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Abstract

The introduction of next-generation sequencing technologies has radically changed the way we 

view structural genetic events. Microhomology-mediated break-induced replication (MMBIR) is 

just one of the many mechanisms that can cause genomic destabilization that may lead to cancer. 

Although the mechanism for MMBIR remains unclear, it has been shown that MMBIR is typically 

associated with template-switching events. Currently, to our knowledge, there is no existing 

bioinformatics tool to detect these template-switching events. We have developed MMBIRFinder, 

a method that detects template-switching events associated with MMBIR from whole-genome 

sequenced data. MMBIRFinder uses a half-read alignment approach to identify potential regions 

of interest. Clustering of these potential regions helps narrow the search space to regions with 

strong evidence. Subsequent local alignments identify the template-switching events with single-

nucleotide accuracy. Using simulated data, MMBIRFinder identified 83 percent of the MMBIR 

regions within a five nucleotide tolerance. Using real data, MMBIRFinder identified 16 MMBIR 

regions on a normal breast tissue data sample and 51 MMBIR regions on a triple-negative breast 

cancer tumor sample resulting in detection of 37 novel template-switching events. Finally, we 

identified template-switching events residing in the promoter region of seven genes that have been 

implicated in breast cancer. The program is freely available for download at https://github.com/

msegar/MMBIRFinder.
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1 Introduction

The advent of new sequencing technologies has radically lowered the cost of sequencing 

large-scale genomes. Next-generation sequencing technologies have revolutionized the way 

in which biological data is collected, analyzed, and interpreted. Due to the unprecedented 

amount of biological data now available, the difficulty is not in collection, but rather in 

trying to interpret and understand the ever-increasing amount of biological information.

It is widely known that the buildup of mutations and other structural genetic changes are all-

important properties of genomic instability that can eventually lead to complex diseases, 

such as cancer [1], [2], [3], [4], [5]. Microhomology-mediated break-induced replication 

(MMBIR) is one of the mechanisms that can lead to various complex chromosomal 

rearrangements including copy number variations [6], [7]. Originally, MMBIR was proposed 

to explain complex duplications and triplications of non-continuous chromosome regions 

joined by microhomologies that were observed in patients with Pelizaeus-Merzbacher 

disease [8]. Soon after, many other studies were performed in cancer patients, yeast, and 

plants, which also documented MMBIR [9], [10], [11], [12]. Despite the important role that 

MMBIR plays in genomic instability, the mechanism of MMBIR remains unclear. This gap 

in our knowledge results in part from difficulties associated with detection of unselected 

MMBIR. The goal of this work was the development of an algorithm for detection of 

MMBIR events based on results of whole-genome sequencing.

Template-switching mutations are the hallmark of MMBIR [13]. As outlined in Fig. 1, the 

mutation event closely resembles the reference sequence with one key difference. A 

template-switching mutation event contains a template (the bold nucleotides in Fig. 1A) that 

matches the reference sequence and a downstream insertion that is the reverse complement 

of the template (the bold nucleotides in Fig. 1B). The inserted region is characterized as the 

template switching event or the MMBIR region. Additionally, small ( 3–8 b.p.) 

microhomology tags are found on the 3′ end of the template and the 5′ end of the insertion 

(the italicized, non-bolded nucleotides in Fig. 1). The insertion distance, the distance 

between the template and insertion (i.e. the distance between region A and B in Fig. 1), is 

usually between 5 and 100 b.p.

Today, most genetic variant methods focus on single-nucleotide polymorphisms (SNPs), 

small insertion deletion (microINDELs), and structural variants (SVs) [14], [15], [16]. More 

recent approaches aim to detect short tandem repeats (STRs) in DNA [17]. Most of the 

existing tools operate on the same general principle: scan the aligned reads for specific SV 

artifacts, reprocess (align) the specific regions, and calculate the resulting variant. However, 

while our approach does not deviate from the effective model, the uniqueness of MMBIR as 

a structural variant makes it difficult to detect using previous tools. Since MMBIR can result 

in the deletion and insertion of DNA tracks with unknown lengths followed by a possible 

inversion, other methods are not designed to capture the unique mutation pattern associated 

with MMBIR. To our knowledge, there is no existing bioinformatics tool to detect these 

template-switching events.
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We have developed MMBIRFinder to detect template-switching events in both small and 

large-scale genomes. We first tested the program on the Saccharomyces cerevisiae genome. 

