C \ UY_, lay, bi], where the functions @7 are as in Proposition 1, the func-

tions S and w; are as in Proposition 4, and lim;_s C (S®) (0)(2)7_,‘ = 1. In particular,
deg(Qy) = |t for all | 7| large enough.

Theorem 5 is proved in Section 8. It follows immediately from (2), (15), and (19) that

P 140 (S0q)"

p
__n

" Qs Wi (s@y)

is geometrically small locally uniformly in D" and is geometrically big locally uniformly
in D; whenever the latter is non-empty.

3 RIEMANN-HILBERT APPROACH

To prove Theorem 5 we use the extension to multiple orthogonal polynomials [14] of by
now classical approach of Fokas, Its, and Kitaev [11, 12] connecting orthogonal polyno-
mials to matrix Riemann-Hilbert problems. The RH problem is then analyzed via the
non-linear steepest descent method of Deift and Zhou [10].

The Riemann-Hilbert approach of Fokas, Its, and Kitaev lies in the following. Assume
that the multi-index @ = (ny,...,ny) is such that

(29) deg(Qz) =|f| and RS)_éi(Z) ~z7™ as z— o0, i€{l,...,p},

where all the entries of the vector €; are zero except for the i-th one, which is 1. Set
1

(30) Y. mi1Qr-& Mg qu,)gl M1 R%p,]g]

MmapQi—eg, mﬁrPRﬁfé‘p o MiapRy g,

7
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‘ 4 MODEL RIEMANN-HILBERT PROBLEM

where my i, 1 € {1,...,p}, is a constant such that

lim manm & (z)z"t = 1.
Z—00
To capture the block structure of many matrices appearing below, let us introduce

transformations Ty, i € {1,...,p}, that act on 2 x 2 matrices:

e ez .
T =enkby+enzby i1 +erBiprr tenBipg i1+ E Ej;,
€21 €22 AT,

where Ejy is the matrix with all zero entries except for the (j, k)-th one which is 1. It can
be easily checked that T;(AB) = T;(A)T;(B) for any 2 x 2 matrices A, B.
The matrix-valued function Y solves the following Riemann-Hilbert problem (RHP-Y) :

(a) Y is analytic in C \ Uf:] lai,bi] and lim Y(z)z™ M) — 1, where I is the identity

Z—r 00
matrix and o( ) ;= diag (| ], —ny,...,—"p);
0 1

(c) the entries of the (i+ 1)-st column of Y behave like O (11)%. (z— xij)) as z — Xij,
j €1{0,...,]Ji}, while the remaining entries stay bounded, where

(b) Y has continuous traces on each (ai, bi) that satisfy Y, =Y_T; (] pi) ;

|z|%, if a<0,
Yalz) =9 loglzl, if a=0,
1, if o>0.

The property RHP-Y(a) follows immediately from (2) and (29). The property RHP-Y(b)
is due to the equality

RT({J)F - RT({], =Qn (fiy —fi) =Qnpi on (aibi),
which in itself is a consequence of (2), (28), and the Sokhotski-Plemelj formulae [13, Sec-
tion 4.2]. Finally, RHP-Y(c) follows from the local analysis of Cauchy integrals in [13,
Section 8.1].

Conversely, if Y is a solution of RHP-Y, then it follows from RHP-Y(b) and the normal-
ization at infinity in RHP-Y(a) that [Y]; 1 is a polynomial of degree exactly |1l|. It further
follows from RHP-Y(b) that [Y]y 141,11 € {1,...,p}, is holomorphic outside of [a;, bi], van-
ishes at infinity with order n; + 1, and satisfies

Yhivri+ —Yhip— =[Ylipi on (ai, bi).
Combining this with RHP-Y(c), we see that [Y]; ;41 is the Cauchy integral of [Y]; 1p;
on [ai, bi]. Furthermore, from the order of vanishing at infinity one can easily infer that
(Y1 1(x)is orthogonal tox),j €{0,...,ny — 1}, with respect to p; (x)dx. Hence, [Y]7 1 = Qx,
Y]1i41 = Rn , and (29) holds. Other rows of Y can be analyzed analogously. Altogether,
the following proposition takes place.

Proposition 6. If a solutzon of RHP-Y exists then it is unique. Moreover, in this case it is given
by (30) where Q7 and Rq ) satisfy (29). Conversely, if (29) is fulfilled, then (30) solves RHP-Y.

4 MODEL RIEMANN-HILBERT PROBLEMS

As known, to analyze RHP-Y via steepest descent method of Deift and Zhou, one needs to
construct local solutions around each singular point of the functions p; and the endpoints
of the support of each component of the vector equilibrium measure, see Section 9. In this
section, we present all these model RH problems. In what follows we use the notation

AR
0'3.—0_].



42 HARDEDGE |

4.1 Singular Points of the Weights

In what follows, we always assume that the real line as well as its subintervals is oriented
from left to right. Further, we set

(31) Ii == {z: arg(z) = +2n/3}, Ji:={z: arg(z) = +n/3},
where the rays I+ are oriented towards the origin and the rays ]+ are oriented away from
the origin. Put

L(Dyp) =1 Ul UJL UJ-U(—~00,00)
and consider the following Riemann-Hilbert problem: given « > —1 and § € C\ (—o0,0],
find a matrix-valued function @ g such that

(@) D ,p is holomorphicin C\ Z(® 4 g);
(b) @4 p has continuous traces on Z(®D 4 g) \ {0} that satisfy

<_01 (1)> on (—OO, 0)/

(_;1 g) on (0,00),

1 0
eTam on I,

%p= 1 0
(]/B ]) on I:I:;

o ey T
Papl0) =0 ((gurz gz figaz) e Caat0=0(} E

when « # 0 and o = 0, respectively;
(d) ®@,p has the following behavior near oco:

Do p(0) = (1 +0O (c—‘ )) (i0)'°8 PO3/2MB L exp { FiCo3/2}, +Im(C) >0,
(iC)lOg [3/27ti

Dypr =DPyp

and

CDOC,[?>+ == d)

(c) as ¢ — 0 it holds that

uniformly in C\ Z(®, ), where
serve also that (i() log /27 _ {S(iC)lf:gB/zm on (0,00)) and

(B2 o o 5 og [0
B .:< 0 e—oumi/2 po3e™™s,  B_:=B. 1 0)°

The solution of RHP-® 5 can be written explicitly with the help of confluent hyper-
geometric functions. It was done first in [30] for the case B = 1, then in [21, 22] for
B € (0,00), and, in [8] for o« =log 3/mi & {—2,—4,...} (of course, in all the cases «x > —1;
parameters «; and (3 in [8] correspond to «/2 and ilog 3/27 above). To be more precise,
one needs to take @, g 3°3/4 multiply it by e~*73/2 in the first quadrant, by e*™3/2
in the fourth quadrant, and then rotate the whole picture by /2 to get the corresponding
problem in [8].

has a branch cut along (0, c0) (ob-

4.2 Hard Edge

Given o > —1, find a matrix-valued function ¥ such that

(a) ¥« is holomorphic in C \ (I+ Ul_U(—o0, O]),‘

9
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(b) W« has continuous traces on I UI_ U (—o0,0) that satisfy

<O1 (1)> on (—o0,0),

1 0
etmia 7] ON It;
(c) as ¢ — 0 it holds that

o (1gx/? ICI“/Z) - <log|CI logC)
‘”"‘“)‘O<c“/2 gerz) and ¥all =0 {010 10g10

‘llo(_._ == ‘llo(_

when « < 0 and o = 0, respectively, and

e e (En
Illo( :O _ d lllo( :O _ _
©=0(lga gwz) md ¥al0=0 (0 (e

when « > 0, for |arg(C)| < 27t/3 and 27t/3 < |arg(C)| < T, respectively;
(d) ¥« has the following behavior near oo:

g “1)2 12
w“(c)_\/j<i ]> (I+O(C ))exp{ZC 03}
uniformly in C \ (I UI_ U (—o0,0]).

The solution of this Riemann-Hilbert problem was constructed explicitly in [19] with the
help of modified Bessel and Hankel functions.

4.3 Soft-Type Edge

To describe the model Riemann-Hilbert problem we need, it will be convenient to denote
by Q1, Q;, Q3, and Q4 consecutive sectors of C \ ((—oo, oco)UI_U I+) starting with the
one containing the first quadrant and continuing counter clockwise. Given « € R and
Re(B) > 0, we are looking for a matrix-valued function ¥, g such that

(a) Yq,p is holomorphic in C \ (I UI_ U (—o0,0));
(b) W, has continuous traces on I UI_ U (—o0,0) U (0, 00) that satisfy

(_O] (])) on (—o0,0),

1 0
Yopr =Yop— <e:|:i7ux ]) on I,

1 B .
(0 1 ) on (0,00);
(c) as ¢ — 0 it holds that

where E is a holomorphic matrix function,

1 0 1 — 1 0
Az =Ay <ecx7-:i 1>/ Ay =Aq (O 16)/ A1=A2<eomi 1)/

and

1 ]_ﬁeocﬂi 1 ﬁ_e(xm
A, = 2cos(amt/2) 1—exm 2cos(xrm/2) 1—eor while Scx,B(C) _ Coccg,/l

—exmi/2 e oTti/2

when « is not an integer,

A %ecxﬂi/z %efoari/z while S (C)i Ctx/Z %ch/zlogc
2= 7ecx7ﬂ/2 e—ocﬂi/Z o B B 0 C—cx/Z
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when « is an even integer,

0 e—oumi/2 Coc/z %ch/z logC
Az = (_eomi/z eomi/z> while  Sqp(C) :< 0 (/2

when o is an odd integer;
(d) W, has the following behavior near oco:

Wop(Gs) = (1+0 (7)) c—;;m (1 ;> o {;(CJFS)S/Z%}

uniformly in C \ (I; UI_ U (—o00,00)).

Besides RHP-¥, g, we shall also need RHP—‘I’“,B obtained from RHP-¥, 3 by replacing
RHP-¥ g (d) with

(d) q’oc,[?) has the following behavior near co:

m ) — N AN AN 232 12
‘Poc,fs(C,S)—(IJrO(C )) 7 L) P §C +sC 03¢ .
The problems RHP-Y¥, 5 and RHP—‘I’“,B are simultaneously uniquely solvable and the
solutions are connected by

~ 1 0
G2) Top (G5 = (124 1) ¥aplGo
as follows from the estimate
2 3/2 (2372, 172 _ s2

When o = 0, B = 1, and s = 0, the above Riemann-Hilbert problem is well known
[9] and is solved using Airy functions. When (3 = 1, the solvability of this problem for
all s € R was shown in [16] with further properties investigated in [17] (RHP—‘I’“,B is
associated with a solution of Painlevé XXXIV equation). The solvability of the case « =0,
B € C\(—00,0), and s € R was obtained in [32]. The latter case appeared in [6] as well.
More generally, the following theorem holds.

