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Abstract. Over the last decade, proliferation of various online platforms and their increasing adop-
tion by billions of users have heightened the privacy risk of a user enormously. In fact, security
researchers have shown that sparse microdata containing information about online activities of a
user although anonymous, can still be used to disclose the identity of the user by cross-referencing
the data with other data sources. To preserve the privacy of a user, in existing works several methods
(k-anonymity, `-diversity, differential privacy) are proposed for ensuring that a dataset bears small
identity disclosure risk. However, the majority of these methods modify the data in isolation, with-
out considering their utility in subsequent knowledge discovery tasks, which makes these datasets
less informative. In this work, we consider labeled data that are generally used for classification, and
propose two methods for feature selection considering two goals: first, on the reduced feature set the
data has small disclosure risk, and second, the utility of the data is preserved for performing a clas-
sification task. Experimental results on various real-world datasets show that the method is effective
and useful in practice.

Keywords. Privacy Preserving Feature Selection, k-anonymity by containment, Maximal Itemset
Mining, Greedy Algorithm, Binary Classification

1 Introduction

Over the last decade, with the proliferation of various online platforms, such as web search,
eCommerce, social networking, micro-messaging, streaming entertainment and cloud stor-
age, the digital footprint of today’s Internet user has grown at an unprecedented rate. At
the same time, the availability of sophisticated computing paradigm and advanced ma-
chine learning algorithms have enabled the platform owners to mine and analyze tera-
bytes of digital footprint data for building various predictive analytics and personalization
products. For example, search engines and social network platforms use search keywords
for providing sponsored advertisements that are personalized for a user’s information
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need; e-commerce platforms use visitor’s search history for bolstering their merchandis-
ing effort; streaming entertainment providers use people’s rating data for building future
product or service recommendation. However, the impressive personalization of services
of various online platforms enlighten us as much, as they do make us feel insecure, which
stems from knowing the fact that individual’s online behaviors are stored within these
companies, and an individual, more often, is not aware of the specific information about
themselves that is being stored.

The key reason for a web user’s insecurity over the digital footprint data (also known as
microdata) is that such data contain sensitive information. For instance, a person’s online
search about a disease medication may insinuate that she may be suffering from that dis-
ease; a fact that she rather not want to disclose. Similarly, people’s choice of movies, their
recent purchases, etc. reveal enormous information regarding their background, prefer-
ence and lifestyle. Arguably microdata exclude biographical information, but due to the
sheer size of our digital footprint the identity of a person can still be recovered from these
data by cross-correlation with other data sources or by using publicly available background
information. In this sense, these apparently non-sensitive attributes can serve as a quasi-
identifier. For an example, Narayanan et al. [33] have identified a Netflix subscriber from
his anonymous movie rating by using Internet Movie Database (IMDB) as the source of
background information. For the case of Netflix, anonymous microdata was released pub-
licly for facilitating Netflix prize competition, however even if the data is not released, there
is always a concern that people’s digital footprint data can be abused within the company
by employees or by external hackers, who have malicious intents.

For the case of microdata, the identity disclosure risk is high due to some key properties
of such a dataset—high-dimensionality and sparsity. Sparsity stands for the fact that for a
given record there is rarely any record that is similar to the given record considering full
multi-dimensional space. It is also shown that in high-dimensional data, the ratio of dis-
tance to the nearest neighbor and the farthest neighbor is almost one, i.e., all the points are
far from each other [1]. Due to this fact, privacy is difficult to achieve on such datasets. A
widely used privacy metric that quantifies the disclosure risk of a given data instance is
k-anonymity [39], which requires that for any data instance in a dataset, there are at least
k−1 distinct data instances sharing the same feature vector—thus ensuring that unwanted
personal information cannot be disclosed merely through the feature vector. However, for
high dimensional data, k-anonymization is difficult to achieve even for a reasonable value
of k (say 5); typically, value based generalization or attribute based generalization is ap-
plied so that k-anonymity is achieved, but Aggrawal has proved both theoretically and
experimentally that for high dimensional data k-anonymity is not a viable solution even
for a k value of 2 [1]. He has also shown that as data dimensionality increases, entire dis-
criminatory information in the data is lost during the process of k-anonymization, which
severely limits the data utility. Evidently, finding a good balance between a user’s pri-
vacy and the utility of high dimensional microdata is an unsolved problem—which is the
primary focus of this paper.

A key observation of a real-life high dimensional dataset is that it exhibits high clustering
tendency in many sub-spaces of the data, even though over the full dimension the dataset is
very sparse. Thus an alternative technique for protecting identity disclosure on such data
can be finding a subset of features, such that when projecting on these set of features an
acceptable level of anonymity can be achieved. One can view this as column suppression
instead of more commonly used row suppression for achieving k-anonymity [39]. Now
for the case of feature selection for a given k, there may exist many sub-spaces for which
a given dataset satisfies k-anonymity, but our objective is to obtain a set of features such
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that projecting on this set offers the maximum utility of the dataset in terms of a supervised
classification task.

Consider the toy dataset that is shown in Table 1. Each row represents a person, and each
column (except the first and the last) represents a keyword. If a cell entry is ‘1’ then the
keyword at the corresponding column is associated with the person at the corresponding
row. Reader may think this table as a tabular representation of search log of an eCommerce
platform, where the ‘1’ under ei column stands for the fact that the corresponding user has
searched using the keyword xj within a given period of time, and ‘0’ represents otherwise.
The last column represents whether this user has made a purchase over the same time
period. The platform owner wants to solve a classification problem to predict which of the
users are more likely to make a purchase.

Say, the platform owner wants to protect the identity of its site visitor by making the
dataset k-anonymous. Now, for this toy dataset, if he chooses k = 2, this dataset is not k-
anonymous. For instance, the feature vector of e3, 10011 is unique in this dataset. However,
the dataset is k-anonymous for the same k under the subspace spanned by {x3, x4, x5}. It is
also k-anonymous (again for the same k) under the subspace spanned by {x1, x2, x5} (See
Table 2). Among these two choices, the latter subspace is probably a better choice, as the
features in this set are better discriminator than the features in the former set with respect
to the class-label. For feature set {x1, x2, x5}, if we associate the value ‘101’ with the +1
label, and the value ‘111’ with the -1 label, we make only 1 mistake out of 6. On the other
hand for feature set {x3, x4, x5}, no good correlation exists between the feature values and
the class labels.

Research problem in the above task is the selection of optimal binary feature set for util-
ity preserving entity anonymization, where the utility is considered with respect to the
classification performance and the privacy is guaranteed by enforcing a k-anonymity like
constraint [41]. In existing works, k-anonymity is achieved by suppression or general-
ization of cell values, whereas in this work we consider to achieve the same by selecting
an optimal subset of features that maximizes the classification utility of the dataset. Note
that, maximizing the utility of the dataset is the main objective of this task, privacy is sim-
ply a constraint which a user enforces by setting the value of a privacy parameter based
on the application domain and the user’s judgment. For the privacy model, we choose
k-anonymity by containment in short, k-AC (definition forthcoming), where k is the user-
defined privacy parameter, which has similar meaning as it has in traditional k-anonymity.

Our choice of k-anonymity like metric over more theoretical counterparts, such as, dif-
ferential privacy (DP) is due to the pragmatic reason that all existing privacy laws and
regulations, such as, HIPAA (Health Information Portability and Accountability Act) and
PHIPA (Personal Health Information Protection Act) use k-anonymity. Also, k-anonymity
is flexible and simple, thus enabling people to understand and apply it for almost any real-
life privacy preserving needs; on the contrary, DP based methods use a privacy parameter
(ε), which has no obvious interpretation and even by the admission of original author of
DP, choosing an appropriate value for this parameter is difficult [12]. Moreover, differen-
tial privacy based methods add noise to the data entities, but the decision makers in many
application domains (such as, health care), where privacy is an important issue, are quite
uncomfortable to the idea of noise imputation [11]. Finally, authors in [17] state that differ-
ential privacy is not suitable for protecting large sparse tables produced by statistics agen-
cies and sampling organizations—this disqualifies differential privacy as a privacy model
for protecting sparse and very high dimensional user’s microdata from the e-commerce
and Internet search engines.
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1.1 Our Contributions

In this work, we consider the task of feature selection under privacy constraint. This is
a challenging task, as it is well-known that privacy is always at odds with the utility of
a knowledge-based system, and finding the right balance is a difficult task [22, 23]. Be-
sides, feature selection itself, without considering the privacy constraint, is an NP-Hard
problem [18, 25, 26].