Using a simulated data set with 5,000 inserted MMBIRs, the tool detected 83 percent within 

five nucleotides and 90 percent within 10 nucleotides. To study the biological relevance, we 

further tested the tool on triple-negative breast cancer samples. The normal breast tissue 

sample contained 33 possible MMBIR regions while the triple-negative tumor sample 

contained 62 MMBIR events.

2 Methods

The MMBIRFinder method consists of three major steps. First, the BWA alignment tool 

(version 0.7.3) [18] is used to perform an initial alignment on the full genome. Additionally, 

unaligned reads from the initial alignment are extracted and half-reads are created and again 

aligned using BWA. Second, the aligned half-reads are then used to create a list of candidate 

MMBIR regions where one-half of the read is aligned, or anchored, to a specific location 

and the other half remains unaligned. The anchored read positions are used to cluster the 

reads into candidate regions of potential interest. A successive base-calling of the clustered 

reads creates a consensus read that is the most common nucleotide at each genomic location. 

Third, a series of local alignments on the consensus is performed and the MMBIR region 

and its matched template are recorded. A detailed analysis of the overall method is given 

below.

2.1 Identification of Reads Spanning MMMBIR Regions

To identify the candidate MMBIR region, the BWA alignment tool is conducted twice. First, 

the full set of reads is mapped against the reference genome. The parameters used in BWA 

ensure a highly accurate alignment with only one mismatch or error per read. The output of 

the first step is a SAM file containing all the aligned and unaligned reads [19]. Since 

MMBIR events contain regions that are sufficiently different from the reference (Figs. 1B 

and 2A), those reads that align to the reference are not included in the further analysis. 

Therefore, the unaligned reads are extracted in order to perform split-read mapping. In split-

read mapping, the unaligned read is split at the halfway point (the X′s in Fig. 2A) and allows 

for increased coverage around the structural variant (Supplementary Fig. 1, which can be 

found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TCBB.2014.2359450 available online). BWA is again used against the unaligned 

split reads and the reference genome. Finally, the anchored reads are extracted into a 

structure of candidate reads; an anchored read is defined as a read where one half of the 

split-read is aligned to the reference genome while the other half remains unaligned. This is 

shown in Fig. 2A by the two-colored reads. In the figure, the dark grey reads indicate the 

anchored read. Since the anchored read is aligned to the genome at a specific location, it is 

now known where the unalignable half of the read is located on the reference genome. If 

both halfs of the read remain unaligned (the solid, light grey read in Fig. 2A), then the read 

is discarded due to lack of information. Similarly, if the two half-reads are aligned to non-

consecutive locations on the genome, then the read is also discarded due to the ambiguity of 

the genomic location.
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2.2 Identification of Potential MMBIR Regions

Anchored reads (where half of the original read can be aligned) within a pre-defined 

distance are further clustered using a simple distance-from-neighbor method. Clustering 

ensures that we are focusing on regions of high interest Since an anchored read only exists 

when half of the read is alignable, a region with a large number of anchored half reads must 

contain a localized unalignable region as well.

Let D represent the set of all anchored reads that were output from the SAM file in the 

previous step. Additionally, let ri be genomic starting position of the ith read in the anchored 

half-read structure D, di;i+1 be the distance between the starting points of two reads ri and 

ri+1, and t be a pre-defined distance threshold. Furthermore, let C be a structure of clustered 

reads c such that c contains all overlapping reads r. Before clustering can commence, D must 

be sorted by both nucleotide position and chromosome number. We utilize the gcc sort 
method to ensure a worst-case scenario run time of O(n * logn) [20].

Conceptually, we are clustering a pair of reads if there exists an overlap between the two 

reads. Algorithmically, for each two consecutive reads r1 and r2 we calculate d1,2 = r2r1. If 

the distance d1,2 between the two reads r1 and r2 is less than a pre-defined threshold t, then r1 

and r2 will be both clustered into c1. Subsequently, if the distance d2,3 between r2 and r3 is 

less than t, r3 is clustered into c1 as well. This procedure continues until the distance 

between rj and rj+1 is greater than t. Once dj,j+1 > rj+1 rj, then rj+1 is clustered into c2 and the 

process repeats.

After all the reads have been analyzed, the clusters with an insufficient number of reads 

below a minimum threshold (as specified in the user configuration file—default value of 20) 

are removed. The loci of these read clusters are considered potential MMBIR regions. The 

clustering method is fast as it operates, after sorting, in O(n) time.