Theorem 7. Given « € R and 3 € C\ (—o0,0), the RH-problems RHP-Y, g, and therefore
RHP-YW g, is uniquely solvable for all s € R. Moreover, assuming 3 # 0, it holds that

—o03/4 : 1 2
o vt G (1) (o (i) o o)

uniformly for ¢ € C\ (I+ UI_ U (—o0,00)) and s € (—oo,00), and it also holds uniformly for
s € [0,00) when 3 = 0; furthermore, we have that

~ —o3/4 . 1 2
(34) ll’oc,o((?;s)—c\/;(]i ;) <I+O< :Z'{L))exp{—<3C3/2+sC]/2>03}

uniformly for ¢ € C\ (I+ UI_ U (—o0,0]) and s € (—o0,0].

Theorem 7 is proved in Section 10.

5 GEOMETRY

In this section we prove Propositions 1 and 3.

5.1 Proof of Proposition 1

Set
OF := {z: Re(z) € (an,i, b,i) and +Im(z) > 0}.
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Since the measures wy ; are supported on the real line, (14) and Schwarz reflection prin-
ciple yield that the function

lgi— V@it@ui(z), ze O,
VORteni(z) g, z€Of,
is harmonic across (a i, b 1). As the support of wx — wg ; is disjoint from l:aﬁ",i, bﬁ:,i],

the function {5 ; + V®1~ %11 is harmonic across (aﬁ’i,bﬁ’i) as well. By taking the differ-
ence of these two functions, we see that

—2V@ii(z), z€0Of,
2V®Ri(z) — 254, z€OF,

is harmonic in the same vertical strip. Thus, the function

_ 0
VWi (z) + p% PIRRR S ze SR% ),
(35)  Hga(z):= N Lo o
Vw"'l(Z)—eﬁ’i‘i‘p?Zk:] liy, z€My, ief{l,....p},
is harmonic on Ry \ U_, {co(®}. Since V¥ (z) = —|vlloglz| + O(1) as z — oo, we get

that the difference

|71~ log [0 (2)] — Hy(2)
is harmonic on the whole surface SR and therefore is a constant. Since ) P _, Hz (z(k)) =
0 and @5 is normalized so that (18) holds, the first claim of the proposition follows.

Let v be a weak* limit point of {@z}. Since {7} satisfies (9), it holds that ¥V €
Me({ai, bi}f_;). Thus, if we show that I[@] > I[V], then ¥ = @ by (10). To this end,
let it ; be positive constants such that |0z jwi| = ny/[T], 1 €{1,...,p}. By (9), aqi — 1
as || — oo. Set Vi := (af,1W1,..., %7 pwp). Then it follows from (10) applied for the
vector (ny/|fl,...,np/|7|) that

I[(I’)} = lim I[Vﬁ] > liminfl[d')ﬁ].
[l |—o00 |l |—o00

Furthermore, the very definition of the weak™ convergence implies that

Iim Ijwg; wqskl =1Ivi,v

it ] ~ 1]
for j # k as supp(w+,j) Nsupp(ws,x) = @ in this case. It also follows from the Principle of
Descent [28, Thm. 1.6.8] that

liminf I[wg 1] > Ilvil.
| 7l |[—o0

Altogether,

[[@] > liminfI[ &g | > 1[V],
|l | =00

which proves the claim about weak* convergence of measures.

Weak™* convergence of measures implies convergence of minima of the corresponding
potentials [15]. Hence, (12) yields that {5 ; — {; for all i € {1,...,p}. Moreover, weak*
convergence also implies locally uniform convergence of V¥7i to V®i in C\ [agy, b i
(there is no convergence at infinity as, in general, |wx ;| # |w;i| for given 7). Thus, it
remains to show that the convergence of the potentials is uniform on compact subsets
of C.

First let K be a continuum such that ag;, bz ¢ K and either Im(z) > 0 for all z € K or
Im(z) < 0 for all z € K (it can intersect (aé‘,i/bé‘,i))- Then there exists a unique continuum
K such that n(K(V)) = K and KV nj(D) # @. Further, let U be a neighborhood of K
such that az;,bgi € U. Denote u® the neighborhood of K1) such that r(U) = U.
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Since ax i — agi and by — bgi as || — oo, we can analogously define K ) and U
on MRy. By definition,
Wi

ViK™ = Hgw i 2 b

V&i =Hpw +4— pﬁ Zj:] &,
where H is defined on fR exactly as Hy was defined on Piz. Hence, to show that V®¥ni
converge to V@t uniformly on K it is enough to show that the pull backs of Hz from

Ug) to U converge locally uniformly to the pull back of H. We do know that such a
convergence takes place locally uniformly on UN{Im(z) > 0} and UN{Im(z) < 0}. The full
claim will follow from Harnack’s theorem if we show that the pull backs of Hy, which are
harmonic in U, form a uniformly bounded family there. The latter is true since each H%k)
converges to H'®) on any Jordan curve J that encloses UP_,[ai, bil. Hence, the moduli

|[Hz| are bounded on the lift of ] to 93z and the bound is independent of 7. The maximum

principle propagates this estimate through the region of SRz containing Ug) and bounded
by the lift of J.

Assume now that K is a continuum that contains one of the points {aai, bé,i}r say bg
for definiteness. It is sufficient to assume that K is contained in a disk, say U, centered
at the bg; of radius small enough so that no other point from U_ {ag, be,;} belongs

to U. We can define KV and K analogously to the previous case. Let U(Y) and Ug )
be the circular neighborhoods of b ¢i and by ;, respectively, with the natural projection U
(clearly, they cover U twice). Let V be a disk centered at the origin of radius smaller than
the one of U, but large enough so that the translation of V to bg; still contains K. Then the
functions ¢ (z) = (z+ bﬁ,i)z and ¢(z) = (z+ bai)z provide one-to-one correspondents
between V and some subdomains of Uf{ Jand U, respectively. These subdomains still
contain K ) and K. Since bsii — bei as || = oo, we can establish exactly as above
that Hz o d)n converges to Ho ¢ locally uniformly in V, which again yields that V7.
converges to V@i uniformly on K. Clearly, the considered cases are sufficient to establish
the uniform convergence on compact subsets of C.

5.2 Proof of Proposition 3

Observe that

(0) dwy (x) Doy e —T (0)
nO@) = J 2 20.ven(z) =2/t 0:log| 0 (2]
= i (e @) /o) 2)
by Proposition 1 and direct computation, where 20, := 90x —idy. Clearly, analogous

formulae hold for hg). That is, hi is the logarithmic derivative of @7, in particular,
(21) holds. Therefore, hy is holomorphic around each point of Pz \ {an i bR l} _; and
clearly has a simple zero at each 0o®), %k €{0,...,p}. Since DR has square root branching
at each ramification pomt d) ! has Puiseux expansion in non-negative powers of 1/2 at

each of them. Hence, h ) has such an expansion as well and the smallest exponent is
—1/2. Thus, hj has at most a simple pole at each {ay i, bx 1} _,; and, in particular, is a
rational function on M.

The number of zeros and poles, including multiplicities, of a rational function should
be the same. Therefore, h;; has at most 2p and at least p 4 1 poles (the lower bound comes
from the number of zeros at “infinities”) and at most p — 1 “finite” zeros. Let us now show
that each of p —1 arcs v ; contains exactly one of those “finite” zeros (we slightly abuse
the notion of a zero here since a simple zero at the endpoint means cancelation of the

corresponding pole). Clearly, this is equivalent to showing that h ) has a single simple

13
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zero in each gap [bﬁ/i, aﬁ/iﬂ} (again, a “zero” at the endpoint means that hg) ) is locally
bounded there).
Assume to the contrary that there is at least one gap, say [bs j, a7,j+1], without a zero.

Then h%o) would be infinite at both endpoints by ;, ax ;1. However, since wy is a positive
(0)

measure, the very definition (20) yields that h;;

is possible only if

(36) lim h(o)(x) =— lim h(o)(x) = oo.

x—bgj X—=amjp1

is decreasing on (bs j, an j+1). The latter

As h%o ) is continuous on (bﬁ’_,j, aﬁ’_,]‘+]) it must vanish there. Since there are exactly p — 1
gaps and p — 1 “free” zeros, this contradiction proves the claim.

Let us now show the correspondence between occurrence of the zeros at the endpoints
of the gaps and the fact that divergence domains are touching the support. To this end,
notice that (21) combined with (19) yields that

X
(37) Gt — VORUFOR () = j

b

(e = i) @idy.

If the zero of h%o) on [bs i, aq,i+1] does not coincide with by ;, then

h'(r_iO)(y) = Cﬁ(y_bﬁ’i)71/2+o(1)
i ~1/2
hg)(y) = —cq(y—bry) 200

for y — by i > 0 and small enough, where cz > 0, see (36). Hence,

(38) Ui — VORTOR(x) =dcq (x—bri) 2+ O(|x—brsi[*/?) >0

for x — by ; > 0 and small enough. On the other hand, if the zero coincides with by ;, then
héo)(y) = ta—ck(y _bﬁ,i)VZ +0(ly—ba,il)
hg)(y) = Ca+tck(y _bﬁ,i)VZ +0(ly—ba,il)

for y —bx; > 0 and small enough, where c’; > 0 (recall that hg) )

in each gap). Therefore,
(39) i — VOt (x) = —(4c;/3) (x — b i)

for x — by ; > 0 and small enough. Thus, if the zero from [by i, a4 1] coincides with
bii, thenbs; € aD%Ii and if it does not, then by ; ¢ aDgli, see (15). As the analysis near
ay i can be completed similarly, this finishes the proof of the claim.

Let now Hyz be defined by (35) and H be defined analogously on YR. We have shown
during the course of the proof of Proposition 1 that Hz — H uniformly on fR;s, where
Hy is carried over to SR with the help of natural projections. Since hiz = 20,Hy and
h = 29,H, we get that hz — h uniformly on Rs. This implies that h is a rational function
on R. The claim about zero/pole distribution of h follows from the analogous statement
for hjz and analysis similar to (37)-(39).

is a decreasing function

32 L 0(lx—bri>?) <0

6 SZEGO FUNCTION

In this section we prove Proposition 4. Let z, w € 2. Denote by dQ; ., the unique abelian
differential of the third kind which is holomorphic on R \ {z, w} and has simple poles at
z and w of respective residues +1 and —1. Define

P
(40) dC; = Psz,w - Z szi,w/

i=1
where n1(2) ={z,21,..., zp} for each z which is not a projection of a branch point of 9R.
The differential dC, does not depend on the choice of w as it is simply the normalized
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third kind differential with p + 1 simple poles at z,z7,...,zp having respective residues
p,—1,...,—1.

For each x € A;, which is not a branch point of R, we shall denote by x* a point on A;
having the same canonical projection, i.e., 7w(x) = 7t(x*). When x € A; is a branch point of
the surface, we simply set x* = x. Let A be a Holder continuous function on A := JV_; A;.
Define

N 1
(41) Az) = CESI ﬂ;A AdC., ze R\ 7w ' (n(A)).