Given a classification dataset with binary features and an integer k, our proposed solu-
tions find a subset of features such that after projecting each instance on these subsets each
entity in the dataset satisfies a privacy constraint, called k-anonymous by containment (k-
AC). Our proposed privacy constraint k-AC is an adapted version of k-anonymity, which
strikes the correct balance between disclosure risk and dataset utility, and it is particularly
suitable for high dimensional binary data. We also propose two algorithms: Maximal and
Greedy. The first is a maximal itemset mining based method and the second is a greedy
incremental approach, both respecting the user-defined AC constraints.

The algorithms that we propose are particularly intended for high dimensional sparse mi-
crodata where the features are binary. The nature of such data is different from a typical
dataset that is considered in many of the existing works on privacy preserving data disclo-
sure mechanism. The first difference is that existing works consider two kinds of attributes,
sensitive and nonsensitive, whereas for our dataset all attributes are considered to be sensi-
tive, and any subset of published attributes can be used by an attacker to de-anonymize one
or more entities in the dataset using probabilistic inference methodologies. On the other
hand, the unselected attributes are not published so they cannot be used by an attacker to
de-anonymize an entity. Second, we only consider binary attributes, which enable us to
provide efficient algorithms and an interesting anonymization model. Considering only
binary attributes may sound an undue restriction, but in reality binary attributes are ade-
quate (and often preferred) when modeling online behavior of a person, such as ‘like’ in
Facebook, ‘bought’ in Amazon, and ‘click’ in Google advertisement. Also, collecting ex-
plicit user feedback in terms of frequency data (say, the number of times a search keyword
is used ) may be costly in many online platforms. Nevertheless, as shown in [33], binary
attributes are sufficient for an attacker to de-anonymize a person using high dimensional
microdata, so safeguarding user privacy before disclosing such dataset is important.

The contributions of our work are outlined below:

1. We propose a novel method for entity anonymization using feature selection over a
set of binary attributes from a two-class classification dataset. For this, we design a
new anonymization model, named k-anonymity by containment (k-AC), which is par-
ticularly suitable for high-dimensional binary microdata.

2. We propose two methods for solving the above task and show experimental results
to validate the effectiveness of these methods.

3. We show the utility of the proposed methods with three real-life applications; specif-
ically, we show how the privacy-aware feature selection affects their performance.

2 Privacy Basics

Given a dataset D, where each row corresponds to a person, and each column contains
non-public information about that person; examples include disease, medication, sexual
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orientation, etc. In the context of online behavior, the search keywords, or purchase history
of a person may be such information. Privacy preserving data publishing methodologies
make it difficult for an attacker to de-anonymize the identity of a person who is in the
dataset. For de-anonymization, an attacker generally uses a set of attributes that act almost
like a key and it uniquely identifies some individual in the datasets. These attributes are
called quasi-identifiers. k-anonymity is a well-known privacy metric defined as below.

Definition 1 (k-anonymity). A dataset D satisfies k-anonymity if for any row entity e ∈ D there
exist at least k − 1 other entities that have the same values as e for every possible quasi-identifiers.

The database in Table 1 is not 2-anonymous, as the row entity e3 is unique considering
the entire attribute-set {x1, x2, x3, x4, x5} as quasi-identifier. On the other hand, It is 2-
anonymous for both the datasets (one with Feature Set-1 and the other with Feature Set-2)
in Table 2. For numerical or categorical attributes, a process, called generalization and/or
suppression (row or cell value) are used for achieving k-anonymity. Generalization parti-
tions the values of an attribute into disjoint buckets and identifies each bucket with a value.
Suppression either hides the entire row or some of its cell values, so that the anonymity of
that entity can be maintained. Generalization and suppression make anonymous group,
where all the entities in that group have the same value for every possible quasi-identifier,
and for a dataset to be k-anonymous, the size of each of such groups is at least k. In
this work we consider binary attributes; each such attribute has only two values, 0 and
1. For binary attributes, value based generalization relegates to the process of column sup-
pression, which incurs a loss of data utility. In fact, any form of generalization based k-
anonymization incurs a loss in data utility due to the decrement of data variance or due to
the loss of discernibility. Suppression of a row is also a loss as in this case the entire row
entity is not discernible for any of the remaining entities in the dataset. Unfortunately, most
of existing methods for achieving k-anonymity using both generalization and suppression
operations do not consider an utility measure targeting supervised classification task.

There are some security attacks against which k-anonymity is vulnerable. For example, k-
anonymity is susceptible to both homogeneity and background knowledge based attacks.
More importantly, k-anonymity does not provide statistical guaranty about anonymity
which can be obtained by using ε-differential privacy [12]—a method which provides strong
privacy guarantees independent of an adversary’s background knowledge. There are exist-
ing methods that adopt differential privacy principle for data publishing. Authors in [3,13]
propose Laplace mechanism to publish the contingency tables by adding noise generated
from a Laplace distribution. However, such methods suffer from the utility loss due to the
large amount of added noise during the sanitization process. To resolve this issue, [30] pro-
poses to utilize exponential mechanism for maximizing the trade-off between differential
privacy and data utility. However, the selection of utility function used in the exponen-
tial mechanism based approach strongly affects the data utility in subsequent data analysis
task. In this work, we compare the performance of our proposed privacy model, namely
k-AC, with both Laplace and exponential based differential privacy frameworks (See Sec-
tion 5.2) to show that k-AC better preserves the data utility than the differential privacy
based methods.

A few works [19, 36] exist which consider classification utility together with k-anonymity
based privacy model, but none of them consider feature selection which is the main focus of
this work. In one of the earliest works, Iyengar [19] solves k-anonymization through gen-
eralization and suppression while minimizing a proposed utility metric called CM (Classi-
fication Metric) using a genetic algorithm which provides no optimality guaranty. The CM
is defined as below:
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User x1 x2 x3 x4 x5 Class

e1 1 0 1 0 1 +1
e2 1 0 1 0 1 −1
e3 1 0 0 1 1 +1
e4 1 0 1 0 1 +1
e5 1 1 1 0 1 −1
e6 1 1 0 1 1 −1

Table 1: A toy 2-class dataset with binary feature-set

User Feature Set-1 Class Feature Set-2
x1 x2 x5 x3 x4 x5

e1 1 0 1 +1 1 0 1
e2 1 0 1 −1 1 0 1
e3 1 0 1 +1 0 1 1
e4 1 0 1 +1 1 0 1
e5 1 1 1 −1 1 0 1
e6 1 1 1 −1 0 1 1

Table 2: Projections of the dataset in Table 1 on two feature-sets (Feature Set-1 and Feature
Set-2)

Definition 2 (Classification Metric [19]). Classification metric (CM ) is a utility metric for
classification dataset, which assigns a penalty of 1 for each suppressed entity, and for each non-
suppressed entity it assigns a penalty of 1 if those entities belong to the minority class within its
anonymous group. CM value is equal to the sum of penalties over all the entities.

In this work, we compare the performance of our work with CM based privacy-aware
utillty metric.

3 Problem Statement

Given a classification dataset with binary attributes, our objective is to find a subset of
attributes which increase the non-disclosure protection of the row entities, and at the same
time maintain the classification utility of the dataset without suppressing any of the row
entities. In this section we will provide a formal definition of the problem.