Within each potential MMBIR cluster, we conduct base-calling to derive the de novo 
sequence that best represents the event, based on all the aligned and unaligned portions of 

the anchored reads (indicated in Fig. 2B as the dark grey and light grey reads respectively). 

The base calling results in a new consensus read.

From above, let Ri be a read with length m in the cluster c at position i. Let s represent an 

arbitrary nucleotide in sequence Ri = s1, s2, … sm. At each position j along the nucleotide 

sequence, the probability of each nucleotide is calculated and the highest probability 

nucleotide is the new nucleotide for base call read n at position j. In other words, nj is the 

nucleotide with the highest probability at position j. However, the nucleotide with the 

highest probability must be at least 10 percent greater than the next highest probability 

nucleotide. Otherwise, an ambiguous ‘N’ is designated at nj. For example, if the probability 

at nj is 54 percent for nucleotide ‘C’ and 46 percent for ‘T’ then nj is ‘N’ and is treated as 

any of the four nucleotides in the remaining steps.

2.3 Identification of Template-Switching Events

Once a consensus read has been created, the read must be compared to the original reference 

genome. Since a MMBIR region has a unique pattern of mismatches anchored on both sides 
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by a long stretch of nucleotide matches Fig. 1) and the location of the consensus read is 

known (due to split-read mapping), a Smith-Waterman local alignment is performed against 

the reference genome (at the known location) and consensus read (Fig. 2C). The resulting 

alignment is then traversed in order to extract the location of the MMBIR region.

A finite state machine (FSM) is employed containing three states: pre-region, in-region, and 

post-region. The FSM operates by looking for regions of mismatches anchored on both sides 

by a long stretch of matches. Starting in the pre-region, the FSM travels along the alignment 

until it reaches a mismatch. If the number of consecutive mismatches is greater than or equal 

to the opening value (user-defined), the FSM transition into the in-region state and the 

location of the first mismatch is stored. Returning to the location of the first mismatch, the 

FSM continues until it encounters a match. Similarly, if the number of consecutive matches 

is greater than or equal to the closing value (user-defined), the FSM transition into the post-

region state and the location of the first match is stored. An evaluation of the finite state 

machine parameters is given in Section 3.1.1.

Using Fig. 2C as an example, let the opening value of the FSM be 3 and the closing value be 

6. Traversing along the alignment, the first reported mismatch is located at position 4 (note 

the small numbers above the reference genome). Continuing, locations 5, 6, and 7 are all 

consecutive mismatches. Since the number of consecutive mismatches (4) is greater than or 

equal to the defined opening value (3), the first nucleotide of the candidate MMBIR region is 

at location 4. Returning to location 4, the FSM traverses until location 8 where a match is 

found. Since location 9 is a mismatch and the number of consecutive matches (1) is less than 

the closing value (6), the FSM continues. Continuing, the nucleotides at locations 20–25 are 

all consecutive matches. Since the number of consecutive matches (6) is greater than or 

equal to closing value (6), location 19 is recorded as the last nucleotide in the candidate 

MMBIR region.

The nucleotides between the two stored locations constitute the candidate MMBIR region. 

One final check is required to ensure that the candidate region is in fact an actual MMBIR 

region. Once the candidate MMBIR region is identified, finding the template is 

straightforward. Since the MMBIR by definition contains the reverse complement of an 

upstream template region (Fig. 1), the reverse complement of the MMBIR is aligned against 

a long stretch (user-defined) of the reference genome upstream from the start of the 

candidate MMBIR region. If a region is found that is a near perfect match (i.e. within 1–2 

nucleotide mismatches), the locations of the template and MMBIR regions are stored.

2.4 Detection and Removal of False Positives

Finally, before a potential MMBIR region is deemed accurate, an error-correcting step is 

conducted to help mitigate false positives. Due to the highly repetitive nature of human 

DNA, majority of the false positives reside in these regions. Therefore, a method that detects 

simple repeats was employed. Our method observes the frequency of dinucleotides, defined 

as two consecutive nucleotides, within a given MMBIR region.