The function A is holomorphic in the domain of its definition. Further, if z — x € AT,

then z; — x* € AT for some j € {1,...,p}and

PA(X) + A(x*)
p+1

according to [33, Eq. (2.8)]. On the other hand, if z —+ X ¢ A, while z; — x € A* and

zx — x* € AT for some j, k €{1,...,p}, then

Ap(x)—A_(x) =

7

Ax*) —A(x)

p+1
Thus, if we additionally require that A(x) = A(x*), then A is a holomorphic function in
PR\ A such that

(42) Ar(x)—A_(x) =Ax), x€A.

Ag (%) —A_(%) =

It also can be readily verified using (40) and (41) that

P

(43) Az)+) Alz)=0 on R

i=1

The above construction works for discontinuous function as well. Moreover, it is known
that the continuity of A4, in fact, Holder continuity, depends on Holder continuity of A
only locally. That is, if A is Holder continuous on some open subarc of A, so are the traces
A+ on this subarc irrespectively of the smoothness of A on the remaining part of A. To
capture the behavior of A around the points where A is not continuous, we define a local
approximation to the Cauchy differential dC,. To this end, fix i € {1,...,p} and denote
by U a connected annular neighborhood of A; disjoint from other A; such that every
point in 7t(U) has exactly two preimages (except for the branch points, of course). Write

Ut uUU™ =U\A, where Ut NU™ = @, UF are connected and partially bounded by A
Set wi(z) := twi(z), z € U*, where wy is given by (24). Then w; is holomorphic in L.

Further, put
~ _Iwilx) +wi(z) dx
000 =3 o R

which is a holomorphic differential on U \ {z} that has a simple pole at z with residue 1.

Then the difference dC, — pdﬁz + df).Z ; is a holomorphic differential in U and therefore
the function A — A is holomorphic U, where

~ 1 ~ ~

Az) = 7——F—— A (pQz — Q-

=)= 31 ﬂ;Ai (PO2 —Oz)
and z* # z is a point in U such that 7(z) = nt(z*). Thus, to understand the local behavior
of A is sufficient to study A. Since w;(z*) = —w;(z) for z € U, and wi_(x) = —wj (x)
for x € (agi, bei), it holds for A(x) = A(x) that
~ . wi(z) Alx)  dx

(44) Az) = 2m JAi wit(x)x—z

, zeU\A.

The first type of singularities we are interested in is of the form

(45) Alx) = «log |xfx0 , XEAN

15
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where xo € [agi, bgi]. Carefully tracing the implications of [13, Sec. 18.5-6] to the
integrals of the form (44) and (45), we get that

(46) A(z) :iglog(z—xo)—i—(‘)(]), u+ sz — xo.
The second type of the singular behavior we want to consider is given by

(47) Ax) = (log B)xx,(x), x €Ay,

where xg € (agi, bzi) and xx, is the characteristic function of [xo, bg ;. It follows from
the analysis in [13, Sec. 1.8.6] that

A(z0)) = :FlOgﬁlo z—x0)+0(1),
(48) ~( ) ) 127r1 Bl o) () z—=xo, =£Im(z)>0.
AzV) = + 3%3 log(z—xp) + 0O(1),

Now, let the functions p; be of the form (22)—(23). Set
Ao(x) :=—log (pi(x)wii(x)), x€A;.

By using the identity wi (x) = ijw; (x)| and the explicit expressions (23), we can then write

Ji
No(x) = —log (ipgi(x)) — > (oxij loglx — xij| +log Bisxy (x))
i=0
—(1/2)log |x— aai’ —(1/2)1og ‘x— bg’i’.

Clearly, the singular behavior of A, is precisely of the form (45) and (47). Define A, as in
(41) and set S := exp{A,}. Then (25) is a consequence of (42) since

(SL7/8827) (x) = exp { (Ap— = Aps) (X}

Moreover, (26) and (27) clearly follow from (46) and (48). Finally, the last claim of the
proposition follows from (43).

7 AUXILIARY RESULTS

Below we prove auxiliary estimates (50) and (51) that will be needed in Section 8.4 to finish
the proof of Theorem 5. They are presented here in a separate section as the arguments
used to prove them are disconnected from the techniques of the steepest descent method
employed in Section 8.

Let x, w € R be such that x is not a branch point of 9R. There exists a unique, up
to multiplicative normalization, rational function on R, say ¥, with a simple pole at x, a
simple zero at w, and otherwise non-vanishing and finite. For uniqueness, we normalize
Y(z) = z+ {holomorphic part} around x if x is a point above infinity, and ¥(z) = (z —
x) T+ {holomorphic part} around x otherwise.

Let xz, Wi € P be such that they have the same canonical projections and belong to
the sheets with the same labels as x, w, respectively, when the latter are not branch points
of R (points on [ J}_,; A; need to be identified with the sequences of points convergent to
them to set up the correspondence). If w is a branch point, we set wz to be the branch
point of PRz whose projection converges to or coincides with the one of w. We define W3z
to be similarly normalized rational function on 93 with a pole at x;; and a zero at wy.

As the statement of Proposition 3, let 9} be the subsets of 91 obtained by removing
circular neighborhoods of radius § around each branch point. We assume that $ is small
enough so that x € 95 and w € 9Rs when w is not a branch point. Using natural
projections we can redefine W as a function on 9. Naturally, it will have a pole at x and
a zero at w if the latter belong to 9Rs. Then, regarding W as a function on R, we have
that

(49) Vi =[1+0(N)]¥
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uniformly on P as |71| — oo. Indeed, assume first that w € P;s. Let Uy C PR be a
circular neighborhood of x such that w ¢ ily. Observe that ¥ is a univalent function on
R. Thus, by applying Koebe’s 1/4 theorem to 1/¥, we see that [¥| < C on 94y for some
constant C > 0 that depends only on the radius of ilx. Moreover, the maximum modulus
principle implies that [¥| < C on PR\ k. Clearly, absolutely analogous considerations
apply to Yz on PR and the constant C remains the same. Hence, the ratio ¥z /V is a
holomorphic function on )R such that [V /¥| < C/ C by the maximum modulus principle,
where 0 < C < mingg\ o, [¥] and this constant can be chosen independently of 8. Picking
a discrete sequence 5, — 0 and using the diagonal argument as well as the normal family
argument, we see that any subsequence of {V;/¥} contains a subsequence convergent to
a function holomorphic on R\ Uf=1 {aai,bm}. Moreover, this function is necessarily
bounded around the branch points and therefore holomorphically extends to the entire
Riemann surface PR. Thus, this function must be a constant and the normalization at x
yields that this constant is 1. This finishes the proof of (49) in the case w € PRs5. When
w is a branch point, the first half of the above considerations yields that {¥ — Wz} is a
family of holomorphic function on 985 with uniformly and independently of § bounded
moduli. Therefore, the same argument yields that ¥z =¥ + o(1) uniformly on 2. As W
is non-vanishing in k5, this estimate implies (49).

Let Y ; (resp. Vi), 1 € {1,...,p}, be rational functions on My (resp. R) with a simple
pole at co(), a simple zero at co(®), otherwise non-vanishing and finite, and normalized
) Yg) (z)/z = 1 as z = co. Then (49) immediately yields

A
(50) Yii=[1+o(M]Ts
uniformly on each PR as | 71| — oco.

Further, let dQ’Zw be the unique abelian differential of the third kind which is holo-
morphic on PRz \ {z, w}, has simple poles at z and w with respective residues +1 and —1.
It is known that such a differential can be written as ngw (x) = ‘Pzw (x)dx, where ‘PQW
is the unique rational function on PRz with double zero at each o®) % € {o,. ..,ph a
simple pole at each JV_; {asi,bs i}, simple poles at z and w, otherwise non-vanishing
and finite, and normalized to have residue 1 at z. Writing 1/WZ , as a product of terms
with one zero and one pole and applying (49) to these factors, we see that

Y= [T+0(D)]¥z
uniformly on each ;s as || — oo, where dQ; w (x) = ¥, 4 (x)dx is the corresponding
differential on PR. Then, defining Az via analogs of (40) and (41) for PRz, we get that
Ai(z) = A(z) +0(1) uniformly in PR\ 9 for each neighborhood 1 of UL] A. Therefore,
if we define Sz on PR exactly as S was defined on R and consider Sz as function on
M\ M, then
(51) Si =[1+0(1)]S
uniformly there. Moreover, Sz obeys all the conclusions of Proposition 4 with respect to
NRi.

8 NON-LINEAR STEEPEST DESCENT ANALYSIS

In this section we prove Theorem 5 with some technical details relegated to Section 9.
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8.1  Opening of the Lenses

Since we shall use these sets quite often, put

Bz = U, {azi bzi},
(52) Ein = UM (Ixij1n (agi beq))
Bout = UP_; {xij: xij € [agi, bei) and g5 <O}

That is, Ej, consists of the singular points x;; that belong to the support of @, and Eout
consists of those singular points outside of the support for which the densities p; are
unbounded.

To proceed with the factorization of the jump matrices in RHP-Y(b), we need to con-
struct the so-called “lens” around U{’:1 [ai, bi]. To this end, given e € Eout U Ej, UEg, let
Ue be a disk centered at e. We assume that the radii of these disks are small enough so
that Ue, N'Ue, = @ for ey # ;. We also assume that U, C D] when e € Eqyt.

