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INTRODUCTION 

Remote patient tracking has been gaining increased 
attention due to its low-cost non-invasive methods. 
Unified Parkinson's Disease Rating Scale (UPDRS) is 
used often to track Parkinson's Disease (PD) 
symptoms which requires the patient's visit to the 
clinic and time consuming medical tests that may not 
be feasible for most of the elderly PD patients. One of 
the major concerns to predict the PD in early stages 
is that PD symptoms overlap with the symptoms of 
other diseases such as Multiple Sclerosis, 
Alzheimer's disease. Moreover, most of the current 
methods used for tracking PD rely on expert clinical 
raters, from which PD symptoms assessment may be 
difficult due to inter-individual variability. 
Predicting relevant features using machine learning 
algorithms is helpful in providing the scientific 
decision-making classification rules necessary to 
assess the disease progression in early stages. 

METHODS AND MATERIALS

Parkinson's telemonitoring dataset containing 
UPDRS scores was collected from UCI machine 
learning archives which have total voice recordings of 
5875 for 42 subjects (28 women and 14 men) with 
early-stage PD. Dataset was preprocessed and 
separated into one dataset each for motor_ U PDRS 
and one for total_UPDRS prediction. Feature 
extraction and regression techniques were performed 
on the normalized dataset using RStudio software. 
The detailed methodology is depicted in Figure 1. 

PD 

dataset 

Data 

Preprocessing 

K-fold Cross Validation

Test dataset 

Prediction models (N 
Bayes, Random Forest, 

PPE < 0 213925 

2935 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

RESULTS AND DISCUSSION 

Multiple Linear Regression: Since the dataset has 
continuous variables, multi linear regression was 
performed on both the extracted datasets to find the 
relevant features (Charts 1 and 2) and coefficient matrix 
(Figure.2). QQ-Plots (Figure.3) and the relevance of age 
with total_UPDRS was studied using box plot Figure.4. 
The p-values were <0.05 which confirms the correlation is 
significant. 
Regression Trees: Predictor variables from linear 
regression were compared by performing regression 
decision trees (Figure.5 and Figure.6) describing each 
predictor variable value for outcome variable. H N R 
variable has most highest value for motor_UPDRS. 
Random Forest: Random forest models also extracted 
same variables (Figure.6 and Figure. 7) like other 
algorithms but the correlation between predicted and 
actual motor UPDRS was found to be 97.5°/o. 
Support Vector Regression: SVR is performed only on 
relevant features extracted by previous algorithms to 
reduce the redundancies. Squared correlation coefficient 
(R2) value was found to be 83.5 for motor_UPDRS score. 
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Chart 1. Predictor variables motor_UPDRS. 
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Fig 3. QQ Plot motor_UPDRS 
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Chart 1. Predictor variables total_UPDRS. 
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Fig 4. BoxPlot total_UPDRS vs age 
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Fig 5. Regression Tree total_UPDRS. 
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Fig 6. Regression Tree motor_UPDRS 
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Fig 2. Correlation Matrix. 
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Fig 7. Random Forest features 

CONCLUSION 
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Random Forest algorithm is found to be a more 
effective predictive model among others tested with a 
correlation accuracy between predicted and actual 
motor UPDRS was 97.5o/o. Further, the RF results 
were compared with SVR, an advanced regression 
technique but RF outperformed SVR where a 
squared correlation coefficient (R2) value was found 
to be 83.5. 
This study provides an evidence of support that 
remote tracking of PD using voice variables through 
machine learning algorithms would enhance the 
clinical monitoring of elderly people and increase the 
chances of early diagnosis of PD. 
with non-invasive methods. 
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