From above, let m be the length of the MMBIR region and si and sj be be nucleotides at 

position i and j respectively. Formally, a dinucleotide is defined as the concatenation of si 
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and sj such that j = i + 1. By iteration over the MMBIR region we count the occurrence of 

each dinucleotide Dd where D is the frequency count of dinucleotide d. If Dd is greater than 

90 percent of m/2 then the MMBIR is deemed to reside in a highly repetitive region and has 

a high probability of being a false positive. Only those regions that pass the error-correcting 

step are stored. It is this MMBIR region with a matching template that constitutes a 

template-switching event.

3 Results

The MMBIRFinder tool was primarily developed in C++ using the GNU gcc framework, 

version 4.7.3 [20]. The input to MMBIRFinder is simply a FASTA or FASTQ file of reads 

[21], a FASTA reference genome, and a configuration file (config.txt). The configuration file 

allows for alteration of the various thresholds, tolerances, finite state machine parameters, 

and input and output files. The program is freely available for download at https://

github.com/msegar/MMBIRFinder.

3.1 Performance on the Simulated Data Set

We evaluated MMBIRFinder by inserting 5,000 artificial MMBIR regions in to the 

Saccharomyces cerevisiae genome (strain S288C). The length of the genome was 

12,157,058 b.p. Paired-end reads were simulated with an average length of 75 b.p. at 50× 

coverage with a Gaussian distributed insert size of 200 b.p. Sequencing error followed 

normal Illumina data with an overall error rate around 1 percent [22]. The MMBIR regions 

had an average length of 10 b.p. with an average insert distance (the distance between the 

MMBIR and template) of 20 b.p.

The MMBIRFinder tool was evaluated using the simulated genome with default parameters. 

Majority of the run time was spent on the first stage, the BWA alignments, with an average 

alignment time of nearly 47 minutes. Once the alignments between the full- and half-reads 

were complete, MMBIRFinder took only 17 seconds to parse, cluster, and align the results. 

Of the 5,000 MMBIR events inserted into the genome, MMBIRFinder predicted 4,826 

locations (Table 1). Of these, 4,519 were within 10 nucleotides of the exact location, 4,365 

were within seven nucleotides, 4,150 were within five nucleotides, and 3,798 were within 

three nucleotides, for an accuracy of 90, 87, 83, and 76 percent respectively (Table 1 and 

Supplementary Fig. 2, available online). The tolerance in Table 1 is the maximum number of 

nucleotides between the predicted and actual MMBIR location to constitute an accurate 

prediction. Thus, a lower tolerance signifies a more accurate prediction.

We further examined whether the performance of the algorithm varies depending on the 

length of the MMBIR region. As indicated in Table 2, the algorithm consistently detects 

between 77 and 84 percent regardless of the MMBIR region length. This suggests that there 

is no bias with respect to MMBIR length and each region is equally likely to be detected.

3.1.1 Examination of False Negatives—Even though MMBIRFinder correctly 

identified between 76 and 90 percent of the MMBIR events in the simulated genome, 

determining why false negatives occurred can be useful in algorithm refinement. Above all, 

two key parameters add considerable variability in the MMBIR detection. First, since 
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aligning and evaluating every candidate MMBIR region is unwieldy, clustering helps 

minimize the number of expensive computations at a cost of possibly removing important 

information. Typically, optimal sensitivity is achieved when setting the algorithm coverage, 

defined as the minimum number candidate reads to constitute a read cluster (Fig. 2B), to 

one-third the machine read coverage. For example, if the DNA sample was sequenced at 60× 

coverage, the algorithm reported optimal results using a coverage value of 20. However, as 

seen in the triple-negative breast cancer data, a high coverage parameter can cause potential 

MMBIR regions to be missed. Changing the coverage parameter to a lower value will 

increase the number of reported MMBIRs at a cost of decreased accuracy.

Second, changing the FSM variables to open and close a potential MMBIR region can 

drastically change the detection rate. Referring to Section 2.3, the opening value was defined 

as the number of consecutive mismatches in the alignment to start, or open, a candidate 

MMBIR region, while the closing value was defined as the number of consecutive matches 

in the alignment to end, or close, a candidate MMBIR region. In order to evaluate the effects 

of different FSM open and close parameters on the algorithm, we computed precision—the 

fraction of true positive over all predictions, and recall—the fraction of true positives over 

all variants, for various opening and closing value combinations (Fig. 3).