Now, let e, e be the j-th pair of two consecutive points from (Ei, UEz) N [agi, beil-
We choose arcs I“%F incident with ey and ey and lying in the upper (+) and lower (—)
half-planes in the following way: if e} € Eg, then it should hold that

(53) Cek( N uek) C I:tl

where the rays I+ are defined in (31) and Ce, is a certain conformal function in Ue,
constructed further below in (69) or (76) (depending on the considered case); if ey € Ejj,,
it should hold that

(54) Cek( ij+k—1 muek) Cly and Cek( 1)+kmuek) CJ+,

where (e, is a conformal function in U, constructed further below in (63) and the rays
J+ are also defined in (31). Outside U, U U, we choose F%F to be segments joining the
corresponding points on dU,, and dU,,, see Figure 2. We further set Ff = U Fli

Since the geometry of the problem might depend on each particular index i (and not
only on ¢), we construct in a similar fashion arcs I"ij i and Ff y where this time the maps
Cey. are replaced by (g ¢, , see (64), (70), (77), or (85). As we show later in (65), the arcs I"Tiii
converge to F.i in Hausdorff metric. Finally, we denote by Q?l’ij the domains delimited

by IE 4 and [aﬁ,i, bsi.i], and set QTjEL/ = U 0. i

FIGURE 2. The arcs F§ and Fgf i in the case where there is at least one point in
Ein/ bﬁ,i < b(‘:’,i < bi, and bi € Eout-

I

Fix FI—L 11 with endpoints e; < e;. There exists an index k such that x;; < e forj < kand
Xij = €2 for ] > k. Then it follows from (22) and (23) that the function p; holomorphically
extends to Qﬁ u by

(55) pi(z) == pr1 H Bl) H Xi)’)cxij H(Xij —z)%Y,

j<k  j<k i>k
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where (z—x;;)*U is holomorphic off (—oo, x4;] and (xi; —z)*¥ is holomorphic off [x;;, 00).
Using these extensions, set

1 0 +
T; n Q=.,
(56) X:=Y ' <3F1/pi 1) i

1 otherwise,

where Y is a matrix-function that solves RHP-Y (if it exists). It can be readily verified that
X solves the following Riemann-Hilbert problem (RHP-X):

(a) Xis analytic in C\ UY_, ([ai,bd U FTI:i U Fg/i) and lim X(z)z ¢ =1;

Z—0

(b) X has continuous traces on |JP_; ((aj, bi) UTS. UTS . ) that satisf
i=1 n,i n,i y

0 Pi
Ty (—1/91 01) on [agi, beil,
_ (1 e b
X+ - - Tl O ] on (al/ bl) \ [ae,i!ba,i}/
1 0 T
Ti (1/91 ]> on [IZ Urﬁ Y

(c) X has the following behavior near e € E¢ U E;j, U Egut:

— if e € Eout, then X satisfies RHP-Y(c) with Y replaced by X;

- if e € E¢ \ {xyj}, then all the entries of X are bounded at ¢;

- if e € Ej, or e € Eg¢ N{xyj}, then X satisties RHP-Y(c) with Y replaced by X
outside of Q+ UQ ; while inside it behaves exactly as in RHP-Y(c) when
aij < 0, the entrles of the first and (i+ 1)-st column behave like O(o(z —xj))
and the rest of the entries are bounded when «j; = 0, and the entries of
the first column behave like O(ll),%. (z —x4j)) and the rest of the entries are
bounded when «y; > 0.

Due to the block structure of the jumps in RHP-Y(b), [5, Lemma 17] can be carried over
word for word to the present case to prove:

Lemma 8. RHP-X is solvable if and only if RHP-Y is solvable. When solutions of RHP-X and
RHP-Y exist, they are unique and connected by (56).

8.2 Auxiliary Parametrices

To solve RHP-X, we construct parametrices that asymptotically describe the behavior of
X away from and around each point in Ej, U Equt U Eg. To this end, we construct a matrix-
valued function N that solves the following Riemann-Hilbert problem (RHP-N):

(a) N is analytic in C\UY_, [a,i, b, and Jim N(z)z” o) —;

(b) N has continuous traces on (az i, by i) that satisfy N. = N_T; < 1(;p %1)
—1/pi

Let @5 be the functions from Proposition 1 while Sz and Y5, i € {1,...,p}, be the
functions introduced in Section 7. Set

(57) .= CMD,
where D := diag (@%0),.. , ﬁp ) C := diag (Cq,0,...,Cq,p) with the constant Cy i de-
fined by
lim Co(Si (I)ﬁ)(O)(Z)Z_lﬁl = 1
Z—00
(58)

lim Cz;i(Sqa®x) W) (2)zm

Z—00

1, ie{l,...,p},

19



20

I 8.3 FINAL R-H PROBLEM

and the matrix M is given by

S S P
(59) M= (Savm1) " (Savrn)" wa (SaTan) ™ /wip
(SaYap) (©) (SaYap) . )/Wﬁ,1 o (SaYap) (p)/wﬁ',p

Then (57) solves RHP-N. Indeed, RHP-N(a) follows immediately from the analyticity
properties of Sz, YV i, and @5 as well as from (58). Observe that the multiplication by

_ 0 Pi
Ti (—Vpi 0)

on the right replaces the first column by the (i + 1)-st one multiplied by p;, while (i+ 1)-
st column is replaced by the first one multiplied by —1/p;. Hence, RHP-N(b) follows
from the analog of (25) for Sz and the fact that any rational function ¥ on DR satisfies

0 ;
Y = vl on (agi, by ).

Since the jump matrices in RHP-N(b) have determinant 1, det(N) is a holomorphic
function in C \ | J; {aﬁ,i, bﬁ,i} and det(N)(oco) = 1. Moreover, it follows from the analogs

of (26) and (27) for Sy that each entry of the first column of N behaves like
Q) (|Z _ e|*(2cx+1 ]/4) and O <|Z — Xij |f(oqj¥arg([3ﬁ )/7:)/2)

for e € {ami,bai} (¢ = o if e = x5 and « = 0 otherwise) and for xi; € (a7, bq,1)
(£Im(z) > 0), respectively, the entries of the (i+ 1)-st column behave like

@(|z_e‘(2o~n/4) and @(|Z_Xi]_|(oq,-¢arg(ﬁm/n)/z>

there, and the rest of the entries are bounded. Thus, the determinant has at most square
root singularities at these points and therefore is a bounded entire function. That is,
det(N) =1 as follows from the normalization at infinity.

Further, for each e € E;j, U Eout U Eg, we want to solve RHP-X locally in Ue. That is, we
are seeking a solution of the following RHP-P.:

(a,b,c) P. satisfies RHP-X(a,b,c) within Ue;
(d) Pe = M (I+0(ee 7)) D uniformly on dUe \ ([ai, bilulUr_, Fri[,i U FT{i), where
0<éeeqg +0as|mi|— oo.

Since the construction of P, solving RHP-P. is rather lengthy, it is carried out separately
in Section g further below.

8.3 Final R-H Problem

Denote by Q5 ;; the domain delimited by I’FT i and I'; i (in particular, Qifl i C Qg 15)- Set
Qi == Uij Qs ij and U= Uecg, Uk, UE, Ue- Define

O (ri uTz)\U

i=1

P
U las, bid \ (WUQR) | -

i=1

Ti=0Uu U

Moreover, we define I by replacing I"T%i with ]"ii in the definition of ~z see Figure 3. Given
matrices N and Pe, e € Ej, UEout U Eg, from the previous section, consider the following
Riemann-Hilbert Problem (RHP-Z):

(a) Z is a holomorphic matrix function in C \ £3 and Z(c0) = I;
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Ua, 2 UJL il

F1GURE 3. Contours X (black and blue lines) and Xz (black and red lines).

(b) Z has continuous traces on Lz that satisfy

_ 1 0 . + — u

MDT; (1 o 1)(MD) on (rﬁ/iurﬁﬂ)\u,

Z+=2-4 MDT, (:) ﬂl> (MD)~!  on [a;, bi]\ (UUQR)
P.(MD)"! on 0lUe.

Then the following lemma takes place.

Lemma 9. The solution of RHP-Z exists for all | 7| large enough and satisfies
(60) Z=1+0(ex)

uniformly in C, where £; = min, Ee i

Proof. Analyticity of p; yields that Z can be analytically continued to be holomorphic
outside of . To do that one simply needs to multiply Z by the first jump matrix in RHP-
Z(b) or its inverse (the jump matrices have determinate 1 and therefore are invertible). We
shall show that the jump matrices are locally uniformly geometrically small in D{". This
would imply that the new problem is solvable if and only if the initial problem is solvable
and the bound (60) remains valid regardless the contour. Hence, in what follows we shall
consider RHP-Z on X rather than on 5.

It was shown in Section 8.2 that det(N) = 1. Moreover, it follows from (18) that
det(D) = 1 while the equality H£=0 S%k) = 1 and (58) imply that det(C) = 1. Hence,
det(M) = 1 and it follows from RHP-P.(d), (51), and (50) that

P.(MD) ' =1+MO(eeq)M ™' =1+ 0(ec )
holds uniformly on each dl.. On the other hand, it holds on Fii \ U that

moT (| %) (mMD)! :1+lﬁmg M =1+0 (C*Iﬁ\)
i 1/pl 1 0: (DEO] i+1,1 i
n
for some constant C; > 1 by (15), (19), and Proposition 1. Analogously, we get that
1 pj o0 - =
MDT; H(MD) T =140 —-MEy; (M =140 (Cfln‘)
O 1 (D(J) 4 1
n

on [a;, bi]\ (WUQy) for some C; > 1 by (19) and (14). That is, all the jump matrices for
Z asymptotically behave like I+ O(e) (as will be clear in Section 9, the decay of ¢ is
of power type and not exponential). The conclusion of the lemma follows from the same
argument as in [7, Corollary 7.108]. O

8.4 Proof of Theorem 5

Let Z be the solution of RHP-Z granted by Lemma 9, P be solutions of RHP-P., and
N = CMD be the matrix constructed in (57). Then it can be easily checked that

MD in C\ (WU [agibes]),

(61) X=CZ )
P. in Ue, e€EoutUE,UEg,
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solves RHP-X for all | 11| large enough. Given a closed set K in C\ Uf:1 [ai, bil, we can
always shrink the lens so that K ¢ C\ (LUQg). In this case Y = X on K by Lemma 8.
Write the first row of Z as (1 +Vi,0, V7,1, - - .,Uﬁ',p). Then (1,j+ 1)-st entry of ZM is equal
to

P . . .

(1 ot Y vﬁ,ﬂg}i> SU jwes = (14 0(eq))SY) /w4
i=1

by Lemma 9 and (50), where wy o = 1. Therefore, it follows from Proposition 6 that

0
Qi = Cro[1+0(eq)] (Sﬁq)ﬁ)( )
RY = Cro[1+0(e)] (Sa®a)! /a0
Theorem 5 now follows from (51), since Ci,0 = (1+0(1))Cx again by (51) and wg ; — wj
uniformly on K.

9 LOCAL RIEMANN-HILBERT ANALYSIS

The goal of this section is to construct solutions to RHP-P..

9.1 Local Parametrices around Points in Eoyt

Let e € Eout, see (52). A solution of RHP-P. is given by
0 /p)
(62) P.:= MT; (; elq’ﬁl/q’ﬁ ) D,

where C;(z) = ﬁ f[ aybil F;iixz) dx. Indeed, since the matrices M and D are holomorphic

in U, and C; has a jump only across (ai, bi) N Ue, the matrix above satisfies RHP-P.(a).
As (€ —€7)(x) = pi(x) for x € (ay, bi) \{xij}, RHP-P.(b) follows. RHP-P.(c) is a conse-
quence of the fact that |C;(z)(z —xi;) 1| is bounded in the vicinity of xi; for aij < 0, [13,
Sec. 8.3]. Finally, RHP-P.(d) is easily deduced from the inclusion U, C D7, (19) and (14).

9.2 Local Parametrices around Points in E;,

The construction below is known [30, 21, 22, 8].