We define a database D(E, I) as a binary relation between a set of entities (E) and a set of
features (I); thus, D ⊆ E × I , where E = {e1, e2, · · · , en} and I = {x1, x2, · · · , xd}; n and
d are the number of entities and the number of features, respectively. The database D can
also be represented as a n×d binary data matrix, where the rows correspond to the entities,
and the columns correspond to the features. For an entity ei ∈ E, and a feature xj ∈ I , if
〈ei, xj〉 ∈ D, the corresponding data matrix entry D(ei, xj) = 1, otherwise D(ei, xj) = 0.
Thus each row ofD is a binary vector of size d in which the 1 entries correspond to the set of
features with which the corresponding row entity is associated. In a classification dataset,
besides the attributes, the entities are also associated to a class label which is a category
value. In this task we assume a binary class label {C1, C2}. A typical supervised learning
task is to use the features I to predict the class label of an entity.
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We say that an entity ei ∈ E contains a set of featuresX = {xi1, xi2, · · · , xil}, ifD(ei, xik) =
1 for all k = 1, 2, · · · , l; set X is also called containment set of the entity ei.

Definition 3 (Containment Set). Given a binary dataset, D(E, I), the containment set of a row
entity e ∈ E, represented as CSD(e), is the set of attributes X ⊆ I such that ∀x ∈ X,D(e, x) = 1,
and ∀y ∈ I −X , D(e, y) = 0.

When the datasetD is clear from the context we will simply writeCS(e) instead ofCSD(e)
to represent the containment set of e.

Definition 4 (k-anonymity by containment). In a binary dataset D(E, I) and for a given posi-
tive integer k, an entity e ∈ E satisfies k-anonymity by containment if there exists a set of entities
F ⊆ E, such that e /∈ F ∧|F | ≥ k−1∧∀f ∈ F,CSD(f) ⊇ CSD(e). In other words, their exist at
least k − 1 other entities in D such that their containment set is the same or a superset of CSD(e).

By definition, if an entity satisfies k-anonymity by containment, it satisfies the same for all
integer values from 1 upto k. We use the term AC(e) to denote the largest k for which the
entity e satisfies k-anonymity by containment.

Definition 5 (k-anonymous by Containment Group). For a binary dataset D(E, I), if e ∈ E
satisfies the k-anonymity by containment, k-anonymous by containment group with respect to e
exists and this is F ∪ {e}, where F is the largest possible set as is defined in Definition 4.

Definition 6 (k-anonymous by Containment Dataset). A binary datasetD(E, I) is k-anonymous
by containment if every entity e ∈ E satisfies k-anonymity by containment.

We extend the term AC over a dataset as well, thus AC(D) is the smallest k for which the
dataset D is anonymous.
Example: For the dataset in Table 1, CS(e1) = {x1, x3, x5}. Entity e1 satisfies 4-anonymity
by containment, because for each of the following three entities e2, e4, and e5, their contain-
ment sets are the same or supersets of CS(e1). But, the entity e6 only satisfies 1-anonymity
by containment, as besides itself no other entity contains CS(e6) = {x1, x2, x4, x5}. 4-
anonymous by containment group of e2 exists, and it is {e1, e2, e4, e5}, but 5-anonymous by
selection group for the same entity does not exist. The dataset in Table 1 is 1-anonymous
by containment because there exists one entity, namely e6 such that the highest k-value for
which e6 satisfies k-anonymity by containment is 1; alternatively AC(D) = 1 �
k-anonymity by containment (k-AC) is the privacy metric that we use in this work. The

argument for this metric is that if a large number of other entities contain the same or
super feature subset which an entity e contains, the disclosure protection of the entity e is
strong, and vice versa. Thus a higher value of k stands for a higher level of privacy for e.
k-anonymity by containment (k-AC) is similar to k-anonymity for binary feature set except
that for k-AC only the ‘1’ value of feature set is considered as a privacy risk. It is easy to
see that k-anonymity by containment (k-AC) is a relaxation of k-anonymity. In fact, the
following lemma holds.

Lemma 1. If a dataset satisfies k-anonymity for a k value, it also satisfies k-AC for the same
k-value, but the reverse does not hold necessarily.

Proof. Say, the dataset D satisfies k-anonymity; then for any row entity e ∈ D, there exists
at least k − 1 other row entities with identical row vector as e. Containment set of all these
k − 1 entities is identical to e, so e satisfies k-AC. Since this holds for all e ∈ D, the dataset
D satisfies k-AC.
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To prove that the reverse does not hold, we will give a counter-example. Assume D has
three entities and two features with the following feature values, D = {(1, 1), (1, 0), (1, 1)}.
D satisfies 2-AC because the smallest anonymity by containment value of the entities in the
dataset is 2. But, the dataset does not satisfy 2-anonymity because the entity (1, 0) is unique
in the dataset. �

However, the relaxed privacy that k-AC provides is adequate for disclosure protection in
a high dimensional sparse microdata with binary attributes, because k-AC conceals the list
of the attributes in a containment set of an entity, which could reveal sensitive information
about the entity. For example, if the dataset is about the search keywords that a set of users
have used over a given time, for a person having a 1 value under a keyword potentially
reveals sensitive information about the behavior or preference of that person. Having a
value of 0 for a collection of features merely reveals the knowledge that the entity is not as-
sociated with that attribute. In the online microdata domain, due to the high dimensionality
of the data, non-association with a set of attributes is not a potential privacy risk. Also note
that, in traditional datasets, only a few attributes which belong to non-sensitive group are
assumed to be quasi-identifier, so a privacy metric, like k-anonymity works well for such
dataset. But, for high-dimensional dataset, k-anonymity is severely restrictive and utility
loss of data by column suppression is substantial because feature subsets containing very
small number of features pass k-anonymity criteria. On the other hand, k-AC based pri-
vacy metric enables selection of sufficient number of features for retaining the classification
utility of the dataset. In short, k-AC retains the classification utility substantially, whereas
k-anonymity fails to do so for most high dimensional data.

Feature selection [18] for a classification task is to select a subset of highly predictive vari-
ables so that classification accuracy possibly improves which happens due to the fact that
contradictory or noisy attributes are generally ignored during the feature selection step.
For a dataset D(E, I), and a feature-set S ⊆ I , following relational algebra notations, we
use ΠS(D) to denote the projection of database D over the feature set S. Now, given a
user-defined integer number k, our goal is to perform an optimal feature selection on the
dataset D to obtain ΠS(D) which satisfies two objectives: first, ΠS(D) is k-anonymous by
containment, i.e., AC(ΠS(D)) ≥ k; second, ΠS(D) maintains the predictive performance
of the classification task as much as possible. Selecting a subset of features is similar to
the task of column suppression based privacy protection, but the challenge in our task is
that we want to suppress column that are risk to privacy, and at the same time we want to
retain columns that have good predictive performance for a downstream supervised clas-
sification task using the sanitized dataset. For denoting the predictive performance of a
dataset (or a projected dataset) we define a classification utility function f . The higher the
value of f , the better the dataset for the classification. We consider f to be a filter based
feature selection criteria which is independent of the classification model that we use.

The formal research task of this work is as below. Given a binary dataset D(E, I), and
an integer number k, find S ⊆ I so that f(ΠS(D)) is maximized under the constraint that
AC(ΠS(D)) ≥ k. Mathematically,

maximize
S⊆I

f(ΠS(D))

subject to AC(ΠS(D)) ≥ k
(1)

Due to the fact that the problem 1 is a combinatorial optimization problem (optimizing
over the space of feature subsets) which is NP-Hard, here we propose two effective local
optimal solutions for this problem.
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4 Methods

In this section, we describe two algorithms, namely Maximal and Greedy that we propose
for the task of feature selection under privacy constraint. Maximal is a maximal itemset
mining based feature selection method, and Greedy is a greedy method with privacy con-
straint based filtering. In the following subsections, we discuss them in details.