The value to open the MMBIR region caused the greatest difference in detection rate. Too 

many consecutive mismatches to open a candidate MMBIR region decreases the ability of 

the program to detect true positives (i.e. recall). Conversely, the value to close the MMBIR 

did not change the precision of the program. The precision within the same opening value 

group did not change much relative to the closing value. In other words, the recall and 

precision for an opening value of 2 and closing value of 4 was very similar to the 2:5 and 2:6 

parameters. Similarly, the 3:4, 3:5, and 3:6 had equivalent precision and recall. Therefore, a 

value of four consecutive matches to close the potential MMBIR region was sufficient to 

detect a large majority of the implanted MMBIRs. However, it is unknown if a value less 

than 4 would result in the same precision. Conceptually, the FSM must account for random 

matches within the MMBIR region. Thus, a value of 1 to close the MMBIR would not 

suffice. It is also not uncommon to see two consecutive matches. Therefore, a value of at 

least three consecutive matches is the theoretical minimum threshold between random 

matches in the MMBIR region and the end of the MMBIR region itself. As evident from the 

graph, the 2:4, 2:5, and 2:6 parameters for the FSM optimize the MMBIR detection. Since 

only a fraction of MMBIR events are identifiable using a half-read approach, we do not 

expect the precision to be exactly 1.

3.2 Results for Triple Negative Breast Cancer Data

Further evaluation of the MMBIRFinder tool was conducted using real data acquired from 

the Susan G. Koman Tissue Bank at the Indiana University Simon Cancer Center. The 

whole-genome data was sequenced at the DNA sequencing Core Facility in Indianapolis, IN 

using Illumina Hi-Seq technology at 50× coverage for the normal sample and 70× coverage 

for the tumor sample using NimbleGen sequence capture and standard high-throughput 

sequence library preparation. Sequencing resulted in 117.2 and 299.6 million paired-end 100 

b.p. reads for the normal and tumor sample respectively. Read alignment was against the 
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hg19 reference genome. Comparing a normal breast data set against a tumor sample allows 

us to identify novel variants.

3.2.1 Results for Normal Sample—We ran MMBIRFinder on the normal breast sample 

obtained from TCGA. As summarized in Table 3, the alignment took around 50 hours and 

resulted in over 50 million aligned half-reads and nearly 67 million unaligned half-reads. Of 

these aligned half-reads we identified 26,576 clusters that had at least 20× read overlaps. 

Finally, 24 potential MMBIRs were identified. However, upon error-correction, eight were 

calculated to be false positives. The resultant 16 regions were considered to be accurate 

MMBIRs. A possible explanation for the miscalculation is the result of highly repetitive 

regions in DNA (Section 2.4). Despite an error-correcting step that eliminates the most 

obvious repetitive regions of DNA, the only way to determine the difference between a 

potential MMBIR and a false positive is through manual inspection. Further discussion on 

false positives is given in Section 4.

3.2.2 Results for Tumor Sample—Similarly, we ran MMBIRFinder on the tumor 

sample following the same procedure. As predicted, the tumor sample contained many more 

unaligned reads requiring a longer processing and run time. The BWA alignment took over 

116 hours and resulted in nearly 118 million aligned half-reads and 182 million unaligned 

half-reads. We further identified 383,509 clusters that had at least 20× read coverage that 

resulted in 62 possible MMBIRs. Of the 62, five were filtered in the error-correcting step for 

a total of 57 potential MMBIRs identified (Table 3). Futhermore, in the 57 MMBIRs 

reported in the tumor sample, 14 were also present in the normal sample. Therefore, the 

number of potential novel MMBIRs detected that were present only in the tumor data set 

was 43. Manual inspection of the 43 potential MMBIRs resulted in 37 verified novel 

MMBIRs introduced in the tumor sample. The six additional false positive MMBIRs were 

located in highly repetitive regions of DNA that contained more than dinucleotide repititions 

(Section 2.4) and the two MMBIRs detected in the normal sample and not in the tumor 

sample were the result of too little coverage in the tumor data set (i.e. less than 20× 

coverage). Changing the coverage parameter in the config.txt file to 15× identified the 

missing two MMBIR regions.

The relatively few number of detected MMBIRs may reflect the large number of pathways 

for repairing DNA double-strand breaks. Ideally, a double-strand break would be repaired by 

an error-free pathway. However, double-strand breaks resulting from replication fork 

collapse or eroded telomeres are typically repaired by the highly mutagenic BIR pathway 

[23].

In all, the stark contrast between the normal and tumor sample supports the evidence that 

there is a strong correlation between cancer and complex mutations present at the genomic 

level. The number of reads that were unable to be aligned was nearly three times that of the 

normal sample.