9.2.1  Conformal Maps

Since h is a rational function on 9R, it holds that hf ) = hg; ) on (agzi,bz1) NUe. Then

63) Celz) 1= sgn(im(@)i | (1O =RV (i, Im(z) 0,

extends to a conformal function in U, vanishing at e. Define (5 . exactly as in (63) with
h replaced by hy. Then it holds that

~sgn(Im(2))i

(64) elz) = o log (0 (2)/0 (2)), Im(z) £0,

by (21). It follows from (19) and (14) that {7 . is real on (aai,bgri) N Ue. Moreover, since
Ue\ (agi,bzi) C D, (7 e maps upper half-plane into the upper half-plane. In particular,
Ciie(x) >0 for x € (e,bzi) NUe. Observe also that

(65) Cﬁ',e — Ce

holds uniformly on U, by (19) since (19) is the statement about convergence of the imagi-
nary parts of (s . to the imaginary part of Ce.
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9.2.2 Matrix Pe
It follows from the way we extended p; into Q§ ; that we can write

(e—2z)%, Re(z)<e,
B(z—e)*, Re(z)>e,

(66) Pi(z) = prel(z) {

where pr,¢(x) is a holomorphic and non-vanishing function in U,. Define r¢ by

Te(z) = \/pre(z)(z—€)%/?,

where the square root is principal. Then r. is a holomorphic and non-vanishing function
in Ug \ {x: x < e} that satisfies

Ter (X)Te—(x) = pi(x), x €{x:x<elNUe,

(67) T%(Z’) = pi(z)eiﬂi(xr VAS r-ri::’l] NUe,
r2(x) = B Tpi(x), (I’;:ij+1 UT i1 Ulxix > e}) N Ue.

It is a straightforward computation using (67) and (64) to verify that RHP-P.. is solved by
. _ : —03 /2
Pe = E.T <c1>(,(,ﬁ (171Cre) e ™ (0F) /L)) >D,

where @ g is the solution of RHP-® , g and the holomorphic prefactor E. chosen below
to fulfill RHP-P(d).

9.2.3 Holomorphic Prefactor E.

It follows from the properties of the branch of (iC)lOg Bos/27 that

(_0] é) on (—o0,0),

o B
<—1/[3 0) on (0,00),

and it is holomorphic in C \ (—oo, c0). Therefore, it follows from RHP-N(b) that

(68) (IC) i’g pos /2ﬂiB+ _ (IC) E’g Boz/2mi

. 1
E. = MTi((i|ﬁ|Cﬁ,e)log‘363/2nlBirg03) . 4im(z) >0,

is holomorphic in U \ {e}. Since [re(z)| ~ |z — e|*/2 and |C1°g [3/2m| ~|g2re(B)/27 E_ isin

fact holomorphic in U as claimed. Clearly, in this case it holds that ¢ . = |7 |l28(B)I/7=1,

9.3 Hard Edge

In this section we assume that e € Ez and e Z 0D .

9.3.1  Conformal Maps

It follows from Proposition 3 that bg; = bz i = bj or ag; = az; = a; for all | 11| large
in this case. Define

1 (? . 2
(69) Celz) := <J' (h(o) —h(l)) (x)dx) , z€ U,.
4Je
Since hg - thi ) on (ai, bi) NUe, Ce is holomorphic in U.. Moreover, since h has a pole

at e (the corresponding branch point of R), (e has a simple zero at e. Thus, we can choose
U, small enough so that (. is conformal in U,.

Define (5. as in (69) with h replaced by hiz. The functions (5. form a family of
holomorphic functions in U, all having a simple zero at e. Moreover, (21) yields that

2
(0) )y (1)
4|ﬂ,|log((DFL /D5 )) , z€ U,

(70) Lrelz) = (

23



24

| 9.4 SOFT-TYPE EDGE I

which, together with (15) and (19), implies that (5 . (x) is positive for x € (R\ [a, bi]) N Ue
and is negative x € (aji, b;) N U, (this also can be seen from (37) and (38)).

Considering hyz and h as defined on the same doubly circular neighborhood of e and
recalling that their ratio converges to 1 on its boundary, we see that it converges to 1
uniformly throughout the neighborhood. The latter implies that (65) holds uniformly on
Ue. In particular, the functions (j; . are conformal in U, for all i large.

9.3.2 Matrix P,
In this case we can write
(e - Z) 0(/ €= b'/
(71) pi(z) = pre(z) { '

(Z_e)(xr €= qay,

where py ¢ is non-vanishing and holomorphic in U, @ > —1, and the «-roots are principal.

Set
*/2, e=by,

_ (z—e)*/<,
(72) Te(z) = M{ (e—2)*/2, e=aqj,

where the branches are again principal. Then v is a holomorphic and non-vanishing
function in U, \ [ai, bi] and satisfies
Ter (X)re—(x) = pilx), x € (ay,by),
73) { ré(z) = pi(z)e*rTe, z € Fr%i N Ue.
Then (70) and (73) imply that RHP-P. is solved by
(74) Pe =BT (e (1P ) e (ol o) ),

where ¥, := W, when e = b; and ¥, := 03¥ 403 when e = a;, and ¥ solves RHP-Y,
while E. is a holomorphic prefactor chosen so that RHP-P.(d) is fulfilled.

9.3.3 Holomorphic Prefactor E.
1/4

As Clr/ 4 i¢_’ ", it can be easily checked that

R TS Y G BT N
2\ 1) s s 1)) s oo

on (—oo0,0). Then RHP-N(b) implies that

__ I7Pe) " (1 ) o)
(75) Ee T MTl ( \/Z (:tl ] ) Te 3

is holomorphic around in U, \ {e}, where the sign + is used around e = b; while the sign
— is used around e = a;. Since |re(z)| ~ |z — €e|*/2, E is in fact holomorphic in U, as
desired. Clearly, e;; . = ||~ in this case.

9.4 Soft-Type Edge I
Below, we assume that e € Ez and b ; € 0D ; or az; € 0D ;.

9.4.1  Conformal Maps
By the condition of this section, it holds that e € 9D} . Define

z 2/3
(76) le(z) = (—ZJ (h(")—h“))(x)dx> , z€ Ue.

e
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Further, define (5 . exactly as (e only with h replaced by hy and e replaced by by ; if
e =bg;i and by ap i if e = ag . It follows from (21) that

(.3 (0) W)
(77) rel2) = ( galos (07 @/e@))  zell

Analysis in (37) and (39) yields that these functions are conformal in U, (make the radius
smaller if necessary), are positive on (R\ [a i, bqi]) N Ue and negative on (ag i, b i) N
Ue. Moreover, (65) holds as well.

9.4.2 Matrix Pe

If e = xyj for some j € {1,...,]J; — 1}, set « := o;; and B := Bi; when e = bg; or
B :=1/Bi; when e = ag;, see (23); if e ¢ {xij}ggl and e € (ai,b;), setax=0and p = 1; if
e = ai, set a« = ajp and B = 0; if e = by, set « = a4y, and B = 0. It follows from the way
we extended p; into Qii that

78) 0:(2) = pre(2) { (

for Re(z) € (ag i, bei) and
—e)%, = bg ir
(79) pi(z) = Borel(2) { (2o e=be

(e—2z)%, e=agy,
for Re(z) ¢ [agi, bei], where all the branches are principal. Define r. by (72) with b;
and a; replaced by bz ; and ag ;. Then r¢ is a holomorphic and non-vanishing function in
Ue \ [agi, bei] that satisfies

Ter (X)Te—(x) = pi(x), x € (agzi, bgi) NUe,
(80) r2(z) = pi(z)e™,  zeTT NU,,

r2(x) = B~ Tpi(x), (R\ (agi, bgi)) NUe.
Then one can check using (80) and (77) that RHP-P. is solved by

(81)  Pe:=EcTi (we (7P (Cre—Crele)) ) re ™ (0F /@QJ)%/Z) b

where ¥, = W, 3(;si) when e = bgy and We = 03¥yp(;sr)o3 when e = ag;,
Yo (- s) solves RHP-Y, g,
Si = |ﬁ‘2/3Cﬁ,e(e),

and E. is a holomorphic prefactor chosen so RHP-P(d) is satisfied.

9.4.3 Holomorphic Prefactor E.

If sz =0, then E. is given by (75) with |1l |2 replaced by | i |2/3. In this case we have
by Theorem 7 that e = |7 |=1/3,

If sz > 0O, then (75) is no longer applicable as the matrix M has the jump only across
(a1, bi,i) while r¢ °3 is discontinuous across (ag i, bg i) NUe where by ; < b oragi >
agi. Observe that

Ter(x) =Te—(x)e™™, x € ((agi,bei) \ (ari b)) NUe.

Therefore, define

:
Gu(0Q) ::exp{ﬂiaﬁ1j 1 dx }, e C\ (~oo,1].

27 Jo Vxx—C
It is quite easy to see that

Gut+Ga— =1 on (—o0,0),
Gu— = Ggymia on (0,1).

25
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Moreover, from the theory of singular integrals [13, Sec. 8.3] we know that G« is bounded
around the origin and behaves like [ — 1|~%/2 around 1. Then it can be checked using the
above properties that the matrix function

70‘3/4
|T12/3 e 1 +H _
( ﬁ> (ii 11) (Gaco (Crie/Civele)) Te) ™
is holomorphic in U,. With such E. it holds that
Pe=MTi (6o 0 (Ce/Crele)) (140 (ere))) D

uniformly on dUe \ ((ay, bi) UTE, UT,), where

—1

Ee = MTi

(82) ere = max{[Cel(e)l/2, 17713},

according to Theorem 7. To see that RHP-P.(d) is fulfilled it only remains to notice that
Gul(Z) =1+0(¢1/2) as { — oo uniformly in C \ (—oo, 1.

If sz < 0, we need to modify (75) again because M still has its jump over (aﬁ,i, bﬁ,i)
while r. over (Clg’i,bai) where by ; > bg; or azi < agi. Define

. log 3 /27t
1 1/2
3) Falc) = B'/2 (M) , (e (o0,

This function is holomorphic in the domain of its definition, tends to 1 as { — oo, and

satisfies
]/ X € (—OO, 0)/

FoorbFp- () _{ B, xe(01).

Indeed, the function (i++/¢—1)/(i—+/¢— 1) maps the complement of (—oo, 1] to the lower
half-plane, its traces on (—oo, 1) are reciprocal to each other, are positive on (0, 1), and are
negative on (—o0,0). The stated properties now easily follow if we take the principal
branch of log 3 /27i root of this function. Then

—o3/4
R 300e) - el o
eooomr, (U220 1) (et )

V2 = Crele)

—1

is holomorphic in U, \ {e}. Since |re(z)| ~ |z — e|*/2 as z — e, one can deduce as before E.
is holomorphic in U,. Moreover, exactly as in the case sz > 0, we get that RHP-P. holds
with e . given by (82) since Fg(¢) =1+ 0(¢71/?) as { — co.

9.5 Soft-Type Edge II

Lete € E¢, e € 0Dy, but by ; ¢ 0D, or ap; ¢ 0D .. In this case it necessarily holds
that by ; =bgi =bjor agi = agi = aj.