4.1 Maximal Itemset based Approach

A key observation regarding k-anonymity by containment (AC) of a dataset is that this
criteria satisfies the downward-closure property under feature selection. The following
lemma holds:

Lemma 2. Say D(E, I) is a binary dataset and X ⊆ I and Y ⊆ I are two feature subsets. If
X ⊆ Y , then AC(ΠX(D)) ≥ AC(ΠY (D)).
PROOF: Let’s prove by contradiction. Suppose X ⊆ Y and AC(ΠX(D)) < AC(ΠY (D)).
Then from the definition ofAC, there exists at least one entity e ∈ E for whichAC(ΠX(e)) <
AC(ΠY (e)). Now, let’s assume AX and AY are the set of entities which make the anony-
mous by containment group for the entity e in ΠX(D) and ΠY (D), respectively. Since
AC(ΠX(e)) < AC(ΠY (e)), |AX | < |AY |; so there exists an entity p ∈ AY \ AX , for which
CSΠY (D)(p) ⊇ CSΠY (D)(e) and CSΠX(D)(p) 6⊇ CSΠX(D)(e); But this is impossible, because
X ⊆ Y , if CSΠY (D)(p) ⊇ CSΠY (D)(e) holds, then CSΠX(D)(p) ⊇ CSΠXD(e) must be true.
Thus, the lemma is proved by contradiction. �.

Let’s call the collection of feature subsets which satisfy the AC threshold for a given k,
the feasible set and represent it with Fk. Thus, Fk = {X | X ⊆ I ∧ AC(ΠX(D)) ≥ k}. A
subset of features X ∈ Fk is called maximal if it has no supersets which is feasible. Let
Mk be the set of all maximal subset of features. Then Mk = {X | X ∈ Fk∧ 6 ∃Y ⊃
X, such that Y ∈ Fk}. As we can observe given an integer k, if there exists a maximal
feature set Z that satisfies the AC constraint, then any feature set X ⊆ Z, also satisfies the
same AC constraint, i.e., k ≤ AC(ΠZ(D)) ≤ AC(ΠX(D)) if X ⊆ Z ∈ Mk based on the
Lemma 2.
Example: For the dataset in Table 1, the 2-anonymous by containment feasible feature set 1

F2 = {x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5, x2x5, x3x5, x4x5, x1x2x5, x1x3x5, x1x4x5} and
M2 = {x1x2x5, x1x3x5, x1x4x5}. In this dataset, the feature-set x2x3 /∈ F2 because in
Πx2x3(D), CS(e5) = {x2, x3} and the size of the k-anonymous by containment group
of e5 is 1; thus AC(Πx2x3

(D)) = 1 < 2. On the other hand for feature-set x1x2x5, the
projected dataset Πx1x2x5

(D) has two k-anonymous by containment groups, which are
{e1, e2, e3, e4, e5, e6} and {e5, e6}; since each group contains at least two entities,
AC(Πx1x2x5(D)) = 2 �

Lemma 3. Say, D(E, I) is a binary dataset, and T is its transaction representation where
each entity e ∈ E is a transaction consisting of the containment set CSD(e). Frequent
itemset of the dataset T with minimum support threshold k are the feasible feature set Fk
for the optimization problem 1.
PROOF: Say, X is a frequent itemset in the transaction T for support threshold k. Then,
the support-set of X in T are the transactions (or entities) which contain X . Since, X is fre-
quent, the support-set ofX consists of at least k entities. In the projected dataset ΠX(D), all

1To enhance the readability, we write the feature set as string; for example, the set {x1, x2} is written as x1x2.
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these entities make a k-anonymous by containment group, thus satisfying k-anonymity by
containment. For each of the remaining entities (say, e), e’s containment set contains some
subset of X (say Y ) in ΠX(D). Since, X is a frequent itemset and Y ⊂ X , Y is also fre-
quent with a support-set that has at least k entities. Then e also belongs to a k-anonymous
by containment group. Thus, each of the entities in D belongs to some k-anonymous by
containment group(s) which yields: X is frequent⇒ X ∈ Fk. Hence proved. �

A consequence of Lemma 2 is that for a given dataset D, an integer k, and a feature set S,
if AC(ΠS(D)) ≥ k, any subset of S (say, R) satisfies AC(ΠR(D)) ≥ k. This is identical to
the downward closure property of frequent itemset mining. Also, Lemma 3 confirms that
any itemset that is frequent in the transaction representation of D for a minimum support
threshold k is a feasible solution for problem 1. Hence, Apriori like algorithm for itemset
mining can be used for effectively enumerating all the feature subsets of D which satisfies
the required k-anonymity by containment constraint.

4.1.1 Maximal Feasible Feature Set Generation

For large datasets, the feasible feature set Fk which consists of feasible solutions for the
optimization problem 1 can be very large. One way to control its size is by choosing ap-
propriate k; if k increases, |Fk| decreases, and vice-versa, but choosing a large k negatively
impacts the classification utility of the dataset, thus reducing the optimal value of problem
(1). A brute force method for finding the optimal feature set S is to enumerate all the fea-
ture subset in F and find the one that is the best given the utility criteria f . However, this
can be very slow. So, Maximal generates all possible maximal feature setsMk instead of
generating Fk and search for the best feature subset withinMk. The idea of enumerating
Mk instead of Fk comes from the assumption that with more features the classification
performance will increase; thus, the size of the feature set is its utility function value; i.e.,
f(ΠS(D)) = |S|, and in that case the largest set inMk is the solution to the problem 1.

An obvious advantage of working only with the maximal feature set is that for many
datasets, |Mk| << |Fk|, thus finding solution within Mk instead of Fk leads to signifi-
cant savings in computation time. Just like the case for frequent itemset mining, maximal
frequent itemset mining algorithm can also be used for findingMk. Any off-the-shelf soft-
ware can be used for this. In Maximalalgorithm we use the LCM-Miner package provided
in2 which, at present, is the fastest method for finding maximal frequent itemsets.

4.1.2 Classification Utility Function

The simple utility function f(ΠS(D)) = |S| has a few limitations. First, the ties are very
commonplace, as there are many maximal feature sets that have the same size. Second, and
more importantly, this function does not take into account the class labels of the instances so
it cannot find a feature set that maximizes the separation between the positive and negative
instances. So, we consider another utility function, named as HamDist, which does not
succumb much to the tie situation. It also considers the class label for choosing features
that provide good separation between the positive and negative classes.

2http://research.nii.ac.jp/˜uno/code/lcm.html
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Definition 7 (Hamming Distance). For a given binary databaseD(E, I), and a subset of features,
S ⊆ I , the Hamming distance between ΠS(a) and ΠS(b) is defined as below:

dH(ΠS(a),ΠS(b)) =

|S|∑
j=1

1{asj 6= bsj ,∀sj ∈ S} (2)

where 1{X} is the indicator function, and asj and bsj are the sjth feature value under S for the
entities a and b, respectively.

We can partition the entities in D(E, I) into two disjoint subsets, E1 and E2; entities in E1

have a class label value of C1, and entities in E2 have a class label value of C2.

Definition 8 (HamDist). Given a dataset D(E = E1 ∪E2, I) where the partitions E1 and E2 are
based on class labels, the classification utility function HamDist for a feature subset S ⊆ I is the
average Hamming distance between all pair of entities a and b such that a ∈ E1 and b ∈ E2.

HamDist(S) =
1

| E1 || E2 |
∑

a∈E1,b∈E2

dH(ΠS(a),ΠS(b)) (3)

Example: For the dataset in Table 1, for its projection on x1x2x5 (see, Table 2), distance of
e1 from the negative entities are 0 + 1 + 1 = 2, and the same for the other positive entities,
e3 and e4 also. So, HamDist(x1x2x5) = ((0 + 1 + 1) + (0 + 1 + 1) + (0 + 1 + 1))/9 = 6/9.
From the same table we can also see that HamDist(x3x4x5) = 8/9. �

As we can observe from Equations 2 and 3, the utility function HamDist(S) reflects the
discriminative power between classes given the feature set S. The larger the value of
HamDist(S), the better the quality of selected feature set S to distinguish between classes.
Another separation metric similar to HamDist is DistCnt (Distinguish Count), which is
defined below.