3.3 Biological Relevance

While the detection of MMBIRs is novel, the true value is determining the biological impact 

of mutagenic template-switching events. The 37 detected MMBIRs unique to the tumor 
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sample were further analyzed to determine their location relative to the nearest gene. Only 

those MMBIRs within −5000/+3000 were considered to be within the promoter region of a 

gene. A total of seven genes were found to reside with a promoter region. The recorded 

genes include COL6A5, a gene associated with cell-binding in soft tissue, and FMO5, a 

unique FMO associated with the cytochrome P450 drug-metabolism pathway [24]. A 

complete listed of the genes and their descriptions are listed in Table 4. While the correlation 

of template-switching events associated with MMBIR certainly does not imply causation, 

the detection of these minute genetic mutations can further enhance the knowledge of 

erroneous repair mechanisms within a DNA data set.

4 Conclusion and Discussion

Identifying novel variants is not trivial. Furthermore, identifying small microhomologies less 

than 20 b.p. in a 3,000 Mb human genome is likened to finding a needle in a haystack. 

MMBIRFinder is a versatile tool that makes searching for the outcomes indicative of 

MMBIR in whole genome sequencing data a much easier task. The use of half-read 

alignment and read clustering allows us to focus on regions of interest. Additionally, by 

allocating computational resources to regions of high confidence, we drastically lower the 

time it takes to analyze an entire human genome.

Our analyses showed that MMBIRFinder provides a highly accurate and specific framework 

for detecting template-switching events associated with microhomology-mediated break-

induced replication. However, because of the naturally repetitive nature of DNA, DNA itself 

can be the cause of considerable variability in algorithm performance. Due to the small 

number of nucleotides in DNA and high probability of developing palindromes, our method 

falsely identifies areas of highly repetitive regions as potential MMBIRs. For example, the 

occurrence of microsatellites in the human genome allows for long stretches of highly 

repetitive DNA.

A microsatellite, also known as short tandem repeats and simple sequence repeats (SSRs), 

are repeating sequences between two and six base pairs in length [25]. For example, a 

common microsatellite is of the form (TA)n where n is the number of alleles. Therefore, 

when n is six the microsatellite sequence is TATATATATATA. Conversely, a misalignment at 

the three end of the sequence will be identified as a potential candidate region. Therefore, 

the reverse complement of the microsatellite (ATATATATATAT) and the microsatellite itself 

are nearly identical and are considered a positive MMBIR identification.

Microsatellites can trigger false positives when the repeated sequence is sufficiently large 

and greater than the minimum insertion distance (typically 5–10 b.p.). The challenge then 

lies in differentiating between a highly repetitive region and a template-switching event. 

Further research will aim to help distinguish between repeats and important genetic events.

Notably, our method is not sensitive enough to differentiate between somatic and germline 

mutations in cancer. In the simulation study, the reference genome was mutated by inserting 

MMBIR regions. Since the reference genome considers all cells to be the same, each 
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mutation is assumed to be a germline mutation. In real world data samples, it is increasingly 

difficult to differentiate between a somatic and germline mutation.

Finally, as with most other NGS studies, a prediction can only be proven as a true positive 

with experimental validation. While at this time there is too much difficulty to verify our 

findings using PCR/Sanger sequencing, it should be noted that our method lends itself well 

to experimental validation.
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Fig. 1. 
Examples of template-switching events identified in yeast. The reference sequence indicates 

the donor DNA strand that is being copied during MMBIR. In the template-switching event, 

the —indicates a deleted nucleotide. The bold nucleotides in region A denote the sequences 

that served as the template during the template-switching event. The bold nucleotides in 

region B indicate insertions. The italicized, non-bolded nucleotides in both sections indicate 

micro-homologies located at junctions of template-switching events.
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Fig. 2. 
The main steps of the MMBIRFinder tool. A. BWA is used to conduct two consecutive 

alignments. First, the full reads are aligned against the reference genome. Next, the 

unaligned half-reads are mapped. The top black line is the reference sequence with the light 

grey arrow representing the template and the dark grey arrow representing the MMBIR 

region. The MMBIR region will not be alignable to the reference genome. The smaller black 

lines represent the full reads. The Xs are the halfway point where the unaligned reads (light 

grey lines) are split to create half-reads. Dark grey lines represent anchored, or alignable, 