9.5.1  Conformal Maps

By Proposition 3, h is bounded at e (the corresponding branch point of 93) while hyz
has a simple pole at e (this time e is a branch point of YR, but it has the same projection
e) and a simple zero z ; or z ;1 that approaches e. Hence, we can write

(84) 7‘37‘,[2 (h%o)fhg)) (x)dx =vz—e(z—e—eq)Tr(2),

where 0 < ex — 0 as |71| = oo and f is non-vanishing in some neighborhood of e and is
positive on the real line within this neighborhood (one can factor out v/z — e as the square
of the left-hand side is holomorphic exactly as in (69) and (70)). Then there exist functions
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(i e, conformal in U, vanishing at e, real on RN U, and positive for x > e in U, such
that

5) 27 (WD -l ) (= G2 ele+ et 2

4|, T m,e e

Moreover, (65) holds, where (. is defined by (76), and the left-hand side of (85) is equal to
the right-hand side of (77). Indeed, consider the equation

(86) ulze)(ulze)—p)’ =glze), glze) =zz—e)f(ze),

where p is a parameter, f(z; €) is positive on the real line in some neighborhood of zero
and g'/3(z;0) is conformal in this neighborhood. The solution of (86) is given by

(87) u(z;e) =2p +v1/3(z;e)+p2v’1/3(z;e),
where v(z; €) is the branch satisfying v/3(0;e) = —p of

(88) v(z; €) =9(z;€)—p3+\/g(z;e)(g(z;e)—2p3)-
Choose p so that

(89) 2p® = max g(xe).
x€[0,¢€]

Conformality of g'/3(z;0) implies that there exists the unique x. > € such that
gix;e)(glxe) =2p%) <0, x € (0,xe)\{e},
g(x;e)(g(x;e) —2p®) >0, x>xe,

for all € small enough. Then we can see from (88) that

3y2

)2 —

g(xe)(glxe) —2p%) =p°

(90) vi(xe)l? = (glxe) —p
for x € [0, x¢]. Moreover, it holds that
(91) vi(xe)=pivIl(xe), xel0xel.

Finally, observe that the conformality of g'/3(z;0) yields that the change of the argument
of v{ (x; €) is 3 when x changes between 0 and x.. Hence, v173(z€) is holomorphic off
[0, €] and its traces on [0, €] map this interval onto the circle centered at the origin of radius
p by (90). This together with (91) implies that u(z; €) given by (87) is conformal in some
neighborhood of the origin and u(0; €) = 0. Thus, (5 . in (85) is given by

Crelz) =ulz—eeq),

where u(z; €) is the solution given by (87) of (86) with f(z; €) := f% (z—e) and the parameter
p chosen as in (89).

9.5.2 Matrix P,

Clearly, formulae (71) and (72) remain valid in this case. Then (73) and (85) imply that
the solution of RHP-P. is given by

N _ : —0'3/2
Pe = EcT: ( e (INP3ee) e (0F) /o)) ) D,

where E. is given by (75) with |1l |2 replaced by |l 12/3 y, = ‘I’(xlo(-; s ) when e = b; and
Ve =03Wyo0(;s7)o3 when e = qj,

s = —| PP ele+ ex),
and ‘1}“’5 is the solution of RHP—‘I’LX,B. In this case, it holds by Theorem 7 that

1/2 L
eﬁ,e:max{ ﬁ{e(e—&-eﬁ),lnl 1/3}.

27
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10 MODEL RIEMANN-HILBERT PROBLEM I‘hp-‘yo(,ﬁ

In this section we prove Theorem 7.

10.1  Uniqueness and Existence

Since all the jump matrices in RHP-¥, g(b) have unit determinant, det(¥,g) is holo-
morphic in C\ {0}. By RHP-¥, p(d), it holds that det(W¥ g)(oo) = 1. It also follows
from RHP-W g(c) that det(Wy g) cannot have a polar singularity at the origin. Hence,
det(Wy,g) = 1. In particular, any solution of RHP-W  is invertible. If ¥y and ¥, are
two such solutions, then it is easy to verify that ‘l’ﬂl’g] is holomorphic in C. Moreover,
‘1’1‘1’5] () =1+0(1/0) as { — oo. Thus, 11’1‘1’2’1 = I, which proves uniqueness.

10.2  Local Behavior

To proceed with the existence, we need more detailed description of the behavior of ¥ g
at the origin. Denote by Q1, Q,, Q3, and Q4 consecutive sectors of C \ ((—oo, oco)UI_U
I;) staring with the one containing the first quadrant and continuing counter clockwise.
Then we can write

(92) Yo,p(0) =E(0)Sqp(C)A), C€Qy,

where E is a holomorphic matrix function,

10 1 - 1 0
(93) A3 :A4 <e—o(7-[i 1) s A4 :A1 (O 1 )r A] :AZ (eocT[i ]) ’

and

1 1*[56"‘?Ti 1 [376"‘”_i
(94) A= [ 2eoslam/2) A—esm Jcoslam/2) 1 e while  S4 () = (*3/?
_exrmi/2 e—omi/2

when « is not an integer,
loami/2 1 ,—omi/2 /2 1=B /2
_ ([ 2¢ 2¢ . (¢ 7 0/ 7 log ¢
(95) Az = (_ecxﬁi/z efocrti/z ) while S“/B(C) - < 0 C—cx/Z
when « is an even integer,
0 e—oumi/2 ch/z 1+[5Coc/2 log ¢

_ . _ 27 &

(96) Az = (_eam/z e_omi/z> while Sy 3(0) = ( 0 !

when « is an odd integer (observe that det(A;) =1 for all j € {1,2,3,4}). Indeed, equation
(92) can be viewed as a definition of the matrix E. Relations (93) are chosen so E is
holomorphic across I+ and (0, c0). Moreover, on (—oo, 0) it holds that

- T 0\ /1 =B\[( 1T O\/0 T\, 1c
1 1 1
E” E+ = So(,[:’;f' \2 (eocrti ]) <0 1 > <e—oc7'ti ]> <_1 0) 2 Soc,[3+ =1,

where the last equality is a tedious but straightforward computation. Hence, E is holo-
morphic in C\ {0}. Using RHP-¥, 5(d) and (92), one can verify that E cannot have a polar
singularity at o and therefore is entire as claimed.

10.3 Vanishing Lemma

The crucial step in showing solvability of RHP-¥, g is the following result. Assume F, g
satisfies RHP-¥ p(a,b,c) and it holds that

70‘3/4 1
o) Fop(Q) = 0 (C") ¢ = C ;) exp {— (écs/z +sC1/2) 03}
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as ¢ — oo uniformly in C\ (I+ Ul_U(—o0, oo)). Then F, g = 0. To prove this claim, we
follow the line of argument from [16] and [32]. Set, for brevity, 8(() = (%Cg/z + SCVZ).
Assuming Re(p) > 0, define

Fap(@e20 (7 1), e,
1 0\ /0 —1
C B(C) o F“,B(C)QG(C)Gg (ecxﬂieze(C] ]) (1 0 ) , e Qy,
«, =
1 0
Fa,B(C)ee(C)G3 (_eomieze(l) ]) ’ CeQg,
Fop(0)el0)os, e Qy.

Then G4 p satisfies the following Riemann-Hilbert problem (RHP-G 4 p):

(@) Gg,p is holomorphic in C \ (—oo, 00);
(b) Gu,p has continuous traces on (—oo,0) U (0, co) that satisfy

1 _ecxrrieZG+
<e—cx7ﬂeze 0 ) on (_OO/ 0),

Gup+ = Gap— —20
pe 1 on (0,00);

(c) as ¢ — 0 it holds that

_ o (102 ICI"‘/2>
Goc,ﬁ(o =0 (|C|oc/2 |C|oc/2

when o < 0,

o1 1+ (1—=p)logld o1+ (0 —=B)loglc 1
G“’B(C)_O<1 1+(1B)loglcl> and G“’B(C)_o<1+“5)1°g|c 1>

when « =0, for Im(¢) < 0 and Im(C) > 0, respectively, and

2 jg-e2 (/2 g
6upl01=0 (G2 (gaz) and Gxal0=0 (G z jive)

when « > 0, for Im(¢) < 0 and Im(C) > 0, respectively;
(d) Gap=0(C3) as { — .

Properties RHP-G g(a,b) can be easily verified using RHP-¥ 3(ab), the definition of
Gy, p, and the fact that 0, +6_ = 0 on (—o0,0). To show RHP-G g(c), observe that the
representations (92)—(96) holds for F g as well. They imply that

Go,p =ESq A ((]) _0]> e %9 and Gup =ESypAge®s
in Q7 UQ; and Q3 U Qy, respectively. Since [A1]21 = [A4]z1 = 0, RHP-G g(c) follows.
Finally, RHP-G , g (d) is the consequence of the fact that Re(0) < 0in Q; U Q3.
For the next step of the proof consider the matrix function

Gu,p(0)(Gap(Q)", C&(—o00,00),
where (Gy,p)" is the hermitian conjugate of G o 5. This matrix function is holomorphic off
the real line, has integrable traces on the real line by RHP-G , 3 (c) (recall that & > —1), and

vanishes at infinity as {73/% by RHP-G, 3(d). Thus, we deduce from Cauchy’s theorem
that the integral of its traces over the real line is zero, i.e.,

@ 0= Gapr(d(Gap () dx= | Gup-(x)(Garp ) e

—00
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Adding the last two integrals together and using RHP-G  (b), we get

0
0= L Gap_(x) (é g) (Gap—(x))"dx

0 31e—20(x) .
+JO Gap (%) (””B)Oe 0) (Goop_(x))"dx.

The above equality yields that the first column of G, g_ vanishes identically on (—oo,0)
(on the whole real line if  is not purely imaginary). In any case, since G4 g_ consists
of traces of holomorphic functions, its first column vanishes identically in the lower half-
plane. Thus, by RHP-G g(b), the second column of G4 g vanishes identically in the
upper half-plane. To finish proving that G4 g = 0 in the case Re() > 0 (and therefore
Fo,p =0), set

9:(6) = [Gupliz(C), Im(Q) <O.

Both functions g; are holomorphic in C \ (—o0, 0], satisfy g;(¢) = O(C
gi(Q) = O(l¢I~1%l/2) as ¢ — 0, while their traces are related by the formula

{ (G pli1(Q), Im(Q) >0,

—3/%) as { — oo and

gir(x) = gi_(x)e ¥Me20-¥)  x e (—00,0).

The latter is possible only if g; = 0 as shown in [16, Def. (2.26) and below].
When Re() < 0 and Im(3) # 0, let us redefine G4 g in Q7 and Q; by setting

10

1 0 0 1
Fa,B(C)ee(C)Gs <eoc7tieZG(C) 1) (1 0) , ey

This newly defined function G4 g still satisfies RHP-G g except for RHP-G g (b), which
now becomes

Fa,B(C)ee(C)Gs <O ]> , C S Q],
Goc,ﬁ(a =

1 eoc7ti629+
(e—omieze 0 ) on (—o0,0),
( 1 O> on (0,00).