Definition 9 (DistCnt). For D(E1 ∪E2, I), and S ⊆ I , DistCnt is the number of pairs from E1

and E2 which can be distinguished using at least one feature in S. Mathematically,

DistCnt(S) =
1

| E1 || E2 |
∑

a∈E1,b∈E2

1{ΠS(a) 6= ΠS(b)} (4)

DistCnt can also be used instead of HamDist in the Maximal algorithm. Note that, we
can also use CM criterion (see Definition 2) instead of HamDist; however, experimental
results show that CM performs much poorer in terms of AUC. Besides, bothHamDist and
DistCnt functions have some good properties (will be discussed in Section 4.2) which CM
does not have.

The Maximal algorithm utilizes classification utility metrics (HamDist or DistCnt) for
selecting the best feature set from the maximal setMk. For some datasets, the size ofMk

can be large and selecting the best feature set by applying the utility metric on each element
of Mk can be time-consuming. Then, we can find the best feature set among the largest
sized element inMk. Another option is to consider the maximal feature sets inMk in the
decreasing order of their size in such a way that at most r of the maximal feature sets from
setMk are chosen as candidate for which the utility metric computation is performed. In
this work we use this second option by setting r = 20 for all our experiments.

TRANSACTIONS ON DATA PRIVACY 10 (2017)
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Algorithm 1 Maximal Itemset Mining Based Feature Selection Method

Input: D(E, I), k, r
Output: S

1: Calculate maximal feature setMk which contains the feature-sets satisfying k-AC for
the given k

2: Select best feature-set S based on the HamDist criteria by considering r largest-sized
feature set inMk.

3: return S

4.1.3 Maximal Itemset based Method (Pseudo-code)

The pseudo-code for Maximal is given in Algorithms 1. Maximal takes integer number k
and the number of maximal patterns r as input and returns the final feature set S which sat-
isfies k-anonymity by containment. Line 1 uses the LCM-Miner to generate all the maximal
feature sets that satisfy k-anonymity by containment for the given k value. Line 2 groups
maximal feasible feature sets according to its size and selects top r maximal feature sets
with the largest size and builds the candidate feature sets. Then the algorithm computes
the feature selection criteria HamDist of each feature set in the candidate feature sets and
returns the best feature set that has the maximum value for this criteria.

The complexity of the above algorithm predominantly depends on the complexity of the
maximal itemset mining step (Line 1), which depends on the input value k. For larger k, the
privacy is stronger and it reducesMk making the algorithm run faster, but the classification
utility of the dataset may suffer. On the other hand, for smaller k,Mk can be large making
the algorithm slower, but it better retains the classification utility of the dataset.

4.2 Greedy with Modular and Sub-Modular Objective Functions

A potential limitation of Maximal is that for dense datasets this method can be slow. So,
we propose a second method, called Greedy which runs much faster as it greedily adds
a new feature to an existing feasible feature-set. For greedy criteria, Greedy can use dif-
ferent separation functions which discriminate between positive and negative instances.
In this work we use HamDist (See Definition 8) and DistCnt (See Definition 9). Thus
Greedy solves the Problem (1) by replacing f by either of the two functions. Because of
the monotone property of these functions, Greedy ensures that as we add more features,
the objective function value of (1) monotonically increases. The process stops once no more
features are available to add to the existing feature set while ensuring the desiredAC value
of the projected dataset.

4.2.1 Submodularity, and Modularity

Definition 10 (Submodular Set Function). Given a finite ground set U , a monotone function f
that maps subsets of U to a real number f : 2U → R is called submodular if

f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ),∀S ⊆ T ⊆ U, u ∈ U

If the above condition is satisfied with equality, the function is called modular.

Theorem 1. HamDist is monotone, submodular, and modular.
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Proof. For a dataset D(E, I), S ⊆ I , and T ⊆ I are two arbitrary feature-sets, such that
S ⊆ T . E = E1∪E2, where the partition is based on class label. Consider the pair (a, b), such
that a ∈ E1 and b ∈ E2. Let, w(·) be a function that sums the Hamming distance over all
such pairs (a, b) for a given feature subset S. Thus, w(S) =

∑
a∈E1,b∈E2

dH(ΠS(a),ΠS(b)),
where the function dH is the Hamming distance between a and b as defined in Equation 2.
Similarly we can define w(T ), for the feature subset T . Using Equation 2, dH(ΠS(a),ΠS(b))
is the summation over each of the features in S. Since S ⊆ T , dH(ΠT (a),ΠT (b)) includes the
sum values for the variables in S and possibly includes the sum value of other variables,
which is non-negative. Summing over all (a, b) pairs yields w(S) ≤ w(T ). So, HamDist is
monotone. Now, for a feature u /∈ T ,

w(S ∪ {u}) =
∑

a∈E1,b∈E2

dH
(
ΠS∪{u}(a),ΠS∪{u}(b)

)
=

∑
a∈E1,b∈E2

∑
sj∈S∪{u}

1{asj 6= bsj}(using Eq. 2)

=
∑

a∈E1,b∈E2

∑
sj∈S

1{asj 6= bsj}+ 1{au 6= bu}


= w(S) + w({u})

Similarly, w(T ∪ {u}) = w(T ) + w({u}). Then, we have w({u}) = w(S ∪ {u}) − w(S) =
w(T ∪ {u}) − w(T ). Dividing both sides by 1/(|E1| · |E2|) yields HamDist(S ∪ {u}) −
HamDist(S) = HamDist(T ∪ {u})−HamDist(T ). Hence proved with the equality. �

Theorem 2. DistCnt is monotone, and submodular.

Proof. Given a dataset D(E, I) where E is partitioned as E1∪E2 based on class label. Now,
consider a bipartite graph, where vertices in one partition (say, V1) correspond to features
in I , and the vertices of other partition (say, V2) correspond to a distinct pair of entities
(a, b) such that a ∈ E1, and b ∈ E2; thus, |V2| = |E1| · |E2|. If for a feature x ∈ V1, we have
ax 6= bx, an edge exists between the corresponding vertices x ∈ V1 and (a, b) ∈ V2. Say,
S ⊆ V1 and T ⊆ V1 and S ⊆ T . For a set of vertices, Γ(·) represents their neighbor-list.
Since, the size of neighbor-list of a vertex-set is monotone and submodular, for u /∈ T , we
have |Γ(S)| ≤ |Γ(T )|, and |Γ(S ∪{u})|− |Γ(S)| ≥ |Γ(T ∪{u})|− |Γ(T )|. By construction, for
a feature set, S, Γ(S) contains the entity-pairs for which at least one feature-value out of S
is different. Thus, DistCnt function is |Γ(·)|

|V2| and it is submodular. �

Theorem 3. For monotone submodular function f , let S be a set of size k obtained by selecting
elements one at a time, each time choosing an element provides the largest marginal increase in
the function value. Let S∗ be a set that maximizes the value of f over all k-element sets. Then
f(S) ≥ (1 − 1

e )f(S∗); in other words, S provides (1 − 1
e )-approximation. For modular function

f(S) = f(S∗) [10].

4.2.2 Greedy Method (Pseudo-code)

Using the above theorems we can design two greedy algorithms, one for modular function
HamDist, and the other for submodular function DistCnt. The pseudo-codes of these
algorithms are shown in Algorithm 2 and Algorithm 3. Both the methods take binary
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Algorithm 2 Greedy Algorithm for HamDist

Input: D(E, I), k
Output: S

1: Sort the features in non-increasing order based on their hamDist, denoted as Fsorted
2: S = ∅
3: for each feature x ∈ Fsorted do
4: if AC(ΠS∪{x}(D)) ≥ k then
5: S = S ∪ {x}
6: else
7: break
8: end if
9: end for

10: return S

dataset D and integer value k as input and generate the selected feature set S as output.
Initially S = ∅. For modular function, the marginal gain of an added feature can be pre-
computed, so Algorithm 2 first sorts the features in non-increasing order of their HamDist
values, and greedily adds features until it encounters a feature such that its addition does
not satisfy the AC constraint. For submodular function DistCnt, margin gain cannot be
pre-computed, so Algorithm 3 selects the new feature by iterating over all the features
and finding the best one (Line 5 -11). The terminating condition of this method is also
identical to the Algorithm 2. Since the number of features is finite, both the methods always
terminate with a valid S which satisfies AC(ΠS(D)) ≥ k.