half-reads. B. Anchored half-reads are consolidated into clusters where there exists an 

overlap between the reads. Again, the grey arrows represent multiple MMBIR regions on the 

reporter sequence. Clusters are represented using [ ] brackets. Each cluster is then base 

called to create a consensus read. Due to the randomness of DNA or the allowance of 

mismatches in BWA, it is possible for a small portion of the half read to align to the MMBIR 

region. Split-read alignment does not guarantee an exact border between the SV and the 

original genome, it rather limits the search space and reduces the time necessary to find the 

possible MMBIR region. C. The final step is the local alignment of the consensus read with 
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the reference. If a potential MMBIR region is found, the reverse complement is used to find 

the template upstream from the MMBIR region. The vertical bars indicate matches between 

the reference and the consensus read. The numbers represent the nucleotide locations. As 

indicated, the MMBIR region starts at nucleotide position 4 and ends at nucleotide position 

19. Notice how there is a large gap of unaligned nucleotides to the reference in the MMBIR 

region. D. The finite-state machine to identify the MMBIR region. The FSM consists of 

three main state: pre-region, in-region, and post-region represented by the circles. In the 

example above, two consecutive mismatches are required to identify the start of the MMBIR 

region and four consecutive matches are required to identify the end of the MMBIR region. 

When comparing the reference genome and the consensus read (Fig. 2C above), the FSM 

starts in the pre-region and identifies nucleotide matches. If a mismatch occurs the FSM 

transitions to M1. If a match occurs the FSM transitions back to the pre-region. Otherwise, 

after two consecutive mismatches, the FSM transitions to the second state, in-region, and the 

position location is stored. In the in-region state, if four consecutive mismatches occur, the 

FSM transitions from the in-region to the post-region and the location (constituting the end 

of the MMBIR region) is stored.
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Fig. 3. 
Precision versus recall graph of the FSM parameters in the form of x:y, where x is the 

opening value—the number of consecutive unaligned nucleotides to open the MMBIR 

region, and y is the closing value—the number of consecutive aligned nucleotides to close 

the MMBIR region. Each point for each FSM parameter (x:y) represents a changing 

tolerance from 0 to 17.
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TABLE 1

Summary of MMBIRFinder Statistics

+/− Tolerance TP FP FN Sensitivity

10 4,519 307 481 90.4%

7 4,365 461 635 87.3%

5 4,150 676 850 83.0%

3 3,798 1,028 1,202 76.0%

Tolerance is the number of nucleotides between the predicted and actual MMBIR location to constitute an accurate prediction. A lower tolerance 
means a more accurate prediction.
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TABLE 2

Detection Statistics Based on Length of MMBIR Region

Length Detected Actual Percentage

14–15 363 470 77%

16–17 818 996 82%

18–19 812 976 83%

20–21 806 1,012 79%

22–23 878 1,042 84%

24–25 402 504 79%

Length is the length of the actual MMBIR region. Detected is the number of true positive identifications outputted from MMBIRfinder. Actual is 
the number of inserted MMBIR regions in the simulated sample.

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 May 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Segar et al. Page 20

TABLE 3

Comparison of the Normal and Tumor Sample on Real Triple-Negative Breast Cancer Data

Normal sample Tumor sample

Total number of reads (mil) 1,245 2,021

Coverage 50× 70×

BWA alignment time (hrs) 50 116

Aligned half-reads (mil) 50.3 117.9

Unaligned half-reads (mil) 66.9 181.7

Clusters 26,576 383,509

Clustering time (s) 918 28,083

MMBIR identification time (s) 260 7,227

Predicted MMBIRs

(before e.c.*) 24 62

Predicted MMBIRs

(after e.c.*) 16 57

*
e.c. = error-correcting step
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TABLE 4

The Seven MMBIRs that Resided within the Promoter Region of a Gene

Name Description Insert

FMO5 Flavin containing
monooxygenase 5

−1,612

COL6A5 Collagen, Type
VI, Alpha 5

−2,355

CNOT8 CCR-NOT transcrption
complex, subunit 8

−2,480

LINC00951 Long intergenic non-protein
coding RNA 951

2,679

DRAP1 DR1-Associated Protein 1 −1,841

STOML3 Stomatin (EPB72)-like 3 2,862

ANKRD30B Ankyrin repeat
doman 30B

−2,695

A Description of the Gene and the Distance from the MMBIR Starting Location is Listed
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