Observe that (98) remains valid. Thus, by taking the difference of the integrals in (98), we

arrive at 20(x)
& —PBle2%™x) ¢ *
onO Goop_(x) ((‘5 ‘5)06 o) (Gop (%)) dx.

This again allows us to conclude that the first column of G, g vanishes identically in the
lower half-plane and the second column vanishes in the upper half-plane. The remaining
part of the proof is now exactly the same as in the case Re(f3) > 0.

10.4 Existence

For Aj and Sy g as in (93)—(96), define
Yo, (OA; S 1 (0), ce;n{d<1},

1
Yo (010 (|

—1

Moc,B(C) = —i
1)&“3/4, ceq;n{ld=1}.

Further, let the contour Zpq be as on Figure 4 with its subarcs oriented so that C\ Iy =
Q4 UQ_, where Ip is positively oriented boundary of () and is negatively oriented
boundary of O . If ¥, g uniquely solves RHP-¥, 5, then My g uniquely solves the
following Riemann-Hilbert problem (RHP-M g):

(@) Mg,p is holomorphicin C\ Iy and My g(C) =1+ 0(1/C) as ¢ — oo;
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FIGURE 4. Contours Zp.

(b) Mg, g has continuous traces on Ly, that satisfy My g = M g_J, where
1 /1 —i !
— e0(C)o3 - 03/4
1) = (Saploaseeteres o (1 een)

on Q; N {[¢| = 1} with the exponent 1 for j = 1,3 and the exponent —1 for j = 2,4,
and on the rest of the contour X4 the jump is equal to

0, ceftmn{ld<1}orle (—o0,—1),

—i C71/2
J(Q) =1+ e 2000) 5 (sz ; ) e (1,00),

etori ici]/z 1
2 1 7icl/2

According to [18, Appendix], see also [16, Prop. 2.4], the unique solution of RHP-M, g
is given by the formula
Myp(0) =T+ E(MW,+W_))(0), (eC\Im,

where J = (I—W_)~1(I —W,) is a factorization of the jump J for some W € L2(Zpm)N
L*®(Xm), € is a Cauchy operator

), celen{ld>1}

1 H(s) 2
CH(Z) = 5~ LM “lds, HelX(Tu), LeC\Iy,

and M € I +L?(Z ) is the solution of the singular integral equation

(99) (1—ew)M =1

for the singular operator Cyy : L(Zp) — L?(Zam) given by
CwH:=CL(HW_)+C_(HW,), Hel?(Im),

provided this solution exists and is unique. Indeed, given such M, it holds that

I+C+ (MW +W_)) =I+CywM+ (C+ —Cx)(MW4i) =M=+MW4
by (99) and Sokhotski-Pemelj formulae [13, Section 4.2]. Then
(I+e- (MW +W,)))_1 I+e:(MWL+W_)) =1-W_) HI-W,)=]

as desired. Thus, only the unique solvability of (99) needs to be shown. The sufficient
condition for the latter is bijectivity of the operator J — Cy, which can be established by
showing that J — Cyy is Fredholm with index zero and trivial kernel.

To this end, let us specify W4. Away from the points of self-intersection of Zp4, set

Wy :=]J—1 and W_ =0.
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Around the points of self-intersection, we chose W to be continuous along the boundary
of O and W_ to be continuous along the boundary of Q_. The latter is possible because
around each point of self-intersection of Zp4, the jumps satisfy the cyclic relation

12805 =1,
where we label the four arcs meeting at the point of self-intersection counter-clockwise
starting with an arc oriented away from the point and denote by J; the jump across the

i-th arc. Clearly, W4 € L2(Zpm) NL%®(Zp). To show that I — @y is Fredholm, one needs
to construct its pseudoinverse. The latter is given by J — €3, where

W, :=(1+W,) "1 and W_:=T—(1-W_),

as explained in [16, Eq. (2.39)—(2.42)]. The index of J — Cyy is equal to the winding number
of det(J), which is zero since det(J) = 1. Finally, the kernel of J — Cyy is trivial if and only if
the homogeneous Riemann-Hilbert problem corresponding to RHP-M,, g has only trivial
solutions. Correspondence between RHP-¥, 3 and RHP-M,, g implies that the kernel is
trivial if and only if the solution of RHP-¥ g with RHP-¥ (d) replaced by (97) has only
trivial solutions. This is precisely the content of the preceding subsection. This finishes
the proof of the first claim of Theorem 7.

10.5 Asymptotics of RHP-W g for s >0

It is known that O (n*]) is uniform for s on compact subsets of the real line [16]. Thus,
we only need to prove (33) for s large.

10.5.1  Renormalized RHP-W g

Set Ti ={n:argn+1) = £27t/3} and let ﬁj, j €{1,2,3,4}, be the domains comprising
C\ ((—oo,oo) Uf+ Uf_), numbered counter-clockwise and so that ﬁ1 contains the first
quadrant. Define

o) = 24132, neC\ (—oo,—1],

3
to be the principal branch and set for convenience T := s3/2. Let
I in 0;U0,U0,UQ;,
(100)  Wop (i) =573/, g (sn;s) 10y . _ ~
(ie:tomi 1) in 0>\0z, O3\0Q3,

where the sign + is used in Q; \ﬁz and the sign — in Q3 \63. Then ‘I’“,ﬁ solves the
following Riemann-Hilbert problem (RHP-¥ p):

(a) Wy, is holomorphic in C \ @+ UT_ U (—o0, 00));
(b) W« has continuous traces on TJF ul_u (—o0,—1) U (—1,0) U (0, 00) that satisfy

(_01 é) on (—oo,—1),
e(xrri 1
( 0 e—cxm) on (—1,0),

o, PB—
(6 §) on 0,
(c) asm — 0 it holds that

10 -
etam 1) on Iy

Yopmit) =EmSepmA;, neQ; jeil 4
where E is holomorphic, and Sy g, A7 and A4 are the same as in RHP-¥ 5(c);

)
=)

o, B+ =
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(d) ‘/l\’“,ﬁ has the following behavior near co:

Yo a1 = (I+o (n")) ”\2/4 (1 ]1> e—T9(n)os

uniformly in C \ (f+ UT_ U (—oo, 00)).

10.5.2  Global Parametrix
Let
— 2
& ico) 1Oy DA 1w (02
Yoyt = . — . ———— e
od 1 V2 i 1 m+N1/2-1
= Fl®)(r)e~T9Mos,

Then, as is explained in [17, Section 2.4.1], this matrix-valued function solves the following
Riemann-Hilbert problem:

(a) q’(oo) is holomorphic in C \ (—oo, 0];

(b) ‘T’(Oo) has continuous traces on (—oo, —1) U (—1,0) that satisfy

0 1 on (—oo,—1)
g _g= ] (o1 o 1
e*™o3  on  (—1,0),

(c) as 1 — 0 it holds that ‘/l\’(oo)(n;’c) = E(Oo)(n)no‘“3/2, where I?_(OO) is holomorphic
and non-vanishing around zero;

(d) ¥ satisfies RHP—‘I’a,ﬁ(d) uniformly in C \ (—00;0] and the term O(n~") does
not depend on .

Notice that F(*) has the same jumps as g,

10.5.3 Local Parametrix Around —1

The solution Wp; := Wo,1(-;0) is known explicitly and is constructed with the help of
the Airy function and its derivative [9]. Set

o (=1 (=1

YU =E  (MWai(s(+1))et¥mo/2 0 4imm) >0,

~(—1
where E( ) is holomorphic around —1 and is given by
-1

—o3/4 .
E ) =F)m) (W (1 11>eimw3/z> oo

Let U_1 be the disk of radius 1/4 centered at —1 with boundary oriented counter-clockwise.

(1
Then it is shown in [17, Section 2.4.2] that 11’( ) satisfies
~(—1 ~
(a) ¥ s holomorphic in U_1 \ G+ UL U (—o00,00));

~(—1 ~ ~
(b) ‘1’( ) has continuous traceson U_; N @Jr Ul_U(—o0, oo)) that satisfy RHP-¥, g (b);
(c) it holds that
~(=1)

v m;t) = F®) () (I +0 <1—1>) e—T9(n)o3

as T — oo, uniformly form € oU_1 \ @+ ul_u (foo,oo)).

10.5.4 Local Parametrix Around O

Define
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where S, g and A; are the same as in RHP-W, 3(c) and

. _ Al 0
B ) =" o eos2 (11 1)
0 [Aﬂzz

which is a holomorphic function around the origin by the properties of g Let Uy be

= (0
the disk of radius 1/4 centered at 0 with boundary oriented counter-clockwise. Then g

possesses the following properties:

(a) ‘I’(O) is holomorphic in Up \ (—1/4,1/4);

(b) ‘I’(O) has continuous traces on (—1/4,0) U (0, 1/4) that satisfy RHP—‘I’(X,B(b);

(c) ‘T’(O) satisfies RHP—‘T’%B(C) with E replaced by ﬁ(o) ;

(d) it holds that

{l\’(o)(n,"t) _ F(m)(ﬂ) (I +0 (efc*c)) e*’rg(n)o3
as T — oo for some ¢ > 0, uniformly for n € Uy \ {—1/4,1/4}.

Indeed, properties (a,b,c) easily follow from RHP—‘I’%B(b,c) and the holomorphy of E(O).
To get (d), write [Sy gl12(n) = n%/2k(n), where

T+p
2mi 2mi
depending on whether « is not an integer, an even integer, or an odd integer. Recall also
that Ay and A4 are upper triangular matrices and [A1];; = [A4li; for i € {1,2}. Then

~ A —1 0 1
M = F)(g)eTemios <[ il ]>< K(n)) A

1
km) =0, kMn)= logn, or «(n) = logn

_ e (1 e—zTg(n)([Aj]zzK(n)+[Aj]1z)/[Aj]11> e T9(n)os
0 1

from which property (d) can be easily deduced as T > 0 and Re(g(n)) > 0 for n € dU,.

10.5.5 Asymptotics of RHP-W, g
Denote by
I(Ra,p) == 0L 1 UL U ((T-UT; U (=1,000) N (C\ (U4 UTho)) ),

and let £°(Ry, g) be Z(Ry, g) with the points of self-intersection removed. Put

~( _
v (1), melUy,

~

~(0
Rap10) =¥ gm0 mn~1, ey,

(o0)

)

1™, meC\(Uoul_y).
Then R g has the following properties:

(@) Ry, p is holomorphicin C\ Z(Ry,g);

(b) Ry, p has continuous traces on £°(R, g) that satisfy R(()S?S =R 025

as T — oo;
(c) it holds that Ry g (n;T) =1+ 0 (n_]) as n — oo uniformly in C\ Z(Ry g ).