Compared to Maximal, both greedy methods are faster. With respect to number of fea-
tures (d), Algorithm 2 runs in O(d lg d) time and Algorithm 3 runs in O(d2) time. Also,
using Theorem 3, Algorithm 2 returns the optimal size |S| feature-set, and Algorithm 3 re-
turns S, for which the objective function value is (1−1/e) optimal over all possible size-|S|
feature sets.

Algorithm 3 Greedy Algorithm for DistCnt

Input: D(E, I), k
Output: S

1: T = ∅
2: repeat
3: S = T
4: ∆Hmax = 0.0
5: for u ∈ I \ S do
6: Compute ∆H = DistCnt(S ∪ {u})−DistCnt(S)
7: if ∆H > ∆Hmax then
8: ∆Hmax = ∆H
9: um = u

10: end if
11: end for
12: T = S ∪ {um}
13: until AC(ΠT (D)) ≥ k
14: return S
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Dataset # Entities # Features # Pos # Neg Density

Adult Data 32561 19 24720 7841 27.9%
Entity 148 552 74 74 9.7%
Disambiguation
Email 1099 24604 618 481 0.9%

Table 3: Statistics of Real-World Datasets

5 Experiments and Results

In order to evaluate our proposed methods we perform various experiments. Our main
objective in these experiments is to validate how the performance of the proposed pri-
vacy preserving classification varies as we change the value of AC—user-defined privacy
threshold metric. We also compare the performance of our proposed utility preserving
anonymization methods with other existing anonymization methods such as k-anonymity
and differential privacy. It is important to note that we do not claim that our methods
provide a better utility with identical privacy protection as other methods, rather we claim
that our methods provide adequate privacy protection which is suitable for high dimen-
sional sparse microdata with a much superior AUC value—a classification utility metric
which we want to maximize in our problem setup. We use three real-world datasets for
our experiments. All three datasets consist of entities that are labeled with 2 classes. The
number of entities, the number of features, the distribution of the two classes (#postive and
#negative), and the dataset density (fraction of non-zero cell values) are shown in Table 3.

5.1 Privacy Preserving Classification Tasks

Below, we discuss the datasets and the privacy preserving classification tasks that we solve
using our proposed methods.

Entity Disambiguation (ED) [44]. The objective of this classification task is to identify
whether the name reference at a row in the data matrix maps to multiple real-life persons
or not. Such an exercise is quite common in the Homeland Security for disambiguating
multiple suspects from their digital footprints [38, 45]. Privacy of the people in such a
dataset is important as many innocent persons can also be listed as a suspect. Given a
set of keywords that are associated with a name reference, we build a binary data matrix
for solving the ED task. We use Arnetminer3 academic publication data. In this dataset,
each row is a name reference of one or multiple researchers, and each column is a research
keyword within the computer science research umbrella. A ‘1’ entry represents that the
name reference in the corresponding row has used the keyword in her (or their) published
works. In our dataset, there are 148 rows which are labeled such that half of the people
in this dataset are pure entity (a negative case), and the rest of them are multi-entity (a
positive case). The dataset contains 552 attributes (keywords).

To solve the entity disambiguation problem we first perform topic modeling over the key-
words and then compute the distribution of entity u’s keywords across different topics.
Our hypothesis is that for a pure entity the topic distribution will be concentrated on a few
related topics, but for an impure entity (which is composed of multiple real-life persons)

3http://arnetminer.org
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the topic distribution will be distributed over many non-related topics. We use this idea to
build a simple classifier which uses an entropy-based score E(u) for an entity u as below:

E(u) = −
|T |∑
k=1

P (u | Tk) logP (u | Tk) (5)

where P (u | Tk) is the probability of u belonging to topic Tk, and |T | represents the pre-
defined number of topics for topic modeling. Clearly, for a pure entity the entropy-based
score E(u) is relatively smaller than the same for a non-pure entity. We use this score as
our predicted value and compute AUC (area under ROC curve) to report the performance
of the classifier.
Adult. The Adult dataset 4 is based on census data and has been widely used in ear-
lier works on k-anonymization [19]. For our experiments, we use eight of the original
attributes; these are age, work class, education, marital status, occupation, race, gender,
and hours-per-week. The classification task is to determine whether a person earns over
50K a year or not. Among all of the attributes, gender is originally binary. For the other
attributes, we make them as binary for our purpose. For example, for marital attribute,
we consider never-married (1) versus others (0). For race attribute, we consider white (1)
versus others (0). For the numerical attributes, we cut them into different categories and
consider a binary attribute for each category. For instance, we partition age value in five
non-overlapping intervals: [0, 25], (25, 35], (35, 45], (45, 55], and (55,∞], and then each of
the five intervals becomes a binary attribute. Similarly, education attribute is divided into
4 intervals and hour/week attribute is divided into 5 interval. In this way, we have a total
of 19 attributes for the Adult dataset. As we can see privacy of the individuals in such a
dataset is quite important as many people consider their personal data, such as race, gen-
der, marital status and so on as sensitive attributes and they are not willing to release them
to public.
Email The last dataset, namely Email dataset 5 is a collection of approximately 1099 per-
sonal email messages distributed in 10 different directories. Each directory contains both
legitimate and spam messages. To respect the privacy issue, each token including word,
number, and punctuation symbol is encrypted by a unique number. The classification task
is to distinguish the spam email with nonspam email. We use this data to mimic micro-
data (such as twitter or Facebook messages) classification. Privacy is important in such a
dataset as keyword based features in a micro-message can potentially identify a person. In
the dataset, each row is an email message, and each column denotes a token. A ‘1’ in a cell
represents that the row reference contains the token in the email message.

5.2 Experimental Setting

For our experiments, we vary the k value of the proposed k-anonymity by selection (AC)
metric and run Maximal and different variants of Greedy independently for building pro-
jected classification datasets for which AC value is at least k. We use the names HamDist
and DistCnt for the two variants of Greedy (Algorithm 2 and 3), which optimize Ham-
ming distance and Distinguish count greedy criteria, respectively. As we mentioned ear-
lier, k-anonymity based method imposes strong restriction which severely affects the util-
ity of the dataset. To demonstrate that, instead of using AC, we utilize k-anonymity as

4https://archive.ics.uci.edu/ml/datasets/Adult
5http://www.csmining.org/index.php/pu1-and-pu123a-datasets.html
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our privacy criteria for different variants of Greedy. We call these competing methods
k-anonymity HamDist, and k-anonymity DistCnt. It is important to note that, in our ex-
periments under the same k setting, the k-anonymity based competing methods may not
provide the same level of privacy. For instance, for the same k value, privacy protection
of our proposed method HamDist is not the same as that of the k-anonymity HamDist,
simply because k-AC is a relaxation of k-anonymity.

We also use four other methods for comparing their performance with the performance of
our proposed methods. We call these competing methods RF [7], CM Greedy [19], Laplace-
DP, and Exponential-DP. We discuss these methods below.

RF is a Randomization Flipping based k-anonymization technique presented in [7], which
randomly flips the feature value such that each instance in the dataset satisfies the k-
anonymity privacy constraint. RF uses clustering such that after random flipping oper-
ation, each cluster has at least k entities with the same feature values with respect to the
entire feature set.

CM greedy represents another greedy based method which uses Classification Metric util-
ity criterion proposed in [19] as utility metric (See definition 2). It assigns a generalization
penalty over the rows of the dataset and uses a genetic algorithm for the classification task,
but for a fair comparison we use CM criterion in the Greedy algorithm and with the se-
lected features we use identical setup for classification.