(o ()

(e

Property (a) follows from the facts that g'e has the same jumps as ‘I’“,B inUe, e €

~ (00 ~ ~ (0
{-1,0}, ‘l’( ) has the same jump across (—oo,—1) as W g, and ‘l’( ) has the same local

)

behavior around 0 as q’oc,B- Property (c) follows easily from the fact that both ¥ and

@0@[5 satisfy RHP—‘T’%B(d). Property (b) on 0lU,, e € {—1,0}, is the consequence of the fact
(e)—

~ ~ 1
Ry Rapy = #9714 Foolg (v 1) Foo 1,
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Finally, on the rest of Z(Ry g ) it holds that

—21g
I+ F (8 ¢ o )F(f")‘1 on (—3/4,—1/4),

—21g
Rapt =Rop { I+F (8 pe 0 >F(°°)] on (1/4,00),

0 0 _ ~ =
1 +F(oo) (eicxniezTg O) F(Oo) ! on It \u—].

As g(n) > 0 forn € (—1,00) and g(n) < 0 forn € Ti, the last part of the property (b)
follows. Given (a,b,c) it is by now standard to conclude that

1
Ropg(m;1) =140 ("C“'HHD>

as T — oo uniformly forn € C\ £(Ry g). Thus,

G o oo ! “1/2 (1 i) —g(n)os
S it TR

o () (§ ) e

as n — oo uniformly for n € C\ Z(R4,g) and T large. Estimate (33) now follows from
(100).

n

(101)

10.6  Asymptotics of RHP-W g for s <0

In this section we assume that  # 0 and define

log B = log|B| +iarg(p), arg(B) € (—m, 7).

Again, we only need to prove (33) when s — —oo.

10.6.1  Renormalized RHP-W g

Set ]+ to be two Jordan arcs connecting 0 and 1, oriented from 0 to 1, and lying in the
first (+) and the fourth (—) quadrants. Denote further by Q4 the domains delimited by
J+ and [0, 1]. Define

2
gm) =3 =12, neC\(~o0,1],
to be the principal branch and set for convenience T := (—s)3/2. Let
1
~ in Qg,
(102)  Wopnt) = (—5)%/ Wy g(—sm;s) (ﬂ/ﬁ 1)
I otherwise.

Put for brevity Z(‘I’(x,ﬁ) =1 UI_ U (—00,0) UTJr UT,. Then ‘I’a,ﬁ solves the following
Riemann-Hilbert problem (RHP-¥, g):

(a) ‘T’“,B is holomorphic in C \ Z(‘/l\’“,ﬁ );

~

(b) W4, has continuous traces on (¥4 g) \ {0, 1} that satisfy

(0] ;) on (—O0,0),
- <10/f5 g) on (0,1),

<(]) [13) on (1,00),

e
)

o B+ =
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1 0 ~
R R (1/l3 1) on Ji,
‘llO(,[5+ :lyoc,ﬁf 1 0
(ei(xni ]) on Ii;

(c) asn — 0 it holds that

@ o (12 g2 4 g /2 o (1 Togld
lll(x_,f)(n/T) — O (|C‘X/2 |C|O(/2 + |C‘7o‘/2 and llloc,B(T],T) — O 1 log\(:|

and

when « # 0 and o = 0, respectively;
(d) W, has the following behavior near oco:

Wop(m;T) = (I +0 (f‘)) ”\2/4 (1 ]1> e—T9(n)o3

uniformly in C \ (I; UI_ U (—o00,00)).

10.6.2  Global Parametrix

Set
¥ 1) = F e oIS,

(00) . 1 0 (T]—])70<3/4 1 1 —o3
P (aioge 1) g (1)

and the function Fg is give by (83). Now, it is a straightforward verification to see that

where

(a) ‘I’(Oo) is holomorphic in C \ (—oo, 1];

(b) q’(oo) has continuous traces on (—oo, 1) that satisfy

0 1
(c0) (_-I O) on (—OO, O)/

- 0 B |
(_1 ;" 0) on (0,1;

(c) U™ satisfies RHP-Y,, 5(d) uniformly in C \ (—oo; 1] and the term O (") does
not depend on T.

)

7> _g

Again, notice that g and F(*) satisfy the same jump relations.

10.6.3 Local Parametrix Around 1
Denote by U; the diAsk centered at 1 of radius 1/4 with boundary oriented counter-
clockwise. Choose arcs J1 so that
M—1:mejenU}cly.
Let, as before, Wa; =¥ 1(;0). Set

G ) =B wa (= s —1))p3/2,

~(1
where E( : is holomorphic around 1 and is given by

=R _ 1 —o3/4 . -1
E“)m):zr(m)m)<( o ﬂ)) (11 ?) 5—03/2> .

Then it can be checked that ‘I’(] ) satisfies
(a) ‘T’“) is holomorphic in U \Z(qlcx,ﬁ );
~(1 ~ —~
(b) ‘1’( ) has continuous traces on Uy N Z(W4 g ) that satisfy RHP-¥ 5 (b);
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(c) it holds that

‘I’m(n;’r) =Fl>®)(q) (I+O <T_1)> e—T9(n)o3

as T — oo, uniformly for n € ol \Z(‘T’“,B).

10.6.4 Local Parametrix Around O

Denote by Uy the disk centered at 0 of radius 1/4 whose boundary oriented counter-
clockwise. Let
m(n):=3F2ig(n), +Immn) > 0.
Then m is conformal in Uy, m(0) = 0, and m(x) > 0 for x € (0,1/4). Choose the arcs Ti
so that m@i) C J+. Define

V0 =)D (@4 (tmm))),

where @ g is the solution of RHP-® 5, D (@, (tm)) is a holomorphic deformation of
~(0
Dy (Tm) that moves the jumps from (tm)~! (Ii) to I+, and E( ) is holomorphic around

0 and is given by

(103) £ ) = F) () (e737195/2 (iem () 8 P>/ )

(the constant matrices B4 were also defined in RHP-® ). To see that E(©) is indeed
holomorphic recall that

B =B_ (_01 (1)> and (ix)lfgﬁ/zﬂi _ B(ix)lng/Zm

for x > 0, which implies that the function in parenthesis in (103) has the same jump as
F(*) on (—1/4,1/4). Observe further that
ByeTitmn)os/2 _ g3tios/2g , o=T9(M)03  Lm() > 0.

Therefore, it follows from RHP-®  5(d) that

¥ ;) = F°) () (e737003/2 (irm () "8 P>/ 2 ) B (1+0(x 1)) x

« (673Ti0‘3/2 (iTm(T]))lOg 503/2ﬂ13i> e*’rg(n)og )

Finally, notice that

‘Tlog B/27i| _ qarg(B)/27 aro(B) € (—m, 7).

Thus, g has the following properties:
(a) ‘T’(O) is holomorphic in Uy \ Z(‘T’%B );

~(0 ~ ~
(b) ¥ satisfies RHP-W s (b) on £(¥, ) N Uo;
~(0 N
(c) ‘l’( ) satisfies RHP-W, g(c) within Uy (by RHP-® , 3(c));
(d) it holds that
G (1) = F) ) (1 Lo (Targ(m/nq )) e—T9(n)o3
as T — oo uniformly on 9l \Z(‘I"X’B ).

10.6.5 Asymptotics of RHP-W, g

Define
0)

<

(m;T) ™', me U,

)

(M

Yo 5(M;T) y (n;’t)*l, ne U,

01, nec\ (Uoulh).

Roc,B (ﬂ; T):

<
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Notice that the jumps of Ry g across J+ \ (U U ;) are equal to

wo)—1( 0 0\ (e
I+Fl>) 1<eZTg O)F( )

Since Re(g) < 0 there, we get exactly as in the case s > 0 that

1
Rap(mt)=1+0 (T1arg(B)/Tf(1 + Inl))

as T — oo uniformly forn € C\ (auo uou; U (Z(‘I’“,B) \ (Upuly ))) Hence, (101) still
holds and therefore (33) follows from (102).

10.7 Asymptotics of RHP—‘I’(X’ B

Below, we assume that 3 = 0. As before, we only need to prove (34) when s — —oo.

10.7.1 Renormalized RHP—‘I’%B
Define )
gm)=3n""2Mm—1), neC\(-o01],
to be the principal branch and set for convenience 7 := (—s)3/2. Let
(104) Won;1) = (—5) /W o(—sm; ).
Then W solves the following Riemann-Hilbert problem (RHP—‘I’(X,B):

(@) ‘I’a is holomorphic in C \ (IJr Ul U(—oo, O]);
(b) ‘T’(x has continuous traces on I, UI_ U (—o0,0) that satisfy

0 1
R <—1 0) on (—OO, O)/
L

1 0
etam on Ii;
(c) asn — 0 it holds that

o o (12 |&|“/2+|c—“/2) o (1 logICI)
“'“("'T)‘OQC“/Z /2 4 jger2) and Haln T =0{q 1

when o # 0 and « = 0, respectively;
(d) ¥« has the following behavior near oo:

q’oc(n)’f) = <I+O (1]71)) n\j;/4 (1 ]1> e—T9(Mos

uniformly in C \ (I; UI_ U (—o00,00)).

10.7.2  Global Parametrix

Set P
o) o m93 1 i

It is a straightforward verification to see that

) e—T9()03 . F(00) (1)~ 79 (m)03

(a) ‘T’(oo) is holomorphic in C \ (—oo, 0;
(b) ‘T’(Oo) has continuous traces on (—oo,0) that satisfy ‘T’Eroo) = ‘/l\’(,oo) ( 0 1) ;

() ') satisfies RHP-¥ (d) with O m ') =o.
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10.7.3 Local Parametrix Around O

Denote by Uy the disk centered at 0 of small enough radius so that g?(n) is conformal
in Uy. Notice that g%(x) > 0 for {x > 0} N Ug. Define

~(0) =(0)
)= D (Yal(rgn)/2)2)),
where ¥, is the solution of RHP-Y,, D (‘l’(x((’cg /2)2)) is a holomorphic deformation of

¥, ((tg/2)?) that moves the jumps from (t?g%/4)~' (1) to I+, and £ s holomorphic
around 0 and is given by

€)= F D (F) ((7g/2)2))
Clearly, ‘T’(O) has the following properties:

(0
(a) % s holomorphic in U \ (I UI- U (—00, 00));
(b) ¥ satisfies RHP-W o (b) on (I, UL U (—oc0,00)) N Uo;

() ¥ satisfies RHP-W,, (c) within Ug (by RHP-W 4 (c));
(d) it holds that

‘I’(o)(n;T) =Fl®)(q) (I +0 <T_1)> e~ T9(n)os

as T — oo uniformly on dUg \ (I+ UI_ U (—o0,00)).

10.7.4 Asymptotics of RHP-‘I’%ﬁ

Define

M), me Uy,

0)
) - —
'm0, nec\U.

Ro(m; 1) :=Wa(n; 1)

_ y
q,(

Exactly as before we have that

1
RamiT) =140 (ru +|n|))

as T — oo uniformly forn € C\ (0Uo U ((I4 UI_ U (—o00,00)) \ Up)). Hence, (34) follows
from (104).
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