Laplace-DP [21] is a method to use feature selection for ε-differential private data publish-
ing. Authors in [21] utilize Laplace mechanism [13] for ε-differential privacy guarantee. To
compare with their method, we first compute the utility of each feature xi ∈ I as its true
output using HamDist function in Definition 8 denoted as H(xi). Then we add indepen-
dently generated noise according to a Laplace distribution with Lap(∆H

ε ) to each of the |I|
outputs, and the noisy output for each feature xi is defined as ˆH(xi) = H(xi) + Lap(∆H

ε ),
where ∆H is the sensitivity of HamDist function. After that we select top-N features by
considering N largest noisy outputs. On the reduced dataset, we apply a private data re-
lease method which provides ε-differential privacy guaranty. The general philosophy of
this method is to first derive a frequency matrix of the reduced dataset over the feature do-
main and add Laplace noise with Lap( 1

ε ) to each count (known as marginal) to satisfy the
ε-differential privacy. Then the method adds additional data instances to match the above
count. Such an approach is discussed in [12] as a private data release mechanism.

Exponential-DP is another ε-differential privacy aware feature selection method. Com-
pared to the work presented in [21], we use exponential mechanism [30] based ε-differential
privacy to select features. In particular, we choose each feature xi ∈ I with probability pro-
portional to exp( ε

2∆HH(xi)). That is, the feature with a higher utility score in terms of
HamDist function is exponentially more likely to be chosen. The private data release stage
of Exponential-DP is as same as the one in Laplace-DP. Note that, for both Laplace-DP
and Exponential-DP, prior feature selection is essential for such methods to reduce the data
dimensionality, otherwise the number of marginals is an intractable number (2|F|, for a bi-
nary dataset with F features) and adding instances to match count for each such instance
is practically impossible.

For all the algorithms and all the datasets (except ED) we use the LibSVM to perform SVM
classification using L2 loss with 5-fold cross validation. The only parameter for libSVM is
regularization-loss trade-off C which we tune using a small validation set. For each of the
algorithms, we report AUC and the selected feature count (SFC). For RF method, it selects
all the features, so for this method we report the percentage of cell values for which the bit is
flipped. We use different k-anonymity by containment (AC) values in our experiments. For
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Method AUC (Selected Feature Count)
k=5 k=8 k=11

Maximal 0.82 (61) 0.81 (43) 0.79 (32)
HamDist 0.88 (27) 0.88 (24) 0.81 (16)
DistCnt 0.81 (11) 0.81 (11) 0.80 (10)

CM Greedy [19] 0.68 (2) 0.68 (2) 0.68 (2)
RF [7] 0.75±0.02 (11.99%) 0.73±0.03 (14.03%) 0.72±0.02 (16.49%)
k-anonymity HamDist 0.55 (3) 0.55 (2) 0.55 (2)
k-anonymity DistCnt 0.79 (3) 0.79 (3) 0.77 (2)

Full-Feature-Set 0.87 (552)

Table 4: AUC Comparison among different privacy methods for the name entity disam-
biguation task

practical k-anonymization, k value between 5 and 10 is suggested in the earlier work [41];
we use three different k values, which are 5, 8 and 11. For a fair comparison, for both
Laplace and Exponential DP, we use the same number of features as is obtained for the
case of HamDist Greedy under k = 5. Since k-anonymity and differential privacy use
totally different parameter setting mechanisms (one based on k, and the other based on
ε), it is not easy to understand what value of ε in DP will make a fair comparison for a k
value of 5 in k-AC. So, for both Laplace-DP and exponential-DP, we show the differential
privacy results for different ε values: 0.5, 1.0, 1.5, and 2.0 . Note that the original work [12]
has suggested to use a value of 1.0 for ε. While using DP based methods, we distribute half
of the privacy budget for the feature selection step and the remaining half to add noise into
marginals in the private data release step. Moreover, in the feature selection procedure, we
further equally divide the budget for the selection of each feature.

RF, Laplace-DP, and Exponential-DP are randomized methods, so for each dataset we run
all of them 10 times and report the average AUC and standard deviation. For each result
table in the following sections, we also highlight the best results in terms of AUC among
all methods under same k setting. We run all the experiments on a 2.1 GHz Machine with
4GB memory running Linux operating system.

5.3 Name Entity Disambiguation

In Table 4 we report the AUC value of anonymized name entity disambiguation task using
various privacy methods (in rows) for different k values (in columns). For better compari-
son, our proposed methods, competing methods, and non-private methods are grouped by
the horizontal lines: our proposed methods are in the top group, the competing methods
are in the middle group, and non-private methods are in the bottom group. For differential
privacy comparison, we show the AUC result in Figure 1(a) 1(b). For each method, we also
report the count of selected features (SFC). Since RF method uses the full set of features;
for this method the value in the parenthesis is the percent of cell values that have been
flipped. We also report the AUC performance using full feature set (last row). As non-
private method in bottom group has no privacy restriction, thus the result is independent
of k.

For most of the methods increasing k decreases the number of selected features, which
translates to poorer classification performance; this validates the privacy-utility trade-off.
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Method AUC (Selected Feature Count)
k=5 k=8 k=11

Maximal 0.74 (8) 0.74 (8) 0.75 (7)
HamDist 0.77 (9) 0.77 (9) 0.76 (8)
DistCnt 0.78 (10) 0.78 (10) 0.76 (8)

CM Greedy [19] 0.71 (5) 0.71 (5) 0.71 (5)
RF [7] 0.80±0.02 (0.60%) 0.80±0.03 (1.00%) 0.80±0.02 (1.44%)
k-anonymity HamDist 0.72 (8) 0.72 (8) 0.72 (8)
k-anonymity DistCnt 0.73 (8) 0.70 (6) 0.70 (6)

Full-Feature-Set 0.82 (19)

Table 5: Comparison among different privacy methods for Adult dataset using AUC

However, for a given k, our proposed methods perform better than the competing methods
in terms of AUC metric for all different k values. For instance, for k = 5, the AUC result
of RF and CM Greedy are only 0.75 and 0.68 respectively, whereas different versions of
proposed Greedy obtain AUC values between 0.81 and 0.88. Among the competing meth-
ods, both Laplace-DP and Exponential-DP perform the worst (0.51 AUC under ε = 1.0) as
shown in the first group of bars in Figure 1(a) & 1(b), and k-anonymity DistCnt performs
the best (0.79 for k=5); yet all completing methods perform much poorer than our proposed
methods. A reason for this may be most of the competing methods are too restrictive, as
we can see that they are able to select only 2 to 3 features for various k values. In compar-
ison, our proposed methods are able to select between 11 and 61 features, which help our
methods to retain classification utility. The bad performance of differential privacy based
methods is due to the fact that in such a setting, the added noise is too large in both feature
selection and private data release steps. In general, the smaller the ε, the stronger privacy
guarantee the differential privacy provides. However, stronger privacy protection in terms
of ε always leads to worse data utility in terms of AUC as shown in Figure 1(a) 1(b). There-
fore, even though differential privacy provides stronger privacy guarantee, the utility of
data targeting supervised classification task is significantly destroyed. For this dataset, we
observe that the performance of RF is largely dependent on the percentage of flips in the
cell-value; if this percentage is large, the performance is poor. As k increases, with more
privacy requirement, the percentage of flips increases, and the AUC drops.

For a sparse dataset like the one that we use for entity disambiguation, feature selection
helps classification performance. In this dataset, using full set of features (no privacy),
we obtain only 0.87 AUC value, whereas using less than 10% of features we can achieve
comparable or better AUC using our proposed methods (when k=5). Even for k = 11, our
methods retain substantial part of the classification utility of the dataset and obtain AUC
value of 0.81 (see second row). Also, note that under k = 5 and 8, our HamDist performs
better than using full feature set, which demonstrates our proposed privacy-aware feature
selection methods not only have the competitive AUC performance, but provide strong
privacy guarantees as well.

5.4 Adult Data

The performance of various methods for the Adult dataset is shown in Table 5, where the
rows and columns are organized identically as in the previous table. Adult dataset is low-
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Method AUC (Selected Feature Count)
k=5 k=8 k=11

Maximal 0.94 (121) 0.92 (66) 0.90 (58)
HamDist 0.91 (11) 0.91 (11) 0.91 (11)
DistCnt 0.95 (11) 0.93 (7) 0.93 (7)

CM Greedy [19] 0.86 (3) 0.86 (3) 0.86 (3)
RF [7] 0.87±0.02 (1.30%) 0.86±0.01 (1.73%) 0.87±0.03 (2.03%)
k-anonymity HamDist 0.84 (4) 0.84 (4) 0.84 (4)
k-anonymity DistCnt 0.81 (4) 0.81 (4) 0.81 (4)

Full-Feature-Set 0.95 (24604)

Table 6: Comparison among different privacy methods for Email dataset using AUC
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(b) Exponential Mechanism based Differential Privacy

Figure 1: Classification Performance of differential privacy based methods for different ε
values on three datasets. Laplace mechanism is on the left and Exponential mechanism is
on the right. Each group of bars belong to one specific dataset, and within a group different
bars represent different ε values.

dimensional and dense (27.9% values are non-zero). Achieving privacy on such a dataset
is comparatively easier, so existing methods for anonymization work fairly well on this.
As we can observe, RF performs the best among all the methods. The good performance
of RF is owing to the very small percentage of flips which ranges from 0.60% to 1.50% for
various k values. Basically, RF can achieve k-anonymity on this dataset with very small
number of flips, which helps it maintain the classification utility of the dataset. For the
same reason, k-anonymity HamDist and k-anonymity DistCnt methods are also able to
retain many dimensions (8 out of 19 for k=5) of this dataset, and perform fairly well. On
the other hand, different versions of Greedy and Maximal retain between 8 and 10 dimen-
sions and achieve an AUC between 0.74 and 0.78, which are close to 0.80 (the AUC value
for RF). Also, note that, the AUC using the full set of features (no privacy) is 0.82, so the
utility loss due to the privacy is not substantial for this dataset. As a remark, our method
is particularly suitable for high dimensional sparse data for which anonymization using
traditional methods is difficult.
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5.5 Spam Email Filtering

In Table 6, we compare AUC value of different methods for spam email filtering task. This
is a very high dimensional data with 24604 features. As we can observe, our proposed
methods, especially DistCnt and HamDist perform better than the competing methods.
For example, for k = 5, the classification AUC of RF is 0.87 with flip rate 1.30%, but using
less than 0.045% of features DistCnt obtains an AUC value of 0.95, which is equal to the
AUC value using the full feature set. Again, k-anonymity based methods show worse per-
formance as they select less number of features due to stronger restriction of this privacy
metric. For instance, for k = 5, HamDist selects 11 features, but k-anonymity HamDist
selects only 4 features. Due to this, classification results using k-anonymity constraint are
worse compared to those using our proposed AC as privacy metric. As shown in Fig-
ure 1(a) 1(b), both Laplace-DP and Exponential-DP with various privacy budget ε setups
perform much worse than all the competing methods in Table 6, which demonstrates that
the significant amount of added noise during the sanitization process deteriorates the data
utility and leads to bad classification performance. Among our methods, both DistCnt
and Maximal are the best as they consistently hold the classification performance for all
different k settings.

6 Related Work

We discuss the related work under the following two categories.

6.1 Privacy-Preserving Data Mining

In terms of privacy model, several privacy metrics have been widely used in order to quan-
tify the privacy risk of published data instances, such as k-anonymity [41], t-closeness [27],
`-diversity [28], and differential privacy [14]. Existing works on privacy preserving data
mining solve a specific data mining problem given a privacy constraint over the data in-
stances, such as classification [43], regression [16], clustering [42] and frequent pattern min-
ing [15]. However the solutions proposed in these works are strongly influenced by the
specific data mining task and also by the specific privacy model. In fact, the majority of the
above works consider distributed privacy where the dataset is partitioned among multiple
participants owning different portions of the data, and the goal is to mine shared insights
over the global data without compromising the privacy of the local portions. A few other
works [5,6] consider output privacy by ensuring that the output of a data mining task does
not reveal sensitive information.
k-anonymity privacy metric, due to its simplicity and flexibility, has been studied exten-

sively over the years. Authors in [2] presents the k-anonymity patterns for the application
of association rule mining. Samarati [39] proposes formal methods of k-anonymity using
suppression and generalization techniques. She also introduced the concept of minimal
generalization. Meyerson et al. [31] prove that two definitions of k-optimality are NP-
hard: first, to find the minimum number of cell values that need to be suppressed; second,
to find the minimum number of attributes that need to be suppressed. Henceforth, a large
number of works have explored the approximation of anonymization [4, 31]. However,
none of these works consider the utility of the dataset along with the privacy requirements.
Kifer et al. [22] propose methods that inject utility in the form of data distribution informa-
tion into k-anonymous and `-diverse tables. However, the above work does not consider a
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classification dataset. Iyengar [19] proposes a utility metric called CM which is explicitly
designed for a classification dataset. However, It assigns a generalization penalty over the
rows of the dataset, but its performance is poor as we have shown in this work.

In recent years differential privacy [12, 24, 34] has attracted much attention in privacy re-
search literatures. Authors in [9] propose a sampling based method for releasing high
dimensional data with differential privacy guarantees. [37] proposes a method of pub-
lishing differential private low order marginals for high dimensional data. Even though
authors in [9, 37] claim that they deal with high dimensional data, the dimensionality of
data is at most 60 from the experiments in their works. [40] makes use of k-anonymity to
enhance data utility in differential privacy. An interesting observation of this work is that
differential privacy based method, by itself, is not a good privacy mechanism, in regards
to maintaining data utility. [8] proposes a probabilistic top-down partitioning algorithm
to publish the set-valued data via differential privacy. Authors of [32] propose to utilize
exponential mechanism to release a decision tree based classifier that satisfies ε-differential
privacy. However in their work, privacy is embedded in the data mining process, hence
they are not suitable as a data release mechanism, and more importantly they can only be
used along with the specific classification model within which the privacy mechanism is
built-in.

6.2 Privacy-Aware Feature Selection

Empirical study for the use of feature selection in Privacy Preserving Data Publishing has
been proposed in [20] [21]. However, in their work, they use feature selection as an add-on
tool prior to data anonymization and do not consider privacy during the feature selection
process. For our work, we consider privacy-aware feature selection with a twin objective
of privacy preservation and utility maintenance. To the best of our knowledge, the most
similar works to ours for the use of feature selection in Privacy Preserving Data Publishing
are presented in [29, 35] recently. [35] considers privacy as a cost metric in a dynamic fea-
ture selection process and proposes a greedy based iterative approach for solving the task,
where the data releaser requests information about one feature at a time until a predefined
privacy budget is exhausted. However the entropy based privacy metric presented in this
work is strongly influenced by the specific classifier. [29] presents a genetic approach for
achieving k-anonymity by partitioning the original dataset into several projections such
that each one of them adheres to k-anonymity. But the proposed method does not provide
optimality guaranty.

7 Conclusion and Future Work

In this paper, we propose a novel method for entity anonymization using feature selec-
tion. We define a new anonymity metric called k-anonymity by containment which is par-
ticularly suitable for high dimensional microdata. We also propose two feature selection
methods along with two classification utility metrics. These metrics satisfy submodular
properties, thus they enable effective greedy algorithms. In experiment section we show
that both proposed methods select good quality features on a variety of datasets for retain-
ing the classification utility yet they satisfy the user defined anonymity constraint.

In this work, we consider binary features. We also show experimental results using cat-
egorical features by making them binary, so the work can easily be extended for datasets
with categorical features. An immediate future work is to extend this work on datasets
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with real-valued features. Another future direction would be to consider absent attributes
in the privacy model. In real world, for some binary datasets, absent attributes can cause
privacy violation, such as, they can be used for negative association rule mining.
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